OpenCloudOS-Kernel/drivers/nfc/port100.c

1655 lines
42 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Sony NFC Port-100 Series driver
* Copyright (c) 2013, Intel Corporation.
*
* Partly based/Inspired by Stephen Tiedemann's nfcpy
*/
#include <linux/module.h>
#include <linux/usb.h>
#include <net/nfc/digital.h>
#define VERSION "0.1"
#define SONY_VENDOR_ID 0x054c
#define RCS380S_PRODUCT_ID 0x06c1
#define RCS380P_PRODUCT_ID 0x06c3
#define PORT100_PROTOCOLS (NFC_PROTO_JEWEL_MASK | \
NFC_PROTO_MIFARE_MASK | \
NFC_PROTO_FELICA_MASK | \
NFC_PROTO_NFC_DEP_MASK | \
NFC_PROTO_ISO14443_MASK | \
NFC_PROTO_ISO14443_B_MASK)
#define PORT100_CAPABILITIES (NFC_DIGITAL_DRV_CAPS_IN_CRC | \
NFC_DIGITAL_DRV_CAPS_TG_CRC)
/* Standard port100 frame definitions */
#define PORT100_FRAME_HEADER_LEN (sizeof(struct port100_frame) \
+ 2) /* data[0] CC, data[1] SCC */
#define PORT100_FRAME_TAIL_LEN 2 /* data[len] DCS, data[len + 1] postamble*/
#define PORT100_COMM_RF_HEAD_MAX_LEN (sizeof(struct port100_tg_comm_rf_cmd))
/*
* Max extended frame payload len, excluding CC and SCC
* which are already in PORT100_FRAME_HEADER_LEN.
*/
#define PORT100_FRAME_MAX_PAYLOAD_LEN 1001
#define PORT100_FRAME_ACK_SIZE 6 /* Preamble (1), SoPC (2), ACK Code (2),
Postamble (1) */
static u8 ack_frame[PORT100_FRAME_ACK_SIZE] = {
0x00, 0x00, 0xff, 0x00, 0xff, 0x00
};
#define PORT100_FRAME_CHECKSUM(f) (f->data[le16_to_cpu(f->datalen)])
#define PORT100_FRAME_POSTAMBLE(f) (f->data[le16_to_cpu(f->datalen) + 1])
/* start of frame */
#define PORT100_FRAME_SOF 0x00FF
#define PORT100_FRAME_EXT 0xFFFF
#define PORT100_FRAME_ACK 0x00FF
/* Port-100 command: in or out */
#define PORT100_FRAME_DIRECTION(f) (f->data[0]) /* CC */
#define PORT100_FRAME_DIR_OUT 0xD6
#define PORT100_FRAME_DIR_IN 0xD7
/* Port-100 sub-command */
#define PORT100_FRAME_CMD(f) (f->data[1]) /* SCC */
#define PORT100_CMD_GET_FIRMWARE_VERSION 0x20
#define PORT100_CMD_GET_COMMAND_TYPE 0x28
#define PORT100_CMD_SET_COMMAND_TYPE 0x2A
#define PORT100_CMD_IN_SET_RF 0x00
#define PORT100_CMD_IN_SET_PROTOCOL 0x02
#define PORT100_CMD_IN_COMM_RF 0x04
#define PORT100_CMD_TG_SET_RF 0x40
#define PORT100_CMD_TG_SET_PROTOCOL 0x42
#define PORT100_CMD_TG_SET_RF_OFF 0x46
#define PORT100_CMD_TG_COMM_RF 0x48
#define PORT100_CMD_SWITCH_RF 0x06
#define PORT100_CMD_RESPONSE(cmd) (cmd + 1)
#define PORT100_CMD_TYPE_IS_SUPPORTED(mask, cmd_type) \
((mask) & (0x01 << (cmd_type)))
#define PORT100_CMD_TYPE_0 0
#define PORT100_CMD_TYPE_1 1
#define PORT100_CMD_STATUS_OK 0x00
#define PORT100_CMD_STATUS_TIMEOUT 0x80
#define PORT100_MDAA_TGT_HAS_BEEN_ACTIVATED_MASK 0x01
#define PORT100_MDAA_TGT_WAS_ACTIVATED_MASK 0x02
struct port100;
typedef void (*port100_send_async_complete_t)(struct port100 *dev, void *arg,
struct sk_buff *resp);
/**
* Setting sets structure for in_set_rf command
*
* @in_*_set_number: Represent the entry indexes in the port-100 RF Base Table.
* This table contains multiple RF setting sets required for RF
* communication.
*
* @in_*_comm_type: Theses fields set the communication type to be used.
*/
struct port100_in_rf_setting {
u8 in_send_set_number;
u8 in_send_comm_type;
u8 in_recv_set_number;
u8 in_recv_comm_type;
} __packed;
#define PORT100_COMM_TYPE_IN_212F 0x01
#define PORT100_COMM_TYPE_IN_424F 0x02
#define PORT100_COMM_TYPE_IN_106A 0x03
#define PORT100_COMM_TYPE_IN_106B 0x07
static const struct port100_in_rf_setting in_rf_settings[] = {
[NFC_DIGITAL_RF_TECH_212F] = {
.in_send_set_number = 1,
.in_send_comm_type = PORT100_COMM_TYPE_IN_212F,
.in_recv_set_number = 15,
.in_recv_comm_type = PORT100_COMM_TYPE_IN_212F,
},
[NFC_DIGITAL_RF_TECH_424F] = {
.in_send_set_number = 1,
.in_send_comm_type = PORT100_COMM_TYPE_IN_424F,
.in_recv_set_number = 15,
.in_recv_comm_type = PORT100_COMM_TYPE_IN_424F,
},
[NFC_DIGITAL_RF_TECH_106A] = {
.in_send_set_number = 2,
.in_send_comm_type = PORT100_COMM_TYPE_IN_106A,
.in_recv_set_number = 15,
.in_recv_comm_type = PORT100_COMM_TYPE_IN_106A,
},
[NFC_DIGITAL_RF_TECH_106B] = {
.in_send_set_number = 3,
.in_send_comm_type = PORT100_COMM_TYPE_IN_106B,
.in_recv_set_number = 15,
.in_recv_comm_type = PORT100_COMM_TYPE_IN_106B,
},
/* Ensures the array has NFC_DIGITAL_RF_TECH_LAST elements */
[NFC_DIGITAL_RF_TECH_LAST] = { 0 },
};
/**
* Setting sets structure for tg_set_rf command
*
* @tg_set_number: Represents the entry index in the port-100 RF Base Table.
* This table contains multiple RF setting sets required for RF
* communication. this field is used for both send and receive
* settings.
*
* @tg_comm_type: Sets the communication type to be used to send and receive
* data.
