License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
# SPDX-License-Identifier: GPL-2.0
|
2005-09-26 14:04:21 +08:00
|
|
|
#
|
|
|
|
# Makefile for the linux kernel.
|
|
|
|
#
|
|
|
|
|
2018-08-07 00:42:03 +08:00
|
|
|
ifdef CONFIG_PPC64
|
2012-11-27 01:41:08 +08:00
|
|
|
CFLAGS_prom_init.o += $(NO_MINIMAL_TOC)
|
2005-09-30 11:51:25 +08:00
|
|
|
endif
|
2018-08-07 00:42:03 +08:00
|
|
|
ifdef CONFIG_PPC32
|
2005-10-06 10:06:20 +08:00
|
|
|
CFLAGS_prom_init.o += -fPIC
|
2005-10-06 11:24:50 +08:00
|
|
|
CFLAGS_btext.o += -fPIC
|
2005-09-30 14:16:52 +08:00
|
|
|
endif
|
2005-10-06 10:06:20 +08:00
|
|
|
|
2021-12-22 21:07:31 +08:00
|
|
|
CFLAGS_early_32.o += $(DISABLE_LATENT_ENTROPY_PLUGIN)
|
gcc-plugins: Add latent_entropy plugin
This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.
The need for very-early boot entropy tends to be very architecture or
system design specific, so this plugin is more suited for those sorts
of special cases. The existing kernel RNG already attempts to extract
entropy from reliable runtime variation, but this plugin takes the idea to
a logical extreme by permuting a global variable based on any variation
in code execution (e.g. a different value (and permutation function)
is used to permute the global based on loop count, case statement,
if/then/else branching, etc).
To do this, the plugin starts by inserting a local variable in every
marked function. The plugin then adds logic so that the value of this
variable is modified by randomly chosen operations (add, xor and rol) and
random values (gcc generates separate static values for each location at
compile time and also injects the stack pointer at runtime). The resulting
value depends on the control flow path (e.g., loops and branches taken).
Before the function returns, the plugin mixes this local variable into
the latent_entropy global variable. The value of this global variable
is added to the kernel entropy pool in do_one_initcall() and _do_fork(),
though it does not credit any bytes of entropy to the pool; the contents
of the global are just used to mix the pool.
Additionally, the plugin can pre-initialize arrays with build-time
random contents, so that two different kernel builds running on identical
hardware will not have the same starting values.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message and code comments]
Signed-off-by: Kees Cook <keescook@chromium.org>
2016-06-21 02:41:19 +08:00
|
|
|
CFLAGS_cputable.o += $(DISABLE_LATENT_ENTROPY_PLUGIN)
|
2016-12-06 14:27:59 +08:00
|
|
|
CFLAGS_prom_init.o += $(DISABLE_LATENT_ENTROPY_PLUGIN)
|
gcc-plugins: Add latent_entropy plugin
This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.
The need for very-early boot entropy tends to be very architecture or
system design specific, so this plugin is more suited for those sorts
of special cases. The existing kernel RNG already attempts to extract
entropy from reliable runtime variation, but this plugin takes the idea to
a logical extreme by permuting a global variable based on any variation
in code execution (e.g. a different value (and permutation function)
is used to permute the global based on loop count, case statement,
if/then/else branching, etc).
To do this, the plugin starts by inserting a local variable in every
marked function. The plugin then adds logic so that the value of this
variable is modified by randomly chosen operations (add, xor and rol) and
random values (gcc generates separate static values for each location at
compile time and also injects the stack pointer at runtime). The resulting
value depends on the control flow path (e.g., loops and branches taken).
Before the function returns, the plugin mixes this local variable into
the latent_entropy global variable. The value of this global variable
is added to the kernel entropy pool in do_one_initcall() and _do_fork(),
though it does not credit any bytes of entropy to the pool; the contents
of the global are just used to mix the pool.
Additionally, the plugin can pre-initialize arrays with build-time
random contents, so that two different kernel builds running on identical
hardware will not have the same starting values.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message and code comments]
Signed-off-by: Kees Cook <keescook@chromium.org>
2016-06-21 02:41:19 +08:00
|
|
|
CFLAGS_btext.o += $(DISABLE_LATENT_ENTROPY_PLUGIN)
|
|
|
|
CFLAGS_prom.o += $(DISABLE_LATENT_ENTROPY_PLUGIN)
|
|
|
|
|
2020-06-27 02:59:12 +08:00
|
|
|
CFLAGS_prom_init.o += -fno-stack-protector
|
2019-11-06 10:30:25 +08:00
|
|
|
CFLAGS_prom_init.o += -DDISABLE_BRANCH_PROFILING
|
2019-11-19 12:57:12 +08:00
|
|
|
CFLAGS_prom_init.o += -ffreestanding
|
2022-07-18 21:44:18 +08:00
|
|
|
CFLAGS_prom_init.o += $(call cc-option, -ftrivial-auto-var-init=uninitialized)
|
2018-09-27 15:05:53 +08:00
|
|
|
|
2008-10-07 07:06:12 +08:00
|
|
|
ifdef CONFIG_FUNCTION_TRACER
|
2008-05-15 11:49:44 +08:00
|
|
|
# Do not trace early boot code
|
2018-09-14 13:08:53 +08:00
|
|
|
CFLAGS_REMOVE_cputable.o = $(CC_FLAGS_FTRACE)
|
|
|
|
CFLAGS_REMOVE_prom_init.o = $(CC_FLAGS_FTRACE)
|
|
|
|
CFLAGS_REMOVE_btext.o = $(CC_FLAGS_FTRACE)
|
|
|
|
CFLAGS_REMOVE_prom.o = $(CC_FLAGS_FTRACE)
|
2008-05-15 11:49:44 +08:00
|
|
|
endif
|
|
|
|
|
2019-04-27 00:23:33 +08:00
|
|
|
KASAN_SANITIZE_early_32.o := n
|
|
|
|
KASAN_SANITIZE_cputable.o := n
|
|
|
|
KASAN_SANITIZE_prom_init.o := n
|
|
|
|
KASAN_SANITIZE_btext.o := n
|
powerpc: Book3S 64-bit outline-only KASAN support
Implement a limited form of KASAN for Book3S 64-bit machines running under
the Radix MMU, supporting only outline mode.
