OpenCloudOS-Kernel/drivers/thirdparty/ice/virtchnl.h

2571 lines
84 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (C) 2018-2021, Intel Corporation. */
#ifndef _VIRTCHNL_H_
#define _VIRTCHNL_H_
/* Description:
* This header file describes the Virtual Function (VF) - Physical Function
* (PF) communication protocol used by the drivers for all devices starting
* from our 40G product line
*
* Admin queue buffer usage:
* desc->opcode is always aqc_opc_send_msg_to_pf
* flags, retval, datalen, and data addr are all used normally.
* The Firmware copies the cookie fields when sending messages between the
* PF and VF, but uses all other fields internally. Due to this limitation,
* we must send all messages as "indirect", i.e. using an external buffer.
*
* All the VSI indexes are relative to the VF. Each VF can have maximum of
* three VSIs. All the queue indexes are relative to the VSI. Each VF can
* have a maximum of sixteen queues for all of its VSIs.
*
* The PF is required to return a status code in v_retval for all messages
* except RESET_VF, which does not require any response. The returned value
* is of virtchnl_status_code type, defined here.
*
* In general, VF driver initialization should roughly follow the order of
* these opcodes. The VF driver must first validate the API version of the
* PF driver, then request a reset, then get resources, then configure
* queues and interrupts. After these operations are complete, the VF
* driver may start its queues, optionally add MAC and VLAN filters, and
* process traffic.
*/
/* START GENERIC DEFINES
* Need to ensure the following enums and defines hold the same meaning and
* value in current and future projects
*/
/* These macros are used to generate compilation errors if a structure/union
* is not exactly the correct length. It gives a divide by zero error if the
* structure/union is not of the correct size, otherwise it creates an enum
* that is never used.
*/
#define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
#define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
/* Error Codes
* Note that many older versions of various iAVF drivers convert the reported
* status code directly into an iavf_status enumeration. For this reason, it
* is important that the values of these enumerations line up.
*/
enum virtchnl_status_code {
VIRTCHNL_STATUS_SUCCESS = 0,
VIRTCHNL_STATUS_ERR_PARAM = -5,
VIRTCHNL_STATUS_ERR_NO_MEMORY = -18,
VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38,
VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39,
VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40,
VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53,
VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64,
};
/* Backward compatibility */
#define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
#define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
#define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0
#define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1
#define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2
#define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3
#define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4
#define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5
#define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6
#define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7
enum virtchnl_link_speed {
VIRTCHNL_LINK_SPEED_UNKNOWN = 0,
VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
};
/* for hsplit_0 field of Rx HMC context */
/* deprecated with AVF 1.0 */
enum virtchnl_rx_hsplit {
VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0,
VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1,
VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2,
VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8,
};
enum virtchnl_bw_limit_type {
VIRTCHNL_BW_SHAPER = 0,
};
/* END GENERIC DEFINES */
/* Opcodes for VF-PF communication. These are placed in the v_opcode field
* of the virtchnl_msg structure.
*/
enum virtchnl_ops {
/* The PF sends status change events to VFs using
* the VIRTCHNL_OP_EVENT opcode.
* VFs send requests to the PF using the other ops.
* Use of "advanced opcode" features must be negotiated as part of capabilities
* exchange and are not considered part of base mode feature set.
*
*/
VIRTCHNL_OP_UNKNOWN = 0,
VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
VIRTCHNL_OP_RESET_VF = 2,
VIRTCHNL_OP_GET_VF_RESOURCES = 3,
VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
VIRTCHNL_OP_ENABLE_QUEUES = 8,
VIRTCHNL_OP_DISABLE_QUEUES = 9,
VIRTCHNL_OP_ADD_ETH_ADDR = 10,
VIRTCHNL_OP_DEL_ETH_ADDR = 11,
VIRTCHNL_OP_ADD_VLAN = 12,
VIRTCHNL_OP_DEL_VLAN = 13,
VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
VIRTCHNL_OP_GET_STATS = 15,
VIRTCHNL_OP_RSVD = 16,
VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
/* opcode 19 is reserved */
VIRTCHNL_OP_IWARP = 20, /* advanced opcode */
VIRTCHNL_OP_RDMA = VIRTCHNL_OP_IWARP,
VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */
VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP = VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP,
VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */
VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP = VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP,
VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
VIRTCHNL_OP_SET_RSS_HENA = 26,
VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
VIRTCHNL_OP_REQUEST_QUEUES = 29,
VIRTCHNL_OP_ENABLE_CHANNELS = 30,
VIRTCHNL_OP_DISABLE_CHANNELS = 31,
VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
/* opcode 34 is reserved */
VIRTCHNL_OP_DCF_CONFIG_BW = 37,
VIRTCHNL_OP_DCF_VLAN_OFFLOAD = 38,
VIRTCHNL_OP_DCF_CMD_DESC = 39,
VIRTCHNL_OP_DCF_CMD_BUFF = 40,
VIRTCHNL_OP_DCF_DISABLE = 41,
VIRTCHNL_OP_DCF_GET_VSI_MAP = 42,
VIRTCHNL_OP_DCF_GET_PKG_INFO = 43,
VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
VIRTCHNL_OP_ADD_RSS_CFG = 45,
VIRTCHNL_OP_DEL_RSS_CFG = 46,
VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50,
VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
VIRTCHNL_OP_ADD_VLAN_V2 = 52,
VIRTCHNL_OP_DEL_VLAN_V2 = 53,
VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58,
VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59,
/* opcodes 60 through 65 are reserved */
VIRTCHNL_OP_GET_QOS_CAPS = 66,
VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP = 67,
/* opcode 68 through 70 are reserved */
VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107,
VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108,
VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111,
VIRTCHNL_OP_CONFIG_QUEUE_BW = 112,
VIRTCHNL_OP_CONFIG_QUANTA = 113,
VIRTCHNL_OP_FLOW_SUBSCRIBE = 114,
VIRTCHNL_OP_FLOW_UNSUBSCRIBE = 115,
VIRTCHNL_OP_MAX,
};
static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode)
{
switch (v_opcode) {
case VIRTCHNL_OP_UNKNOWN:
return "VIRTCHNL_OP_UNKNOWN";
case VIRTCHNL_OP_VERSION:
return "VIRTCHNL_OP_VERSION";
case VIRTCHNL_OP_RESET_VF:
return "VIRTCHNL_OP_RESET_VF";
case VIRTCHNL_OP_GET_VF_RESOURCES:
return "VIRTCHNL_OP_GET_VF_RESOURCES";
case VIRTCHNL_OP_CONFIG_TX_QUEUE:
return "VIRTCHNL_OP_CONFIG_TX_QUEUE";
case VIRTCHNL_OP_CONFIG_RX_QUEUE:
return "VIRTCHNL_OP_CONFIG_RX_QUEUE";
case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
return "VIRTCHNL_OP_CONFIG_VSI_QUEUES";
case VIRTCHNL_OP_CONFIG_IRQ_MAP:
return "VIRTCHNL_OP_CONFIG_IRQ_MAP";
case VIRTCHNL_OP_ENABLE_QUEUES:
return "VIRTCHNL_OP_ENABLE_QUEUES";
case VIRTCHNL_OP_DISABLE_QUEUES:
return "VIRTCHNL_OP_DISABLE_QUEUES";
case VIRTCHNL_OP_ADD_ETH_ADDR:
return "VIRTCHNL_OP_ADD_ETH_ADDR";
case VIRTCHNL_OP_DEL_ETH_ADDR:
return "VIRTCHNL_OP_DEL_ETH_ADDR";
case VIRTCHNL_OP_ADD_VLAN:
return "VIRTCHNL_OP_ADD_VLAN";
case VIRTCHNL_OP_DEL_VLAN:
return "VIRTCHNL_OP_DEL_VLAN";
case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE";
case VIRTCHNL_OP_GET_STATS:
return "VIRTCHNL_OP_GET_STATS";
case VIRTCHNL_OP_RSVD:
return "VIRTCHNL_OP_RSVD";
case VIRTCHNL_OP_EVENT:
return "VIRTCHNL_OP_EVENT";
case VIRTCHNL_OP_RDMA:
return "VIRTCHNL_OP_RDMA";
case VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP:
return "VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP:";
case VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP:
return "VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP";
case VIRTCHNL_OP_CONFIG_RSS_KEY:
return "VIRTCHNL_OP_CONFIG_RSS_KEY";
case VIRTCHNL_OP_CONFIG_RSS_LUT:
return "VIRTCHNL_OP_CONFIG_RSS_LUT";
case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
return "VIRTCHNL_OP_GET_RSS_HENA_CAPS";
case VIRTCHNL_OP_SET_RSS_HENA:
return "VIRTCHNL_OP_SET_RSS_HENA";
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING";
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING";
case VIRTCHNL_OP_REQUEST_QUEUES:
return "VIRTCHNL_OP_REQUEST_QUEUES";
case VIRTCHNL_OP_ENABLE_CHANNELS:
return "VIRTCHNL_OP_ENABLE_CHANNELS";
case VIRTCHNL_OP_DISABLE_CHANNELS:
return "VIRTCHNL_OP_DISABLE_CHANNELS";
case VIRTCHNL_OP_ADD_CLOUD_FILTER:
return "VIRTCHNL_OP_ADD_CLOUD_FILTER";
case VIRTCHNL_OP_DEL_CLOUD_FILTER:
return "VIRTCHNL_OP_DEL_CLOUD_FILTER";
case VIRTCHNL_OP_DCF_CMD_DESC:
return "VIRTCHNL_OP_DCF_CMD_DESC";
case VIRTCHNL_OP_DCF_CMD_BUFF:
return "VIRTCHHNL_OP_DCF_CMD_BUFF";
case VIRTCHNL_OP_DCF_DISABLE:
return "VIRTCHNL_OP_DCF_DISABLE";
case VIRTCHNL_OP_DCF_GET_VSI_MAP:
return "VIRTCHNL_OP_DCF_GET_VSI_MAP";
case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
return "VIRTCHNL_OP_GET_SUPPORTED_RXDIDS";
case VIRTCHNL_OP_ADD_RSS_CFG:
return "VIRTCHNL_OP_ADD_RSS_CFG";
case VIRTCHNL_OP_DEL_RSS_CFG:
return "VIRTCHNL_OP_DEL_RSS_CFG";
case VIRTCHNL_OP_ADD_FDIR_FILTER:
return "VIRTCHNL_OP_ADD_FDIR_FILTER";
case VIRTCHNL_OP_DEL_FDIR_FILTER:
return "VIRTCHNL_OP_DEL_FDIR_FILTER";
case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
return "VIRTCHNL_OP_GET_MAX_RSS_QREGION";
case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS";
case VIRTCHNL_OP_ADD_VLAN_V2:
return "VIRTCHNL_OP_ADD_VLAN_V2";
case VIRTCHNL_OP_DEL_VLAN_V2:
return "VIRTCHNL_OP_DEL_VLAN_V2";
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2";
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2";
case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2";
case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2";
case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2";
case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2";
case VIRTCHNL_OP_ENABLE_QUEUES_V2:
return "VIRTCHNL_OP_ENABLE_QUEUES_V2";
case VIRTCHNL_OP_DISABLE_QUEUES_V2:
return "VIRTCHNL_OP_DISABLE_QUEUES_V2";
case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
return "VIRTCHNL_OP_MAP_QUEUE_VECTOR";
case VIRTCHNL_OP_FLOW_SUBSCRIBE:
return "VIRTCHNL_OP_FLOW_SUBSCRIBE";
case VIRTCHNL_OP_FLOW_UNSUBSCRIBE:
return "VIRTCHNL_OP_FLOW_UNSUBSCRIBE";
case VIRTCHNL_OP_MAX:
return "VIRTCHNL_OP_MAX";
default:
return "Unsupported (update virtchnl.h)";
}
}
static inline const char *virtchnl_stat_str(enum virtchnl_status_code v_status)
{
switch (v_status) {
case VIRTCHNL_STATUS_SUCCESS:
return "VIRTCHNL_STATUS_SUCCESS";
case VIRTCHNL_STATUS_ERR_PARAM:
return "VIRTCHNL_STATUS_ERR_PARAM";
case VIRTCHNL_STATUS_ERR_NO_MEMORY:
return "VIRTCHNL_STATUS_ERR_NO_MEMORY";
case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
return "VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH";
case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
return "VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR";
case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
return "VIRTCHNL_STATUS_ERR_INVALID_VF_ID";
case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
return "VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR";
case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
return "VIRTCHNL_STATUS_ERR_NOT_SUPPORTED";
default:
return "Unknown status code (update virtchnl.h)";
}
}
/* Message descriptions and data structures. */
/* VIRTCHNL_OP_VERSION
* VF posts its version number to the PF. PF responds with its version number
* in the same format, along with a return code.