*/
struct port100_tg_rf_setting {
u8 tg_set_number;
u8 tg_comm_type;
} __packed;
#define PORT100_COMM_TYPE_TG_106A 0x0B
#define PORT100_COMM_TYPE_TG_212F 0x0C
#define PORT100_COMM_TYPE_TG_424F 0x0D
static const struct port100_tg_rf_setting tg_rf_settings[] = {
[NFC_DIGITAL_RF_TECH_106A] = {
.tg_set_number = 8,
.tg_comm_type = PORT100_COMM_TYPE_TG_106A,
},
[NFC_DIGITAL_RF_TECH_212F] = {
.tg_set_number = 8,
.tg_comm_type = PORT100_COMM_TYPE_TG_212F,
},
[NFC_DIGITAL_RF_TECH_424F] = {
.tg_set_number = 8,
.tg_comm_type = PORT100_COMM_TYPE_TG_424F,
},
/* Ensures the array has NFC_DIGITAL_RF_TECH_LAST elements */
[NFC_DIGITAL_RF_TECH_LAST] = { 0 },
};
#define PORT100_IN_PROT_INITIAL_GUARD_TIME 0x00
#define PORT100_IN_PROT_ADD_CRC 0x01
#define PORT100_IN_PROT_CHECK_CRC 0x02
#define PORT100_IN_PROT_MULTI_CARD 0x03
#define PORT100_IN_PROT_ADD_PARITY 0x04
#define PORT100_IN_PROT_CHECK_PARITY 0x05
#define PORT100_IN_PROT_BITWISE_AC_RECV_MODE 0x06
#define PORT100_IN_PROT_VALID_BIT_NUMBER 0x07
#define PORT100_IN_PROT_CRYPTO1 0x08
#define PORT100_IN_PROT_ADD_SOF 0x09
#define PORT100_IN_PROT_CHECK_SOF 0x0A
#define PORT100_IN_PROT_ADD_EOF 0x0B
#define PORT100_IN_PROT_CHECK_EOF 0x0C
#define PORT100_IN_PROT_DEAF_TIME 0x0E
#define PORT100_IN_PROT_CRM 0x0F
#define PORT100_IN_PROT_CRM_MIN_LEN 0x10
#define PORT100_IN_PROT_T1_TAG_FRAME 0x11
#define PORT100_IN_PROT_RFCA 0x12
#define PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR 0x13
#define PORT100_IN_PROT_END 0x14
#define PORT100_IN_MAX_NUM_PROTOCOLS 19
#define PORT100_TG_PROT_TU 0x00
#define PORT100_TG_PROT_RF_OFF 0x01
#define PORT100_TG_PROT_CRM 0x02
#define PORT100_TG_PROT_END 0x03
#define PORT100_TG_MAX_NUM_PROTOCOLS 3
struct port100_protocol {
u8 number;
u8 value;
} __packed;
static struct port100_protocol
in_protocols[][PORT100_IN_MAX_NUM_PROTOCOLS + 1] = {
[NFC_DIGITAL_FRAMING_NFCA_SHORT] = {
{ PORT100_IN_PROT_INITIAL_GUARD_TIME, 6 },
{ PORT100_IN_PROT_ADD_CRC, 0 },
{ PORT100_IN_PROT_CHECK_CRC, 0 },
{ PORT100_IN_PROT_MULTI_CARD, 0 },
{ PORT100_IN_PROT_ADD_PARITY, 0 },
{ PORT100_IN_PROT_CHECK_PARITY, 1 },
{ PORT100_IN_PROT_BITWISE_AC_RECV_MODE, 0 },
{ PORT100_IN_PROT_VALID_BIT_NUMBER, 7 },
{ PORT100_IN_PROT_CRYPTO1, 0 },
{ PORT100_IN_PROT_ADD_SOF, 0 },
{ PORT100_IN_PROT_CHECK_SOF, 0 },
{ PORT100_IN_PROT_ADD_EOF, 0 },
{ PORT100_IN_PROT_CHECK_EOF, 0 },
{ PORT100_IN_PROT_DEAF_TIME, 4 },
{ PORT100_IN_PROT_CRM, 0 },
{ PORT100_IN_PROT_CRM_MIN_LEN, 0 },
{ PORT100_IN_PROT_T1_TAG_FRAME, 0 },
{ PORT100_IN_PROT_RFCA, 0 },
{ PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR, 6 },
{ PORT100_IN_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCA_STANDARD] = {
{ PORT100_IN_PROT_INITIAL_GUARD_TIME, 6 },
{ PORT100_IN_PROT_ADD_CRC, 0 },
{ PORT100_IN_PROT_CHECK_CRC, 0 },
{ PORT100_IN_PROT_MULTI_CARD, 0 },
{ PORT100_IN_PROT_ADD_PARITY, 1 },
{ PORT100_IN_PROT_CHECK_PARITY, 1 },
{ PORT100_IN_PROT_BITWISE_AC_RECV_MODE, 0 },
{ PORT100_IN_PROT_VALID_BIT_NUMBER, 8 },
{ PORT100_IN_PROT_CRYPTO1, 0 },
{ PORT100_IN_PROT_ADD_SOF, 0 },
{ PORT100_IN_PROT_CHECK_SOF, 0 },
{ PORT100_IN_PROT_ADD_EOF, 0 },
{ PORT100_IN_PROT_CHECK_EOF, 0 },
{ PORT100_IN_PROT_DEAF_TIME, 4 },
{ PORT100_IN_PROT_CRM, 0 },
{ PORT100_IN_PROT_CRM_MIN_LEN, 0 },
{ PORT100_IN_PROT_T1_TAG_FRAME, 0 },
{ PORT100_IN_PROT_RFCA, 0 },
{ PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR, 6 },
{ PORT100_IN_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCA_STANDARD_WITH_CRC_A] = {
{ PORT100_IN_PROT_INITIAL_GUARD_TIME, 6 },
{ PORT100_IN_PROT_ADD_CRC, 1 },
{ PORT100_IN_PROT_CHECK_CRC, 1 },
{ PORT100_IN_PROT_MULTI_CARD, 0 },
{ PORT100_IN_PROT_ADD_PARITY, 1 },
{ PORT100_IN_PROT_CHECK_PARITY, 1 },
{ PORT100_IN_PROT_BITWISE_AC_RECV_MODE, 0 },
{ PORT100_IN_PROT_VALID_BIT_NUMBER, 8 },
{ PORT100_IN_PROT_CRYPTO1, 0 },
{ PORT100_IN_PROT_ADD_SOF, 0 },
{ PORT100_IN_PROT_CHECK_SOF, 0 },
{ PORT100_IN_PROT_ADD_EOF, 0 },
{ PORT100_IN_PROT_CHECK_EOF, 0 },
{ PORT100_IN_PROT_DEAF_TIME, 4 },
{ PORT100_IN_PROT_CRM, 0 },
{ PORT100_IN_PROT_CRM_MIN_LEN, 0 },
{ PORT100_IN_PROT_T1_TAG_FRAME, 0 },
{ PORT100_IN_PROT_RFCA, 0 },
{ PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR, 6 },
{ PORT100_IN_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCA_T1T] = {
/* nfc_digital_framing_nfca_short */
{ PORT100_IN_PROT_ADD_CRC, 2 },
{ PORT100_IN_PROT_CHECK_CRC, 2 },
{ PORT100_IN_PROT_VALID_BIT_NUMBER, 8 },
{ PORT100_IN_PROT_T1_TAG_FRAME, 2 },
{ PORT100_IN_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCA_T2T] = {
/* nfc_digital_framing_nfca_standard */
{ PORT100_IN_PROT_ADD_CRC, 1 },
{ PORT100_IN_PROT_CHECK_CRC, 0 },