- Enable the compiler instrumentation to check addresses and maintain the
shadow region. (This is the guts of KASAN which we can easily reuse.)
- Require kasan-vmalloc support to handle modules and anything else in
vmalloc space.
- KASAN needs to be able to validate all pointer accesses, but we can't
instrument all kernel addresses - only linear map and vmalloc. On boot,
set up a single page of read-only shadow that marks all iomap and
vmemmap accesses as valid.
- Document KASAN in powerpc docs.
Background
----------
KASAN support on Book3S is a bit tricky to get right:
- It would be good to support inline instrumentation so as to be able to
catch stack issues that cannot be caught with outline mode.
- Inline instrumentation requires a fixed offset.
- Book3S runs code with translations off ("real mode") during boot,
including a lot of generic device-tree parsing code which is used to
determine MMU features.
[ppc64 mm note: The kernel installs a linear mapping at effective
address c000...-c008.... This is a one-to-one mapping with physical
memory from 0000... onward. Because of how memory accesses work on
powerpc 64-bit Book3S, a kernel pointer in the linear map accesses the
same memory both with translations on (accessing as an 'effective
address'), and with translations off (accessing as a 'real
address'). This works in both guests and the hypervisor. For more
details, see s5.7 of Book III of version 3 of the ISA, in particular
the Storage Control Overview, s5.7.3, and s5.7.5 - noting that this
KASAN implementation currently only supports Radix.]
- Some code - most notably a lot of KVM code - also runs with translations
off after boot.
- Therefore any offset has to point to memory that is valid with
translations on or off.
One approach is just to give up on inline instrumentation. This way
boot-time checks can be delayed until after the MMU is set is up, and we
can just not instrument any code that runs with translations off after
booting. Take this approach for now and require outline instrumentation.
Previous attempts allowed inline instrumentation. However, they came with
some unfortunate restrictions: only physically contiguous memory could be
used and it had to be specified at compile time. Maybe we can do better in
the future.
[paulus@ozlabs.org - Rebased onto 5.17. Note that a kernel with
CONFIG_KASAN=y will crash during boot on a machine using HPT
translation because not all the entry points to the generic
KASAN code are protected with a call to kasan_arch_is_ready().]
Originally-by: Balbir Singh <bsingharora@gmail.com> # ppc64 out-of-line radix version
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Update copyright year and comment formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/YoTE69OQwiG7z+Gu@cleo
2022-05-18 18:05:31 +08:00
|
|
|
KASAN_SANITIZE_paca.o := n
|
|
|
|
KASAN_SANITIZE_setup_64.o := n
|
|
|
|
KASAN_SANITIZE_mce.o := n
|
|
|
|
KASAN_SANITIZE_mce_power.o := n
|
2022-05-19 15:45:21 +08:00
|
|
|
KASAN_SANITIZE_udbg.o := n
|
|
|
|
KASAN_SANITIZE_udbg_16550.o := n
|
powerpc: Book3S 64-bit outline-only KASAN support
Implement a limited form of KASAN for Book3S 64-bit machines running under
the Radix MMU, supporting only outline mode.
- Enable the compiler instrumentation to check addresses and maintain the
shadow region. (This is the guts of KASAN which we can easily reuse.)
- Require kasan-vmalloc support to handle modules and anything else in
vmalloc space.
- KASAN needs to be able to validate all pointer accesses, but we can't
instrument all kernel addresses - only linear map and vmalloc. On boot,
set up a single page of read-only shadow that marks all iomap and
vmemmap accesses as valid.
- Document KASAN in powerpc docs.
Background
----------
KASAN support on Book3S is a bit tricky to get right:
- It would be good to support inline instrumentation so as to be able to
catch stack issues that cannot be caught with outline mode.
- Inline instrumentation requires a fixed offset.
- Book3S runs code with translations off ("real mode") during boot,
including a lot of generic device-tree parsing code which is used to
determine MMU features.
[ppc64 mm note: The kernel installs a linear mapping at effective
address c000...-c008.... This is a one-to-one mapping with physical
memory from 0000... onward. Because of how memory accesses work on
powerpc 64-bit Book3S, a kernel pointer in the linear map accesses the
same memory both with translations on (accessing as an 'effective
address'), and with translations off (accessing as a 'real
address'). This works in both guests and the hypervisor. For more
details, see s5.7 of Book III of version 3 of the ISA, in particular
the Storage Control Overview, s5.7.3, and s5.7.5 - noting that this
KASAN implementation currently only supports Radix.]
