OpenCloudOS-Kernel/drivers/gpu/drm/i915/gvt/interrupt.c

742 lines
24 KiB
C
Raw Normal View History

/*
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Kevin Tian <kevin.tian@intel.com>
* Zhi Wang <zhi.a.wang@intel.com>
*
* Contributors:
* Min he <min.he@intel.com>
*
*/
#include "i915_drv.h"
#include "gvt.h"
/* common offset among interrupt control registers */
#define regbase_to_isr(base) (base)
#define regbase_to_imr(base) (base + 0x4)
#define regbase_to_iir(base) (base + 0x8)
#define regbase_to_ier(base) (base + 0xC)
#define iir_to_regbase(iir) (iir - 0x8)
#define ier_to_regbase(ier) (ier - 0xC)
#define get_event_virt_handler(irq, e) (irq->events[e].v_handler)
#define get_irq_info(irq, e) (irq->events[e].info)
#define irq_to_gvt(irq) \
container_of(irq, struct intel_gvt, irq)
static void update_upstream_irq(struct intel_vgpu *vgpu,
struct intel_gvt_irq_info *info);
const char * const irq_name[INTEL_GVT_EVENT_MAX] = {
[RCS_MI_USER_INTERRUPT] = "Render CS MI USER INTERRUPT",
[RCS_DEBUG] = "Render EU debug from SVG",
[RCS_MMIO_SYNC_FLUSH] = "Render MMIO sync flush status",
[RCS_CMD_STREAMER_ERR] = "Render CS error interrupt",
[RCS_PIPE_CONTROL] = "Render PIPE CONTROL notify",
[RCS_WATCHDOG_EXCEEDED] = "Render CS Watchdog counter exceeded",
[RCS_PAGE_DIRECTORY_FAULT] = "Render page directory faults",
[RCS_AS_CONTEXT_SWITCH] = "Render AS Context Switch Interrupt",
[VCS_MI_USER_INTERRUPT] = "Video CS MI USER INTERRUPT",
[VCS_MMIO_SYNC_FLUSH] = "Video MMIO sync flush status",
[VCS_CMD_STREAMER_ERR] = "Video CS error interrupt",
[VCS_MI_FLUSH_DW] = "Video MI FLUSH DW notify",
[VCS_WATCHDOG_EXCEEDED] = "Video CS Watchdog counter exceeded",
[VCS_PAGE_DIRECTORY_FAULT] = "Video page directory faults",
[VCS_AS_CONTEXT_SWITCH] = "Video AS Context Switch Interrupt",
[VCS2_MI_USER_INTERRUPT] = "VCS2 Video CS MI USER INTERRUPT",
[VCS2_MI_FLUSH_DW] = "VCS2 Video MI FLUSH DW notify",
[VCS2_AS_CONTEXT_SWITCH] = "VCS2 Context Switch Interrupt",
[BCS_MI_USER_INTERRUPT] = "Blitter CS MI USER INTERRUPT",
[BCS_MMIO_SYNC_FLUSH] = "Billter MMIO sync flush status",
[BCS_CMD_STREAMER_ERR] = "Blitter CS error interrupt",
[BCS_MI_FLUSH_DW] = "Blitter MI FLUSH DW notify",
[BCS_PAGE_DIRECTORY_FAULT] = "Blitter page directory faults",
[BCS_AS_CONTEXT_SWITCH] = "Blitter AS Context Switch Interrupt",
[VECS_MI_FLUSH_DW] = "Video Enhanced Streamer MI FLUSH DW notify",
[VECS_AS_CONTEXT_SWITCH] = "VECS Context Switch Interrupt",
[PIPE_A_FIFO_UNDERRUN] = "Pipe A FIFO underrun",
[PIPE_A_CRC_ERR] = "Pipe A CRC error",
[PIPE_A_CRC_DONE] = "Pipe A CRC done",
[PIPE_A_VSYNC] = "Pipe A vsync",
[PIPE_A_LINE_COMPARE] = "Pipe A line compare",
[PIPE_A_ODD_FIELD] = "Pipe A odd field",
[PIPE_A_EVEN_FIELD] = "Pipe A even field",
[PIPE_A_VBLANK] = "Pipe A vblank",
[PIPE_B_FIFO_UNDERRUN] = "Pipe B FIFO underrun",
[PIPE_B_CRC_ERR] = "Pipe B CRC error",
[PIPE_B_CRC_DONE] = "Pipe B CRC done",
[PIPE_B_VSYNC] = "Pipe B vsync",
[PIPE_B_LINE_COMPARE] = "Pipe B line compare",
[PIPE_B_ODD_FIELD] = "Pipe B odd field",
[PIPE_B_EVEN_FIELD] = "Pipe B even field",
[PIPE_B_VBLANK] = "Pipe B vblank",
[PIPE_C_VBLANK] = "Pipe C vblank",
[DPST_PHASE_IN] = "DPST phase in event",
