OpenCloudOS-Kernel/drivers/net/ethernet/broadcom/bnx2x/bnx2x_ethtool.c

2399 lines
64 KiB
C
Raw Normal View History

/* bnx2x_ethtool.c: Broadcom Everest network driver.
*
* Copyright (c) 2007-2011 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
* Written by: Eliezer Tamir
* Based on code from Michael Chan's bnx2 driver
* UDP CSUM errata workaround by Arik Gendelman
* Slowpath and fastpath rework by Vladislav Zolotarov
* Statistics and Link management by Yitchak Gertner
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/crc32.h>
#include "bnx2x.h"
#include "bnx2x_cmn.h"
#include "bnx2x_dump.h"
#include "bnx2x_init.h"
#include "bnx2x_sp.h"
/* Note: in the format strings below %s is replaced by the queue-name which is
* either its index or 'fcoe' for the fcoe queue. Make sure the format string
* length does not exceed ETH_GSTRING_LEN - MAX_QUEUE_NAME_LEN + 2
*/
#define MAX_QUEUE_NAME_LEN 4
static const struct {
long offset;
int size;
char string[ETH_GSTRING_LEN];
} bnx2x_q_stats_arr[] = {
/* 1 */ { Q_STATS_OFFSET32(total_bytes_received_hi), 8, "[%s]: rx_bytes" },
{ Q_STATS_OFFSET32(total_unicast_packets_received_hi),
8, "[%s]: rx_ucast_packets" },
{ Q_STATS_OFFSET32(total_multicast_packets_received_hi),
8, "[%s]: rx_mcast_packets" },
{ Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
8, "[%s]: rx_bcast_packets" },
{ Q_STATS_OFFSET32(no_buff_discard_hi), 8, "[%s]: rx_discards" },
{ Q_STATS_OFFSET32(rx_err_discard_pkt),
4, "[%s]: rx_phy_ip_err_discards"},
{ Q_STATS_OFFSET32(rx_skb_alloc_failed),
4, "[%s]: rx_skb_alloc_discard" },
{ Q_STATS_OFFSET32(hw_csum_err), 4, "[%s]: rx_csum_offload_errors" },
{ Q_STATS_OFFSET32(total_bytes_transmitted_hi), 8, "[%s]: tx_bytes" },
/* 10 */{ Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
8, "[%s]: tx_ucast_packets" },
{ Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
8, "[%s]: tx_mcast_packets" },
{ Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
8, "[%s]: tx_bcast_packets" },
{ Q_STATS_OFFSET32(total_tpa_aggregations_hi),
8, "[%s]: tpa_aggregations" },
{ Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
8, "[%s]: tpa_aggregated_frames"},
{ Q_STATS_OFFSET32(total_tpa_bytes_hi), 8, "[%s]: tpa_bytes"}
};
#define BNX2X_NUM_Q_STATS ARRAY_SIZE(bnx2x_q_stats_arr)
static const struct {
long offset;
int size;
u32 flags;
#define STATS_FLAGS_PORT 1
#define STATS_FLAGS_FUNC 2
#define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
char string[ETH_GSTRING_LEN];
} bnx2x_stats_arr[] = {
/* 1 */ { STATS_OFFSET32(total_bytes_received_hi),
8, STATS_FLAGS_BOTH, "rx_bytes" },
{ STATS_OFFSET32(error_bytes_received_hi),
8, STATS_FLAGS_BOTH, "rx_error_bytes" },
{ STATS_OFFSET32(total_unicast_packets_received_hi),
8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
{ STATS_OFFSET32(total_multicast_packets_received_hi),
8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
{ STATS_OFFSET32(total_broadcast_packets_received_hi),
8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
{ STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
8, STATS_FLAGS_PORT, "rx_crc_errors" },
{ STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
8, STATS_FLAGS_PORT, "rx_align_errors" },
{ STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
8, STATS_FLAGS_PORT, "rx_undersize_packets" },
{ STATS_OFFSET32(etherstatsoverrsizepkts_hi),
8, STATS_FLAGS_PORT, "rx_oversize_packets" },
/* 10 */{ STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
8, STATS_FLAGS_PORT, "rx_fragments" },
{ STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
8, STATS_FLAGS_PORT, "rx_jabbers" },
{ STATS_OFFSET32(no_buff_discard_hi),
8, STATS_FLAGS_BOTH, "rx_discards" },
{ STATS_OFFSET32(mac_filter_discard),
4, STATS_FLAGS_PORT, "rx_filtered_packets" },
{ STATS_OFFSET32(mf_tag_discard),
4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
{ STATS_OFFSET32(brb_drop_hi),
8, STATS_FLAGS_PORT, "rx_brb_discard" },
{ STATS_OFFSET32(brb_truncate_hi),
8, STATS_FLAGS_PORT, "rx_brb_truncate" },
{ STATS_OFFSET32(pause_frames_received_hi),
8, STATS_FLAGS_PORT, "rx_pause_frames" },
{ STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
{ STATS_OFFSET32(nig_timer_max),
4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
/* 20 */{ STATS_OFFSET32(rx_err_discard_pkt),
4, STATS_FLAGS_BOTH, "rx_phy_ip_err_discards"},
{ STATS_OFFSET32(rx_skb_alloc_failed),
4, STATS_FLAGS_BOTH, "rx_skb_alloc_discard" },
{ STATS_OFFSET32(hw_csum_err),
4, STATS_FLAGS_BOTH, "rx_csum_offload_errors" },
{ STATS_OFFSET32(total_bytes_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_bytes" },
{ STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
8, STATS_FLAGS_PORT, "tx_error_bytes" },
{ STATS_OFFSET32(total_unicast_packets_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
{ STATS_OFFSET32(total_multicast_packets_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
{ STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
{ STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
8, STATS_FLAGS_PORT, "tx_mac_errors" },
{ STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
8, STATS_FLAGS_PORT, "tx_carrier_errors" },
/* 30 */{ STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
8, STATS_FLAGS_PORT, "tx_single_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
8, STATS_FLAGS_PORT, "tx_multi_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
8, STATS_FLAGS_PORT, "tx_deferred" },
{ STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
8, STATS_FLAGS_PORT, "tx_excess_collisions" },
{ STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
8, STATS_FLAGS_PORT, "tx_late_collisions" },
{ STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
8, STATS_FLAGS_PORT, "tx_total_collisions" },
{ STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
{ STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
/* 40 */{ STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
{ STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
{ STATS_OFFSET32(etherstatspktsover1522octets_hi),
8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
{ STATS_OFFSET32(pause_frames_sent_hi),
8, STATS_FLAGS_PORT, "tx_pause_frames" },
{ STATS_OFFSET32(total_tpa_aggregations_hi),
8, STATS_FLAGS_FUNC, "tpa_aggregations" },
{ STATS_OFFSET32(total_tpa_aggregated_frames_hi),
8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
{ STATS_OFFSET32(total_tpa_bytes_hi),
8, STATS_FLAGS_FUNC, "tpa_bytes"}
};
#define BNX2X_NUM_STATS ARRAY_SIZE(bnx2x_stats_arr)
static int bnx2x_get_port_type(struct bnx2x *bp)
{
int port_type;
u32 phy_idx = bnx2x_get_cur_phy_idx(bp);
switch (bp->link_params.phy[phy_idx].media_type) {
case ETH_PHY_SFP_FIBER:
case ETH_PHY_XFP_FIBER:
case ETH_PHY_KR:
case ETH_PHY_CX4:
port_type = PORT_FIBRE;
break;
case ETH_PHY_DA_TWINAX:
port_type = PORT_DA;
break;
case ETH_PHY_BASE_T:
port_type = PORT_TP;
break;
case ETH_PHY_NOT_PRESENT:
port_type = PORT_NONE;
break;
case ETH_PHY_UNSPECIFIED:
default:
port_type = PORT_OTHER;
break;
}
return port_type;
}
static int bnx2x_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct bnx2x *bp = netdev_priv(dev);
int cfg_idx = bnx2x_get_link_cfg_idx(bp);
/* Dual Media boards present all available port types */
cmd->supported = bp->port.supported[cfg_idx] |
(bp->port.supported[cfg_idx ^ 1] &
(SUPPORTED_TP | SUPPORTED_FIBRE));
cmd->advertising = bp->port.advertising[cfg_idx];
if ((bp->state == BNX2X_STATE_OPEN) &&
!(bp->flags & MF_FUNC_DIS) &&
(bp->link_vars.link_up)) {
ethtool_cmd_speed_set(cmd, bp->link_vars.line_speed);
cmd->duplex = bp->link_vars.duplex;
} else {
ethtool_cmd_speed_set(
cmd, bp->link_params.req_line_speed[cfg_idx]);
cmd->duplex = bp->link_params.req_duplex[cfg_idx];
}
if (IS_MF(bp))
ethtool_cmd_speed_set(cmd, bnx2x_get_mf_speed(bp));
cmd->port = bnx2x_get_port_type(bp);
cmd->phy_address = bp->mdio.prtad;
cmd->transceiver = XCVR_INTERNAL;
if (bp->link_params.req_line_speed[cfg_idx] == SPEED_AUTO_NEG)
cmd->autoneg = AUTONEG_ENABLE;
else
cmd->autoneg = AUTONEG_DISABLE;
cmd->maxtxpkt = 0;
cmd->maxrxpkt = 0;
DP(NETIF_MSG_LINK, "ethtool_cmd: cmd %d\n"
" supported 0x%x advertising 0x%x speed %u\n"
" duplex %d port %d phy_address %d transceiver %d\n"
" autoneg %d maxtxpkt %d maxrxpkt %d\n",
cmd->cmd, cmd->supported, cmd->advertising,
ethtool_cmd_speed(cmd),
cmd->duplex, cmd->port, cmd->phy_address, cmd->transceiver,
cmd->autoneg, cmd->maxtxpkt, cmd->maxrxpkt);
return 0;
}
static int bnx2x_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct bnx2x *bp = netdev_priv(dev);
u32 advertising, cfg_idx, old_multi_phy_config, new_multi_phy_config;
u32 speed;
if (IS_MF_SD(bp))
return 0;
DP(NETIF_MSG_LINK, "ethtool_cmd: cmd %d\n"
" supported 0x%x advertising 0x%x speed %u\n"
" duplex %d port %d phy_address %d transceiver %d\n"
" autoneg %d maxtxpkt %d maxrxpkt %d\n",
cmd->cmd, cmd->supported, cmd->advertising,
ethtool_cmd_speed(cmd),
cmd->duplex, cmd->port, cmd->phy_address, cmd->transceiver,
cmd->autoneg, cmd->maxtxpkt, cmd->maxrxpkt);
speed = ethtool_cmd_speed(cmd);
if (IS_MF_SI(bp)) {
u32 part;
u32 line_speed = bp->link_vars.line_speed;
/* use 10G if no link detected */
if (!line_speed)
line_speed = 10000;
if (bp->common.bc_ver < REQ_BC_VER_4_SET_MF_BW) {
BNX2X_DEV_INFO("To set speed BC %X or higher "
"is required, please upgrade BC\n",
REQ_BC_VER_4_SET_MF_BW);
return -EINVAL;