- Some code - most notably a lot of KVM code - also runs with translations
off after boot.
- Therefore any offset has to point to memory that is valid with
translations on or off.
One approach is just to give up on inline instrumentation. This way
boot-time checks can be delayed until after the MMU is set is up, and we
can just not instrument any code that runs with translations off after
booting. Take this approach for now and require outline instrumentation.
Previous attempts allowed inline instrumentation. However, they came with
some unfortunate restrictions: only physically contiguous memory could be
used and it had to be specified at compile time. Maybe we can do better in
the future.
[paulus@ozlabs.org - Rebased onto 5.17. Note that a kernel with
CONFIG_KASAN=y will crash during boot on a machine using HPT
translation because not all the entry points to the generic
KASAN code are protected with a call to kasan_arch_is_ready().]
Originally-by: Balbir Singh <bsingharora@gmail.com> # ppc64 out-of-line radix version
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Update copyright year and comment formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/YoTE69OQwiG7z+Gu@cleo
2022-05-18 18:05:31 +08:00
|
|
|
|
|
|
|
# we have to be particularly careful in ppc64 to exclude code that
|
|
|
|
# runs with translations off, as we cannot access the shadow with
|
|
|
|
# translations off. However, ppc32 can sanitize this.
|
|
|
|
ifdef CONFIG_PPC64
|
|
|
|
KASAN_SANITIZE_traps.o := n
|
|
|
|
endif
|
2019-04-27 00:23:33 +08:00
|
|
|
|
|
|
|
ifdef CONFIG_KASAN
|
|
|
|
CFLAGS_early_32.o += -DDISABLE_BRANCH_PROFILING
|
|
|
|
CFLAGS_cputable.o += -DDISABLE_BRANCH_PROFILING
|
|
|
|
CFLAGS_btext.o += -DDISABLE_BRANCH_PROFILING
|
|
|
|
endif
|
|
|
|
|
2023-02-06 10:17:57 +08:00
|
|
|
KCSAN_SANITIZE_early_32.o := n
|
|
|
|
KCSAN_SANITIZE_early_64.o := n
|
|
|
|
KCSAN_SANITIZE_cputable.o := n
|
|
|
|
KCSAN_SANITIZE_btext.o := n
|
|
|
|
KCSAN_SANITIZE_paca.o := n
|
|
|
|
KCSAN_SANITIZE_setup_64.o := n
|
|
|
|
|
2022-07-01 16:24:35 +08:00
|
|
|
#ifdef CONFIG_RANDOMIZE_KSTACK_OFFSET
|
|
|
|
# Remove stack protector to avoid triggering unneeded stack canary
|
|
|
|
# checks due to randomize_kstack_offset.
|
|
|
|
CFLAGS_REMOVE_syscall.o = -fstack-protector -fstack-protector-strong
|
|
|
|
CFLAGS_syscall.o += -fno-stack-protector
|
|
|
|
#endif
|
|
|
|
|
2020-02-28 08:14:37 +08:00
|
|
|
obj-y := cputable.o syscalls.o \
|
2020-03-20 18:20:16 +08:00
|
|
|
irq.o align.o signal_$(BITS).o pmc.o vdso.o \
|
2012-05-03 17:02:57 +08:00
|
|
|
process.o systbl.o idle.o \
|
2010-11-09 01:31:36 +08:00
|
|
|
signal.o sysfs.o cacheinfo.o time.o \
|
|
|
|
prom.o traps.o setup-common.o \
|
2019-02-13 15:01:30 +08:00
|
|
|
udbg.o misc.o io.o misc_$(BITS).o \
|
2020-09-02 12:29:41 +08:00
|
|
|
of_platform.o prom_parse.o firmware.o \
|
2021-08-12 21:28:31 +08:00
|
|
|
hw_breakpoint_constraints.o interrupt.o \
|
2022-07-01 16:24:34 +08:00
|
|
|
kdebugfs.o stacktrace.o syscall.o
|
2020-02-28 08:14:37 +08:00
|
|
|
obj-y += ptrace/
|
2022-05-18 15:40:15 +08:00
|
|
|
obj-$(CONFIG_PPC64) += setup_64.o irq_64.o\
|
2021-02-08 23:10:28 +08:00
|
|
|
paca.o nvram_64.o note.o
|
2022-10-12 11:53:34 +08:00
|
|
|
obj-$(CONFIG_PPC32) += sys_ppc32.o
|
2020-03-20 18:20:16 +08:00
|
|
|
obj-$(CONFIG_COMPAT) += sys_ppc32.o signal_32.o
|
2020-12-24 01:11:41 +08:00
|
|
|
obj-$(CONFIG_VDSO32) += vdso32_wrapper.o
|
2017-08-01 20:00:52 +08:00
|
|
|
obj-$(CONFIG_PPC_WATCHDOG) += watchdog.o
|
2010-06-15 14:05:19 +08:00
|
|
|
obj-$(CONFIG_HAVE_HW_BREAKPOINT) += hw_breakpoint.o
|