* Reply from PF has its major/minor versions also in param0 and param1.
* If there is a major version mismatch, then the VF cannot operate.
* If there is a minor version mismatch, then the VF can operate but should
* add a warning to the system log.
*
* This enum element MUST always be specified as == 1, regardless of other
* changes in the API. The PF must always respond to this message without
* error regardless of version mismatch.
*/
#define VIRTCHNL_VERSION_MAJOR 1
#define VIRTCHNL_VERSION_MINOR 1
#define VIRTCHNL_VERSION_MAJOR_2 2
#define VIRTCHNL_VERSION_MINOR_0 0
#define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0
struct virtchnl_version_info {
u32 major;
u32 minor;
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
#define VF_IS_V10(_ver) (((_ver)->major == 1) && ((_ver)->minor == 0))
#define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
#define VF_IS_V20(_ver) (((_ver)->major == 2) && ((_ver)->minor == 0))
/* VIRTCHNL_OP_RESET_VF
* VF sends this request to PF with no parameters
* PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
* until reset completion is indicated. The admin queue must be reinitialized
* after this operation.
*
* When reset is complete, PF must ensure that all queues in all VSIs associated
* with the VF are stopped, all queue configurations in the HMC are set to 0,
* and all MAC and VLAN filters (except the default MAC address) on all VSIs
* are cleared.
*/
/* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
* vsi_type should always be 6 for backward compatibility. Add other fields
* as needed.
*/
enum virtchnl_vsi_type {
VIRTCHNL_VSI_TYPE_INVALID = 0,
VIRTCHNL_VSI_SRIOV = 6,
};
/* VIRTCHNL_OP_GET_VF_RESOURCES
* Version 1.0 VF sends this request to PF with no parameters
* Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
* PF responds with an indirect message containing
* virtchnl_vf_resource and one or more
* virtchnl_vsi_resource structures.
*/
struct virtchnl_vsi_resource {
u16 vsi_id;
u16 num_queue_pairs;
/* see enum virtchnl_vsi_type */
s32 vsi_type;
u16 qset_handle;
u8 default_mac_addr[ETH_ALEN];
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
/* VF capability flags
* VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
* TX/RX Checksum offloading and TSO for non-tunnelled packets.
*/
#define VIRTCHNL_VF_OFFLOAD_L2 BIT(0)
#define VIRTCHNL_VF_OFFLOAD_IWARP BIT(1)
#define VIRTCHNL_VF_CAP_RDMA VIRTCHNL_VF_OFFLOAD_IWARP
#define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3)
#define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4)
#define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5)
#define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6)
/* used to negotiate communicating link speeds in Mbps */
#define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7)
/* BIT(8) is reserved */
#define VIRTCHNL_VF_LARGE_NUM_QPAIRS BIT(9)
#define VIRTCHNL_VF_OFFLOAD_CRC BIT(10)
#define VIRTCHNL_VF_OFFLOAD_FSUB_PF BIT(14)
#define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15)
#define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16)
#define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17)
#define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18)
#define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19)
#define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20)
#define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21)
#define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22)
#define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23)
#define VIRTCHNL_VF_OFFLOAD_ADQ_V2 BIT(24)
#define VIRTCHNL_VF_OFFLOAD_USO BIT(25)
#define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC BIT(26)
#define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27)
#define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28)
#define VIRTCHNL_VF_OFFLOAD_QOS BIT(29)
#define VIRTCHNL_VF_CAP_DCF BIT(30)
/* BIT(31) is reserved */
#define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
VIRTCHNL_VF_OFFLOAD_VLAN | \
VIRTCHNL_VF_OFFLOAD_RSS_PF)
struct virtchnl_vf_resource {
u16 num_vsis;
u16 num_queue_pairs;
u16 max_vectors;
u16 max_mtu;
u32 vf_cap_flags;
u32 rss_key_size;
u32 rss_lut_size;
struct virtchnl_vsi_resource vsi_res[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
/* VIRTCHNL_OP_CONFIG_TX_QUEUE
* VF sends this message to set up parameters for one TX queue.
* External data buffer contains one instance of virtchnl_txq_info.
* PF configures requested queue and returns a status code.
*/
/* Tx queue config info */
struct virtchnl_txq_info {
u16 vsi_id;
u16 queue_id;
u16 ring_len; /* number of descriptors, multiple of 8 */
u16 headwb_enabled; /* deprecated with AVF 1.0 */
u64 dma_ring_addr;
u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
};
VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
/* RX descriptor IDs (range from 0 to 63) */
enum virtchnl_rx_desc_ids {
VIRTCHNL_RXDID_0_16B_BASE = 0,
VIRTCHNL_RXDID_1_32B_BASE = 1,
VIRTCHNL_RXDID_2_FLEX_SQ_NIC = 2,
VIRTCHNL_RXDID_3_FLEX_SQ_SW = 3,
VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB = 4,
VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL = 5,
VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2 = 6,
VIRTCHNL_RXDID_7_HW_RSVD = 7,
/* 8 through 15 are reserved */
VIRTCHNL_RXDID_16_COMMS_GENERIC = 16,
VIRTCHNL_RXDID_17_COMMS_AUX_VLAN = 17,
VIRTCHNL_RXDID_18_COMMS_AUX_IPV4 = 18,
VIRTCHNL_RXDID_19_COMMS_AUX_IPV6 = 19,
VIRTCHNL_RXDID_20_COMMS_AUX_FLOW = 20,
VIRTCHNL_RXDID_21_COMMS_AUX_TCP = 21,
/* 22 through 63 are reserved */
};
/* RX descriptor ID bitmasks */
enum virtchnl_rx_desc_id_bitmasks {
VIRTCHNL_RXDID_0_16B_BASE_M = BIT(VIRTCHNL_RXDID_0_16B_BASE),
VIRTCHNL_RXDID_1_32B_BASE_M = BIT(VIRTCHNL_RXDID_1_32B_BASE),
VIRTCHNL_RXDID_2_FLEX_SQ_NIC_M = BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC),
VIRTCHNL_RXDID_3_FLEX_SQ_SW_M = BIT(VIRTCHNL_RXDID_3_FLEX_SQ_SW),
VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB_M = BIT(VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB),
VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL_M = BIT(VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL),
VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2_M = BIT(VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2),
VIRTCHNL_RXDID_7_HW_RSVD_M = BIT(VIRTCHNL_RXDID_7_HW_RSVD),
/* 9 through 15 are reserved */
VIRTCHNL_RXDID_16_COMMS_GENERIC_M = BIT(VIRTCHNL_RXDID_16_COMMS_GENERIC),
VIRTCHNL_RXDID_17_COMMS_AUX_VLAN_M = BIT(VIRTCHNL_RXDID_17_COMMS_AUX_VLAN),
VIRTCHNL_RXDID_18_COMMS_AUX_IPV4_M = BIT(VIRTCHNL_RXDID_18_COMMS_AUX_IPV4),
VIRTCHNL_RXDID_19_COMMS_AUX_IPV6_M = BIT(VIRTCHNL_RXDID_19_COMMS_AUX_IPV6),
VIRTCHNL_RXDID_20_COMMS_AUX_FLOW_M = BIT(VIRTCHNL_RXDID_20_COMMS_AUX_FLOW),
VIRTCHNL_RXDID_21_COMMS_AUX_TCP_M = BIT(VIRTCHNL_RXDID_21_COMMS_AUX_TCP),
/* 22 through 63 are reserved */
};
/* VIRTCHNL_OP_CONFIG_RX_QUEUE
* VF sends this message to set up parameters for one RX queue.
* External data buffer contains one instance of virtchnl_rxq_info.
* PF configures requested queue and returns a status code. The
* crc_disable flag disables CRC stripping on the VF. Setting
* the crc_disable flag to 1 will disable CRC stripping for each
* queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
* offload must have been set prior to sending this info or the PF
* will ignore the request. This flag should be set the same for
* all of the queues for a VF.
*/
/* Rx queue config info */
struct virtchnl_rxq_info {
u16 vsi_id;
u16 queue_id;
u32 ring_len; /* number of descriptors, multiple of 32 */
u16 hdr_size;
u16 splithdr_enabled; /* deprecated with AVF 1.0 */
u32 databuffer_size;
u32 max_pkt_size;
u8 crc_disable;
/* see enum virtchnl_rx_desc_ids;
* only used when VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is supported. Note
* that when the offload is not supported, the descriptor format aligns
* with VIRTCHNL_RXDID_1_32B_BASE.