{ PORT100_IN_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCA_T4T] = {
/* nfc_digital_framing_nfca_standard_with_crc_a */
{ PORT100_IN_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCA_NFC_DEP] = {
/* nfc_digital_framing_nfca_standard */
{ PORT100_IN_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCF] = {
{ PORT100_IN_PROT_INITIAL_GUARD_TIME, 18 },
{ PORT100_IN_PROT_ADD_CRC, 1 },
{ PORT100_IN_PROT_CHECK_CRC, 1 },
{ PORT100_IN_PROT_MULTI_CARD, 0 },
{ PORT100_IN_PROT_ADD_PARITY, 0 },
{ PORT100_IN_PROT_CHECK_PARITY, 0 },
{ PORT100_IN_PROT_BITWISE_AC_RECV_MODE, 0 },
{ PORT100_IN_PROT_VALID_BIT_NUMBER, 8 },
{ PORT100_IN_PROT_CRYPTO1, 0 },
{ PORT100_IN_PROT_ADD_SOF, 0 },
{ PORT100_IN_PROT_CHECK_SOF, 0 },
{ PORT100_IN_PROT_ADD_EOF, 0 },
{ PORT100_IN_PROT_CHECK_EOF, 0 },
{ PORT100_IN_PROT_DEAF_TIME, 4 },
{ PORT100_IN_PROT_CRM, 0 },
{ PORT100_IN_PROT_CRM_MIN_LEN, 0 },
{ PORT100_IN_PROT_T1_TAG_FRAME, 0 },
{ PORT100_IN_PROT_RFCA, 0 },
{ PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR, 6 },
{ PORT100_IN_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCF_T3T] = {
/* nfc_digital_framing_nfcf */
{ PORT100_IN_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCF_NFC_DEP] = {
/* nfc_digital_framing_nfcf */
{ PORT100_IN_PROT_INITIAL_GUARD_TIME, 18 },
{ PORT100_IN_PROT_ADD_CRC, 1 },
{ PORT100_IN_PROT_CHECK_CRC, 1 },
{ PORT100_IN_PROT_MULTI_CARD, 0 },
{ PORT100_IN_PROT_ADD_PARITY, 0 },
{ PORT100_IN_PROT_CHECK_PARITY, 0 },
{ PORT100_IN_PROT_BITWISE_AC_RECV_MODE, 0 },
{ PORT100_IN_PROT_VALID_BIT_NUMBER, 8 },
{ PORT100_IN_PROT_CRYPTO1, 0 },
{ PORT100_IN_PROT_ADD_SOF, 0 },
{ PORT100_IN_PROT_CHECK_SOF, 0 },
{ PORT100_IN_PROT_ADD_EOF, 0 },
{ PORT100_IN_PROT_CHECK_EOF, 0 },
{ PORT100_IN_PROT_DEAF_TIME, 4 },
{ PORT100_IN_PROT_CRM, 0 },
{ PORT100_IN_PROT_CRM_MIN_LEN, 0 },
{ PORT100_IN_PROT_T1_TAG_FRAME, 0 },
{ PORT100_IN_PROT_RFCA, 0 },
{ PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR, 6 },
{ PORT100_IN_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFC_DEP_ACTIVATED] = {
{ PORT100_IN_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCB] = {
{ PORT100_IN_PROT_INITIAL_GUARD_TIME, 20 },
{ PORT100_IN_PROT_ADD_CRC, 1 },
{ PORT100_IN_PROT_CHECK_CRC, 1 },
{ PORT100_IN_PROT_MULTI_CARD, 0 },
{ PORT100_IN_PROT_ADD_PARITY, 0 },
{ PORT100_IN_PROT_CHECK_PARITY, 0 },
{ PORT100_IN_PROT_BITWISE_AC_RECV_MODE, 0 },
{ PORT100_IN_PROT_VALID_BIT_NUMBER, 8 },
{ PORT100_IN_PROT_CRYPTO1, 0 },
{ PORT100_IN_PROT_ADD_SOF, 1 },
{ PORT100_IN_PROT_CHECK_SOF, 1 },
{ PORT100_IN_PROT_ADD_EOF, 1 },
{ PORT100_IN_PROT_CHECK_EOF, 1 },
{ PORT100_IN_PROT_DEAF_TIME, 4 },
{ PORT100_IN_PROT_CRM, 0 },
{ PORT100_IN_PROT_CRM_MIN_LEN, 0 },
{ PORT100_IN_PROT_T1_TAG_FRAME, 0 },
{ PORT100_IN_PROT_RFCA, 0 },
{ PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR, 6 },
{ PORT100_IN_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCB_T4T] = {
/* nfc_digital_framing_nfcb */
{ PORT100_IN_PROT_END, 0 },
},
/* Ensures the array has NFC_DIGITAL_FRAMING_LAST elements */
[NFC_DIGITAL_FRAMING_LAST] = {
{ PORT100_IN_PROT_END, 0 },
},
};
static struct port100_protocol
tg_protocols[][PORT100_TG_MAX_NUM_PROTOCOLS + 1] = {
[NFC_DIGITAL_FRAMING_NFCA_SHORT] = {
{ PORT100_TG_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCA_STANDARD] = {
{ PORT100_TG_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCA_STANDARD_WITH_CRC_A] = {
{ PORT100_TG_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCA_T1T] = {
{ PORT100_TG_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCA_T2T] = {
{ PORT100_TG_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCA_NFC_DEP] = {
{ PORT100_TG_PROT_TU, 1 },
{ PORT100_TG_PROT_RF_OFF, 0 },
{ PORT100_TG_PROT_CRM, 7 },
{ PORT100_TG_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCF] = {
{ PORT100_TG_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCF_T3T] = {
{ PORT100_TG_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFCF_NFC_DEP] = {
{ PORT100_TG_PROT_TU, 1 },
{ PORT100_TG_PROT_RF_OFF, 0 },
{ PORT100_TG_PROT_CRM, 7 },
{ PORT100_TG_PROT_END, 0 },
},
[NFC_DIGITAL_FRAMING_NFC_DEP_ACTIVATED] = {
{ PORT100_TG_PROT_RF_OFF, 1 },
{ PORT100_TG_PROT_END, 0 },
},
/* Ensures the array has NFC_DIGITAL_FRAMING_LAST elements */
[NFC_DIGITAL_FRAMING_LAST] = {
{ PORT100_TG_PROT_END, 0 },
},
};
struct port100 {
struct nfc_digital_dev *nfc_digital_dev;
int skb_headroom;
int skb_tailroom;
struct usb_device *udev;
struct usb_interface *interface;
struct urb *out_urb;
struct urb *in_urb;
/* This mutex protects the out_urb and avoids to submit a new command
* through port100_send_frame_async() while the previous one is being
* canceled through port100_abort_cmd().