2019-06-04 11:00:37 +08:00
|
|
|
obj-$(CONFIG_PPC_DAWR) += dawr.o
|
2009-07-24 07:15:59 +08:00
|
|
|
obj-$(CONFIG_PPC_BOOK3S_64) += cpu_setup_ppc970.o cpu_setup_pa6t.o
|
2018-07-28 07:06:34 +08:00
|
|
|
obj-$(CONFIG_PPC_BOOK3S_64) += cpu_setup_power.o
|
2016-08-11 21:07:43 +08:00
|
|
|
obj-$(CONFIG_PPC_BOOK3S_64) += mce.o mce_power.o
|
2022-09-20 01:01:42 +08:00
|
|
|
obj-$(CONFIG_PPC_BOOK3E_64) += exceptions-64e.o idle_64e.o
|
2018-07-28 07:06:34 +08:00
|
|
|
obj-$(CONFIG_PPC_BARRIER_NOSPEC) += security.o
|
2020-12-24 01:11:41 +08:00
|
|
|
obj-$(CONFIG_PPC64) += vdso64_wrapper.o
|
2009-06-03 05:17:37 +08:00
|
|
|
obj-$(CONFIG_ALTIVEC) += vecemu.o
|
2019-07-11 10:24:03 +08:00
|
|
|
obj-$(CONFIG_PPC_BOOK3S_IDLE) += idle_book3s.o
|
2009-09-25 03:29:13 +08:00
|
|
|
procfs-y := proc_powerpc.o
|
2005-11-10 12:26:20 +08:00
|
|
|
obj-$(CONFIG_PROC_FS) += $(procfs-y)
|
2007-03-04 14:04:44 +08:00
|
|
|
rtaspci-$(CONFIG_PPC64)-$(CONFIG_PCI) := rtas_pci.o
|
2022-03-08 21:50:34 +08:00
|
|
|
obj-$(CONFIG_PPC_RTAS) += rtas_entry.o rtas.o rtas-rtc.o $(rtaspci-y-y)
|
2009-09-25 03:30:05 +08:00
|
|
|
obj-$(CONFIG_PPC_RTAS_DAEMON) += rtasd.o
|
2005-11-03 11:41:19 +08:00
|
|
|
obj-$(CONFIG_RTAS_FLASH) += rtas_flash.o
|
|
|
|
obj-$(CONFIG_RTAS_PROC) += rtas-proc.o
|
2017-05-09 11:16:52 +08:00
|
|
|
obj-$(CONFIG_PPC_DT_CPU_FTRS) += dt_cpu_ftrs.o
|
2020-07-25 16:12:19 +08:00
|
|
|
obj-$(CONFIG_EEH) += eeh.o eeh_pe.o eeh_cache.o \
|
2013-06-20 13:20:52 +08:00
|
|
|
eeh_driver.o eeh_event.o eeh_sysfs.o
|
2005-11-04 10:28:58 +08:00
|
|
|
obj-$(CONFIG_GENERIC_TBSYNC) += smp-tbsync.o
|
2005-12-04 15:39:37 +08:00
|
|
|
obj-$(CONFIG_CRASH_DUMP) += crash_dump.o
|
2019-10-09 23:27:20 +08:00
|
|
|
obj-$(CONFIG_FA_DUMP) += fadump.o
|
|
|
|
obj-$(CONFIG_PRESERVE_FA_DUMP) += fadump.o
|
2022-09-20 01:01:42 +08:00
|
|
|
obj-$(CONFIG_PPC_85xx) += idle_85xx.o
|
2018-11-17 18:24:56 +08:00
|
|
|
obj-$(CONFIG_PPC_BOOK3S_32) += idle_6xx.o l2cr_6xx.o cpu_setup_6xx.o
|
2006-03-27 16:15:26 +08:00
|
|
|
obj-$(CONFIG_TAU) += tau_6xx.o
|
2010-05-18 02:56:52 +08:00
|
|
|
obj-$(CONFIG_HIBERNATION) += swsusp.o suspend.o
|
2022-09-20 01:01:31 +08:00
|
|
|
ifdef CONFIG_PPC_85xx
|
|
|
|
obj-$(CONFIG_HIBERNATION) += swsusp_85xx.o
|
2010-05-18 02:56:52 +08:00
|
|
|
else
|
2016-08-11 14:03:14 +08:00
|
|
|
obj-$(CONFIG_HIBERNATION) += swsusp_$(BITS).o
|
2010-05-18 02:56:52 +08:00
|
|
|
endif
|
2007-09-21 08:16:20 +08:00
|
|
|
obj64-$(CONFIG_HIBERNATION) += swsusp_asm64.o
|
2016-08-11 14:03:14 +08:00
|
|
|
obj-$(CONFIG_MODULES) += module.o module_$(BITS).o
|
2007-10-04 09:02:09 +08:00
|
|
|
obj-$(CONFIG_44x) += cpu_setup_44x.o
|
2022-09-20 01:01:38 +08:00
|
|
|
obj-$(CONFIG_PPC_E500) += cpu_setup_e500.o
|
2012-11-15 02:49:49 +08:00
|
|
|
obj-$(CONFIG_PPC_DOORBELL) += dbell.o
|
2011-06-30 03:16:59 +08:00
|
|
|
obj-$(CONFIG_JUMP_LABEL) += jump_label.o
|
2005-10-10 20:50:37 +08:00
|
|
|
|
2022-09-25 02:19:14 +08:00
|
|
|
obj-$(CONFIG_PPC64) += head_64.o
|
|
|
|
obj-$(CONFIG_PPC_BOOK3S_32) += head_book3s_32.o
|
|
|
|
obj-$(CONFIG_40x) += head_40x.o
|
|
|
|
obj-$(CONFIG_44x) += head_44x.o
|
|
|
|
obj-$(CONFIG_PPC_8xx) += head_8xx.o
|
2022-10-11 11:59:10 +08:00
|
|
|
obj-$(CONFIG_PPC_85xx) += head_85xx.o
|
2005-09-26 14:04:21 +08:00
|
|
|
extra-y += vmlinux.lds
|
|
|
|
|
2016-08-11 14:03:14 +08:00
|
|
|
obj-$(CONFIG_RELOCATABLE) += reloc_$(BITS).o
|
2011-12-15 06:58:12 +08:00
|
|
|
|
powerpc/32: Add support for out-of-line static calls
Add support for out-of-line static calls on PPC32. This change
improve performance of calls to global function pointers by
using direct calls instead of indirect calls.