*/
u8 rxdid;
u8 pad1[2];
u64 dma_ring_addr;
/* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
s32 rx_split_pos;
u32 pad2;
};
VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
/* VIRTCHNL_OP_CONFIG_VSI_QUEUES
* VF sends this message to set parameters for active TX and RX queues
* associated with the specified VSI.
* PF configures queues and returns status.
* If the number of queues specified is greater than the number of queues
* associated with the VSI, an error is returned and no queues are configured.
* NOTE: The VF is not required to configure all queues in a single request.
* It may send multiple messages. PF drivers must correctly handle all VF
* requests.
*/
struct virtchnl_queue_pair_info {
/* NOTE: vsi_id and queue_id should be identical for both queues. */
struct virtchnl_txq_info txq;
struct virtchnl_rxq_info rxq;
};
VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
struct virtchnl_vsi_queue_config_info {
u16 vsi_id;
u16 num_queue_pairs;
u32 pad;
struct virtchnl_queue_pair_info qpair[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
/* VIRTCHNL_OP_REQUEST_QUEUES
* VF sends this message to request the PF to allocate additional queues to
* this VF. Each VF gets a guaranteed number of queues on init but asking for
* additional queues must be negotiated. This is a best effort request as it
* is possible the PF does not have enough queues left to support the request.
* If the PF cannot support the number requested it will respond with the
* maximum number it is able to support. If the request is successful, PF will
* then reset the VF to institute required changes.
*/
/* VF resource request */
struct virtchnl_vf_res_request {
u16 num_queue_pairs;
};
/* VIRTCHNL_OP_CONFIG_IRQ_MAP
* VF uses this message to map vectors to queues.
* The rxq_map and txq_map fields are bitmaps used to indicate which queues
* are to be associated with the specified vector.
* The "other" causes are always mapped to vector 0. The VF may not request
* that vector 0 be used for traffic.
* PF configures interrupt mapping and returns status.
* NOTE: due to hardware requirements, all active queues (both TX and RX)
* should be mapped to interrupts, even if the driver intends to operate
* only in polling mode. In this case the interrupt may be disabled, but
* the ITR timer will still run to trigger writebacks.
*/
struct virtchnl_vector_map {
u16 vsi_id;
u16 vector_id;
u16 rxq_map;
u16 txq_map;
u16 rxitr_idx;
u16 txitr_idx;
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
struct virtchnl_irq_map_info {
u16 num_vectors;
struct virtchnl_vector_map vecmap[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
/* VIRTCHNL_OP_ENABLE_QUEUES
* VIRTCHNL_OP_DISABLE_QUEUES
* VF sends these message to enable or disable TX/RX queue pairs.
* The queues fields are bitmaps indicating which queues to act upon.
* (Currently, we only support 16 queues per VF, but we make the field
* u32 to allow for expansion.)
* PF performs requested action and returns status.
* NOTE: The VF is not required to enable/disable all queues in a single
* request. It may send multiple messages.
* PF drivers must correctly handle all VF requests.
*/
struct virtchnl_queue_select {
u16 vsi_id;
u16 pad;
u32 rx_queues;
u32 tx_queues;
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
/* VIRTCHNL_OP_GET_MAX_RSS_QREGION
*
* if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
* then this op must be supported.
*
* VF sends this message in order to query the max RSS queue region
* size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled.
* This information should be used when configuring the RSS LUT and/or
* configuring queue region based filters.
*
* The maximum RSS queue region is 2^qregion_width. So, a qregion_width
* of 6 would inform the VF that the PF supports a maximum RSS queue region
* of 64.
*
* A queue region represents a range of queues that can be used to configure
* a RSS LUT. For example, if a VF is given 64 queues, but only a max queue
* region size of 16 (i.e. 2^qregion_width = 16) then it will only be able
* to configure the RSS LUT with queue indices from 0 to 15. However, other
* filters can be used to direct packets to queues >15 via specifying a queue
* base/offset and queue region width.
*/
struct virtchnl_max_rss_qregion {
u16 vport_id;
u16 qregion_width;
u8 pad[4];
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion);
/* VIRTCHNL_OP_ADD_ETH_ADDR
* VF sends this message in order to add one or more unicast or multicast
* address filters for the specified VSI.
* PF adds the filters and returns status.
*/
/* VIRTCHNL_OP_DEL_ETH_ADDR
* VF sends this message in order to remove one or more unicast or multicast
* filters for the specified VSI.
* PF removes the filters and returns status.
*/
/* VIRTCHNL_ETHER_ADDR_LEGACY
* Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
* bytes. Moving forward all VF drivers should not set type to
* VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
* behavior. The control plane function (i.e. PF) can use a best effort method
* of tracking the primary/device unicast in this case, but there is no
* guarantee and functionality depends on the implementation of the PF.
*/
/* VIRTCHNL_ETHER_ADDR_PRIMARY
* All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
* primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
* VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
* function (i.e. PF) to accurately track and use this MAC address for
* displaying on the host and for VM/function reset.
*/
/* VIRTCHNL_ETHER_ADDR_EXTRA
* All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
* unicast and/or multicast filters that are being added/deleted via
* VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
*/
struct virtchnl_ether_addr {
u8 addr[ETH_ALEN];
u8 type;
#define VIRTCHNL_ETHER_ADDR_LEGACY 0
#define VIRTCHNL_ETHER_ADDR_PRIMARY 1
#define VIRTCHNL_ETHER_ADDR_EXTRA 2
#define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */
u8 pad;
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
struct virtchnl_ether_addr_list {
u16 vsi_id;
u16 num_elements;
struct virtchnl_ether_addr list[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
/* VIRTCHNL_OP_ADD_VLAN
* VF sends this message to add one or more VLAN tag filters for receives.
* PF adds the filters and returns status.
* If a port VLAN is configured by the PF, this operation will return an
* error to the VF.
*/
/* VIRTCHNL_OP_DEL_VLAN
* VF sends this message to remove one or more VLAN tag filters for receives.
* PF removes the filters and returns status.
* If a port VLAN is configured by the PF, this operation will return an
* error to the VF.
*/
struct virtchnl_vlan_filter_list {
u16 vsi_id;
u16 num_elements;
u16 vlan_id[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
/* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
* structures and opcodes.
*
* VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
* populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
*
* VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
* VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
* VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
*
* VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
* by the PF concurrently. For example, if the PF can support
* VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
* would OR the following bits:
*
* VIRTHCNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_AND;
*
* The VF would interpret this as VLAN filtering can be supported on both 0x8100
* and 0x88A8 VLAN ethertypes.
*
* VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
* by the PF concurrently. For example if the PF can support
* VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
* offload it would OR the following bits:
*
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_XOR;
*
* The VF would interpret this as VLAN stripping can be supported on either
* 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
* the previously set value.
*
* VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
* strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
*
* VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
* offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
*
* VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
* offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
*
* VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
* VLAN filtering if the underlying PF supports it.
*
* VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
* certain VLAN capability can be toggled. For example if the underlying PF/CP
* allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
* set this bit along with the supported ethertypes.
*/
enum virtchnl_vlan_support {
VIRTCHNL_VLAN_UNSUPPORTED = 0,
VIRTCHNL_VLAN_ETHERTYPE_8100 = 0x00000001,
VIRTCHNL_VLAN_ETHERTYPE_88A8 = 0x00000002,
VIRTCHNL_VLAN_ETHERTYPE_9100 = 0x00000004,
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = 0x00000100,
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = 0x00000200,
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = 0x00000400,
VIRTCHNL_VLAN_PRIO = 0x01000000,
VIRTCHNL_VLAN_FILTER_MASK = 0x10000000,
VIRTCHNL_VLAN_ETHERTYPE_AND = 0x20000000,
VIRTCHNL_VLAN_ETHERTYPE_XOR = 0x40000000,
VIRTCHNL_VLAN_TOGGLE = 0x80000000
};
/* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
* for filtering, insertion, and stripping capabilities.
*
* If only outer capabilities are supported (for filtering, insertion, and/or
* stripping) then this refers to the outer most or single VLAN from the VF's
* perspective.
*
* If only inner capabilities are supported (for filtering, insertion, and/or
* stripping) then this refers to the outer most or single VLAN from the VF's
* perspective. Functionally this is the same as if only outer capabilities are
* supported. The VF driver is just forced to use the inner fields when
* adding/deleting filters and enabling/disabling offloads (if supported).
*
* If both outer and inner capabilities are supported (for filtering, insertion,
* and/or stripping) then outer refers to the outer most or single VLAN and
* inner refers to the second VLAN, if it exists, in the packet.
*
* There is no support for tunneled VLAN offloads, so outer or inner are never
* referring to a tunneled packet from the VF's perspective.
*/
struct virtchnl_vlan_supported_caps {
u32 outer;
u32 inner;
};
/* The PF populates these fields based on the supported VLAN filtering. If a
* field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
* reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
* the unsupported fields.
*
* Also, a VF is only allowed to toggle its VLAN filtering setting if the
* VIRTCHNL_VLAN_TOGGLE bit is set.
*
* The ethertype(s) specified in the ethertype_init field are the ethertypes
* enabled for VLAN filtering. VLAN filtering in this case refers to the outer
* most VLAN from the VF's perspective. If both inner and outer filtering are
* allowed then ethertype_init only refers to the outer most VLAN as only
* VLAN ethertype supported for inner VLAN filtering is
* VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
* when both inner and outer filtering are allowed.
*
* The max_filters field tells the VF how many VLAN filters it's allowed to have
* at any one time. If it exceeds this amount and tries to add another filter,
* then the request will be rejected by the PF. To prevent failures, the VF
* should keep track of how many VLAN filters it has added and not attempt to
* add more than max_filters.
*/
struct virtchnl_vlan_filtering_caps {
struct virtchnl_vlan_supported_caps filtering_support;
u32 ethertype_init;
u16 max_filters;
u8 pad[2];
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
/* This enum is used for the virtchnl_vlan_offload_caps structure to specify
* if the PF supports a different ethertype for stripping and insertion.
*
* VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
* for stripping affect the ethertype(s) specified for insertion and visa versa
* as well. If the VF tries to configure VLAN stripping via
* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
* that will be the ethertype for both stripping and insertion.