}
part = (speed * 100) / line_speed;
if (line_speed < speed || !part) {
BNX2X_DEV_INFO("Speed setting should be in a range "
"from 1%% to 100%% "
"of actual line speed\n");
return -EINVAL;
}
if (bp->state != BNX2X_STATE_OPEN)
/* store value for following "load" */
bp->pending_max = part;
else
bnx2x_update_max_mf_config(bp, part);
return 0;
}
cfg_idx = bnx2x_get_link_cfg_idx(bp);
old_multi_phy_config = bp->link_params.multi_phy_config;
switch (cmd->port) {
case PORT_TP:
if (bp->port.supported[cfg_idx] & SUPPORTED_TP)
break; /* no port change */
if (!(bp->port.supported[0] & SUPPORTED_TP ||
bp->port.supported[1] & SUPPORTED_TP)) {
DP(NETIF_MSG_LINK, "Unsupported port type\n");
return -EINVAL;
}
bp->link_params.multi_phy_config &=
~PORT_HW_CFG_PHY_SELECTION_MASK;
if (bp->link_params.multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED)
bp->link_params.multi_phy_config |=
PORT_HW_CFG_PHY_SELECTION_SECOND_PHY;
else
bp->link_params.multi_phy_config |=
PORT_HW_CFG_PHY_SELECTION_FIRST_PHY;
break;
case PORT_FIBRE:
case PORT_DA:
if (bp->port.supported[cfg_idx] & SUPPORTED_FIBRE)
break; /* no port change */
if (!(bp->port.supported[0] & SUPPORTED_FIBRE ||
bp->port.supported[1] & SUPPORTED_FIBRE)) {
DP(NETIF_MSG_LINK, "Unsupported port type\n");
return -EINVAL;
}
bp->link_params.multi_phy_config &=
~PORT_HW_CFG_PHY_SELECTION_MASK;
if (bp->link_params.multi_phy_config &
PORT_HW_CFG_PHY_SWAPPED_ENABLED)
bp->link_params.multi_phy_config |=
PORT_HW_CFG_PHY_SELECTION_FIRST_PHY;
else
bp->link_params.multi_phy_config |=
PORT_HW_CFG_PHY_SELECTION_SECOND_PHY;
break;
default:
DP(NETIF_MSG_LINK, "Unsupported port type\n");
return -EINVAL;
}
/* Save new config in case command complete successuly */
new_multi_phy_config = bp->link_params.multi_phy_config;
/* Get the new cfg_idx */
cfg_idx = bnx2x_get_link_cfg_idx(bp);
/* Restore old config in case command failed */
bp->link_params.multi_phy_config = old_multi_phy_config;
DP(NETIF_MSG_LINK, "cfg_idx = %x\n", cfg_idx);
if (cmd->autoneg == AUTONEG_ENABLE) {
if (!(bp->port.supported[cfg_idx] & SUPPORTED_Autoneg)) {
DP(NETIF_MSG_LINK, "Autoneg not supported\n");
return -EINVAL;
}
/* advertise the requested speed and duplex if supported */
if (cmd->advertising & ~(bp->port.supported[cfg_idx])) {
DP(NETIF_MSG_LINK, "Advertisement parameters "
"are not supported\n");
return -EINVAL;
}
bp->link_params.req_line_speed[cfg_idx] = SPEED_AUTO_NEG;
bp->link_params.req_duplex[cfg_idx] = cmd->duplex;
bp->port.advertising[cfg_idx] = (ADVERTISED_Autoneg |
cmd->advertising);
if (cmd->advertising) {
bp->link_params.speed_cap_mask[cfg_idx] = 0;
if (cmd->advertising & ADVERTISED_10baseT_Half) {
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF;
}
if (cmd->advertising & ADVERTISED_10baseT_Full)
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL;
if (cmd->advertising & ADVERTISED_100baseT_Full)
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL;
if (cmd->advertising & ADVERTISED_100baseT_Half) {
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF;
}
if (cmd->advertising & ADVERTISED_1000baseT_Half) {
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G;
}
if (cmd->advertising & (ADVERTISED_1000baseT_Full |
ADVERTISED_1000baseKX_Full))
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G;
if (cmd->advertising & (ADVERTISED_10000baseT_Full |
ADVERTISED_10000baseKX4_Full |
ADVERTISED_10000baseKR_Full))
bp->link_params.speed_cap_mask[cfg_idx] |=
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G;
}
} else { /* forced speed */
/* advertise the requested speed and duplex if supported */
switch (speed) {
case SPEED_10:
if (cmd->duplex == DUPLEX_FULL) {
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_10baseT_Full)) {
DP(NETIF_MSG_LINK,
"10M full not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_10baseT_Full |
ADVERTISED_TP);
} else {
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_10baseT_Half)) {
DP(NETIF_MSG_LINK,
"10M half not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_10baseT_Half |
ADVERTISED_TP);
}
break;
case SPEED_100:
if (cmd->duplex == DUPLEX_FULL) {
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_100baseT_Full)) {
DP(NETIF_MSG_LINK,
"100M full not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_100baseT_Full |
ADVERTISED_TP);
} else {
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_100baseT_Half)) {
DP(NETIF_MSG_LINK,
"100M half not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_100baseT_Half |
ADVERTISED_TP);
}
break;
case SPEED_1000:
if (cmd->duplex != DUPLEX_FULL) {
DP(NETIF_MSG_LINK, "1G half not supported\n");
return -EINVAL;
}
if (!(bp->port.supported[cfg_idx] &
SUPPORTED_1000baseT_Full)) {
DP(NETIF_MSG_LINK, "1G full not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_1000baseT_Full |
ADVERTISED_TP);
break;
case SPEED_2500:
if (cmd->duplex != DUPLEX_FULL) {
DP(NETIF_MSG_LINK,
"2.5G half not supported\n");
return -EINVAL;
}
if (!(bp->port.supported[cfg_idx]
& SUPPORTED_2500baseX_Full)) {
DP(NETIF_MSG_LINK,
"2.5G full not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_2500baseX_Full |
ADVERTISED_TP);
break;
case SPEED_10000:
if (cmd->duplex != DUPLEX_FULL) {
DP(NETIF_MSG_LINK, "10G half not supported\n");
return -EINVAL;
}
if (!(bp->port.supported[cfg_idx]
& SUPPORTED_10000baseT_Full)) {
DP(NETIF_MSG_LINK, "10G full not supported\n");
return -EINVAL;
}
advertising = (ADVERTISED_10000baseT_Full |
ADVERTISED_FIBRE);
break;
default:
DP(NETIF_MSG_LINK, "Unsupported speed %u\n", speed);
return -EINVAL;
}
bp->link_params.req_line_speed[cfg_idx] = speed;
bp->link_params.req_duplex[cfg_idx] = cmd->duplex;
bp->port.advertising[cfg_idx] = advertising;
}
DP(NETIF_MSG_LINK, "req_line_speed %d\n"
" req_duplex %d advertising 0x%x\n",
bp->link_params.req_line_speed[cfg_idx],
bp->link_params.req_duplex[cfg_idx],
bp->port.advertising[cfg_idx]);
/* Set new config */
bp->link_params.multi_phy_config = new_multi_phy_config;
if (netif_running(dev)) {
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_link_set(bp);
}
return 0;
}
#define IS_E1_ONLINE(info) (((info) & RI_E1_ONLINE) == RI_E1_ONLINE)
#define IS_E1H_ONLINE(info) (((info) & RI_E1H_ONLINE) == RI_E1H_ONLINE)
#define IS_E2_ONLINE(info) (((info) & RI_E2_ONLINE) == RI_E2_ONLINE)
#define IS_E3_ONLINE(info) (((info) & RI_E3_ONLINE) == RI_E3_ONLINE)
#define IS_E3B0_ONLINE(info) (((info) & RI_E3B0_ONLINE) == RI_E3B0_ONLINE)
static inline bool bnx2x_is_reg_online(struct bnx2x *bp,
const struct reg_addr *reg_info)
{
if (CHIP_IS_E1(bp))
return IS_E1_ONLINE(reg_info->info);
else if (CHIP_IS_E1H(bp))
return IS_E1H_ONLINE(reg_info->info);
else if (CHIP_IS_E2(bp))
return IS_E2_ONLINE(reg_info->info);
else if (CHIP_IS_E3A0(bp))
return IS_E3_ONLINE(reg_info->info);
else if (CHIP_IS_E3B0(bp))
return IS_E3B0_ONLINE(reg_info->info);
else
return false;
}
/******* Paged registers info selectors ********/
static inline const u32 *__bnx2x_get_page_addr_ar(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return page_vals_e2;
else if (CHIP_IS_E3(bp))
return page_vals_e3;
else
return NULL;
}
static inline u32 __bnx2x_get_page_reg_num(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return PAGE_MODE_VALUES_E2;
else if (CHIP_IS_E3(bp))
return PAGE_MODE_VALUES_E3;
else
return 0;
}
static inline const u32 *__bnx2x_get_page_write_ar(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return page_write_regs_e2;
else if (CHIP_IS_E3(bp))
return page_write_regs_e3;
else
return NULL;
}
static inline u32 __bnx2x_get_page_write_num(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return PAGE_WRITE_REGS_E2;
else if (CHIP_IS_E3(bp))
return PAGE_WRITE_REGS_E3;
else
return 0;
}
static inline const struct reg_addr *__bnx2x_get_page_read_ar(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return page_read_regs_e2;
else if (CHIP_IS_E3(bp))
return page_read_regs_e3;
else
return NULL;
}
static inline u32 __bnx2x_get_page_read_num(struct bnx2x *bp)
{
if (CHIP_IS_E2(bp))
return PAGE_READ_REGS_E2;
else if (CHIP_IS_E3(bp))
return PAGE_READ_REGS_E3;
else
return 0;
}
static inline int __bnx2x_get_regs_len(struct bnx2x *bp)
{
int num_pages = __bnx2x_get_page_reg_num(bp);
int page_write_num = __bnx2x_get_page_write_num(bp);
const struct reg_addr *page_read_addr = __bnx2x_get_page_read_ar(bp);
int page_read_num = __bnx2x_get_page_read_num(bp);
int regdump_len = 0;
int i, j, k;
for (i = 0; i < REGS_COUNT; i++)
if (bnx2x_is_reg_online(bp, &reg_addrs[i]))
regdump_len += reg_addrs[i].size;
for (i = 0; i < num_pages; i++)
for (j = 0; j < page_write_num; j++)
for (k = 0; k < page_read_num; k++)
if (bnx2x_is_reg_online(bp, &page_read_addr[k]))
regdump_len += page_read_addr[k].size;
return regdump_len;
}
static int bnx2x_get_regs_len(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
int regdump_len = 0;
regdump_len = __bnx2x_get_regs_len(bp);
regdump_len *= 4;
regdump_len += sizeof(struct dump_hdr);
return regdump_len;
}
/**
* bnx2x_read_pages_regs - read "paged" registers
*
* @bp device handle
* @p output buffer
*
* Reads "paged" memories: memories that may only be read by first writing to a
* specific address ("write address") and then reading from a specific address
* ("read address"). There may be more than one write address per "page" and
* more than one read address per write address.