*/
struct mutex out_urb_lock;
struct work_struct cmd_complete_work;
u8 cmd_type;
/* The digital stack serializes commands to be sent. There is no need
* for any queuing/locking mechanism at driver level.
*/
struct port100_cmd *cmd;
bool cmd_cancel;
struct completion cmd_cancel_done;
};
struct port100_cmd {
u8 code;
int status;
struct sk_buff *req;
struct sk_buff *resp;
int resp_len;
port100_send_async_complete_t complete_cb;
void *complete_cb_context;
};
struct port100_frame {
u8 preamble;
__be16 start_frame;
__be16 extended_frame;
__le16 datalen;
u8 datalen_checksum;
u8 data[];
} __packed;
struct port100_ack_frame {
u8 preamble;
__be16 start_frame;
__be16 ack_frame;
u8 postambule;
} __packed;
struct port100_cb_arg {
nfc_digital_cmd_complete_t complete_cb;
void *complete_arg;
u8 mdaa;
};
struct port100_tg_comm_rf_cmd {
__le16 guard_time;
__le16 send_timeout;
u8 mdaa;
u8 nfca_param[6];
u8 nfcf_param[18];
u8 mf_halted;
u8 arae_flag;
__le16 recv_timeout;
u8 data[];
} __packed;
struct port100_tg_comm_rf_res {
u8 comm_type;
u8 ar_status;
u8 target_activated;
__le32 status;
u8 data[];
} __packed;
/* The rule: value + checksum = 0 */
static inline u8 port100_checksum(u16 value)
{
return ~(((u8 *)&value)[0] + ((u8 *)&value)[1]) + 1;
}
/* The rule: sum(data elements) + checksum = 0 */
static u8 port100_data_checksum(u8 *data, int datalen)
{
u8 sum = 0;
int i;
for (i = 0; i < datalen; i++)
sum += data[i];
return port100_checksum(sum);
}
static void port100_tx_frame_init(void *_frame, u8 cmd_code)
{
struct port100_frame *frame = _frame;
frame->preamble = 0;
frame->start_frame = cpu_to_be16(PORT100_FRAME_SOF);
frame->extended_frame = cpu_to_be16(PORT100_FRAME_EXT);
PORT100_FRAME_DIRECTION(frame) = PORT100_FRAME_DIR_OUT;
PORT100_FRAME_CMD(frame) = cmd_code;
frame->datalen = cpu_to_le16(2);
}
static void port100_tx_frame_finish(void *_frame)
{
struct port100_frame *frame = _frame;
frame->datalen_checksum = port100_checksum(le16_to_cpu(frame->datalen));
PORT100_FRAME_CHECKSUM(frame) =
port100_data_checksum(frame->data, le16_to_cpu(frame->datalen));
PORT100_FRAME_POSTAMBLE(frame) = 0;
}
static void port100_tx_update_payload_len(void *_frame, int len)
{
struct port100_frame *frame = _frame;
le16_add_cpu(&frame->datalen, len);
}
static bool port100_rx_frame_is_valid(void *_frame)
{
u8 checksum;
struct port100_frame *frame = _frame;
if (frame->start_frame != cpu_to_be16(PORT100_FRAME_SOF) ||
frame->extended_frame != cpu_to_be16(PORT100_FRAME_EXT))
return false;
checksum = port100_checksum(le16_to_cpu(frame->datalen));
if (checksum != frame->datalen_checksum)
return false;
checksum = port100_data_checksum(frame->data,
le16_to_cpu(frame->datalen));
if (checksum != PORT100_FRAME_CHECKSUM(frame))
return false;
return true;
}
static bool port100_rx_frame_is_ack(struct port100_ack_frame *frame)
{
return (frame->start_frame == cpu_to_be16(PORT100_FRAME_SOF) &&
frame->ack_frame == cpu_to_be16(PORT100_FRAME_ACK));
}
static inline int port100_rx_frame_size(void *frame)
{
struct port100_frame *f = frame;
return sizeof(struct port100_frame) + le16_to_cpu(f->datalen) +
PORT100_FRAME_TAIL_LEN;
}
static bool port100_rx_frame_is_cmd_response(struct port100 *dev, void *frame)
{
struct port100_frame *f = frame;
return (PORT100_FRAME_CMD(f) == PORT100_CMD_RESPONSE(dev->cmd->code));
}
static void port100_recv_response(struct urb *urb)
{
struct port100 *dev = urb->context;
struct port100_cmd *cmd = dev->cmd;
u8 *in_frame;
cmd->status = urb->status;
switch (urb->status) {
case 0:
break; /* success */
case -ECONNRESET:
case -ENOENT:
nfc_err(&dev->interface->dev,
"The urb has been canceled (status %d)\n", urb->status);
goto sched_wq;
case -ESHUTDOWN:
default:
nfc_err(&dev->interface->dev, "Urb failure (status %d)\n",
urb->status);
goto sched_wq;
}
in_frame = dev->in_urb->transfer_buffer;
if (!port100_rx_frame_is_valid(in_frame)) {
nfc_err(&dev->interface->dev, "Received an invalid frame\n");
cmd->status = -EIO;
goto sched_wq;
}
print_hex_dump_debug("PORT100 RX: ", DUMP_PREFIX_NONE, 16, 1, in_frame,
port100_rx_frame_size(in_frame), false);
if (!port100_rx_frame_is_cmd_response(dev, in_frame)) {
nfc_err(&dev->interface->dev,
"It's not the response to the last command\n");
cmd->status = -EIO;
goto sched_wq;
}
sched_wq:
schedule_work(&dev->cmd_complete_work);
}
static int port100_submit_urb_for_response(struct port100 *dev, gfp_t flags)
{
dev->in_urb->complete = port100_recv_response;
return usb_submit_urb(dev->in_urb, flags);
}
static void port100_recv_ack(struct urb *urb)
{
struct port100 *dev = urb->context;
struct port100_cmd *cmd = dev->cmd;
struct port100_ack_frame *in_frame;
int rc;
cmd->status = urb->status;
switch (urb->status) {
case 0:
break; /* success */
case -ECONNRESET:
case -ENOENT:
nfc_err(&dev->interface->dev,
"The urb has been stopped (status %d)\n", urb->status);
goto sched_wq;
case -ESHUTDOWN:
default:
nfc_err(&dev->interface->dev, "Urb failure (status %d)\n",
urb->status);
goto sched_wq;
}
in_frame = dev->in_urb->transfer_buffer;
if (!port100_rx_frame_is_ack(in_frame)) {
nfc_err(&dev->interface->dev, "Received an invalid ack\n");
cmd->status = -EIO;
goto sched_wq;
}
rc = port100_submit_urb_for_response(dev, GFP_ATOMIC);
if (rc) {
nfc_err(&dev->interface->dev,
"usb_submit_urb failed with result %d\n", rc);
cmd->status = rc;
goto sched_wq;
}
return;
sched_wq:
schedule_work(&dev->cmd_complete_work);
}
static int port100_submit_urb_for_ack(struct port100 *dev, gfp_t flags)
{
dev->in_urb->complete = port100_recv_ack;
return usb_submit_urb(dev->in_urb, flags);
}
static int port100_send_ack(struct port100 *dev)
{
int rc = 0;
mutex_lock(&dev->out_urb_lock);
/*
* If prior cancel is in-flight (dev->cmd_cancel == true), we
* can skip to send cancel. Then this will wait the prior
* cancel, or merged into the next cancel rarely if next
* cancel was started before waiting done. In any case, this
* will be waked up soon or later.