*
* VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
* stripping do not affect the ethertype(s) specified for insertion and visa
* versa.
*/
enum virtchnl_vlan_ethertype_match {
VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
};
/* The PF populates these fields based on the supported VLAN offloads. If a
* field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
* reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
* VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
*
* Also, a VF is only allowed to toggle its VLAN offload setting if the
* VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
*
* The VF driver needs to be aware of how the tags are stripped by hardware and
* inserted by the VF driver based on the level of offload support. The PF will
* populate these fields based on where the VLAN tags are expected to be
* offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
* interpret these fields. See the definition of the
* VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
* enumeration.
*/
struct virtchnl_vlan_offload_caps {
struct virtchnl_vlan_supported_caps stripping_support;
struct virtchnl_vlan_supported_caps insertion_support;
u32 ethertype_init;
u8 ethertype_match;
u8 pad[3];
};
VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
/* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
* VF sends this message to determine its VLAN capabilities.
*
* PF will mark which capabilities it supports based on hardware support and
* current configuration. For example, if a port VLAN is configured the PF will
* not allow outer VLAN filtering, stripping, or insertion to be configured so
* it will block these features from the VF.
*
* The VF will need to cross reference its capabilities with the PFs
* capabilities in the response message from the PF to determine the VLAN
* support.
*/
struct virtchnl_vlan_caps {
struct virtchnl_vlan_filtering_caps filtering;
struct virtchnl_vlan_offload_caps offloads;
};
VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
struct virtchnl_vlan {
u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */
u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
* filtering caps
*/
u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in
* filtering caps. Note that tpid here does not refer to
* VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
* actual 2-byte VLAN TPID
*/
u8 pad[2];
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
struct virtchnl_vlan_filter {
struct virtchnl_vlan inner;
struct virtchnl_vlan outer;
u8 pad[16];
};
VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
/* VIRTCHNL_OP_ADD_VLAN_V2
* VIRTCHNL_OP_DEL_VLAN_V2
*
* VF sends these messages to add/del one or more VLAN tag filters for Rx
* traffic.
*
* The PF attempts to add the filters and returns status.
*
* The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
* supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
*/
struct virtchnl_vlan_filter_list_v2 {
u16 vport_id;
u16 num_elements;
u8 pad[4];
struct virtchnl_vlan_filter filters[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2);
/* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
* VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
* VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
* VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
*
* VF sends this message to enable or disable VLAN stripping or insertion. It
* also needs to specify an ethertype. The VF knows which VLAN ethertypes are
* allowed and whether or not it's allowed to enable/disable the specific
* offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
* parse the virtchnl_vlan_caps.offloads fields to determine which offload
* messages are allowed.
*
* For example, if the PF populates the virtchnl_vlan_caps.offloads in the
* following manner the VF will be allowed to enable and/or disable 0x8100 inner
* VLAN insertion and/or stripping via the opcodes listed above. Inner in this
* case means the outer most or single VLAN from the VF's perspective. This is
* because no outer offloads are supported. See the comments above the
* virtchnl_vlan_supported_caps structure for more details.
*
* virtchnl_vlan_caps.offloads.stripping_support.inner =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100;
*
* virtchnl_vlan_caps.offloads.insertion_support.inner =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100;
*
* In order to enable inner (again note that in this case inner is the outer
* most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
* VLANs, the VF would populate the virtchnl_vlan_setting structure in the
* following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
*
* virtchnl_vlan_setting.inner_ethertype_setting =
* VIRTCHNL_VLAN_ETHERTYPE_8100;
*
* virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
* initialization.
*
* The reason that VLAN TPID(s) are not being used for the
* outer_ethertype_setting and inner_ethertype_setting fields is because it's
* possible a device could support VLAN insertion and/or stripping offload on
* multiple ethertypes concurrently, so this method allows a VF to request
* multiple ethertypes in one message using the virtchnl_vlan_support
* enumeration.
*
* For example, if the PF populates the virtchnl_vlan_caps.offloads in the
* following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
* VLAN insertion and stripping simultaneously. The
* virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
* populated based on what the PF can support.
*
* virtchnl_vlan_caps.offloads.stripping_support.outer =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_AND;
*
* virtchnl_vlan_caps.offloads.insertion_support.outer =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_AND;
*
* In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
* would populate the virthcnl_vlan_offload_structure in the following manner
* and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
*
* virtchnl_vlan_setting.outer_ethertype_setting =
* VIRTHCNL_VLAN_ETHERTYPE_8100 |
* VIRTHCNL_VLAN_ETHERTYPE_88A8;
*
* virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
* initialization.
*
* There is also the case where a PF and the underlying hardware can support
* VLAN offloads on multiple ethertypes, but not concurrently. For example, if
* the PF populates the virtchnl_vlan_caps.offloads in the following manner the
* VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
* offloads. The ethertypes must match for stripping and insertion.
*
* virtchnl_vlan_caps.offloads.stripping_support.outer =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_XOR;
*
* virtchnl_vlan_caps.offloads.insertion_support.outer =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_XOR;
*
* virtchnl_vlan_caps.offloads.ethertype_match =
* VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
*
* In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
* populate the virtchnl_vlan_setting structure in the following manner and send
* the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
* ethertype for VLAN insertion if it's enabled. So, for completeness, a
* VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
*
* virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
*
* virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
* initialization.
*
* VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2
* VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2
*
* VF sends this message to enable or disable VLAN filtering. It also needs to
* specify an ethertype. The VF knows which VLAN ethertypes are allowed and
* whether or not it's allowed to enable/disable filtering via the
* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
* parse the virtchnl_vlan_caps.filtering fields to determine which, if any,
* filtering messages are allowed.
*
* For example, if the PF populates the virtchnl_vlan_caps.filtering in the
* following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8
* outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND
* means that all filtering ethertypes will to be enabled and disabled together
* regardless of the request from the VF. This means that the underlying
* hardware only supports VLAN filtering for all VLAN the specified ethertypes
* or none of them.
*
* virtchnl_vlan_caps.filtering.filtering_support.outer =
* VIRTCHNL_VLAN_TOGGLE |
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTHCNL_VLAN_ETHERTYPE_88A8 |
* VIRTCHNL_VLAN_ETHERTYPE_9100 |
* VIRTCHNL_VLAN_ETHERTYPE_AND;
*
* In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100
* VLANs aren't supported by the VF driver), the VF would populate the
* virtchnl_vlan_setting structure in the following manner and send the
* VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used
* to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the
* VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used.
*
* virtchnl_vlan_setting.outer_ethertype_setting =
* VIRTCHNL_VLAN_ETHERTYPE_8100 |
* VIRTCHNL_VLAN_ETHERTYPE_88A8;
*
*/
struct virtchnl_vlan_setting {
u32 outer_ethertype_setting;
u32 inner_ethertype_setting;
u16 vport_id;
u8 pad[6];
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
/* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
* VF sends VSI id and flags.
* PF returns status code in retval.
* Note: we assume that broadcast accept mode is always enabled.
*/
struct virtchnl_promisc_info {
u16 vsi_id;
u16 flags;
};
VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
#define FLAG_VF_UNICAST_PROMISC 0x00000001
#define FLAG_VF_MULTICAST_PROMISC 0x00000002
/* VIRTCHNL_OP_GET_STATS
* VF sends this message to request stats for the selected VSI. VF uses
* the virtchnl_queue_select struct to specify the VSI. The queue_id
* field is ignored by the PF.
*
* PF replies with struct virtchnl_eth_stats in an external buffer.
*/
struct virtchnl_eth_stats {
u64 rx_bytes; /* received bytes */
u64 rx_unicast; /* received unicast pkts */
u64 rx_multicast; /* received multicast pkts */
u64 rx_broadcast; /* received broadcast pkts */
u64 rx_discards;
u64 rx_unknown_protocol;
u64 tx_bytes; /* transmitted bytes */
u64 tx_unicast; /* transmitted unicast pkts */
u64 tx_multicast; /* transmitted multicast pkts */
u64 tx_broadcast; /* transmitted broadcast pkts */
u64 tx_discards;
u64 tx_errors;
};
/* VIRTCHNL_OP_CONFIG_RSS_KEY
* VIRTCHNL_OP_CONFIG_RSS_LUT
* VF sends these messages to configure RSS. Only supported if both PF
* and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
* configuration negotiation. If this is the case, then the RSS fields in
* the VF resource struct are valid.
* Both the key and LUT are initialized to 0 by the PF, meaning that
* RSS is effectively disabled until set up by the VF.
*/
struct virtchnl_rss_key {
u16 vsi_id;
u16 key_len;
u8 key[1]; /* RSS hash key, packed bytes */
};
VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
struct virtchnl_rss_lut {
u16 vsi_id;
u16 lut_entries;
u8 lut[1]; /* RSS lookup table */
};
VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
/* enum virthcnl_hash_filter
*
* Bits defining the hash filters in the hena field of the virtchnl_rss_hena
* structure. Each bit indicates a specific hash filter for RSS.
*
* Note that not all bits are supported on all hardware. The VF should use
* VIRTCHNL_OP_GET_RSS_HENA_CAPS to determine which bits the PF is capable of
* before using VIRTCHNL_OP_SET_RSS_HENA to enable specific filters.
*/
enum virtchnl_hash_filter {
/* Bits 0 through 28 are reserved for future use */
/* Bit 29, 30, and 32 are not supported on XL710 a X710 */
VIRTCHNL_HASH_FILTER_UNICAST_IPV4_UDP = 29,
VIRTCHNL_HASH_FILTER_MULTICAST_IPV4_UDP = 30,
VIRTCHNL_HASH_FILTER_IPV4_UDP = 31,
VIRTCHNL_HASH_FILTER_IPV4_TCP_SYN_NO_ACK = 32,
VIRTCHNL_HASH_FILTER_IPV4_TCP = 33,
VIRTCHNL_HASH_FILTER_IPV4_SCTP = 34,
VIRTCHNL_HASH_FILTER_IPV4_OTHER = 35,
VIRTCHNL_HASH_FILTER_FRAG_IPV4 = 36,
/* Bits 37 and 38 are reserved for future use */
/* Bit 39, 40, and 42 are not supported on XL710 a X710 */
VIRTCHNL_HASH_FILTER_UNICAST_IPV6_UDP = 39,
VIRTCHNL_HASH_FILTER_MULTICAST_IPV6_UDP = 40,
VIRTCHNL_HASH_FILTER_IPV6_UDP = 41,
VIRTCHNL_HASH_FILTER_IPV6_TCP_SYN_NO_ACK = 42,
VIRTCHNL_HASH_FILTER_IPV6_TCP = 43,
VIRTCHNL_HASH_FILTER_IPV6_SCTP = 44,
VIRTCHNL_HASH_FILTER_IPV6_OTHER = 45,
VIRTCHNL_HASH_FILTER_FRAG_IPV6 = 46,
/* Bit 37 is reserved for future use */
VIRTCHNL_HASH_FILTER_FCOE_OX = 48,
VIRTCHNL_HASH_FILTER_FCOE_RX = 49,
VIRTCHNL_HASH_FILTER_FCOE_OTHER = 50,
/* Bits 51 through 62 are reserved for future use */
VIRTCHNL_HASH_FILTER_L2_PAYLOAD = 63,
};
#define VIRTCHNL_HASH_FILTER_INVALID (0)
/* VIRTCHNL_OP_GET_RSS_HENA_CAPS
* VIRTCHNL_OP_SET_RSS_HENA
* VF sends these messages to get and set the hash filter enable bits for RSS.