*/
static inline void bnx2x_read_pages_regs(struct bnx2x *bp, u32 *p)
{
u32 i, j, k, n;
/* addresses of the paged registers */
const u32 *page_addr = __bnx2x_get_page_addr_ar(bp);
/* number of paged registers */
int num_pages = __bnx2x_get_page_reg_num(bp);
/* write addresses */
const u32 *write_addr = __bnx2x_get_page_write_ar(bp);
/* number of write addresses */
int write_num = __bnx2x_get_page_write_num(bp);
/* read addresses info */
const struct reg_addr *read_addr = __bnx2x_get_page_read_ar(bp);
/* number of read addresses */
int read_num = __bnx2x_get_page_read_num(bp);
for (i = 0; i < num_pages; i++) {
for (j = 0; j < write_num; j++) {
REG_WR(bp, write_addr[j], page_addr[i]);
for (k = 0; k < read_num; k++)
if (bnx2x_is_reg_online(bp, &read_addr[k]))
for (n = 0; n <
read_addr[k].size; n++)
*p++ = REG_RD(bp,
read_addr[k].addr + n*4);
}
}
}
static inline void __bnx2x_get_regs(struct bnx2x *bp, u32 *p)
{
u32 i, j;
/* Read the regular registers */
for (i = 0; i < REGS_COUNT; i++)
if (bnx2x_is_reg_online(bp, &reg_addrs[i]))
for (j = 0; j < reg_addrs[i].size; j++)
*p++ = REG_RD(bp, reg_addrs[i].addr + j*4);
/* Read "paged" registes */
bnx2x_read_pages_regs(bp, p);
}
static void bnx2x_get_regs(struct net_device *dev,
struct ethtool_regs *regs, void *_p)
{
u32 *p = _p;
struct bnx2x *bp = netdev_priv(dev);
struct dump_hdr dump_hdr = {0};
regs->version = 0;
memset(p, 0, regs->len);
if (!netif_running(bp->dev))
return;
/* Disable parity attentions as long as following dump may
* cause false alarms by reading never written registers. We
* will re-enable parity attentions right after the dump.
*/
bnx2x_disable_blocks_parity(bp);
dump_hdr.hdr_size = (sizeof(struct dump_hdr) / 4) - 1;
dump_hdr.dump_sign = dump_sign_all;
dump_hdr.xstorm_waitp = REG_RD(bp, XSTORM_WAITP_ADDR);
dump_hdr.tstorm_waitp = REG_RD(bp, TSTORM_WAITP_ADDR);
dump_hdr.ustorm_waitp = REG_RD(bp, USTORM_WAITP_ADDR);
dump_hdr.cstorm_waitp = REG_RD(bp, CSTORM_WAITP_ADDR);
if (CHIP_IS_E1(bp))
dump_hdr.info = RI_E1_ONLINE;
else if (CHIP_IS_E1H(bp))
dump_hdr.info = RI_E1H_ONLINE;
else if (!CHIP_IS_E1x(bp))
dump_hdr.info = RI_E2_ONLINE |
(BP_PATH(bp) ? RI_PATH1_DUMP : RI_PATH0_DUMP);
memcpy(p, &dump_hdr, sizeof(struct dump_hdr));
p += dump_hdr.hdr_size + 1;
/* Actually read the registers */
__bnx2x_get_regs(bp, p);
/* Re-enable parity attentions */
bnx2x_clear_blocks_parity(bp);
bnx2x_enable_blocks_parity(bp);
}
static void bnx2x_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct bnx2x *bp = netdev_priv(dev);
u8 phy_fw_ver[PHY_FW_VER_LEN];
strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
phy_fw_ver[0] = '\0';
if (bp->port.pmf) {
bnx2x_acquire_phy_lock(bp);
bnx2x_get_ext_phy_fw_version(&bp->link_params,
(bp->state != BNX2X_STATE_CLOSED),
phy_fw_ver, PHY_FW_VER_LEN);
bnx2x_release_phy_lock(bp);
}
strlcpy(info->fw_version, bp->fw_ver, sizeof(info->fw_version));
snprintf(info->fw_version + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
"bc %d.%d.%d%s%s",
(bp->common.bc_ver & 0xff0000) >> 16,
(bp->common.bc_ver & 0xff00) >> 8,
(bp->common.bc_ver & 0xff),
((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info));
info->n_stats = BNX2X_NUM_STATS;
info->testinfo_len = BNX2X_NUM_TESTS;
info->eedump_len = bp->common.flash_size;
info->regdump_len = bnx2x_get_regs_len(dev);
}
static void bnx2x_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct bnx2x *bp = netdev_priv(dev);
if (bp->flags & NO_WOL_FLAG) {
wol->supported = 0;
wol->wolopts = 0;
} else {
wol->supported = WAKE_MAGIC;
if (bp->wol)
wol->wolopts = WAKE_MAGIC;
else
wol->wolopts = 0;
}
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int bnx2x_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct bnx2x *bp = netdev_priv(dev);
if (wol->wolopts & ~WAKE_MAGIC)
return -EINVAL;
if (wol->wolopts & WAKE_MAGIC) {
if (bp->flags & NO_WOL_FLAG)
return -EINVAL;
bp->wol = 1;
} else
bp->wol = 0;
return 0;
}
static u32 bnx2x_get_msglevel(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
return bp->msg_enable;
}
static void bnx2x_set_msglevel(struct net_device *dev, u32 level)
{
struct bnx2x *bp = netdev_priv(dev);
if (capable(CAP_NET_ADMIN)) {
/* dump MCP trace */
if (level & BNX2X_MSG_MCP)
bnx2x_fw_dump_lvl(bp, KERN_INFO);
bp->msg_enable = level;
}
}
static int bnx2x_nway_reset(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
if (!bp->port.pmf)
return 0;
if (netif_running(dev)) {
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_link_set(bp);
}
return 0;
}
static u32 bnx2x_get_link(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
if (bp->flags & MF_FUNC_DIS || (bp->state != BNX2X_STATE_OPEN))
return 0;
return bp->link_vars.link_up;
}
static int bnx2x_get_eeprom_len(struct net_device *dev)
{
struct bnx2x *bp = netdev_priv(dev);
return bp->common.flash_size;
}
static int bnx2x_acquire_nvram_lock(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int count, i;
u32 val = 0;
/* adjust timeout for emulation/FPGA */
count = BNX2X_NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(bp))
count *= 100;
/* request access to nvram interface */
REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
for (i = 0; i < count*10; i++) {
val = REG_RD(bp, MCP_REG_MCPR_NVM_SW_ARB);
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))
break;
udelay(5);
}
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
DP(BNX2X_MSG_NVM, "cannot get access to nvram interface\n");
return -EBUSY;
}
return 0;
}
static int bnx2x_release_nvram_lock(struct bnx2x *bp)
{
int port = BP_PORT(bp);
int count, i;
u32 val = 0;
/* adjust timeout for emulation/FPGA */
count = BNX2X_NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(bp))
count *= 100;
/* relinquish nvram interface */
REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
for (i = 0; i < count*10; i++) {
val = REG_RD(bp, MCP_REG_MCPR_NVM_SW_ARB);
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)))
break;
udelay(5);
}
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
DP(BNX2X_MSG_NVM, "cannot free access to nvram interface\n");
return -EBUSY;
}
return 0;
}
static void bnx2x_enable_nvram_access(struct bnx2x *bp)
{
u32 val;
val = REG_RD(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
/* enable both bits, even on read */
REG_WR(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
(val | MCPR_NVM_ACCESS_ENABLE_EN |
MCPR_NVM_ACCESS_ENABLE_WR_EN));
}
static void bnx2x_disable_nvram_access(struct bnx2x *bp)
{
u32 val;
val = REG_RD(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
/* disable both bits, even after read */
REG_WR(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
(val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
MCPR_NVM_ACCESS_ENABLE_WR_EN)));
}
static int bnx2x_nvram_read_dword(struct bnx2x *bp, u32 offset, __be32 *ret_val,
u32 cmd_flags)
{
int count, i, rc;
u32 val;
/* build the command word */
cmd_flags |= MCPR_NVM_COMMAND_DOIT;
/* need to clear DONE bit separately */
REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
/* address of the NVRAM to read from */
REG_WR(bp, MCP_REG_MCPR_NVM_ADDR,
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
/* issue a read command */
REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
/* adjust timeout for emulation/FPGA */
count = BNX2X_NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(bp))
count *= 100;
/* wait for completion */
*ret_val = 0;
rc = -EBUSY;
for (i = 0; i < count; i++) {
udelay(5);
val = REG_RD(bp, MCP_REG_MCPR_NVM_COMMAND);
if (val & MCPR_NVM_COMMAND_DONE) {
val = REG_RD(bp, MCP_REG_MCPR_NVM_READ);
/* we read nvram data in cpu order
* but ethtool sees it as an array of bytes
* converting to big-endian will do the work */
*ret_val = cpu_to_be32(val);
rc = 0;
break;
}
}
return rc;
}
static int bnx2x_nvram_read(struct bnx2x *bp, u32 offset, u8 *ret_buf,
int buf_size)
{
int rc;
u32 cmd_flags;