*/
if (!dev->cmd_cancel) {
reinit_completion(&dev->cmd_cancel_done);
usb_kill_urb(dev->out_urb);
dev->out_urb->transfer_buffer = ack_frame;
dev->out_urb->transfer_buffer_length = sizeof(ack_frame);
rc = usb_submit_urb(dev->out_urb, GFP_KERNEL);
/*
* Set the cmd_cancel flag only if the URB has been
* successfully submitted. It will be reset by the out
* URB completion callback port100_send_complete().
*/
dev->cmd_cancel = !rc;
}
mutex_unlock(&dev->out_urb_lock);
if (!rc)
wait_for_completion(&dev->cmd_cancel_done);
return rc;
}
static int port100_send_frame_async(struct port100 *dev, struct sk_buff *out,
struct sk_buff *in, int in_len)
{
int rc;
mutex_lock(&dev->out_urb_lock);
/* A command cancel frame as been sent through dev->out_urb. Don't try
* to submit a new one.
*/
if (dev->cmd_cancel) {
rc = -EAGAIN;
goto exit;
}
dev->out_urb->transfer_buffer = out->data;
dev->out_urb->transfer_buffer_length = out->len;
dev->in_urb->transfer_buffer = in->data;
dev->in_urb->transfer_buffer_length = in_len;
print_hex_dump_debug("PORT100 TX: ", DUMP_PREFIX_NONE, 16, 1,
out->data, out->len, false);
rc = usb_submit_urb(dev->out_urb, GFP_KERNEL);
if (rc)
goto exit;
rc = port100_submit_urb_for_ack(dev, GFP_KERNEL);
if (rc)
usb_kill_urb(dev->out_urb);
exit:
mutex_unlock(&dev->out_urb_lock);
return rc;
}
static void port100_build_cmd_frame(struct port100 *dev, u8 cmd_code,
struct sk_buff *skb)
{
/* payload is already there, just update datalen */
int payload_len = skb->len;
skb_push(skb, PORT100_FRAME_HEADER_LEN);
skb_put(skb, PORT100_FRAME_TAIL_LEN);
port100_tx_frame_init(skb->data, cmd_code);
port100_tx_update_payload_len(skb->data, payload_len);
port100_tx_frame_finish(skb->data);
}
static void port100_send_async_complete(struct port100 *dev)
{
struct port100_cmd *cmd = dev->cmd;
int status = cmd->status;
struct sk_buff *req = cmd->req;
struct sk_buff *resp = cmd->resp;
dev_kfree_skb(req);
dev->cmd = NULL;
if (status < 0) {
cmd->complete_cb(dev, cmd->complete_cb_context,
ERR_PTR(status));
dev_kfree_skb(resp);
goto done;
}
skb_put(resp, port100_rx_frame_size(resp->data));
skb_pull(resp, PORT100_FRAME_HEADER_LEN);
skb_trim(resp, resp->len - PORT100_FRAME_TAIL_LEN);
cmd->complete_cb(dev, cmd->complete_cb_context, resp);
done:
kfree(cmd);
}
static int port100_send_cmd_async(struct port100 *dev, u8 cmd_code,
struct sk_buff *req,
port100_send_async_complete_t complete_cb,
void *complete_cb_context)
{
struct port100_cmd *cmd;
struct sk_buff *resp;
int rc;
int resp_len = PORT100_FRAME_HEADER_LEN +
PORT100_FRAME_MAX_PAYLOAD_LEN +
PORT100_FRAME_TAIL_LEN;
if (dev->cmd) {
nfc_err(&dev->interface->dev,
"A command is still in process\n");
return -EBUSY;
}
resp = alloc_skb(resp_len, GFP_KERNEL);
if (!resp)
return -ENOMEM;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd) {
dev_kfree_skb(resp);
return -ENOMEM;
}
cmd->code = cmd_code;
cmd->req = req;
cmd->resp = resp;
cmd->resp_len = resp_len;
cmd->complete_cb = complete_cb;
cmd->complete_cb_context = complete_cb_context;
port100_build_cmd_frame(dev, cmd_code, req);
dev->cmd = cmd;
rc = port100_send_frame_async(dev, req, resp, resp_len);
if (rc) {
kfree(cmd);
dev_kfree_skb(resp);
dev->cmd = NULL;
}
return rc;
}
struct port100_sync_cmd_response {
struct sk_buff *resp;
struct completion done;
};
static void port100_wq_cmd_complete(struct work_struct *work)
{
struct port100 *dev = container_of(work, struct port100,
cmd_complete_work);
port100_send_async_complete(dev);
}
static void port100_send_sync_complete(struct port100 *dev, void *_arg,
struct sk_buff *resp)
{
struct port100_sync_cmd_response *arg = _arg;
arg->resp = resp;
complete(&arg->done);
}
static struct sk_buff *port100_send_cmd_sync(struct port100 *dev, u8 cmd_code,
struct sk_buff *req)
{
int rc;
struct port100_sync_cmd_response arg;
init_completion(&arg.done);
rc = port100_send_cmd_async(dev, cmd_code, req,
port100_send_sync_complete, &arg);
if (rc) {
dev_kfree_skb(req);
return ERR_PTR(rc);
}
wait_for_completion(&arg.done);
return arg.resp;
}
static void port100_send_complete(struct urb *urb)
{
struct port100 *dev = urb->context;
if (dev->cmd_cancel) {
complete_all(&dev->cmd_cancel_done);
dev->cmd_cancel = false;
}
switch (urb->status) {
case 0:
break; /* success */
case -ECONNRESET:
case -ENOENT:
nfc_err(&dev->interface->dev,
"The urb has been stopped (status %d)\n", urb->status);
break;
case -ESHUTDOWN:
default:
nfc_err(&dev->interface->dev, "Urb failure (status %d)\n",
urb->status);
}
}
static void port100_abort_cmd(struct nfc_digital_dev *ddev)
{
struct port100 *dev = nfc_digital_get_drvdata(ddev);
/* An ack will cancel the last issued command */
port100_send_ack(dev);
/* cancel the urb request */
usb_kill_urb(dev->in_urb);
}
static struct sk_buff *port100_alloc_skb(struct port100 *dev, unsigned int size)
{
struct sk_buff *skb;
skb = alloc_skb(dev->skb_headroom + dev->skb_tailroom + size,
GFP_KERNEL);
if (skb)
skb_reserve(skb, dev->skb_headroom);