The trampoline is initialy populated with a 'blr' or branch to target,
followed by an unreachable long jump sequence.
In order to cater with parallele execution, the trampoline needs to
be updated in a way that ensures it remains consistent at all time.
This means we can't use the traditional lis/addi to load r12 with
the target address, otherwise there would be a window during which
the first instruction contains the upper part of the new target
address while the second instruction still contains the lower part of
the old target address. To avoid that the target address is stored
just after the 'bctr' and loaded from there with a single instruction.
Then, depending on the target distance, arch_static_call_transform()
will either replace the first instruction by a direct 'bl <target>' or
'nop' in order to have the trampoline fall through the long jump
sequence.
For the special case of __static_call_return0(), to avoid the risk of
a far branch, a version of it is inlined at the end of the trampoline.
Performancewise the long jump sequence is probably not better than
the indirect calls set by GCC when we don't use static calls, but
such calls are unlikely to be required on powerpc32: With most
configurations the kernel size is far below 32 Mbytes so only
modules may happen to be too far. And even modules are likely to
be close enough as they are allocated below the kernel core and
as close as possible of the kernel text.
static_call selftest is running successfully with this change.
With this patch, __do_irq() has the following sequence to trace
irq entries:
c0004a00 <__SCT__tp_func_irq_entry>:
c0004a00: 48 00 00 e0 b c0004ae0 <__traceiter_irq_entry>
c0004a04: 3d 80 c0 00 lis r12,-16384
c0004a08: 81 8c 4a 1c lwz r12,18972(r12)
c0004a0c: 7d 89 03 a6 mtctr r12
c0004a10: 4e 80 04 20 bctr
c0004a14: 38 60 00 00 li r3,0
c0004a18: 4e 80 00 20 blr
c0004a1c: 00 00 00 00 .long 0x0
...
c0005654 <__do_irq>:
...
c0005664: 7c 7f 1b 78 mr r31,r3
...
c00056a0: 81 22 00 00 lwz r9,0(r2)
c00056a4: 39 29 00 01 addi r9,r9,1
c00056a8: 91 22 00 00 stw r9,0(r2)
c00056ac: 3d 20 c0 af lis r9,-16209
c00056b0: 81 29 74 cc lwz r9,29900(r9)
c00056b4: 2c 09 00 00 cmpwi r9,0
c00056b8: 41 82 00 10 beq c00056c8 <__do_irq+0x74>
c00056bc: 80 69 00 04 lwz r3,4(r9)
c00056c0: 7f e4 fb 78 mr r4,r31
c00056c4: 4b ff f3 3d bl c0004a00 <__SCT__tp_func_irq_entry>
Before this patch, __do_irq() was doing the following to trace irq
entries:
c0005700 <__do_irq>:
...
c0005710: 7c 7e 1b 78 mr r30,r3
...
c000574c: 93 e1 00 0c stw r31,12(r1)
c0005750: 81 22 00 00 lwz r9,0(r2)
c0005754: 39 29 00 01 addi r9,r9,1
c0005758: 91 22 00 00 stw r9,0(r2)
c000575c: 3d 20 c0 af lis r9,-16209
c0005760: 83 e9 f4 cc lwz r31,-2868(r9)
c0005764: 2c 1f 00 00 cmpwi r31,0
c0005768: 41 82 00 24 beq c000578c <__do_irq+0x8c>
c000576c: 81 3f 00 00 lwz r9,0(r31)
c0005770: 80 7f 00 04 lwz r3,4(r31)
c0005774: 7d 29 03 a6 mtctr r9
c0005778: 7f c4 f3 78 mr r4,r30
c000577c: 4e 80 04 21 bctrl
c0005780: 85 3f 00 0c lwzu r9,12(r31)
c0005784: 2c 09 00 00 cmpwi r9,0
c0005788: 40 82 ff e4 bne c000576c <__do_irq+0x6c>
Behind the fact of now using a direct 'bl' instead of a
'load/mtctr/bctr' sequence, we can also see that we get one less
register on the stack.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/6ec2a7865ed6a5ec54ab46d026785bafe1d837ea.1630484892.git.christophe.leroy@csgroup.eu
2021-09-01 16:30:21 +08:00
|
|
|
obj-$(CONFIG_PPC32) += entry_32.o setup_32.o early_32.o static_call.o
|
powerpc: Merge 32 and 64-bit dma code
We essentially adopt the 64-bit dma code, with some changes to support
32-bit systems, including HIGHMEM. dma functions on 32-bit are now
invoked via accessor functions which call the correct op for a device based
on archdata dma_ops. If there is no archdata dma_ops, this defaults
to dma_direct_ops.