__be32 val;
if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
DP(BNX2X_MSG_NVM,
"Invalid parameter: offset 0x%x buf_size 0x%x\n",
offset, buf_size);
return -EINVAL;
}
if (offset + buf_size > bp->common.flash_size) {
DP(BNX2X_MSG_NVM, "Invalid parameter: offset (0x%x) +"
" buf_size (0x%x) > flash_size (0x%x)\n",
offset, buf_size, bp->common.flash_size);
return -EINVAL;
}
/* request access to nvram interface */
rc = bnx2x_acquire_nvram_lock(bp);
if (rc)
return rc;
/* enable access to nvram interface */
bnx2x_enable_nvram_access(bp);
/* read the first word(s) */
cmd_flags = MCPR_NVM_COMMAND_FIRST;
while ((buf_size > sizeof(u32)) && (rc == 0)) {
rc = bnx2x_nvram_read_dword(bp, offset, &val, cmd_flags);
memcpy(ret_buf, &val, 4);
/* advance to the next dword */
offset += sizeof(u32);
ret_buf += sizeof(u32);
buf_size -= sizeof(u32);
cmd_flags = 0;
}
if (rc == 0) {
cmd_flags |= MCPR_NVM_COMMAND_LAST;
rc = bnx2x_nvram_read_dword(bp, offset, &val, cmd_flags);
memcpy(ret_buf, &val, 4);
}
/* disable access to nvram interface */
bnx2x_disable_nvram_access(bp);
bnx2x_release_nvram_lock(bp);
return rc;
}
static int bnx2x_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *eebuf)
{
struct bnx2x *bp = netdev_priv(dev);
int rc;
if (!netif_running(dev))
return -EAGAIN;
DP(BNX2X_MSG_NVM, "ethtool_eeprom: cmd %d\n"
" magic 0x%x offset 0x%x (%d) len 0x%x (%d)\n",
eeprom->cmd, eeprom->magic, eeprom->offset, eeprom->offset,
eeprom->len, eeprom->len);
/* parameters already validated in ethtool_get_eeprom */
rc = bnx2x_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
return rc;
}
static int bnx2x_nvram_write_dword(struct bnx2x *bp, u32 offset, u32 val,
u32 cmd_flags)
{
int count, i, rc;
/* build the command word */
cmd_flags |= MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR;
/* need to clear DONE bit separately */
REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
/* write the data */
REG_WR(bp, MCP_REG_MCPR_NVM_WRITE, val);
/* address of the NVRAM to write to */
REG_WR(bp, MCP_REG_MCPR_NVM_ADDR,
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
/* issue the write command */
REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
/* adjust timeout for emulation/FPGA */
count = BNX2X_NVRAM_TIMEOUT_COUNT;
if (CHIP_REV_IS_SLOW(bp))
count *= 100;
/* wait for completion */
rc = -EBUSY;
for (i = 0; i < count; i++) {
udelay(5);
val = REG_RD(bp, MCP_REG_MCPR_NVM_COMMAND);
if (val & MCPR_NVM_COMMAND_DONE) {
rc = 0;
break;
}
}
return rc;
}
#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
static int bnx2x_nvram_write1(struct bnx2x *bp, u32 offset, u8 *data_buf,
int buf_size)
{
int rc;
u32 cmd_flags;
u32 align_offset;
__be32 val;
if (offset + buf_size > bp->common.flash_size) {
DP(BNX2X_MSG_NVM, "Invalid parameter: offset (0x%x) +"
" buf_size (0x%x) > flash_size (0x%x)\n",
offset, buf_size, bp->common.flash_size);
return -EINVAL;
}
/* request access to nvram interface */
rc = bnx2x_acquire_nvram_lock(bp);
if (rc)
return rc;
/* enable access to nvram interface */
bnx2x_enable_nvram_access(bp);
cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
align_offset = (offset & ~0x03);
rc = bnx2x_nvram_read_dword(bp, align_offset, &val, cmd_flags);
if (rc == 0) {
val &= ~(0xff << BYTE_OFFSET(offset));
val |= (*data_buf << BYTE_OFFSET(offset));
/* nvram data is returned as an array of bytes
* convert it back to cpu order */
val = be32_to_cpu(val);
rc = bnx2x_nvram_write_dword(bp, align_offset, val,
cmd_flags);
}
/* disable access to nvram interface */
bnx2x_disable_nvram_access(bp);
bnx2x_release_nvram_lock(bp);
return rc;
}
static int bnx2x_nvram_write(struct bnx2x *bp, u32 offset, u8 *data_buf,
int buf_size)
{
int rc;
u32 cmd_flags;
u32 val;
u32 written_so_far;
if (buf_size == 1) /* ethtool */
return bnx2x_nvram_write1(bp, offset, data_buf, buf_size);
if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
DP(BNX2X_MSG_NVM,
"Invalid parameter: offset 0x%x buf_size 0x%x\n",
offset, buf_size);
return -EINVAL;
}
if (offset + buf_size > bp->common.flash_size) {
DP(BNX2X_MSG_NVM, "Invalid parameter: offset (0x%x) +"
" buf_size (0x%x) > flash_size (0x%x)\n",
offset, buf_size, bp->common.flash_size);
return -EINVAL;
}
/* request access to nvram interface */
rc = bnx2x_acquire_nvram_lock(bp);
if (rc)
return rc;
/* enable access to nvram interface */
bnx2x_enable_nvram_access(bp);
written_so_far = 0;
cmd_flags = MCPR_NVM_COMMAND_FIRST;
while ((written_so_far < buf_size) && (rc == 0)) {
if (written_so_far == (buf_size - sizeof(u32)))
cmd_flags |= MCPR_NVM_COMMAND_LAST;
else if (((offset + 4) % BNX2X_NVRAM_PAGE_SIZE) == 0)
cmd_flags |= MCPR_NVM_COMMAND_LAST;
else if ((offset % BNX2X_NVRAM_PAGE_SIZE) == 0)
cmd_flags |= MCPR_NVM_COMMAND_FIRST;
memcpy(&val, data_buf, 4);
rc = bnx2x_nvram_write_dword(bp, offset, val, cmd_flags);
/* advance to the next dword */
offset += sizeof(u32);
data_buf += sizeof(u32);
written_so_far += sizeof(u32);
cmd_flags = 0;
}
/* disable access to nvram interface */
bnx2x_disable_nvram_access(bp);
bnx2x_release_nvram_lock(bp);
return rc;
}
static int bnx2x_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *eebuf)
{
struct bnx2x *bp = netdev_priv(dev);
int port = BP_PORT(bp);
int rc = 0;
u32 ext_phy_config;
if (!netif_running(dev))
return -EAGAIN;
DP(BNX2X_MSG_NVM, "ethtool_eeprom: cmd %d\n"
" magic 0x%x offset 0x%x (%d) len 0x%x (%d)\n",
eeprom->cmd, eeprom->magic, eeprom->offset, eeprom->offset,
eeprom->len, eeprom->len);
/* parameters already validated in ethtool_set_eeprom */
/* PHY eeprom can be accessed only by the PMF */
if ((eeprom->magic >= 0x50485900) && (eeprom->magic <= 0x504859FF) &&
!bp->port.pmf)
return -EINVAL;
ext_phy_config =
SHMEM_RD(bp,
dev_info.port_hw_config[port].external_phy_config);
if (eeprom->magic == 0x50485950) {
/* 'PHYP' (0x50485950): prepare phy for FW upgrade */
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_acquire_phy_lock(bp);
rc |= bnx2x_link_reset(&bp->link_params,
&bp->link_vars, 0);
if (XGXS_EXT_PHY_TYPE(ext_phy_config) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101)
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_0,
MISC_REGISTERS_GPIO_HIGH, port);
bnx2x_release_phy_lock(bp);
bnx2x_link_report(bp);
} else if (eeprom->magic == 0x50485952) {
/* 'PHYR' (0x50485952): re-init link after FW upgrade */
if (bp->state == BNX2X_STATE_OPEN) {
bnx2x_acquire_phy_lock(bp);
rc |= bnx2x_link_reset(&bp->link_params,
&bp->link_vars, 1);
rc |= bnx2x_phy_init(&bp->link_params,
&bp->link_vars);
bnx2x_release_phy_lock(bp);
bnx2x_calc_fc_adv(bp);
}
} else if (eeprom->magic == 0x53985943) {
/* 'PHYC' (0x53985943): PHY FW upgrade completed */
if (XGXS_EXT_PHY_TYPE(ext_phy_config) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101) {
/* DSP Remove Download Mode */
bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_0,
MISC_REGISTERS_GPIO_LOW, port);
bnx2x_acquire_phy_lock(bp);
bnx2x_sfx7101_sp_sw_reset(bp,
&bp->link_params.phy[EXT_PHY1]);
/* wait 0.5 sec to allow it to run */
msleep(500);
bnx2x_ext_phy_hw_reset(bp, port);
msleep(500);
bnx2x_release_phy_lock(bp);
}
} else
rc = bnx2x_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
return rc;
}
static int bnx2x_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *coal)
{
struct bnx2x *bp = netdev_priv(dev);
memset(coal, 0, sizeof(struct ethtool_coalesce));
coal->rx_coalesce_usecs = bp->rx_ticks;
coal->tx_coalesce_usecs = bp->tx_ticks;
return 0;
}
static int bnx2x_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *coal)
{
struct bnx2x *bp = netdev_priv(dev);
bp->rx_ticks = (u16)coal->rx_coalesce_usecs;
if (bp->rx_ticks > BNX2X_MAX_COALESCE_TOUT)
bp->rx_ticks = BNX2X_MAX_COALESCE_TOUT;
bp->tx_ticks = (u16)coal->tx_coalesce_usecs;
if (bp->tx_ticks > BNX2X_MAX_COALESCE_TOUT)
bp->tx_ticks = BNX2X_MAX_COALESCE_TOUT;
if (netif_running(dev))
bnx2x_update_coalesce(bp);
return 0;