return skb;
}
static int port100_set_command_type(struct port100 *dev, u8 command_type)
{
struct sk_buff *skb;
struct sk_buff *resp;
int rc;
skb = port100_alloc_skb(dev, 1);
if (!skb)
return -ENOMEM;
skb_put_u8(skb, command_type);
resp = port100_send_cmd_sync(dev, PORT100_CMD_SET_COMMAND_TYPE, skb);
if (IS_ERR(resp))
return PTR_ERR(resp);
rc = resp->data[0];
dev_kfree_skb(resp);
return rc;
}
static u64 port100_get_command_type_mask(struct port100 *dev)
{
struct sk_buff *skb;
struct sk_buff *resp;
u64 mask;
skb = port100_alloc_skb(dev, 0);
if (!skb)
return 0;
resp = port100_send_cmd_sync(dev, PORT100_CMD_GET_COMMAND_TYPE, skb);
if (IS_ERR(resp))
return 0;
if (resp->len < 8)
mask = 0;
else
mask = be64_to_cpu(*(__be64 *)resp->data);
dev_kfree_skb(resp);
return mask;
}
static u16 port100_get_firmware_version(struct port100 *dev)
{
struct sk_buff *skb;
struct sk_buff *resp;
u16 fw_ver;
skb = port100_alloc_skb(dev, 0);
if (!skb)
return 0;
resp = port100_send_cmd_sync(dev, PORT100_CMD_GET_FIRMWARE_VERSION,
skb);
if (IS_ERR(resp))
return 0;
fw_ver = le16_to_cpu(*(__le16 *)resp->data);
dev_kfree_skb(resp);
return fw_ver;
}
static int port100_switch_rf(struct nfc_digital_dev *ddev, bool on)
{
struct port100 *dev = nfc_digital_get_drvdata(ddev);
struct sk_buff *skb, *resp;
skb = port100_alloc_skb(dev, 1);
if (!skb)
return -ENOMEM;
skb_put_u8(skb, on ? 1 : 0);
/* Cancel the last command if the device is being switched off */
if (!on)
port100_abort_cmd(ddev);
resp = port100_send_cmd_sync(dev, PORT100_CMD_SWITCH_RF, skb);
if (IS_ERR(resp))
return PTR_ERR(resp);
dev_kfree_skb(resp);
return 0;
}
static int port100_in_set_rf(struct nfc_digital_dev *ddev, u8 rf)
{
struct port100 *dev = nfc_digital_get_drvdata(ddev);
struct sk_buff *skb;
struct sk_buff *resp;
int rc;
if (rf >= NFC_DIGITAL_RF_TECH_LAST)
return -EINVAL;
skb = port100_alloc_skb(dev, sizeof(struct port100_in_rf_setting));
if (!skb)
return -ENOMEM;
skb_put_data(skb, &in_rf_settings[rf],
sizeof(struct port100_in_rf_setting));
resp = port100_send_cmd_sync(dev, PORT100_CMD_IN_SET_RF, skb);
if (IS_ERR(resp))
return PTR_ERR(resp);
rc = resp->data[0];
dev_kfree_skb(resp);
return rc;
}
static int port100_in_set_framing(struct nfc_digital_dev *ddev, int param)
{
struct port100 *dev = nfc_digital_get_drvdata(ddev);
struct port100_protocol *protocols;
struct sk_buff *skb;
struct sk_buff *resp;
int num_protocols;
size_t size;
int rc;
if (param >= NFC_DIGITAL_FRAMING_LAST)
return -EINVAL;
protocols = in_protocols[param];
num_protocols = 0;
while (protocols[num_protocols].number != PORT100_IN_PROT_END)
num_protocols++;
if (!num_protocols)
return 0;
size = sizeof(struct port100_protocol) * num_protocols;
skb = port100_alloc_skb(dev, size);
if (!skb)
return -ENOMEM;
skb_put_data(skb, protocols, size);
resp = port100_send_cmd_sync(dev, PORT100_CMD_IN_SET_PROTOCOL, skb);
if (IS_ERR(resp))
return PTR_ERR(resp);
rc = resp->data[0];
dev_kfree_skb(resp);
return rc;
}
static int port100_in_configure_hw(struct nfc_digital_dev *ddev, int type,
int param)
{
if (type == NFC_DIGITAL_CONFIG_RF_TECH)
return port100_in_set_rf(ddev, param);
if (type == NFC_DIGITAL_CONFIG_FRAMING)
return port100_in_set_framing(ddev, param);
return -EINVAL;
}
static void port100_in_comm_rf_complete(struct port100 *dev, void *arg,
struct sk_buff *resp)
{
struct port100_cb_arg *cb_arg = arg;
nfc_digital_cmd_complete_t cb = cb_arg->complete_cb;
u32 status;
int rc;
if (IS_ERR(resp)) {
rc = PTR_ERR(resp);
goto exit;
}
if (resp->len < 4) {
nfc_err(&dev->interface->dev,
"Invalid packet length received\n");
rc = -EIO;
goto error;
}
status = le32_to_cpu(*(__le32 *)resp->data);
skb_pull(resp, sizeof(u32));
if (status == PORT100_CMD_STATUS_TIMEOUT) {
rc = -ETIMEDOUT;
goto error;
}
if (status != PORT100_CMD_STATUS_OK) {
nfc_err(&dev->interface->dev,
"in_comm_rf failed with status 0x%08x\n", status);
rc = -EIO;
goto error;
}
/* Remove collision bits byte */
skb_pull(resp, 1);
goto exit;
error:
kfree_skb(resp);
resp = ERR_PTR(rc);
exit:
cb(dev->nfc_digital_dev, cb_arg->complete_arg, resp);
kfree(cb_arg);
}
static int port100_in_send_cmd(struct nfc_digital_dev *ddev,
struct sk_buff *skb, u16 _timeout,
nfc_digital_cmd_complete_t cb, void *arg)
{
struct port100 *dev = nfc_digital_get_drvdata(ddev);
struct port100_cb_arg *cb_arg;
__le16 timeout;
cb_arg = kzalloc(sizeof(struct port100_cb_arg), GFP_KERNEL);
if (!cb_arg)
return -ENOMEM;
cb_arg->complete_cb = cb;
cb_arg->complete_arg = arg;
timeout = cpu_to_le16(_timeout * 10);
memcpy(skb_push(skb, sizeof(__le16)), &timeout, sizeof(__le16));
return port100_send_cmd_async(dev, PORT100_CMD_IN_COMM_RF, skb,
port100_in_comm_rf_complete, cb_arg);
}
static int port100_tg_set_rf(struct nfc_digital_dev *ddev, u8 rf)
{
struct port100 *dev = nfc_digital_get_drvdata(ddev);
struct sk_buff *skb;
struct sk_buff *resp;
int rc;
if (rf >= NFC_DIGITAL_RF_TECH_LAST)
return -EINVAL;
skb = port100_alloc_skb(dev, sizeof(struct port100_tg_rf_setting));