* By default, the PF sets these to all possible traffic types that the
* hardware supports. The VF can query this value if it wants to change the
* traffic types that are hashed by the hardware.
*/
struct virtchnl_rss_hena {
/* see enum virtchnl_hash_filter */
u64 hena;
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
/* Type of RSS algorithm */
enum virtchnl_rss_algorithm {
VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0,
VIRTCHNL_RSS_ALG_R_ASYMMETRIC = 1,
VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2,
VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3,
};
/* This is used by PF driver to enforce how many channels can be supported.
* When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise
* PF driver will allow only max 4 channels
*/
#define VIRTCHNL_MAX_ADQ_CHANNELS 4
#define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16
/* VIRTCHNL_OP_ENABLE_CHANNELS
* VIRTCHNL_OP_DISABLE_CHANNELS
* VF sends these messages to enable or disable channels based on
* the user specified queue count and queue offset for each traffic class.
* This struct encompasses all the information that the PF needs from
* VF to create a channel.
*/
struct virtchnl_channel_info {
u16 count; /* number of queues in a channel */
u16 offset; /* queues in a channel start from 'offset' */
u32 pad;
u64 max_tx_rate;
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
struct virtchnl_tc_info {
u32 num_tc;
u32 pad;
struct virtchnl_channel_info list[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
/* VIRTCHNL_ADD_CLOUD_FILTER
* VIRTCHNL_DEL_CLOUD_FILTER
* VF sends these messages to add or delete a cloud filter based on the
* user specified match and action filters. These structures encompass
* all the information that the PF needs from the VF to add/delete a
* cloud filter.
*/
struct virtchnl_l4_spec {
u8 src_mac[ETH_ALEN];
u8 dst_mac[ETH_ALEN];
/* vlan_prio is part of this 16 bit field even from OS perspective
* vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio
* in future, when decided to offload vlan_prio, pass that information
* as part of the "vlan_id" field, Bit14..12
*/
__be16 vlan_id;
__be16 pad; /* reserved for future use */
__be32 src_ip[4];
__be32 dst_ip[4];
__be16 src_port;
__be16 dst_port;
};
VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
union virtchnl_flow_spec {
struct virtchnl_l4_spec tcp_spec;
u8 buffer[128]; /* reserved for future use */
};
VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
enum virtchnl_action {
/* action types */
VIRTCHNL_ACTION_DROP = 0,
VIRTCHNL_ACTION_TC_REDIRECT,
VIRTCHNL_ACTION_PASSTHRU,
VIRTCHNL_ACTION_QUEUE,
VIRTCHNL_ACTION_Q_REGION,
VIRTCHNL_ACTION_MARK,
VIRTCHNL_ACTION_COUNT,
};
enum virtchnl_flow_type {
/* flow types */
VIRTCHNL_TCP_V4_FLOW = 0,
VIRTCHNL_TCP_V6_FLOW,
VIRTCHNL_UDP_V4_FLOW,
VIRTCHNL_UDP_V6_FLOW,
};
struct virtchnl_filter {
union virtchnl_flow_spec data;
union virtchnl_flow_spec mask;
/* see enum virtchnl_flow_type */
s32 flow_type;
/* see enum virtchnl_action */
s32 action;
u32 action_meta;
u8 field_flags;
};
VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
struct virtchnl_shaper_bw {
/* Unit is Kbps */
u32 committed;
u32 peak;
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_shaper_bw);
/* VIRTCHNL_OP_DCF_GET_VSI_MAP
* VF sends this message to get VSI mapping table.
* PF responds with an indirect message containing VF's
* HW VSI IDs.
* The index of vf_vsi array is the logical VF ID, the
* value of vf_vsi array is the VF's HW VSI ID with its
* valid configuration.
*/
struct virtchnl_dcf_vsi_map {
u16 pf_vsi; /* PF's HW VSI ID */
u16 num_vfs; /* The actual number of VFs allocated */
#define VIRTCHNL_DCF_VF_VSI_ID_S 0
#define VIRTCHNL_DCF_VF_VSI_ID_M (0xFFF << VIRTCHNL_DCF_VF_VSI_ID_S)
#define VIRTCHNL_DCF_VF_VSI_VALID BIT(15)
u16 vf_vsi[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_dcf_vsi_map);
#define PKG_NAME_SIZE 32
#define DSN_SIZE 8
struct pkg_version {
u8 major;
u8 minor;
u8 update;
u8 draft;
};
VIRTCHNL_CHECK_STRUCT_LEN(4, pkg_version);
struct virtchnl_pkg_info {
struct pkg_version pkg_ver;
u32 track_id;
char pkg_name[PKG_NAME_SIZE];
u8 dsn[DSN_SIZE];
};
VIRTCHNL_CHECK_STRUCT_LEN(48, virtchnl_pkg_info);
/* VIRTCHNL_OP_DCF_VLAN_OFFLOAD
* DCF negotiates the VIRTCHNL_VF_OFFLOAD_VLAN_V2 capability firstly to get
* the double VLAN configuration, then DCF sends this message to configure the
* outer or inner VLAN offloads (insertion and strip) for the target VF.
*/
struct virtchnl_dcf_vlan_offload {
u16 vf_id;
u16 tpid;
u16 vlan_flags;
#define VIRTCHNL_DCF_VLAN_TYPE_S 0
#define VIRTCHNL_DCF_VLAN_TYPE_M \
(0x1 << VIRTCHNL_DCF_VLAN_TYPE_S)
#define VIRTCHNL_DCF_VLAN_TYPE_INNER 0x0
#define VIRTCHNL_DCF_VLAN_TYPE_OUTER 0x1
#define VIRTCHNL_DCF_VLAN_INSERT_MODE_S 1
#define VIRTCHNL_DCF_VLAN_INSERT_MODE_M \
(0x7 << VIRTCHNL_DCF_VLAN_INSERT_MODE_S)
#define VIRTCHNL_DCF_VLAN_INSERT_DISABLE 0x1
#define VIRTCHNL_DCF_VLAN_INSERT_PORT_BASED 0x2
#define VIRTCHNL_DCF_VLAN_INSERT_VIA_TX_DESC 0x3
#define VIRTCHNL_DCF_VLAN_STRIP_MODE_S 4
#define VIRTCHNL_DCF_VLAN_STRIP_MODE_M \
(0x7 << VIRTCHNL_DCF_VLAN_STRIP_MODE_S)
#define VIRTCHNL_DCF_VLAN_STRIP_DISABLE 0x1
#define VIRTCHNL_DCF_VLAN_STRIP_ONLY 0x2
#define VIRTCHNL_DCF_VLAN_STRIP_INTO_RX_DESC 0x3
u16 vlan_id;
u16 pad[4];
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_dcf_vlan_offload);
struct virtchnl_dcf_bw_cfg {
u8 tc_num;
#define VIRTCHNL_DCF_BW_CIR BIT(0)
#define VIRTCHNL_DCF_BW_PIR BIT(1)
u8 bw_type;
u8 pad[2];
enum virtchnl_bw_limit_type type;
union {
struct virtchnl_shaper_bw shaper;
u8 pad2[32];
};
};
VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_dcf_bw_cfg);
/* VIRTCHNL_OP_DCF_CONFIG_BW
* VF send this message to set the bandwidth configuration of each
* TC with a specific vf id. The flag node_type is to indicate that
* this message is to configure VSI node or TC node bandwidth.
*/
struct virtchnl_dcf_bw_cfg_list {
u16 vf_id;
u8 num_elem;
#define VIRTCHNL_DCF_TARGET_TC_BW 0
#define VIRTCHNL_DCF_TARGET_VF_BW 1
u8 node_type;
struct virtchnl_dcf_bw_cfg cfg[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_dcf_bw_cfg_list);
struct virtchnl_supported_rxdids {
/* see enum virtchnl_rx_desc_id_bitmasks */
u64 supported_rxdids;
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_supported_rxdids);
/* VIRTCHNL_OP_EVENT
* PF sends this message to inform the VF driver of events that may affect it.
* No direct response is expected from the VF, though it may generate other
* messages in response to this one.
*/
enum virtchnl_event_codes {
VIRTCHNL_EVENT_UNKNOWN = 0,
VIRTCHNL_EVENT_LINK_CHANGE,
VIRTCHNL_EVENT_RESET_IMPENDING,
VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
VIRTCHNL_EVENT_DCF_VSI_MAP_UPDATE,
};
#define PF_EVENT_SEVERITY_INFO 0
#define PF_EVENT_SEVERITY_CERTAIN_DOOM 255
struct virtchnl_pf_event {
/* see enum virtchnl_event_codes */
s32 event;
union {
/* If the PF driver does not support the new speed reporting
* capabilities then use link_event else use link_event_adv to
* get the speed and link information. The ability to understand
* new speeds is indicated by setting the capability flag
* VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
* in virtchnl_vf_resource struct and can be used to determine
* which link event struct to use below.
*/
struct {
enum virtchnl_link_speed link_speed;
bool link_status;
u8 pad[3];
} link_event;
struct {
/* link_speed provided in Mbps */
u32 link_speed;
u8 link_status;
u8 pad[3];
} link_event_adv;
struct {
u16 vf_id;
u16 vsi_id;
u32 pad;
} vf_vsi_map;
} event_data;
s32 severity;
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
/* used to specify if a ceq_idx or aeq_idx is invalid */
#define VIRTCHNL_RDMA_INVALID_QUEUE_IDX 0xFFFF
/* VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP
* VF uses this message to request PF to map RDMA vectors to RDMA queues.