}
static void bnx2x_get_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct bnx2x *bp = netdev_priv(dev);
ering->rx_max_pending = MAX_RX_AVAIL;
if (bp->rx_ring_size)
ering->rx_pending = bp->rx_ring_size;
else
ering->rx_pending = MAX_RX_AVAIL;
ering->tx_max_pending = MAX_TX_AVAIL;
ering->tx_pending = bp->tx_ring_size;
}
static int bnx2x_set_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct bnx2x *bp = netdev_priv(dev);
if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
pr_err("Handling parity error recovery. Try again later\n");
return -EAGAIN;
}
if ((ering->rx_pending > MAX_RX_AVAIL) ||
(ering->rx_pending < (bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
MIN_RX_SIZE_TPA)) ||
(ering->tx_pending > MAX_TX_AVAIL) ||
(ering->tx_pending <= MAX_SKB_FRAGS + 4))
return -EINVAL;
bp->rx_ring_size = ering->rx_pending;
bp->tx_ring_size = ering->tx_pending;
return bnx2x_reload_if_running(dev);
}
static void bnx2x_get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *epause)
{
struct bnx2x *bp = netdev_priv(dev);
int cfg_idx = bnx2x_get_link_cfg_idx(bp);
epause->autoneg = (bp->link_params.req_flow_ctrl[cfg_idx] ==
BNX2X_FLOW_CTRL_AUTO);
epause->rx_pause = ((bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) ==
BNX2X_FLOW_CTRL_RX);
epause->tx_pause = ((bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) ==
BNX2X_FLOW_CTRL_TX);
DP(NETIF_MSG_LINK, "ethtool_pauseparam: cmd %d\n"
" autoneg %d rx_pause %d tx_pause %d\n",
epause->cmd, epause->autoneg, epause->rx_pause, epause->tx_pause);
}
static int bnx2x_set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *epause)
{
struct bnx2x *bp = netdev_priv(dev);
u32 cfg_idx = bnx2x_get_link_cfg_idx(bp);
if (IS_MF(bp))
return 0;
DP(NETIF_MSG_LINK, "ethtool_pauseparam: cmd %d\n"
" autoneg %d rx_pause %d tx_pause %d\n",
epause->cmd, epause->autoneg, epause->rx_pause, epause->tx_pause);
bp->link_params.req_flow_ctrl[cfg_idx] = BNX2X_FLOW_CTRL_AUTO;
if (epause->rx_pause)
bp->link_params.req_flow_ctrl[cfg_idx] |= BNX2X_FLOW_CTRL_RX;
if (epause->tx_pause)
bp->link_params.req_flow_ctrl[cfg_idx] |= BNX2X_FLOW_CTRL_TX;
if (bp->link_params.req_flow_ctrl[cfg_idx] == BNX2X_FLOW_CTRL_AUTO)
bp->link_params.req_flow_ctrl[cfg_idx] = BNX2X_FLOW_CTRL_NONE;
if (epause->autoneg) {
if (!(bp->port.supported[cfg_idx] & SUPPORTED_Autoneg)) {
DP(NETIF_MSG_LINK, "autoneg not supported\n");
return -EINVAL;
}
if (bp->link_params.req_line_speed[cfg_idx] == SPEED_AUTO_NEG) {
bp->link_params.req_flow_ctrl[cfg_idx] =
BNX2X_FLOW_CTRL_AUTO;
}
}
DP(NETIF_MSG_LINK,
"req_flow_ctrl 0x%x\n", bp->link_params.req_flow_ctrl[cfg_idx]);
if (netif_running(dev)) {
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
bnx2x_link_set(bp);
}
return 0;
}
static const struct {
char string[ETH_GSTRING_LEN];
} bnx2x_tests_str_arr[BNX2X_NUM_TESTS] = {
{ "register_test (offline)" },
{ "memory_test (offline)" },
{ "loopback_test (offline)" },
{ "nvram_test (online)" },
{ "interrupt_test (online)" },
{ "link_test (online)" },
{ "idle check (online)" }
};
enum {
BNX2X_CHIP_E1_OFST = 0,
BNX2X_CHIP_E1H_OFST,
BNX2X_CHIP_E2_OFST,
BNX2X_CHIP_E3_OFST,
BNX2X_CHIP_E3B0_OFST,
BNX2X_CHIP_MAX_OFST
};
#define BNX2X_CHIP_MASK_E1 (1 << BNX2X_CHIP_E1_OFST)
#define BNX2X_CHIP_MASK_E1H (1 << BNX2X_CHIP_E1H_OFST)
#define BNX2X_CHIP_MASK_E2 (1 << BNX2X_CHIP_E2_OFST)
#define BNX2X_CHIP_MASK_E3 (1 << BNX2X_CHIP_E3_OFST)
#define BNX2X_CHIP_MASK_E3B0 (1 << BNX2X_CHIP_E3B0_OFST)
#define BNX2X_CHIP_MASK_ALL ((1 << BNX2X_CHIP_MAX_OFST) - 1)
#define BNX2X_CHIP_MASK_E1X (BNX2X_CHIP_MASK_E1 | BNX2X_CHIP_MASK_E1H)
static int bnx2x_test_registers(struct bnx2x *bp)
{
int idx, i, rc = -ENODEV;
u32 wr_val = 0, hw;
int port = BP_PORT(bp);
static const struct {
u32 hw;
u32 offset0;
u32 offset1;
u32 mask;
} reg_tbl[] = {
/* 0 */ { BNX2X_CHIP_MASK_ALL,
BRB1_REG_PAUSE_LOW_THRESHOLD_0, 4, 0x000003ff },
{ BNX2X_CHIP_MASK_ALL,
DORQ_REG_DB_ADDR0, 4, 0xffffffff },
{ BNX2X_CHIP_MASK_E1X,
HC_REG_AGG_INT_0, 4, 0x000003ff },
{ BNX2X_CHIP_MASK_ALL,
PBF_REG_MAC_IF0_ENABLE, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2 | BNX2X_CHIP_MASK_E3,
PBF_REG_P0_INIT_CRD, 4, 0x000007ff },
{ BNX2X_CHIP_MASK_E3B0,
PBF_REG_INIT_CRD_Q0, 4, 0x000007ff },
{ BNX2X_CHIP_MASK_ALL,
PRS_REG_CID_PORT_0, 4, 0x00ffffff },
{ BNX2X_CHIP_MASK_ALL,
PXP2_REG_PSWRQ_CDU0_L2P, 4, 0x000fffff },
{ BNX2X_CHIP_MASK_ALL,
PXP2_REG_RQ_CDU0_EFIRST_MEM_ADDR, 8, 0x0003ffff },
{ BNX2X_CHIP_MASK_ALL,
PXP2_REG_PSWRQ_TM0_L2P, 4, 0x000fffff },
/* 10 */ { BNX2X_CHIP_MASK_ALL,
PXP2_REG_RQ_USDM0_EFIRST_MEM_ADDR, 8, 0x0003ffff },
{ BNX2X_CHIP_MASK_ALL,
PXP2_REG_PSWRQ_TSDM0_L2P, 4, 0x000fffff },
{ BNX2X_CHIP_MASK_ALL,
QM_REG_CONNNUM_0, 4, 0x000fffff },
{ BNX2X_CHIP_MASK_ALL,
TM_REG_LIN0_MAX_ACTIVE_CID, 4, 0x0003ffff },
{ BNX2X_CHIP_MASK_ALL,
SRC_REG_KEYRSS0_0, 40, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
SRC_REG_KEYRSS0_7, 40, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
XCM_REG_WU_DA_SET_TMR_CNT_FLG_CMD00, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
XCM_REG_WU_DA_CNT_CMD00, 4, 0x00000003 },
{ BNX2X_CHIP_MASK_ALL,
XCM_REG_GLB_DEL_ACK_MAX_CNT_0, 4, 0x000000ff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_T_BIT, 4, 0x00000001 },
/* 20 */ { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_EMAC0_IN_EN, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_BMAC0_IN_EN, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_XCM0_OUT_EN, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_BRB0_OUT_EN, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_XCM_MASK, 4, 0x00000007 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_ACPI_PAT_6_LEN, 68, 0x000000ff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_ACPI_PAT_0_CRC, 68, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_DEST_MAC_0_0, 160, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_DEST_IP_0_1, 160, 0xffffffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_IPV4_IPV6_0, 160, 0x00000001 },
/* 30 */ { BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_DEST_UDP_0, 160, 0x0000ffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_DEST_TCP_0, 160, 0x0000ffff },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LLH0_VLAN_ID_0, 160, 0x00000fff },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_XGXS_SERDES0_MODE_SEL, 4, 0x00000001 },
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_LED_CONTROL_OVERRIDE_TRAFFIC_P0, 4, 0x00000001},
{ BNX2X_CHIP_MASK_ALL,
NIG_REG_STATUS_INTERRUPT_PORT0, 4, 0x07ffffff },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_XGXS0_CTRL_EXTREMOTEMDIOST, 24, 0x00000001 },
{ BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2,
NIG_REG_SERDES0_CTRL_PHY_ADDR, 16, 0x0000001f },
{ BNX2X_CHIP_MASK_ALL, 0xffffffff, 0, 0x00000000 }
};
if (!netif_running(bp->dev))
return rc;
if (CHIP_IS_E1(bp))
hw = BNX2X_CHIP_MASK_E1;
else if (CHIP_IS_E1H(bp))
hw = BNX2X_CHIP_MASK_E1H;
else if (CHIP_IS_E2(bp))
hw = BNX2X_CHIP_MASK_E2;
else if (CHIP_IS_E3B0(bp))
hw = BNX2X_CHIP_MASK_E3B0;
else /* e3 A0 */
hw = BNX2X_CHIP_MASK_E3;
/* Repeat the test twice:
First by writing 0x00000000, second by writing 0xffffffff */
for (idx = 0; idx < 2; idx++) {
switch (idx) {
case 0:
wr_val = 0;
break;
case 1:
wr_val = 0xffffffff;
break;
}
for (i = 0; reg_tbl[i].offset0 != 0xffffffff; i++) {
u32 offset, mask, save_val, val;
if (!(hw & reg_tbl[i].hw))
continue;
offset = reg_tbl[i].offset0 + port*reg_tbl[i].offset1;
mask = reg_tbl[i].mask;
save_val = REG_RD(bp, offset);
REG_WR(bp, offset, wr_val & mask);
val = REG_RD(bp, offset);
/* Restore the original register's value */
REG_WR(bp, offset, save_val);
/* verify value is as expected */
if ((val & mask) != (wr_val & mask)) {
DP(NETIF_MSG_HW,
"offset 0x%x: val 0x%x != 0x%x mask 0x%x\n",
offset, val, wr_val, mask);
goto test_reg_exit;
}
}
}
rc = 0;
test_reg_exit:
return rc;
}
static int bnx2x_test_memory(struct bnx2x *bp)