if (!skb)
return -ENOMEM;
skb_put_data(skb, &tg_rf_settings[rf],
sizeof(struct port100_tg_rf_setting));
resp = port100_send_cmd_sync(dev, PORT100_CMD_TG_SET_RF, skb);
if (IS_ERR(resp))
return PTR_ERR(resp);
rc = resp->data[0];
dev_kfree_skb(resp);
return rc;
}
static int port100_tg_set_framing(struct nfc_digital_dev *ddev, int param)
{
struct port100 *dev = nfc_digital_get_drvdata(ddev);
struct port100_protocol *protocols;
struct sk_buff *skb;
struct sk_buff *resp;
int rc;
int num_protocols;
size_t size;
if (param >= NFC_DIGITAL_FRAMING_LAST)
return -EINVAL;
protocols = tg_protocols[param];
num_protocols = 0;
while (protocols[num_protocols].number != PORT100_TG_PROT_END)
num_protocols++;
if (!num_protocols)
return 0;
size = sizeof(struct port100_protocol) * num_protocols;
skb = port100_alloc_skb(dev, size);
if (!skb)
return -ENOMEM;
skb_put_data(skb, protocols, size);
resp = port100_send_cmd_sync(dev, PORT100_CMD_TG_SET_PROTOCOL, skb);
if (IS_ERR(resp))
return PTR_ERR(resp);
rc = resp->data[0];
dev_kfree_skb(resp);
return rc;
}
static int port100_tg_configure_hw(struct nfc_digital_dev *ddev, int type,
int param)
{
if (type == NFC_DIGITAL_CONFIG_RF_TECH)
return port100_tg_set_rf(ddev, param);
if (type == NFC_DIGITAL_CONFIG_FRAMING)
return port100_tg_set_framing(ddev, param);
return -EINVAL;
}
static bool port100_tg_target_activated(struct port100 *dev, u8 tgt_activated)
{
u8 mask;
switch (dev->cmd_type) {
case PORT100_CMD_TYPE_0:
mask = PORT100_MDAA_TGT_HAS_BEEN_ACTIVATED_MASK;
break;
case PORT100_CMD_TYPE_1:
mask = PORT100_MDAA_TGT_HAS_BEEN_ACTIVATED_MASK |
PORT100_MDAA_TGT_WAS_ACTIVATED_MASK;
break;
default:
nfc_err(&dev->interface->dev, "Unknown command type\n");
return false;
}
return ((tgt_activated & mask) == mask);
}
static void port100_tg_comm_rf_complete(struct port100 *dev, void *arg,
struct sk_buff *resp)
{
u32 status;
struct port100_cb_arg *cb_arg = arg;
nfc_digital_cmd_complete_t cb = cb_arg->complete_cb;
struct port100_tg_comm_rf_res *hdr;
if (IS_ERR(resp))
goto exit;
hdr = (struct port100_tg_comm_rf_res *)resp->data;
status = le32_to_cpu(hdr->status);
if (cb_arg->mdaa &&
!port100_tg_target_activated(dev, hdr->target_activated)) {
kfree_skb(resp);
resp = ERR_PTR(-ETIMEDOUT);
goto exit;
}
skb_pull(resp, sizeof(struct port100_tg_comm_rf_res));
if (status != PORT100_CMD_STATUS_OK) {
kfree_skb(resp);
if (status == PORT100_CMD_STATUS_TIMEOUT)
resp = ERR_PTR(-ETIMEDOUT);
else
resp = ERR_PTR(-EIO);
}
exit:
cb(dev->nfc_digital_dev, cb_arg->complete_arg, resp);
kfree(cb_arg);
}
static int port100_tg_send_cmd(struct nfc_digital_dev *ddev,
struct sk_buff *skb, u16 timeout,
nfc_digital_cmd_complete_t cb, void *arg)
{
struct port100 *dev = nfc_digital_get_drvdata(ddev);
struct port100_tg_comm_rf_cmd *hdr;
struct port100_cb_arg *cb_arg;
cb_arg = kzalloc(sizeof(struct port100_cb_arg), GFP_KERNEL);
if (!cb_arg)
return -ENOMEM;
cb_arg->complete_cb = cb;
cb_arg->complete_arg = arg;
skb_push(skb, sizeof(struct port100_tg_comm_rf_cmd));
hdr = (struct port100_tg_comm_rf_cmd *)skb->data;
memset(hdr, 0, sizeof(struct port100_tg_comm_rf_cmd));
hdr->guard_time = cpu_to_le16(500);
hdr->send_timeout = cpu_to_le16(0xFFFF);
hdr->recv_timeout = cpu_to_le16(timeout);
return port100_send_cmd_async(dev, PORT100_CMD_TG_COMM_RF, skb,
port100_tg_comm_rf_complete, cb_arg);
}
static int port100_listen_mdaa(struct nfc_digital_dev *ddev,
struct digital_tg_mdaa_params *params,
u16 timeout,
nfc_digital_cmd_complete_t cb, void *arg)
{
struct port100 *dev = nfc_digital_get_drvdata(ddev);
struct port100_tg_comm_rf_cmd *hdr;
struct port100_cb_arg *cb_arg;
struct sk_buff *skb;
int rc;
rc = port100_tg_configure_hw(ddev, NFC_DIGITAL_CONFIG_RF_TECH,
NFC_DIGITAL_RF_TECH_106A);
if (rc)
return rc;
rc = port100_tg_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING,
NFC_DIGITAL_FRAMING_NFCA_NFC_DEP);
if (rc)
return rc;
cb_arg = kzalloc(sizeof(struct port100_cb_arg), GFP_KERNEL);
if (!cb_arg)
return -ENOMEM;
cb_arg->complete_cb = cb;
cb_arg->complete_arg = arg;
cb_arg->mdaa = 1;
skb = port100_alloc_skb(dev, 0);
if (!skb) {
kfree(cb_arg);
return -ENOMEM;
}
skb_push(skb, sizeof(struct port100_tg_comm_rf_cmd));
hdr = (struct port100_tg_comm_rf_cmd *)skb->data;
memset(hdr, 0, sizeof(struct port100_tg_comm_rf_cmd));
hdr->guard_time = 0;
hdr->send_timeout = cpu_to_le16(0xFFFF);
hdr->mdaa = 1;
hdr->nfca_param[0] = (params->sens_res >> 8) & 0xFF;
hdr->nfca_param[1] = params->sens_res & 0xFF;
memcpy(hdr->nfca_param + 2, params->nfcid1, 3);
hdr->nfca_param[5] = params->sel_res;
memcpy(hdr->nfcf_param, params->nfcid2, 8);
hdr->nfcf_param[16] = (params->sc >> 8) & 0xFF;
hdr->nfcf_param[17] = params->sc & 0xFF;
hdr->recv_timeout = cpu_to_le16(timeout);
return port100_send_cmd_async(dev, PORT100_CMD_TG_COMM_RF, skb,
port100_tg_comm_rf_complete, cb_arg);
}
static int port100_listen(struct nfc_digital_dev *ddev, u16 timeout,
nfc_digital_cmd_complete_t cb, void *arg)