* The request for this originates from the VF RDMA driver through
* a client interface between VF LAN and VF RDMA driver.
* A vector could have an AEQ and CEQ attached to it although
* there is a single AEQ per VF RDMA instance in which case
* most vectors will have an VIRTCHNL_RDMA_INVALID_QUEUE_IDX for aeq and valid
* idx for ceqs There will never be a case where there will be multiple CEQs
* attached to a single vector.
* PF configures interrupt mapping and returns status.
*/
#define virtchnl_iwarp_qv_info virtchnl_rdma_qv_info
struct virtchnl_rdma_qv_info {
u32 v_idx; /* msix_vector */
u16 ceq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
u16 aeq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
u8 itr_idx;
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_rdma_qv_info);
#define virtchnl_iwarp_qvlist_info virtchnl_rdma_qvlist_info
struct virtchnl_rdma_qvlist_info {
u32 num_vectors;
struct virtchnl_rdma_qv_info qv_info[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_rdma_qvlist_info);
/* VF reset states - these are written into the RSTAT register:
* VFGEN_RSTAT on the VF
* When the PF initiates a reset, it writes 0
* When the reset is complete, it writes 1
* When the PF detects that the VF has recovered, it writes 2
* VF checks this register periodically to determine if a reset has occurred,
* then polls it to know when the reset is complete.
* If either the PF or VF reads the register while the hardware
* is in a reset state, it will return DEADBEEF, which, when masked
* will result in 3.
*/
enum virtchnl_vfr_states {
VIRTCHNL_VFR_INPROGRESS = 0,
VIRTCHNL_VFR_COMPLETED,
VIRTCHNL_VFR_VFACTIVE,
};
#define VIRTCHNL_MAX_NUM_PROTO_HDRS 32
#define VIRTCHNL_MAX_NUM_PROTO_HDRS_W_MSK 16
#define VIRTCHNL_MAX_SIZE_RAW_PACKET 1024
#define PROTO_HDR_SHIFT 5
#define PROTO_HDR_FIELD_START(proto_hdr_type) \
(proto_hdr_type << PROTO_HDR_SHIFT)
#define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
/* VF use these macros to configure each protocol header.
* Specify which protocol headers and protocol header fields base on
* virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
* @param hdr: a struct of virtchnl_proto_hdr
* @param hdr_type: ETH/IPV4/TCP, etc
* @param field: SRC/DST/TEID/SPI, etc
*/
#define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
#define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
#define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
#define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector)
#define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
#define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
#define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
#define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
(((hdr)->type) >> PROTO_HDR_SHIFT)
#define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT)))
#define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
(VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \
VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val))
/* Protocol header type within a packet segment. A segment consists of one or
* more protocol headers that make up a logical group of protocol headers. Each
* logical group of protocol headers encapsulates or is encapsulated using/by
* tunneling or encapsulation protocols for network virtualization.
*/
enum virtchnl_proto_hdr_type {
VIRTCHNL_PROTO_HDR_NONE,
VIRTCHNL_PROTO_HDR_ETH,
VIRTCHNL_PROTO_HDR_S_VLAN,
VIRTCHNL_PROTO_HDR_C_VLAN,
VIRTCHNL_PROTO_HDR_IPV4,
VIRTCHNL_PROTO_HDR_IPV6,
VIRTCHNL_PROTO_HDR_TCP,
VIRTCHNL_PROTO_HDR_UDP,
VIRTCHNL_PROTO_HDR_SCTP,
VIRTCHNL_PROTO_HDR_GTPU_IP,
VIRTCHNL_PROTO_HDR_GTPU_EH,
VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
VIRTCHNL_PROTO_HDR_PPPOE,
VIRTCHNL_PROTO_HDR_L2TPV3,
VIRTCHNL_PROTO_HDR_ESP,
VIRTCHNL_PROTO_HDR_AH,
VIRTCHNL_PROTO_HDR_PFCP,
VIRTCHNL_PROTO_HDR_GTPC,
VIRTCHNL_PROTO_HDR_ECPRI,
VIRTCHNL_PROTO_HDR_L2TPV2,
VIRTCHNL_PROTO_HDR_PPP,
/* IPv4 and IPv6 Fragment header types are only associated to
* VIRTCHNL_PROTO_HDR_IPV4 and VIRTCHNL_PROTO_HDR_IPV6 respectively,
* cannot be used independently.
*/
VIRTCHNL_PROTO_HDR_IPV4_FRAG,
VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG,
VIRTCHNL_PROTO_HDR_GRE,
};
/* Protocol header field within a protocol header. */
enum virtchnl_proto_hdr_field {
/* ETHER */
VIRTCHNL_PROTO_HDR_ETH_SRC =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
VIRTCHNL_PROTO_HDR_ETH_DST,
VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
/* S-VLAN */
VIRTCHNL_PROTO_HDR_S_VLAN_ID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
/* C-VLAN */
VIRTCHNL_PROTO_HDR_C_VLAN_ID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
/* IPV4 */
VIRTCHNL_PROTO_HDR_IPV4_SRC =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
VIRTCHNL_PROTO_HDR_IPV4_DST,
VIRTCHNL_PROTO_HDR_IPV4_DSCP,
VIRTCHNL_PROTO_HDR_IPV4_TTL,
VIRTCHNL_PROTO_HDR_IPV4_PROT,
VIRTCHNL_PROTO_HDR_IPV4_CHKSUM,
/* IPV6 */
VIRTCHNL_PROTO_HDR_IPV6_SRC =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
VIRTCHNL_PROTO_HDR_IPV6_DST,
VIRTCHNL_PROTO_HDR_IPV6_TC,
VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
VIRTCHNL_PROTO_HDR_IPV6_PROT,
/* IPV6 Prefix */
VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC,
VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST,
/* TCP */
VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
VIRTCHNL_PROTO_HDR_TCP_CHKSUM,
/* UDP */
VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
VIRTCHNL_PROTO_HDR_UDP_CHKSUM,
/* SCTP */
VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
VIRTCHNL_PROTO_HDR_SCTP_CHKSUM,
/* GTPU_IP */
VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
/* GTPU_EH */
VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
/* PPPOE */
VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
/* L2TPV3 */
VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
/* ESP */
VIRTCHNL_PROTO_HDR_ESP_SPI =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
/* AH */
VIRTCHNL_PROTO_HDR_AH_SPI =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
/* PFCP */
VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
VIRTCHNL_PROTO_HDR_PFCP_SEID,
/* GTPC */
VIRTCHNL_PROTO_HDR_GTPC_TEID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC),
/* ECPRI */
VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI),
VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID,
/* IPv4 Dummy Fragment */
VIRTCHNL_PROTO_HDR_IPV4_FRAG_PKID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4_FRAG),
/* IPv6 Extension Fragment */
VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG_PKID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG),
/* GTPU_DWN/UP */
VIRTCHNL_PROTO_HDR_GTPU_DWN_QFI =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN),
VIRTCHNL_PROTO_HDR_GTPU_UP_QFI =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP),
/* L2TPv2 */
VIRTCHNL_PROTO_HDR_L2TPV2_SESS_ID =
PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV2),
VIRTCHNL_PROTO_HDR_L2TPV2_LEN_SESS_ID,
};
struct virtchnl_proto_hdr {
/* see enum virtchnl_proto_hdr_type */
s32 type;
u32 field_selector; /* a bit mask to select field for header type */
u8 buffer[64];
/**
* binary buffer in network order for specific header type.
* For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
* header is expected to be copied into the buffer.
*/
};
VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
struct virtchnl_proto_hdr_w_msk {
/* see enum virtchnl_proto_hdr_type */
s32 type;
u32 pad;
/**
* binary buffer in network order for specific header type.
* For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
* header is expected to be copied into the buffer.
*/
u8 buffer_spec[64];
/* binary buffer for bit-mask applied to specific header type */
u8 buffer_mask[64];
};
VIRTCHNL_CHECK_STRUCT_LEN(136, virtchnl_proto_hdr_w_msk);
struct virtchnl_proto_hdrs {
u8 tunnel_level;
/**
* specify where protocol header start from.
* must be 0 when sending a raw packet request.
* 0 - from the outer layer
* 1 - from the first inner layer
* 2 - from the second inner layer
* ....
*/
int count;
/**
* count must <=
* VIRTCHNL_MAX_NUM_PROTO_HDRS + VIRTCHNL_MAX_NUM_PROTO_HDRS_W_MSK
* count = 0 : select raw
* 1 < count <= VIRTCHNL_MAX_NUM_PROTO_HDRS : select proto_hdr
* count > VIRTCHNL_MAX_NUM_PROTO_HDRS : select proto_hdr_w_msk
* last valid index = count - VIRTCHNL_MAX_NUM_PROTO_HDRS
*/
union {
struct virtchnl_proto_hdr
proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
struct virtchnl_proto_hdr_w_msk
proto_hdr_w_msk[VIRTCHNL_MAX_NUM_PROTO_HDRS_W_MSK];
struct {
u16 pkt_len;
u8 spec[VIRTCHNL_MAX_SIZE_RAW_PACKET];
u8 mask[VIRTCHNL_MAX_SIZE_RAW_PACKET];
} raw;
};
};
VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
struct virtchnl_rss_cfg {
struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */
/* see enum virtchnl_rss_algorithm; rss algorithm type */
s32 rss_algorithm;
u8 reserved[128]; /* reserve for future */
};
VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
/* action configuration for FDIR and FSUB */
struct virtchnl_filter_action {
/* see enum virtchnl_action type */
s32 type;
union {
/* used for queue and qgroup action */
struct {
u16 index;
u8 region;
} queue;
/* used for count action */
struct {
/* share counter ID with other flow rules */
u8 shared;
u32 id; /* counter ID */
} count;
/* used for mark action */
u32 mark_id;
u8 reserve[32];
} act_conf;
};
VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
#define VIRTCHNL_MAX_NUM_ACTIONS 8
struct virtchnl_filter_action_set {
/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
int count;
struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
};
VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
/* pattern and action for FDIR rule */
struct virtchnl_fdir_rule {
struct virtchnl_proto_hdrs proto_hdrs;
struct virtchnl_filter_action_set action_set;
};
VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
/* Status returned to VF after VF requests FDIR commands
* VIRTCHNL_FDIR_SUCCESS
* VF FDIR related request is successfully done by PF
* The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
*
* VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
* OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
*
* VIRTCHNL_FDIR_FAILURE_RULE_EXIST
* OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
*
* VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
* OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
*
* VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
* OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
*
* VIRTCHNL_FDIR_FAILURE_RULE_INVALID
* OP_ADD_FDIR_FILTER request is failed due to parameters validation
* or HW doesn't support.