{
int i, j, rc = -ENODEV;
u32 val, index;
static const struct {
u32 offset;
int size;
} mem_tbl[] = {
{ CCM_REG_XX_DESCR_TABLE, CCM_REG_XX_DESCR_TABLE_SIZE },
{ CFC_REG_ACTIVITY_COUNTER, CFC_REG_ACTIVITY_COUNTER_SIZE },
{ CFC_REG_LINK_LIST, CFC_REG_LINK_LIST_SIZE },
{ DMAE_REG_CMD_MEM, DMAE_REG_CMD_MEM_SIZE },
{ TCM_REG_XX_DESCR_TABLE, TCM_REG_XX_DESCR_TABLE_SIZE },
{ UCM_REG_XX_DESCR_TABLE, UCM_REG_XX_DESCR_TABLE_SIZE },
{ XCM_REG_XX_DESCR_TABLE, XCM_REG_XX_DESCR_TABLE_SIZE },
{ 0xffffffff, 0 }
};
static const struct {
char *name;
u32 offset;
u32 hw_mask[BNX2X_CHIP_MAX_OFST];
} prty_tbl[] = {
{ "CCM_PRTY_STS", CCM_REG_CCM_PRTY_STS,
{0x3ffc0, 0, 0, 0} },
{ "CFC_PRTY_STS", CFC_REG_CFC_PRTY_STS,
{0x2, 0x2, 0, 0} },
{ "DMAE_PRTY_STS", DMAE_REG_DMAE_PRTY_STS,
{0, 0, 0, 0} },
{ "TCM_PRTY_STS", TCM_REG_TCM_PRTY_STS,
{0x3ffc0, 0, 0, 0} },
{ "UCM_PRTY_STS", UCM_REG_UCM_PRTY_STS,
{0x3ffc0, 0, 0, 0} },
{ "XCM_PRTY_STS", XCM_REG_XCM_PRTY_STS,
{0x3ffc1, 0, 0, 0} },
{ NULL, 0xffffffff, {0, 0, 0, 0} }
};
if (!netif_running(bp->dev))
return rc;
if (CHIP_IS_E1(bp))
index = BNX2X_CHIP_E1_OFST;
else if (CHIP_IS_E1H(bp))
index = BNX2X_CHIP_E1H_OFST;
else if (CHIP_IS_E2(bp))
index = BNX2X_CHIP_E2_OFST;
else /* e3 */
index = BNX2X_CHIP_E3_OFST;
/* pre-Check the parity status */
for (i = 0; prty_tbl[i].offset != 0xffffffff; i++) {
val = REG_RD(bp, prty_tbl[i].offset);
if (val & ~(prty_tbl[i].hw_mask[index])) {
DP(NETIF_MSG_HW,
"%s is 0x%x\n", prty_tbl[i].name, val);
goto test_mem_exit;
}
}
/* Go through all the memories */
for (i = 0; mem_tbl[i].offset != 0xffffffff; i++)
for (j = 0; j < mem_tbl[i].size; j++)
REG_RD(bp, mem_tbl[i].offset + j*4);
/* Check the parity status */
for (i = 0; prty_tbl[i].offset != 0xffffffff; i++) {
val = REG_RD(bp, prty_tbl[i].offset);
if (val & ~(prty_tbl[i].hw_mask[index])) {
DP(NETIF_MSG_HW,
"%s is 0x%x\n", prty_tbl[i].name, val);
goto test_mem_exit;
}
}
rc = 0;
test_mem_exit:
return rc;
}
static void bnx2x_wait_for_link(struct bnx2x *bp, u8 link_up, u8 is_serdes)
{
int cnt = 1400;
if (link_up) {
while (bnx2x_link_test(bp, is_serdes) && cnt--)
msleep(20);
if (cnt <= 0 && bnx2x_link_test(bp, is_serdes))
DP(NETIF_MSG_LINK, "Timeout waiting for link up\n");
}
}
static int bnx2x_run_loopback(struct bnx2x *bp, int loopback_mode)
{
unsigned int pkt_size, num_pkts, i;
struct sk_buff *skb;
unsigned char *packet;
struct bnx2x_fastpath *fp_rx = &bp->fp[0];
struct bnx2x_fastpath *fp_tx = &bp->fp[0];
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 16:31:57 +08:00
struct bnx2x_fp_txdata *txdata = &fp_tx->txdata[0];
u16 tx_start_idx, tx_idx;
u16 rx_start_idx, rx_idx;
u16 pkt_prod, bd_prod, rx_comp_cons;
struct sw_tx_bd *tx_buf;
struct eth_tx_start_bd *tx_start_bd;
struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
dma_addr_t mapping;
union eth_rx_cqe *cqe;
u8 cqe_fp_flags, cqe_fp_type;
struct sw_rx_bd *rx_buf;
u16 len;
int rc = -ENODEV;
bnx2x: uses build_skb() in receive path bnx2x uses following formula to compute its rx_buf_sz : dev->mtu + 2*L1_CACHE_BYTES + 14 + 8 + 8 + 2 Then core network adds NET_SKB_PAD and SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) Final allocated size for skb head on x86_64 (L1_CACHE_BYTES = 64, MTU=1500) : 2112 bytes : SLUB/SLAB round this to 4096 bytes. Since skb truesize is then bigger than SK_MEM_QUANTUM, we have lot of false sharing because of mem_reclaim in UDP stack. One possible way to half truesize is to reduce the need by 64 bytes (2112 -> 2048 bytes) Instead of allocating a full cache line at the end of packet for alignment, we can use the fact that skb_shared_info sits at the end of skb->head, and we can use this room, if we convert bnx2x to new build_skb() infrastructure. skb_shared_info will be initialized after hardware finished its transfert, so we can eventually overwrite the final padding. Using build_skb() also reduces cache line misses in the driver, since we use cache hot skb instead of cold ones. Number of in-flight sk_buff structures is lower, they are recycled while still hot. Performance results : (820.000 pps on a rx UDP monothread benchmark, instead of 720.000 pps) Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Eilon Greenstein <eilong@broadcom.com> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Tom Herbert <therbert@google.com> CC: Jamal Hadi Salim <hadi@mojatatu.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Thomas Graf <tgraf@infradead.org> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Acked-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-14 14:05:34 +08:00
u8 *data;
/* check the loopback mode */
switch (loopback_mode) {
case BNX2X_PHY_LOOPBACK:
if (bp->link_params.loopback_mode != LOOPBACK_XGXS)
return -EINVAL;
break;
case BNX2X_MAC_LOOPBACK:
if (CHIP_IS_E3(bp)) {
int cfg_idx = bnx2x_get_link_cfg_idx(bp);
if (bp->port.supported[cfg_idx] &
(SUPPORTED_10000baseT_Full |
SUPPORTED_20000baseMLD2_Full |
SUPPORTED_20000baseKR2_Full))
bp->link_params.loopback_mode = LOOPBACK_XMAC;
else
bp->link_params.loopback_mode = LOOPBACK_UMAC;
} else
bp->link_params.loopback_mode = LOOPBACK_BMAC;
bnx2x_phy_init(&bp->link_params, &bp->link_vars);
break;
default:
return -EINVAL;
}
/* prepare the loopback packet */
pkt_size = (((bp->dev->mtu < ETH_MAX_PACKET_SIZE) ?
bp->dev->mtu : ETH_MAX_PACKET_SIZE) + ETH_HLEN);
skb = netdev_alloc_skb(bp->dev, fp_rx->rx_buf_size);
if (!skb) {
rc = -ENOMEM;
goto test_loopback_exit;
}
packet = skb_put(skb, pkt_size);
memcpy(packet, bp->dev->dev_addr, ETH_ALEN);
memset(packet + ETH_ALEN, 0, ETH_ALEN);
memset(packet + 2*ETH_ALEN, 0x77, (ETH_HLEN - 2*ETH_ALEN));
for (i = ETH_HLEN; i < pkt_size; i++)
packet[i] = (unsigned char) (i & 0xff);
mapping = dma_map_single(&bp->pdev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
rc = -ENOMEM;
dev_kfree_skb(skb);
BNX2X_ERR("Unable to map SKB\n");
goto test_loopback_exit;
}
/* send the loopback packet */
num_pkts = 0;
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 16:31:57 +08:00
tx_start_idx = le16_to_cpu(*txdata->tx_cons_sb);
rx_start_idx = le16_to_cpu(*fp_rx->rx_cons_sb);
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 16:31:57 +08:00
pkt_prod = txdata->tx_pkt_prod++;
tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
tx_buf->first_bd = txdata->tx_bd_prod;
tx_buf->skb = skb;
tx_buf->flags = 0;
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 16:31:57 +08:00
bd_prod = TX_BD(txdata->tx_bd_prod);
tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
tx_start_bd->nbd = cpu_to_le16(2); /* start + pbd */
tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
SET_FLAG(tx_start_bd->general_data,
ETH_TX_START_BD_ETH_ADDR_TYPE,
UNICAST_ADDRESS);
SET_FLAG(tx_start_bd->general_data,
ETH_TX_START_BD_HDR_NBDS,
1);
/* turn on parsing and get a BD */
bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 16:31:57 +08:00
pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
wmb();
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 16:31:57 +08:00
txdata->tx_db.data.prod += 2;
barrier();
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 16:31:57 +08:00
DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
mmiowb();
barrier();
num_pkts++;
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 16:31:57 +08:00
txdata->tx_bd_prod += 2; /* start + pbd */
udelay(100);
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 16:31:57 +08:00
tx_idx = le16_to_cpu(*txdata->tx_cons_sb);
if (tx_idx != tx_start_idx + num_pkts)
goto test_loopback_exit;
/* Unlike HC IGU won't generate an interrupt for status block
* updates that have been performed while interrupts were
* disabled.
*/
if (bp->common.int_block == INT_BLOCK_IGU) {
/* Disable local BHes to prevent a dead-lock situation between
* sch_direct_xmit() and bnx2x_run_loopback() (calling
* bnx2x_tx_int()), as both are taking netif_tx_lock().