{
struct port100 *dev = nfc_digital_get_drvdata(ddev);
struct sk_buff *skb;
skb = port100_alloc_skb(dev, 0);
if (!skb)
return -ENOMEM;
return port100_tg_send_cmd(ddev, skb, timeout, cb, arg);
}
static struct nfc_digital_ops port100_digital_ops = {
.in_configure_hw = port100_in_configure_hw,
.in_send_cmd = port100_in_send_cmd,
.tg_listen_mdaa = port100_listen_mdaa,
.tg_listen = port100_listen,
.tg_configure_hw = port100_tg_configure_hw,
.tg_send_cmd = port100_tg_send_cmd,
.switch_rf = port100_switch_rf,
.abort_cmd = port100_abort_cmd,
};
static const struct usb_device_id port100_table[] = {
{ USB_DEVICE(SONY_VENDOR_ID, RCS380S_PRODUCT_ID), },
{ USB_DEVICE(SONY_VENDOR_ID, RCS380P_PRODUCT_ID), },
{ }
};
MODULE_DEVICE_TABLE(usb, port100_table);
static int port100_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
struct port100 *dev;
int rc;
struct usb_host_interface *iface_desc;
struct usb_endpoint_descriptor *endpoint;
int in_endpoint;
int out_endpoint;
u16 fw_version;
u64 cmd_type_mask;
int i;
dev = devm_kzalloc(&interface->dev, sizeof(struct port100), GFP_KERNEL);
if (!dev)
return -ENOMEM;
mutex_init(&dev->out_urb_lock);
dev->udev = usb_get_dev(interface_to_usbdev(interface));
dev->interface = interface;
usb_set_intfdata(interface, dev);
in_endpoint = out_endpoint = 0;
iface_desc = interface->cur_altsetting;
for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
endpoint = &iface_desc->endpoint[i].desc;
if (!in_endpoint && usb_endpoint_is_bulk_in(endpoint))
in_endpoint = endpoint->bEndpointAddress;
if (!out_endpoint && usb_endpoint_is_bulk_out(endpoint))
out_endpoint = endpoint->bEndpointAddress;
}
if (!in_endpoint || !out_endpoint) {
nfc_err(&interface->dev,
"Could not find bulk-in or bulk-out endpoint\n");
rc = -ENODEV;
goto error;
}
dev->in_urb = usb_alloc_urb(0, GFP_KERNEL);
dev->out_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!dev->in_urb || !dev->out_urb) {
nfc_err(&interface->dev, "Could not allocate USB URBs\n");
rc = -ENOMEM;
goto error;
}
usb_fill_bulk_urb(dev->in_urb, dev->udev,
usb_rcvbulkpipe(dev->udev, in_endpoint),
NULL, 0, NULL, dev);
usb_fill_bulk_urb(dev->out_urb, dev->udev,
usb_sndbulkpipe(dev->udev, out_endpoint),
NULL, 0, port100_send_complete, dev);
dev->out_urb->transfer_flags = URB_ZERO_PACKET;
dev->skb_headroom = PORT100_FRAME_HEADER_LEN +
PORT100_COMM_RF_HEAD_MAX_LEN;
dev->skb_tailroom = PORT100_FRAME_TAIL_LEN;
init_completion(&dev->cmd_cancel_done);
INIT_WORK(&dev->cmd_complete_work, port100_wq_cmd_complete);
/* The first thing to do with the Port-100 is to set the command type
* to be used. If supported we use command type 1. 0 otherwise.
*/
cmd_type_mask = port100_get_command_type_mask(dev);
if (!cmd_type_mask) {
nfc_err(&interface->dev,
"Could not get supported command types\n");
rc = -ENODEV;
goto error;
}
if (PORT100_CMD_TYPE_IS_SUPPORTED(cmd_type_mask, PORT100_CMD_TYPE_1))
dev->cmd_type = PORT100_CMD_TYPE_1;
else
dev->cmd_type = PORT100_CMD_TYPE_0;
rc = port100_set_command_type(dev, dev->cmd_type);
if (rc) {
nfc_err(&interface->dev,
"The device does not support command type %u\n",
dev->cmd_type);
goto error;
}
fw_version = port100_get_firmware_version(dev);
if (!fw_version)
nfc_err(&interface->dev,
"Could not get device firmware version\n");
nfc_info(&interface->dev,
"Sony NFC Port-100 Series attached (firmware v%x.%02x)\n",
(fw_version & 0xFF00) >> 8, fw_version & 0xFF);
dev->nfc_digital_dev = nfc_digital_allocate_device(&port100_digital_ops,
PORT100_PROTOCOLS,
PORT100_CAPABILITIES,
dev->skb_headroom,
dev->skb_tailroom);
if (!dev->nfc_digital_dev) {
nfc_err(&interface->dev,
"Could not allocate nfc_digital_dev\n");
rc = -ENOMEM;
goto error;
}
nfc_digital_set_parent_dev(dev->nfc_digital_dev, &interface->dev);
nfc_digital_set_drvdata(dev->nfc_digital_dev, dev);
rc = nfc_digital_register_device(dev->nfc_digital_dev);
if (rc) {
nfc_err(&interface->dev,
"Could not register digital device\n");
goto free_nfc_dev;
}
return 0;
free_nfc_dev:
nfc_digital_free_device(dev->nfc_digital_dev);
error:
usb_kill_urb(dev->in_urb);
usb_free_urb(dev->in_urb);
usb_kill_urb(dev->out_urb);
usb_free_urb(dev->out_urb);
usb_put_dev(dev->udev);
return rc;
}
static void port100_disconnect(struct usb_interface *interface)
{
struct port100 *dev;
dev = usb_get_intfdata(interface);
usb_set_intfdata(interface, NULL);
nfc_digital_unregister_device(dev->nfc_digital_dev);
nfc_digital_free_device(dev->nfc_digital_dev);
usb_kill_urb(dev->in_urb);
usb_kill_urb(dev->out_urb);
usb_free_urb(dev->in_urb);
usb_free_urb(dev->out_urb);
usb_put_dev(dev->udev);
kfree(dev->cmd);
nfc_info(&interface->dev, "Sony Port-100 NFC device disconnected\n");
}
static struct usb_driver port100_driver = {
.name = "port100",
.probe = port100_probe,
.disconnect = port100_disconnect,
.id_table = port100_table,
};
module_usb_driver(port100_driver);
MODULE_DESCRIPTION("NFC Port-100 series usb driver ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");