*
* VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
* OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
* for programming.
*
* VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
* OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
* for example, VF query counter of a rule who has no counter action.
*/
enum virtchnl_fdir_prgm_status {
VIRTCHNL_FDIR_SUCCESS = 0,
VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
};
/* VIRTCHNL_OP_ADD_FDIR_FILTER
* VF sends this request to PF by filling out vsi_id,
* validate_only and rule_cfg. PF will return flow_id
* if the request is successfully done and return add_status to VF.
*/
struct virtchnl_fdir_add {
u16 vsi_id; /* INPUT */
/*
* 1 for validating a fdir rule, 0 for creating a fdir rule.
* Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
*/
u16 validate_only; /* INPUT */
u32 flow_id; /* OUTPUT */
struct virtchnl_fdir_rule rule_cfg; /* INPUT */
/* see enum virtchnl_fdir_prgm_status; OUTPUT */
s32 status;
};
VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
/* VIRTCHNL_OP_DEL_FDIR_FILTER
* VF sends this request to PF by filling out vsi_id
* and flow_id. PF will return del_status to VF.
*/
struct virtchnl_fdir_del {
u16 vsi_id; /* INPUT */
u16 pad;
u32 flow_id; /* INPUT */
/* see enum virtchnl_fdir_prgm_status; OUTPUT */
s32 status;
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
/* Status returned to VF after VF requests FSUB commands
* VIRTCHNL_FSUB_SUCCESS
* VF FLOW related request is successfully done by PF
* The request can be OP_FLOW_SUBSCRIBE/UNSUBSCRIBE.
*
* VIRTCHNL_FSUB_FAILURE_RULE_NORESOURCE
* OP_FLOW_SUBSCRIBE request is failed due to no Hardware resource.
*
* VIRTCHNL_FSUB_FAILURE_RULE_EXIST
* OP_FLOW_SUBSCRIBE request is failed due to the rule is already existed.
*
* VIRTCHNL_FSUB_FAILURE_RULE_NONEXIST
* OP_FLOW_UNSUBSCRIBE request is failed due to this rule doesn't exist.
*
* VIRTCHNL_FSUB_FAILURE_RULE_INVALID
* OP_FLOW_SUBSCRIBE request is failed due to parameters validation
* or HW doesn't support.
*/
enum virtchnl_fsub_prgm_status {
VIRTCHNL_FSUB_SUCCESS = 0,
VIRTCHNL_FSUB_FAILURE_RULE_NORESOURCE,
VIRTCHNL_FSUB_FAILURE_RULE_EXIST,
VIRTCHNL_FSUB_FAILURE_RULE_NONEXIST,
VIRTCHNL_FSUB_FAILURE_RULE_INVALID,
};
/* VIRTCHNL_OP_FLOW_SUBSCRIBE
* VF sends this request to PF by filling out vsi_id,
* validate_only, priority, proto_hdrs and actions.
* PF will return flow_id
* if the request is successfully done and return status to VF.
*/
struct virtchnl_flow_sub {
u16 vsi_id; /* INPUT */
u8 validate_only; /* INPUT */
/* 0 is the highest priority; INPUT */
u8 priority;
u32 flow_id; /* OUTPUT */
struct virtchnl_proto_hdrs proto_hdrs; /* INPUT */
struct virtchnl_filter_action_set actions; /* INPUT */
/* see enum virtchnl_fsub_prgm_status; OUTPUT */
s32 status;
};
VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_flow_sub);
/* VIRTCHNL_OP_FLOW_UNSUBSCRIBE
* VF sends this request to PF by filling out vsi_id
* and flow_id. PF will return status to VF.
*/
struct virtchnl_flow_unsub {
u16 vsi_id; /* INPUT */
u16 pad;
u32 flow_id; /* INPUT */
/* see enum virtchnl_fsub_prgm_status; OUTPUT */
s32 status;
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_flow_unsub);
/* VIRTCHNL_OP_GET_QOS_CAPS
* VF sends this message to get its QoS Caps, such as
* TC number, Arbiter and Bandwidth.
*/
struct virtchnl_qos_cap_elem {
u8 tc_num;
u8 tc_prio;
#define VIRTCHNL_ABITER_STRICT 0
#define VIRTCHNL_ABITER_ETS 2
u8 arbiter;
#define VIRTCHNL_STRICT_WEIGHT 1
u8 weight;
enum virtchnl_bw_limit_type type;
union {
struct virtchnl_shaper_bw shaper;
u8 pad2[32];
};
};
VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_qos_cap_elem);
struct virtchnl_qos_cap_list {
u16 vsi_id;
u16 num_elem;
struct virtchnl_qos_cap_elem cap[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_qos_cap_list);
/* VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP
* VF sends message virtchnl_queue_tc_mapping to set queue to tc
* mapping for all the Tx and Rx queues with a specified VSI, and
* would get response about bitmap of valid user priorities
* associated with queues.
*/
struct virtchnl_queue_tc_mapping {
u16 vsi_id;
u16 num_tc;
u16 num_queue_pairs;
u8 pad[2];
union {
struct {
u16 start_queue_id;
u16 queue_count;
} req;
struct {
#define VIRTCHNL_USER_PRIO_TYPE_UP 0
#define VIRTCHNL_USER_PRIO_TYPE_DSCP 1
u16 prio_type;
u16 valid_prio_bitmap;
} resp;
} tc[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_tc_mapping);
/* VIRTCHNL_OP_CONFIG_QUEUE_BW */
struct virtchnl_queue_bw {
u16 queue_id;
u8 tc;
u8 pad;
struct virtchnl_shaper_bw shaper;
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_bw);
struct virtchnl_queues_bw_cfg {
u16 vsi_id;
u16 num_queues;
struct virtchnl_queue_bw cfg[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queues_bw_cfg);
/* queue types */
enum virtchnl_queue_type {
VIRTCHNL_QUEUE_TYPE_TX = 0,
VIRTCHNL_QUEUE_TYPE_RX = 1,
};
/* structure to specify a chunk of contiguous queues */
struct virtchnl_queue_chunk {
/* see enum virtchnl_queue_type */
s32 type;
u16 start_queue_id;
u16 num_queues;
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk);
/* structure to specify several chunks of contiguous queues */
struct virtchnl_queue_chunks {
u16 num_chunks;
u16 rsvd;
struct virtchnl_queue_chunk chunks[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks);
/* VIRTCHNL_OP_ENABLE_QUEUES_V2
* VIRTCHNL_OP_DISABLE_QUEUES_V2
*
* These opcodes can be used if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in
* VIRTCHNL_OP_GET_VF_RESOURCES
*
* VF sends virtchnl_ena_dis_queues struct to specify the queues to be
* enabled/disabled in chunks. Also applicable to single queue RX or
* TX. PF performs requested action and returns status.
*/
struct virtchnl_del_ena_dis_queues {
u16 vport_id;
u16 pad;
struct virtchnl_queue_chunks chunks;
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues);
/* Virtchannel interrupt throttling rate index */
enum virtchnl_itr_idx {
VIRTCHNL_ITR_IDX_0 = 0,
VIRTCHNL_ITR_IDX_1 = 1,
VIRTCHNL_ITR_IDX_NO_ITR = 3,
};
/* Queue to vector mapping */
struct virtchnl_queue_vector {
u16 queue_id;
u16 vector_id;
u8 pad[4];
/* see enum virtchnl_itr_idx */
s32 itr_idx;
/* see enum virtchnl_queue_type */
s32 queue_type;
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector);
/* VIRTCHNL_OP_MAP_QUEUE_VECTOR
*
* This opcode can be used only if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated
* in VIRTCHNL_OP_GET_VF_RESOURCES
*
* VF sends this message to map queues to vectors and ITR index registers.
* External data buffer contains virtchnl_queue_vector_maps structure
* that contains num_qv_maps of virtchnl_queue_vector structures.
* PF maps the requested queue vector maps after validating the queue and vector
* ids and returns a status code.
*/
struct virtchnl_queue_vector_maps {
u16 vport_id;
u16 num_qv_maps;
u8 pad[4];
struct virtchnl_queue_vector qv_maps[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps);
struct virtchnl_quanta_cfg {
u16 quanta_size;
struct virtchnl_queue_chunk queue_select;
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_quanta_cfg);
/* Since VF messages are limited by u16 size, precalculate the maximum possible
* values of nested elements in virtchnl structures that virtual channel can
* possibly handle in a single message.