*/
local_bh_disable();
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 16:31:57 +08:00
bnx2x_tx_int(bp, txdata);
local_bh_enable();
}
rx_idx = le16_to_cpu(*fp_rx->rx_cons_sb);
if (rx_idx != rx_start_idx + num_pkts)
goto test_loopback_exit;
rx_comp_cons = le16_to_cpu(fp_rx->rx_comp_cons);
cqe = &fp_rx->rx_comp_ring[RCQ_BD(rx_comp_cons)];
cqe_fp_flags = cqe->fast_path_cqe.type_error_flags;
cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
if (!CQE_TYPE_FAST(cqe_fp_type) || (cqe_fp_flags & ETH_RX_ERROR_FALGS))
goto test_loopback_rx_exit;
len = le16_to_cpu(cqe->fast_path_cqe.pkt_len);
if (len != pkt_size)
goto test_loopback_rx_exit;
rx_buf = &fp_rx->rx_buf_ring[RX_BD(fp_rx->rx_bd_cons)];
dma_sync_single_for_cpu(&bp->pdev->dev,
dma_unmap_addr(rx_buf, mapping),
fp_rx->rx_buf_size, DMA_FROM_DEVICE);
bnx2x: uses build_skb() in receive path bnx2x uses following formula to compute its rx_buf_sz : dev->mtu + 2*L1_CACHE_BYTES + 14 + 8 + 8 + 2 Then core network adds NET_SKB_PAD and SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) Final allocated size for skb head on x86_64 (L1_CACHE_BYTES = 64, MTU=1500) : 2112 bytes : SLUB/SLAB round this to 4096 bytes. Since skb truesize is then bigger than SK_MEM_QUANTUM, we have lot of false sharing because of mem_reclaim in UDP stack. One possible way to half truesize is to reduce the need by 64 bytes (2112 -> 2048 bytes) Instead of allocating a full cache line at the end of packet for alignment, we can use the fact that skb_shared_info sits at the end of skb->head, and we can use this room, if we convert bnx2x to new build_skb() infrastructure. skb_shared_info will be initialized after hardware finished its transfert, so we can eventually overwrite the final padding. Using build_skb() also reduces cache line misses in the driver, since we use cache hot skb instead of cold ones. Number of in-flight sk_buff structures is lower, they are recycled while still hot. Performance results : (820.000 pps on a rx UDP monothread benchmark, instead of 720.000 pps) Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Eilon Greenstein <eilong@broadcom.com> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Tom Herbert <therbert@google.com> CC: Jamal Hadi Salim <hadi@mojatatu.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Thomas Graf <tgraf@infradead.org> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Acked-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-14 14:05:34 +08:00
data = rx_buf->data + NET_SKB_PAD + cqe->fast_path_cqe.placement_offset;
for (i = ETH_HLEN; i < pkt_size; i++)
bnx2x: uses build_skb() in receive path bnx2x uses following formula to compute its rx_buf_sz : dev->mtu + 2*L1_CACHE_BYTES + 14 + 8 + 8 + 2 Then core network adds NET_SKB_PAD and SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) Final allocated size for skb head on x86_64 (L1_CACHE_BYTES = 64, MTU=1500) : 2112 bytes : SLUB/SLAB round this to 4096 bytes. Since skb truesize is then bigger than SK_MEM_QUANTUM, we have lot of false sharing because of mem_reclaim in UDP stack. One possible way to half truesize is to reduce the need by 64 bytes (2112 -> 2048 bytes) Instead of allocating a full cache line at the end of packet for alignment, we can use the fact that skb_shared_info sits at the end of skb->head, and we can use this room, if we convert bnx2x to new build_skb() infrastructure. skb_shared_info will be initialized after hardware finished its transfert, so we can eventually overwrite the final padding. Using build_skb() also reduces cache line misses in the driver, since we use cache hot skb instead of cold ones. Number of in-flight sk_buff structures is lower, they are recycled while still hot. Performance results : (820.000 pps on a rx UDP monothread benchmark, instead of 720.000 pps) Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Eilon Greenstein <eilong@broadcom.com> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Tom Herbert <therbert@google.com> CC: Jamal Hadi Salim <hadi@mojatatu.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Thomas Graf <tgraf@infradead.org> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Acked-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-14 14:05:34 +08:00
if (*(data + i) != (unsigned char) (i & 0xff))
goto test_loopback_rx_exit;
rc = 0;
test_loopback_rx_exit:
fp_rx->rx_bd_cons = NEXT_RX_IDX(fp_rx->rx_bd_cons);
fp_rx->rx_bd_prod = NEXT_RX_IDX(fp_rx->rx_bd_prod);
fp_rx->rx_comp_cons = NEXT_RCQ_IDX(fp_rx->rx_comp_cons);
fp_rx->rx_comp_prod = NEXT_RCQ_IDX(fp_rx->rx_comp_prod);
/* Update producers */
bnx2x_update_rx_prod(bp, fp_rx, fp_rx->rx_bd_prod, fp_rx->rx_comp_prod,
fp_rx->rx_sge_prod);
test_loopback_exit:
bp->link_params.loopback_mode = LOOPBACK_NONE;
return rc;
}
static int bnx2x_test_loopback(struct bnx2x *bp)
{
int rc = 0, res;
if (BP_NOMCP(bp))
return rc;
if (!netif_running(bp->dev))
return BNX2X_LOOPBACK_FAILED;
bnx2x_netif_stop(bp, 1);
bnx2x_acquire_phy_lock(bp);
res = bnx2x_run_loopback(bp, BNX2X_PHY_LOOPBACK);
if (res) {
DP(NETIF_MSG_PROBE, " PHY loopback failed (res %d)\n", res);
rc |= BNX2X_PHY_LOOPBACK_FAILED;
}
res = bnx2x_run_loopback(bp, BNX2X_MAC_LOOPBACK);
if (res) {
DP(NETIF_MSG_PROBE, " MAC loopback failed (res %d)\n", res);
rc |= BNX2X_MAC_LOOPBACK_FAILED;
}
bnx2x_release_phy_lock(bp);
bnx2x_netif_start(bp);
return rc;
}
#define CRC32_RESIDUAL 0xdebb20e3
static int bnx2x_test_nvram(struct bnx2x *bp)
{
static const struct {
int offset;
int size;
} nvram_tbl[] = {
{ 0, 0x14 }, /* bootstrap */
{ 0x14, 0xec }, /* dir */
{ 0x100, 0x350 }, /* manuf_info */
{ 0x450, 0xf0 }, /* feature_info */
{ 0x640, 0x64 }, /* upgrade_key_info */
{ 0x708, 0x70 }, /* manuf_key_info */
{ 0, 0 }
};
__be32 buf[0x350 / 4];
u8 *data = (u8 *)buf;
int i, rc;
u32 magic, crc;
if (BP_NOMCP(bp))
return 0;
rc = bnx2x_nvram_read(bp, 0, data, 4);
if (rc) {
DP(NETIF_MSG_PROBE, "magic value read (rc %d)\n", rc);
goto test_nvram_exit;
}
magic = be32_to_cpu(buf[0]);
if (magic != 0x669955aa) {
DP(NETIF_MSG_PROBE, "magic value (0x%08x)\n", magic);
rc = -ENODEV;
goto test_nvram_exit;
}
for (i = 0; nvram_tbl[i].size; i++) {
rc = bnx2x_nvram_read(bp, nvram_tbl[i].offset, data,
nvram_tbl[i].size);
if (rc) {
DP(NETIF_MSG_PROBE,
"nvram_tbl[%d] read data (rc %d)\n", i, rc);
goto test_nvram_exit;
}
crc = ether_crc_le(nvram_tbl[i].size, data);
if (crc != CRC32_RESIDUAL) {
DP(NETIF_MSG_PROBE,
"nvram_tbl[%d] crc value (0x%08x)\n", i, crc);
rc = -ENODEV;
goto test_nvram_exit;
}
}
test_nvram_exit:
return rc;
}
/* Send an EMPTY ramrod on the first queue */
static int bnx2x_test_intr(struct bnx2x *bp)
{
struct bnx2x_queue_state_params params = {0};
if (!netif_running(bp->dev))
return -ENODEV;
params.q_obj = &bp->fp->q_obj;
params.cmd = BNX2X_Q_CMD_EMPTY;
__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
return bnx2x_queue_state_change(bp, &params);
}
static void bnx2x_self_test(struct net_device *dev,
struct ethtool_test *etest, u64 *buf)
{
struct bnx2x *bp = netdev_priv(dev);
u8 is_serdes;
if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
pr_err("Handling parity error recovery. Try again later\n");
etest->flags |= ETH_TEST_FL_FAILED;
return;
}
memset(buf, 0, sizeof(u64) * BNX2X_NUM_TESTS);
if (!netif_running(dev))
return;
/* offline tests are not supported in MF mode */
if (IS_MF(bp))
etest->flags &= ~ETH_TEST_FL_OFFLINE;
is_serdes = (bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) > 0;
if (etest->flags & ETH_TEST_FL_OFFLINE) {
int port = BP_PORT(bp);
u32 val;
u8 link_up;
/* save current value of input enable for TX port IF */
val = REG_RD(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4);
/* disable input for TX port IF */
REG_WR(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4, 0);
link_up = bp->link_vars.link_up;
bnx2x_nic_unload(bp, UNLOAD_NORMAL);
bnx2x_nic_load(bp, LOAD_DIAG);
/* wait until link state is restored */
bnx2x_wait_for_link(bp, 1, is_serdes);
if (bnx2x_test_registers(bp) != 0) {
buf[0] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2x_test_memory(bp) != 0) {
buf[1] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
buf[2] = bnx2x_test_loopback(bp);
if (buf[2] != 0)
etest->flags |= ETH_TEST_FL_FAILED;
bnx2x_nic_unload(bp, UNLOAD_NORMAL);
/* restore input for TX port IF */
REG_WR(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4, val);
bnx2x_nic_load(bp, LOAD_NORMAL);
/* wait until link state is restored */
bnx2x_wait_for_link(bp, link_up, is_serdes);
}
if (bnx2x_test_nvram(bp) != 0) {
buf[3] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2x_test_intr(bp) != 0) {
buf[4] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2x_link_test(bp, is_serdes) != 0) {
buf[5] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
#ifdef BNX2X_EXTRA_DEBUG
bnx2x_panic_dump(bp);
#endif
}
#define IS_PORT_STAT(i) \
((bnx2x_stats_arr[i].flags & STATS_FLAGS_BOTH) == STATS_FLAGS_PORT)