In addition, the dma_map/unmap_page functions are added to dma_ops
because we can't just fall back on map/unmap_single when HIGHMEM is
enabled. In the case of dma_direct_*, we stop using map/unmap_single
and just use the page version - this saves a lot of ugly
ifdeffing. We leave map/unmap_single in the dma_ops definition,
though, because they are needed by the iommu code, which does not
implement map/unmap_page. Ideally, going forward, we will completely
eliminate map/unmap_single and just have map/unmap_page, if it's
workable for 64-bit.
Signed-off-by: Becky Bruce <becky.bruce@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2008-09-12 18:34:46 +08:00
|
|
|
obj-$(CONFIG_PPC64) += dma-iommu.o iommu.o
|
2008-07-24 00:30:15 +08:00
|
|
|
obj-$(CONFIG_KGDB) += kgdb.o
|
2005-10-06 10:06:20 +08:00
|
|
|
obj-$(CONFIG_BOOTX_TEXT) += btext.o
|
2005-11-05 07:33:55 +08:00
|
|
|
obj-$(CONFIG_SMP) += smp.o
|
2005-11-14 14:30:17 +08:00
|
|
|
obj-$(CONFIG_KPROBES) += kprobes.o
|
2017-02-08 17:50:51 +08:00
|
|
|
obj-$(CONFIG_OPTPROBES) += optprobes.o optprobes_head.o
|
2017-04-19 20:52:26 +08:00
|
|
|
obj-$(CONFIG_KPROBES_ON_FTRACE) += kprobes-ftrace.o
|
2012-08-24 05:31:32 +08:00
|
|
|
obj-$(CONFIG_UPROBES) += uprobes.o
|
2006-01-10 13:19:05 +08:00
|
|
|
obj-$(CONFIG_PPC_UDBG_16550) += legacy_serial.o udbg_16550.o
|
2009-05-14 20:42:28 +08:00
|
|
|
obj-$(CONFIG_SWIOTLB) += dma-swiotlb.o
|
2019-02-13 15:01:22 +08:00
|
|
|
obj-$(CONFIG_ARCH_HAS_DMA_SET_MASK) += dma-mask.o
|
2006-11-11 14:24:53 +08:00
|
|
|
|
2013-06-20 13:20:52 +08:00
|
|
|
pci64-$(CONFIG_PPC64) += pci_dn.o pci-hotplug.o isa-bridge.o
|
2016-08-11 14:03:14 +08:00
|
|
|
obj-$(CONFIG_PCI) += pci_$(BITS).o $(pci64-y) \
|
2009-08-26 04:07:11 +08:00
|
|
|
pci-common.o pci_of_scan.o
|
2007-05-08 10:58:34 +08:00
|
|
|
obj-$(CONFIG_PCI_MSI) += msi.o
|
powerpc: ima: get the kexec buffer passed by the previous kernel
Patch series "ima: carry the measurement list across kexec", v8.
The TPM PCRs are only reset on a hard reboot. In order to validate a
TPM's quote after a soft reboot (eg. kexec -e), the IMA measurement
list of the running kernel must be saved and then restored on the
subsequent boot, possibly of a different architecture.
The existing securityfs binary_runtime_measurements file conveniently
provides a serialized format of the IMA measurement list. This patch
set serializes the measurement list in this format and restores it.
Up to now, the binary_runtime_measurements was defined as architecture
native format. The assumption being that userspace could and would
handle any architecture conversions. With the ability of carrying the
measurement list across kexec, possibly from one architecture to a
different one, the per boot architecture information is lost and with it
the ability of recalculating the template digest hash. To resolve this
problem, without breaking the existing ABI, this patch set introduces
the boot command line option "ima_canonical_fmt", which is arbitrarily
defined as little endian.
The need for this boot command line option will be limited to the
existing version 1 format of the binary_runtime_measurements.
Subsequent formats will be defined as canonical format (eg. TPM 2.0
support for larger digests).
A simplified method of Thiago Bauermann's "kexec buffer handover" patch
series for carrying the IMA measurement list across kexec is included in
this patch set. The simplified method requires all file measurements be
taken prior to executing the kexec load, as subsequent measurements will
not be carried across the kexec and restored.
This patch (of 10):
The IMA kexec buffer allows the currently running kernel to pass the
measurement list via a kexec segment to the kernel that will be kexec'd.
The second kernel can check whether the previous kernel sent the buffer
and retrieve it.
This is the architecture-specific part which enables IMA to receive the
measurement list passed by the previous kernel. It will be used in the
next patch.
The change in machine_kexec_64.c is to factor out the logic of removing
an FDT memory reservation so that it can be used by remove_ima_buffer.