*/
enum virtchnl_vector_limits {
VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX =
((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) /
sizeof(struct virtchnl_queue_pair_info),
VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX =
((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) /
sizeof(struct virtchnl_vector_map),
VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX =
((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) /
sizeof(struct virtchnl_ether_addr),
VIRTCHNL_OP_ADD_DEL_VLAN_MAX =
((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) /
sizeof(u16),
VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP_MAX =
((u16)(~0) - sizeof(struct virtchnl_rdma_qvlist_info)) /
sizeof(struct virtchnl_rdma_qv_info),
VIRTCHNL_OP_ENABLE_CHANNELS_MAX =
((u16)(~0) - sizeof(struct virtchnl_tc_info)) /
sizeof(struct virtchnl_channel_info),
VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX =
((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) /
sizeof(struct virtchnl_queue_chunk),
VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX =
((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) /
sizeof(struct virtchnl_queue_vector),
VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX =
((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) /
sizeof(struct virtchnl_vlan_filter),
};
/**
* virtchnl_vc_validate_vf_msg
* @ver: Virtchnl version info
* @v_opcode: Opcode for the message
* @msg: pointer to the msg buffer
* @msglen: msg length
*
* validate msg format against struct for each opcode
*/
static inline int
virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
u8 *msg, u16 msglen)
{
bool err_msg_format = false;
u32 valid_len = 0;
/* Validate message length. */
switch (v_opcode) {
case VIRTCHNL_OP_VERSION:
valid_len = sizeof(struct virtchnl_version_info);
break;
case VIRTCHNL_OP_RESET_VF:
break;
case VIRTCHNL_OP_GET_VF_RESOURCES:
if (VF_IS_V11(ver))
valid_len = sizeof(u32);
break;
case VIRTCHNL_OP_CONFIG_TX_QUEUE:
valid_len = sizeof(struct virtchnl_txq_info);
break;
case VIRTCHNL_OP_CONFIG_RX_QUEUE:
valid_len = sizeof(struct virtchnl_rxq_info);
break;
case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
if (msglen >= valid_len) {
struct virtchnl_vsi_queue_config_info *vqc =
(struct virtchnl_vsi_queue_config_info *)msg;
if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs >
VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) {
err_msg_format = true;
break;
}
valid_len += (vqc->num_queue_pairs *
sizeof(struct
virtchnl_queue_pair_info));
}
break;
case VIRTCHNL_OP_CONFIG_IRQ_MAP:
valid_len = sizeof(struct virtchnl_irq_map_info);
if (msglen >= valid_len) {
struct virtchnl_irq_map_info *vimi =
(struct virtchnl_irq_map_info *)msg;
if (vimi->num_vectors == 0 || vimi->num_vectors >
VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) {
err_msg_format = true;
break;
}
valid_len += (vimi->num_vectors *
sizeof(struct virtchnl_vector_map));
}
break;
case VIRTCHNL_OP_ENABLE_QUEUES:
case VIRTCHNL_OP_DISABLE_QUEUES:
valid_len = sizeof(struct virtchnl_queue_select);
break;
case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
break;
case VIRTCHNL_OP_ADD_ETH_ADDR:
case VIRTCHNL_OP_DEL_ETH_ADDR:
valid_len = sizeof(struct virtchnl_ether_addr_list);
if (msglen >= valid_len) {
struct virtchnl_ether_addr_list *veal =
(struct virtchnl_ether_addr_list *)msg;
if (veal->num_elements == 0 || veal->num_elements >
VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) {
err_msg_format = true;
break;
}
valid_len += veal->num_elements *
sizeof(struct virtchnl_ether_addr);
}
break;
case VIRTCHNL_OP_ADD_VLAN:
case VIRTCHNL_OP_DEL_VLAN:
valid_len = sizeof(struct virtchnl_vlan_filter_list);
if (msglen >= valid_len) {
struct virtchnl_vlan_filter_list *vfl =
(struct virtchnl_vlan_filter_list *)msg;
if (vfl->num_elements == 0 || vfl->num_elements >
VIRTCHNL_OP_ADD_DEL_VLAN_MAX) {
err_msg_format = true;
break;
}
valid_len += vfl->num_elements * sizeof(u16);
}
break;
case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
valid_len = sizeof(struct virtchnl_promisc_info);
break;
case VIRTCHNL_OP_GET_STATS:
valid_len = sizeof(struct virtchnl_queue_select);
break;
case VIRTCHNL_OP_RDMA:
/* These messages are opaque to us and will be validated in
* the RDMA client code. We just need to check for nonzero
* length. The firmware will enforce max length restrictions.
*/
if (msglen)
valid_len = msglen;
else
err_msg_format = true;
break;
case VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP:
break;
case VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP:
valid_len = sizeof(struct virtchnl_rdma_qvlist_info);
if (msglen >= valid_len) {
struct virtchnl_rdma_qvlist_info *qv =
(struct virtchnl_rdma_qvlist_info *)msg;
if (qv->num_vectors == 0 || qv->num_vectors >
VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP_MAX) {
err_msg_format = true;
break;
}
valid_len += ((qv->num_vectors - 1) *
sizeof(struct virtchnl_rdma_qv_info));
}
break;
case VIRTCHNL_OP_CONFIG_RSS_KEY:
valid_len = sizeof(struct virtchnl_rss_key);
if (msglen >= valid_len) {
struct virtchnl_rss_key *vrk =
(struct virtchnl_rss_key *)msg;
if (vrk->key_len == 0) {
/* zero length is allowed as input */
break;
}
valid_len += vrk->key_len - 1;
}
break;
case VIRTCHNL_OP_CONFIG_RSS_LUT:
valid_len = sizeof(struct virtchnl_rss_lut);
if (msglen >= valid_len) {
struct virtchnl_rss_lut *vrl =
(struct virtchnl_rss_lut *)msg;
if (vrl->lut_entries == 0) {
/* zero entries is allowed as input */
break;
}
valid_len += vrl->lut_entries - 1;
}
break;
case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
break;
case VIRTCHNL_OP_SET_RSS_HENA:
valid_len = sizeof(struct virtchnl_rss_hena);
break;
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
break;
case VIRTCHNL_OP_REQUEST_QUEUES:
valid_len = sizeof(struct virtchnl_vf_res_request);
break;
case VIRTCHNL_OP_ENABLE_CHANNELS:
valid_len = sizeof(struct virtchnl_tc_info);
if (msglen >= valid_len) {
struct virtchnl_tc_info *vti =
(struct virtchnl_tc_info *)msg;
if (vti->num_tc == 0 || vti->num_tc >
VIRTCHNL_OP_ENABLE_CHANNELS_MAX) {
err_msg_format = true;
break;
}
valid_len += (vti->num_tc - 1) *
sizeof(struct virtchnl_channel_info);
}
break;
case VIRTCHNL_OP_DISABLE_CHANNELS:
break;
case VIRTCHNL_OP_ADD_CLOUD_FILTER:
case VIRTCHNL_OP_DEL_CLOUD_FILTER:
valid_len = sizeof(struct virtchnl_filter);
break;
case VIRTCHNL_OP_DCF_VLAN_OFFLOAD:
valid_len = sizeof(struct virtchnl_dcf_vlan_offload);
break;
case VIRTCHNL_OP_DCF_CMD_DESC:
case VIRTCHNL_OP_DCF_CMD_BUFF:
/* These two opcodes are specific to handle the AdminQ command,
* so the validation needs to be done in PF's context.
*/
valid_len = msglen;
break;
case VIRTCHNL_OP_DCF_DISABLE:
case VIRTCHNL_OP_DCF_GET_VSI_MAP:
case VIRTCHNL_OP_DCF_GET_PKG_INFO:
break;
case VIRTCHNL_OP_DCF_CONFIG_BW:
valid_len = sizeof(struct virtchnl_dcf_bw_cfg_list);
if (msglen >= valid_len) {
struct virtchnl_dcf_bw_cfg_list *cfg_list =
(struct virtchnl_dcf_bw_cfg_list *)msg;
if (cfg_list->num_elem == 0) {
err_msg_format = true;
break;
}
valid_len += (cfg_list->num_elem - 1) *
sizeof(struct virtchnl_dcf_bw_cfg);
}
break;
case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
break;
case VIRTCHNL_OP_ADD_RSS_CFG:
case VIRTCHNL_OP_DEL_RSS_CFG:
valid_len = sizeof(struct virtchnl_rss_cfg);
break;
case VIRTCHNL_OP_ADD_FDIR_FILTER:
valid_len = sizeof(struct virtchnl_fdir_add);
break;
case VIRTCHNL_OP_DEL_FDIR_FILTER:
valid_len = sizeof(struct virtchnl_fdir_del);
break;
case VIRTCHNL_OP_FLOW_SUBSCRIBE:
valid_len = sizeof(struct virtchnl_flow_sub);
break;
case VIRTCHNL_OP_FLOW_UNSUBSCRIBE:
valid_len = sizeof(struct virtchnl_flow_unsub);
break;
case VIRTCHNL_OP_GET_QOS_CAPS:
break;
case VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP:
valid_len = sizeof(struct virtchnl_queue_tc_mapping);
if (msglen >= valid_len) {
struct virtchnl_queue_tc_mapping *q_tc =
(struct virtchnl_queue_tc_mapping *)msg;
if (q_tc->num_tc == 0) {
err_msg_format = true;
break;
}
valid_len += (q_tc->num_tc - 1) *
sizeof(q_tc->tc[0]);
}
break;
case VIRTCHNL_OP_CONFIG_QUEUE_BW:
valid_len = sizeof(struct virtchnl_queues_bw_cfg);
if (msglen >= valid_len) {
struct virtchnl_queues_bw_cfg *q_bw =
(struct virtchnl_queues_bw_cfg *)msg;
if (q_bw->num_queues == 0) {
err_msg_format = true;
break;
}
valid_len += (q_bw->num_queues - 1) *
sizeof(q_bw->cfg[0]);
}
break;
case VIRTCHNL_OP_CONFIG_QUANTA:
valid_len = sizeof(struct virtchnl_quanta_cfg);
if (msglen >= valid_len) {
struct virtchnl_quanta_cfg *q_quanta =
(struct virtchnl_quanta_cfg *)msg;
if (q_quanta->quanta_size == 0 ||
q_quanta->queue_select.num_queues == 0) {
err_msg_format = true;
break;
}
}
break;
case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
break;
case VIRTCHNL_OP_ADD_VLAN_V2:
case VIRTCHNL_OP_DEL_VLAN_V2:
valid_len = sizeof(struct virtchnl_vlan_filter_list_v2);
if (msglen >= valid_len) {
struct virtchnl_vlan_filter_list_v2 *vfl =
(struct virtchnl_vlan_filter_list_v2 *)msg;
if (vfl->num_elements == 0 || vfl->num_elements >
VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) {
err_msg_format = true;
break;
}
valid_len += (vfl->num_elements - 1) *
sizeof(struct virtchnl_vlan_filter);
}
break;
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
valid_len = sizeof(struct virtchnl_vlan_setting);
break;
case VIRTCHNL_OP_ENABLE_QUEUES_V2:
case VIRTCHNL_OP_DISABLE_QUEUES_V2:
valid_len = sizeof(struct virtchnl_del_ena_dis_queues);
if (msglen >= valid_len) {
struct virtchnl_del_ena_dis_queues *qs =
(struct virtchnl_del_ena_dis_queues *)msg;
if (qs->chunks.num_chunks == 0 ||
qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) {
err_msg_format = true;
break;
}
valid_len += (qs->chunks.num_chunks - 1) *
sizeof(struct virtchnl_queue_chunk);
}
break;
case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
valid_len = sizeof(struct virtchnl_queue_vector_maps);
if (msglen >= valid_len) {
struct virtchnl_queue_vector_maps *v_qp =
(struct virtchnl_queue_vector_maps *)msg;
if (v_qp->num_qv_maps == 0 ||
v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) {
err_msg_format = true;
break;
}
valid_len += (v_qp->num_qv_maps - 1) *
sizeof(struct virtchnl_queue_vector);
}
break;
/* These are always errors coming from the VF. */
case VIRTCHNL_OP_EVENT:
case VIRTCHNL_OP_UNKNOWN:
default:
return VIRTCHNL_STATUS_ERR_PARAM;
}
/* few more checks */
if (err_msg_format || valid_len != msglen)
return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
return 0;
}
#endif /* _VIRTCHNL_H_ */