#define IS_FUNC_STAT(i) (bnx2x_stats_arr[i].flags & STATS_FLAGS_FUNC)
#define IS_MF_MODE_STAT(bp) \
(IS_MF(bp) && !(bp->msg_enable & BNX2X_MSG_STATS))
/* ethtool statistics are displayed for all regular ethernet queues and the
* fcoe L2 queue if not disabled
*/
static inline int bnx2x_num_stat_queues(struct bnx2x *bp)
{
return BNX2X_NUM_ETH_QUEUES(bp);
}
static int bnx2x_get_sset_count(struct net_device *dev, int stringset)
{
struct bnx2x *bp = netdev_priv(dev);
int i, num_stats;
switch (stringset) {
case ETH_SS_STATS:
if (is_multi(bp)) {
num_stats = bnx2x_num_stat_queues(bp) *
BNX2X_NUM_Q_STATS;
if (!IS_MF_MODE_STAT(bp))
num_stats += BNX2X_NUM_STATS;
} else {
if (IS_MF_MODE_STAT(bp)) {
num_stats = 0;
for (i = 0; i < BNX2X_NUM_STATS; i++)
if (IS_FUNC_STAT(i))
num_stats++;
} else
num_stats = BNX2X_NUM_STATS;
}
return num_stats;
case ETH_SS_TEST:
return BNX2X_NUM_TESTS;
default:
return -EINVAL;
}
}
static void bnx2x_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
struct bnx2x *bp = netdev_priv(dev);
int i, j, k;
char queue_name[MAX_QUEUE_NAME_LEN+1];
switch (stringset) {
case ETH_SS_STATS:
if (is_multi(bp)) {
k = 0;
for_each_eth_queue(bp, i) {
memset(queue_name, 0, sizeof(queue_name));
sprintf(queue_name, "%d", i);
for (j = 0; j < BNX2X_NUM_Q_STATS; j++)
snprintf(buf + (k + j)*ETH_GSTRING_LEN,
ETH_GSTRING_LEN,
bnx2x_q_stats_arr[j].string,
queue_name);
k += BNX2X_NUM_Q_STATS;
}
if (IS_MF_MODE_STAT(bp))
break;
for (j = 0; j < BNX2X_NUM_STATS; j++)
strcpy(buf + (k + j)*ETH_GSTRING_LEN,
bnx2x_stats_arr[j].string);
} else {
for (i = 0, j = 0; i < BNX2X_NUM_STATS; i++) {
if (IS_MF_MODE_STAT(bp) && IS_PORT_STAT(i))
continue;
strcpy(buf + j*ETH_GSTRING_LEN,
bnx2x_stats_arr[i].string);
j++;
}
}
break;
case ETH_SS_TEST:
memcpy(buf, bnx2x_tests_str_arr, sizeof(bnx2x_tests_str_arr));
break;
}
}
static void bnx2x_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *buf)
{
struct bnx2x *bp = netdev_priv(dev);
u32 *hw_stats, *offset;
int i, j, k;
if (is_multi(bp)) {
k = 0;
for_each_eth_queue(bp, i) {
hw_stats = (u32 *)&bp->fp[i].eth_q_stats;
for (j = 0; j < BNX2X_NUM_Q_STATS; j++) {
if (bnx2x_q_stats_arr[j].size == 0) {
/* skip this counter */
buf[k + j] = 0;
continue;
}
offset = (hw_stats +
bnx2x_q_stats_arr[j].offset);
if (bnx2x_q_stats_arr[j].size == 4) {
/* 4-byte counter */
buf[k + j] = (u64) *offset;
continue;
}
/* 8-byte counter */
buf[k + j] = HILO_U64(*offset, *(offset + 1));
}
k += BNX2X_NUM_Q_STATS;
}
if (IS_MF_MODE_STAT(bp))
return;
hw_stats = (u32 *)&bp->eth_stats;
for (j = 0; j < BNX2X_NUM_STATS; j++) {
if (bnx2x_stats_arr[j].size == 0) {
/* skip this counter */
buf[k + j] = 0;
continue;
}
offset = (hw_stats + bnx2x_stats_arr[j].offset);
if (bnx2x_stats_arr[j].size == 4) {
/* 4-byte counter */
buf[k + j] = (u64) *offset;
continue;
}
/* 8-byte counter */
buf[k + j] = HILO_U64(*offset, *(offset + 1));
}
} else {
hw_stats = (u32 *)&bp->eth_stats;
for (i = 0, j = 0; i < BNX2X_NUM_STATS; i++) {
if (IS_MF_MODE_STAT(bp) && IS_PORT_STAT(i))
continue;
if (bnx2x_stats_arr[i].size == 0) {
/* skip this counter */
buf[j] = 0;
j++;
continue;
}
offset = (hw_stats + bnx2x_stats_arr[i].offset);
if (bnx2x_stats_arr[i].size == 4) {
/* 4-byte counter */
buf[j] = (u64) *offset;
j++;
continue;
}
/* 8-byte counter */
buf[j] = HILO_U64(*offset, *(offset + 1));
j++;
}
}
}
static int bnx2x_set_phys_id(struct net_device *dev,
enum ethtool_phys_id_state state)
{
struct bnx2x *bp = netdev_priv(dev);
if (!netif_running(dev))
return -EAGAIN;
if (!bp->port.pmf)
return -EOPNOTSUPP;
switch (state) {
case ETHTOOL_ID_ACTIVE:
ethtool: allow custom interval for physical identification When physical identification of an adapter is done by toggling the mechanism on and off through software utilizing the set_phys_id operation, it is done with a fixed duration for both on and off states. Some drivers may want to set a custom duration for the on/off intervals. This patch changes the API so the return code from the driver's entry point when it is called with ETHTOOL_ID_ACTIVE can specify the frequency at which to cycle the on/off states, and updates the drivers that have already been converted to use the new set_phys_id and use the synchronous method for identifying an adapter. The physical identification frequency set in the updated drivers is based on how it was done prior to the introduction of set_phys_id. Compile tested only. Also fixes a compiler warning in sfc. v2: drivers do not return -EINVAL for ETHOOL_ID_ACTIVE v3: fold patchset into single patch and cleanup per Ben's feedback Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Sathya Perla <sathya.perla@emulex.com> Cc: Subbu Seetharaman <subbu.seetharaman@emulex.com> Cc: Ajit Khaparde <ajit.khaparde@emulex.com> Cc: Michael Chan <mchan@broadcom.com> Cc: Eilon Greenstein <eilong@broadcom.com> Cc: Divy Le Ray <divy@chelsio.com> Cc: Don Fry <pcnet32@frontier.com> Cc: Jon Mason <jdmason@kudzu.us> Cc: Solarflare linux maintainers <linux-net-drivers@solarflare.com> Cc: Steve Hodgson <shodgson@solarflare.com> Cc: Stephen Hemminger <shemminger@linux-foundation.org> Cc: Matt Carlson <mcarlson@broadcom.com> Acked-by: Jon Mason <jdmason@kudzu.us> Acked-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-13 21:09:10 +08:00
return 1; /* cycle on/off once per second */
case ETHTOOL_ID_ON:
bnx2x_set_led(&bp->link_params, &bp->link_vars,
LED_MODE_ON, SPEED_1000);
break;
case ETHTOOL_ID_OFF:
bnx2x_set_led(&bp->link_params, &bp->link_vars,
LED_MODE_FRONT_PANEL_OFF, 0);
break;
case ETHTOOL_ID_INACTIVE:
bnx2x_set_led(&bp->link_params, &bp->link_vars,
LED_MODE_OPER,
bp->link_vars.line_speed);
}
return 0;
}
static int bnx2x_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
u32 *rules __always_unused)
{
struct bnx2x *bp = netdev_priv(dev);
switch (info->cmd) {
case ETHTOOL_GRXRINGS:
info->data = BNX2X_NUM_ETH_QUEUES(bp);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int bnx2x_get_rxfh_indir(struct net_device *dev,
struct ethtool_rxfh_indir *indir)
{
struct bnx2x *bp = netdev_priv(dev);
size_t copy_size =
min_t(size_t, indir->size, T_ETH_INDIRECTION_TABLE_SIZE);
u8 ind_table[T_ETH_INDIRECTION_TABLE_SIZE] = {0};
size_t i;
if (bp->multi_mode == ETH_RSS_MODE_DISABLED)
return -EOPNOTSUPP;
/* Get the current configuration of the RSS indirection table */
bnx2x_get_rss_ind_table(&bp->rss_conf_obj, ind_table);
/*
* We can't use a memcpy() as an internal storage of an
* indirection table is a u8 array while indir->ring_index
* points to an array of u32.
*
* Indirection table contains the FW Client IDs, so we need to
* align the returned table to the Client ID of the leading RSS
* queue.
*/
for (i = 0; i < copy_size; i++)
indir->ring_index[i] = ind_table[i] - bp->fp->cl_id;
indir->size = T_ETH_INDIRECTION_TABLE_SIZE;
return 0;
}
static int bnx2x_set_rxfh_indir(struct net_device *dev,
const struct ethtool_rxfh_indir *indir)
{
struct bnx2x *bp = netdev_priv(dev);
size_t i;
u8 ind_table[T_ETH_INDIRECTION_TABLE_SIZE] = {0};
u32 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
if (bp->multi_mode == ETH_RSS_MODE_DISABLED)
return -EOPNOTSUPP;
/* validate the size */
if (indir->size != T_ETH_INDIRECTION_TABLE_SIZE)
return -EINVAL;
for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
/* validate the indices */
if (indir->ring_index[i] >= num_eth_queues)
return -EINVAL;
/*
* The same as in bnx2x_get_rxfh_indir: we can't use a memcpy()
* as an internal storage of an indirection table is a u8 array
* while indir->ring_index points to an array of u32.
*
* Indirection table contains the FW Client IDs, so we need to
* align the received table to the Client ID of the leading RSS
* queue
*/
ind_table[i] = indir->ring_index[i] + bp->fp->cl_id;
}
return bnx2x_config_rss_pf(bp, ind_table, false);
}
static const struct ethtool_ops bnx2x_ethtool_ops = {
.get_settings = bnx2x_get_settings,
.set_settings = bnx2x_set_settings,
.get_drvinfo = bnx2x_get_drvinfo,
.get_regs_len = bnx2x_get_regs_len,
.get_regs = bnx2x_get_regs,
.get_wol = bnx2x_get_wol,
.set_wol = bnx2x_set_wol,
.get_msglevel = bnx2x_get_msglevel,
.set_msglevel = bnx2x_set_msglevel,
.nway_reset = bnx2x_nway_reset,
.get_link = bnx2x_get_link,
.get_eeprom_len = bnx2x_get_eeprom_len,
.get_eeprom = bnx2x_get_eeprom,
.set_eeprom = bnx2x_set_eeprom,
.get_coalesce = bnx2x_get_coalesce,
.set_coalesce = bnx2x_set_coalesce,
.get_ringparam = bnx2x_get_ringparam,
.set_ringparam = bnx2x_set_ringparam,
.get_pauseparam = bnx2x_get_pauseparam,
.set_pauseparam = bnx2x_set_pauseparam,
.self_test = bnx2x_self_test,
.get_sset_count = bnx2x_get_sset_count,
.get_strings = bnx2x_get_strings,
.set_phys_id = bnx2x_set_phys_id,
.get_ethtool_stats = bnx2x_get_ethtool_stats,
.get_rxnfc = bnx2x_get_rxnfc,
.get_rxfh_indir = bnx2x_get_rxfh_indir,
.set_rxfh_indir = bnx2x_set_rxfh_indir,
};
void bnx2x_set_ethtool_ops(struct net_device *netdev)
{
SET_ETHTOOL_OPS(netdev, &bnx2x_ethtool_ops);
}