Link: http://lkml.kernel.org/r/1480554346-29071-2-git-send-email-zohar@linux.vnet.ibm.com
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Andreas Steffen <andreas.steffen@strongswan.org>
Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com>
Cc: Josh Sklar <sklar@linux.vnet.ibm.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-20 08:22:32 +08:00
|
|
|
|
2021-10-27 19:29:31 +08:00
|
|
|
obj-$(CONFIG_AUDIT) += audit.o
|
|
|
|
obj64-$(CONFIG_AUDIT) += compat_audit.o
|
|
|
|
|
2011-04-12 05:25:01 +08:00
|
|
|
obj-$(CONFIG_PPC_IO_WORKAROUNDS) += io-workarounds.o
|
|
|
|
|
2017-04-25 21:55:53 +08:00
|
|
|
obj-y += trace/
|
2010-02-26 08:09:45 +08:00
|
|
|
|
2013-07-15 11:03:08 +08:00
|
|
|
ifneq ($(CONFIG_PPC_INDIRECT_PIO),y)
|
2006-11-13 06:27:39 +08:00
|
|
|
obj-y += iomap.o
|
[POWERPC] Allow hooking of PCI MMIO & PIO accessors on 64 bits
This patch reworks the way iSeries hooks on PCI IO operations (both MMIO
and PIO) and provides a generic way for other platforms to do so (we
have need to do that for various other platforms).
While reworking the IO ops, I ended up doing some spring cleaning in
io.h and eeh.h which I might want to split into 2 or 3 patches (among
others, eeh.h had a lot of useless stuff in it).
A side effect is that EEH for PIO should work now (it used to pass IO
ports down to the eeh address check functions which is bogus).
Also, new are MMIO "repeat" ops, which other archs like ARM already had,
and that we have too now: readsb, readsw, readsl, writesb, writesw,
writesl.
In the long run, I might also make EEH use the hooks instead
of wrapping at the toplevel, which would make things even cleaner and
relegate EEH completely in platforms/iseries, but we have to measure the
performance impact there (though it's really only on MMIO reads)
Since I also need to hook on ioremap, I shuffled the functions a bit
there. I introduced ioremap_flags() to use by drivers who want to pass
explicit flags to ioremap (and it can be hooked). The old __ioremap() is
still there as a low level and cannot be hooked, thus drivers who use it
should migrate unless they know they want the low level version.
The patch "arch provides generic iomap missing accessors" (should be
number 4 in this series) is a pre-requisite to provide full iomap
API support with this patch.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-11-11 14:25:10 +08:00
|
|
|
endif
|
|
|
|
|
2013-02-14 00:21:35 +08:00
|
|
|
obj64-$(CONFIG_PPC_TRANSACTIONAL_MEM) += tm.o
|
|
|
|
|
2005-11-18 12:43:34 +08:00
|
|
|
obj-$(CONFIG_PPC64) += $(obj64-y)
|
perf_counter: powerpc: Add processor back-end for MPC7450 family
This adds support for the performance monitor hardware on the
MPC7450 family of processors (7450, 7451, 7455, 7447/7457, 7447A,
7448), used in the later Apple G4 powermacs/powerbooks and other
machines. These machines have 6 hardware counters with a unique
set of events which can be counted on each counter, with some
events being available on multiple counters.
Raw event codes for these processors are (PMC << 8) + PMCSEL.
If PMC is non-zero then the event is that selected by the given
PMCSEL value for that PMC (hardware counter). If PMC is zero
then the event selected is one of the low-numbered ones that are
common to several PMCs. In this case PMCSEL must be <= 22 and
the event is what that PMCSEL value would select on PMC1 (but
it may be placed any other PMC that has the same event for that
PMCSEL value).
For events that count cycles or occurrences that exceed a threshold,
the threshold requested can be specified in the 0x3f000 bits of the
raw event codes. If the event uses the threshold multiplier bit
and that bit should be set, that is indicated with the 0x40000 bit
of the raw event code.
This fills in some of the generic cache events. Unfortunately there
are quite a few blank spaces in the table, partly because these
processors tend to count cache hits rather than cache accesses.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linuxppc-dev@ozlabs.org
Cc: benh@kernel.crashing.org
LKML-Reference: <19000.55631.802122.696927@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-17 19:53:51 +08:00
|
|
|
obj-$(CONFIG_PPC32) += $(obj32-y)
|
2005-11-18 12:43:34 +08:00
|
|
|
|
2017-11-02 14:49:36 +08:00
|
|
|
ifneq ($(CONFIG_XMON)$(CONFIG_KEXEC_CORE)(CONFIG_PPC_BOOK3S),)
|
2008-12-17 18:08:55 +08:00
|
|
|
obj-y += ppc_save_regs.o
|
|
|
|
endif
|
|
|
|
|
2012-03-15 18:52:13 +08:00
|
|
|
obj-$(CONFIG_EPAPR_PARAVIRT) += epapr_paravirt.o epapr_hcalls.o
|
2010-07-29 20:47:57 +08:00
|
|
|
obj-$(CONFIG_KVM_GUEST) += kvm.o kvm_emul.o
|
2019-08-20 10:13:12 +08:00
|
|
|
ifneq ($(CONFIG_PPC_POWERNV)$(CONFIG_PPC_SVM),)
|
|
|
|
obj-y += ucall.o
|
|
|
|
endif
|
2010-07-29 20:47:48 +08:00
|
|
|
|
2019-11-11 11:10:33 +08:00
|
|
|
obj-$(CONFIG_PPC_SECURE_BOOT) += secure_boot.o ima_arch.o secvar-ops.o
|
2019-11-11 11:10:34 +08:00
|
|
|
obj-$(CONFIG_PPC_SECVAR_SYSFS) += secvar-sysfs.o
|
2019-11-06 07:00:22 +08:00
|
|
|
|
2019-02-22 08:40:46 +08:00
|
|
|
# Disable GCOV, KCOV & sanitizers in odd or sensitive code
|
2009-08-10 03:02:51 +08:00
|
|
|
GCOV_PROFILE_prom_init.o := n
|
2019-02-22 08:40:46 +08:00
|
|
|
KCOV_INSTRUMENT_prom_init.o := n
|
2023-02-06 10:17:57 +08:00
|
|
|
KCSAN_SANITIZE_prom_init.o := n
|
2016-01-21 07:00:58 +08:00
|
|
|
UBSAN_SANITIZE_prom_init.o := n
|
2009-08-10 03:02:51 +08:00
|
|
|
GCOV_PROFILE_kprobes.o := n
|
2019-02-22 08:40:46 +08:00
|
|
|
KCOV_INSTRUMENT_kprobes.o := n
|
2023-02-06 10:17:57 +08:00
|
|
|
KCSAN_SANITIZE_kprobes.o := n
|
2016-01-21 07:00:58 +08:00
|
|
|
UBSAN_SANITIZE_kprobes.o := n
|
2017-04-19 20:52:26 +08:00
|
|
|
GCOV_PROFILE_kprobes-ftrace.o := n
|
2019-02-22 08:40:46 +08:00
|
|
|
KCOV_INSTRUMENT_kprobes-ftrace.o := n
|
2023-02-06 10:17:57 +08:00
|
|
|
KCSAN_SANITIZE_kprobes-ftrace.o := n
|
2017-04-19 20:52:26 +08:00
|
|
|
UBSAN_SANITIZE_kprobes-ftrace.o := n
|
2020-05-29 14:14:46 +08:00
|
|
|
GCOV_PROFILE_syscall_64.o := n
|
|
|
|
KCOV_INSTRUMENT_syscall_64.o := n
|
|
|
|
UBSAN_SANITIZE_syscall_64.o := n
|
2016-01-21 07:00:58 +08:00
|
|
|
UBSAN_SANITIZE_vdso.o := n
|
2009-08-10 03:02:51 +08:00
|
|
|
|
2019-02-22 08:40:46 +08:00
|
|
|
# Necessary for booting with kcov enabled on book3e machines
|
|
|
|
KCOV_INSTRUMENT_cputable.o := n
|
|
|
|
KCOV_INSTRUMENT_setup_64.o := n
|
|
|
|
KCOV_INSTRUMENT_paca.o := n
|
|
|
|
|
2020-10-28 16:04:33 +08:00
|
|
|
CFLAGS_setup_64.o += -fno-stack-protector
|
|
|
|
CFLAGS_paca.o += -fno-stack-protector
|
|
|
|
|
2022-09-25 02:19:14 +08:00
|
|
|
obj-$(CONFIG_PPC_FPU) += fpu.o
|
|
|
|
obj-$(CONFIG_ALTIVEC) += vector.o
|
|
|
|
obj-$(CONFIG_PPC64) += entry_64.o
|
|
|
|
obj-$(CONFIG_PPC_OF_BOOT_TRAMPOLINE) += prom_init.o
|
2008-01-07 13:12:44 +08:00
|
|
|
|
2019-09-12 15:40:37 +08:00
|
|
|
extra-$(CONFIG_PPC_OF_BOOT_TRAMPOLINE) += prom_init_check
|
2008-04-24 10:08:22 +08:00
|
|
|
|
2019-09-12 15:40:37 +08:00
|
|
|
quiet_cmd_prom_init_check = PROMCHK $@
|
|
|
|
cmd_prom_init_check = $(CONFIG_SHELL) $< "$(NM)" $(obj)/prom_init.o; touch $@
|
2008-04-24 10:08:22 +08:00
|
|
|
|
2019-09-12 15:40:37 +08:00
|
|
|
$(obj)/prom_init_check: $(src)/prom_init_check.sh $(obj)/prom_init.o FORCE
|
|
|
|
$(call if_changed,prom_init_check)
|
|
|
|
targets += prom_init_check
|
2008-04-24 10:08:22 +08:00
|
|
|
|
2008-02-11 23:32:00 +08:00
|
|
|
clean-files := vmlinux.lds
|
2021-03-31 17:12:19 +08:00
|
|
|
|
|
|
|
# Force dependency (incbin is bad)
|
2022-01-22 00:30:27 +08:00
|
|
|
$(obj)/vdso32_wrapper.o : $(obj)/vdso/vdso32.so.dbg
|
|
|
|
$(obj)/vdso64_wrapper.o : $(obj)/vdso/vdso64.so.dbg
|
2021-11-10 02:50:15 +08:00
|
|
|
|
|
|
|
# for cleaning
|
2022-01-22 00:30:27 +08:00
|
|
|
subdir- += vdso
|