[DPST_HISTOGRAM] = "DPST histogram event",
[GSE] = "GSE",
[DP_A_HOTPLUG] = "DP A Hotplug",
[AUX_CHANNEL_A] = "AUX Channel A",
[PERF_COUNTER] = "Performance counter",
[POISON] = "Poison",
[GTT_FAULT] = "GTT fault",
[PRIMARY_A_FLIP_DONE] = "Primary Plane A flip done",
[PRIMARY_B_FLIP_DONE] = "Primary Plane B flip done",
[PRIMARY_C_FLIP_DONE] = "Primary Plane C flip done",
[SPRITE_A_FLIP_DONE] = "Sprite Plane A flip done",
[SPRITE_B_FLIP_DONE] = "Sprite Plane B flip done",
[SPRITE_C_FLIP_DONE] = "Sprite Plane C flip done",
[PCU_THERMAL] = "PCU Thermal Event",
[PCU_PCODE2DRIVER_MAILBOX] = "PCU pcode2driver mailbox event",
[FDI_RX_INTERRUPTS_TRANSCODER_A] = "FDI RX Interrupts Combined A",
[AUDIO_CP_CHANGE_TRANSCODER_A] = "Audio CP Change Transcoder A",
[AUDIO_CP_REQUEST_TRANSCODER_A] = "Audio CP Request Transcoder A",
[FDI_RX_INTERRUPTS_TRANSCODER_B] = "FDI RX Interrupts Combined B",
[AUDIO_CP_CHANGE_TRANSCODER_B] = "Audio CP Change Transcoder B",
[AUDIO_CP_REQUEST_TRANSCODER_B] = "Audio CP Request Transcoder B",
[FDI_RX_INTERRUPTS_TRANSCODER_C] = "FDI RX Interrupts Combined C",
[AUDIO_CP_CHANGE_TRANSCODER_C] = "Audio CP Change Transcoder C",
[AUDIO_CP_REQUEST_TRANSCODER_C] = "Audio CP Request Transcoder C",
[ERR_AND_DBG] = "South Error and Debug Interupts Combined",
[GMBUS] = "Gmbus",
[SDVO_B_HOTPLUG] = "SDVO B hotplug",
[CRT_HOTPLUG] = "CRT Hotplug",
[DP_B_HOTPLUG] = "DisplayPort/HDMI/DVI B Hotplug",
[DP_C_HOTPLUG] = "DisplayPort/HDMI/DVI C Hotplug",
[DP_D_HOTPLUG] = "DisplayPort/HDMI/DVI D Hotplug",
[AUX_CHANNEL_B] = "AUX Channel B",
[AUX_CHANNEL_C] = "AUX Channel C",
[AUX_CHANNEL_D] = "AUX Channel D",
[AUDIO_POWER_STATE_CHANGE_B] = "Audio Power State change Port B",
[AUDIO_POWER_STATE_CHANGE_C] = "Audio Power State change Port C",
[AUDIO_POWER_STATE_CHANGE_D] = "Audio Power State change Port D",
[INTEL_GVT_EVENT_RESERVED] = "RESERVED EVENTS!!!",
};
static inline struct intel_gvt_irq_info *regbase_to_irq_info(
struct intel_gvt *gvt,
unsigned int reg)
{
struct intel_gvt_irq *irq = &gvt->irq;
int i;
for_each_set_bit(i, irq->irq_info_bitmap, INTEL_GVT_IRQ_INFO_MAX) {
if (i915_mmio_reg_offset(irq->info[i]->reg_base) == reg)
return irq->info[i];
}
return NULL;
}
/**
* intel_vgpu_reg_imr_handler - Generic IMR register emulation write handler
* @vgpu: a vGPU
* @reg: register offset written by guest
* @p_data: register data written by guest
* @bytes: register data length
*
* This function is used to emulate the generic IMR register bit change
* behavior.
*
* Returns:
* Zero on success, negative error code if failed.
*
*/
int intel_vgpu_reg_imr_handler(struct intel_vgpu *vgpu,
unsigned int reg, void *p_data, unsigned int bytes)
{
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_irq_ops *ops = gvt->irq.ops;
u32 changed, masked, unmasked;
u32 imr = *(u32 *)p_data;
gvt_dbg_irq("write IMR %x with val %x\n",
reg, imr);
gvt_dbg_irq("old vIMR %x\n", vgpu_vreg(vgpu, reg));
/* figure out newly masked/unmasked bits */
changed = vgpu_vreg(vgpu, reg) ^ imr;
masked = (vgpu_vreg(vgpu, reg) & changed) ^ changed;
unmasked = masked ^ changed;
gvt_dbg_irq("changed %x, masked %x, unmasked %x\n",
changed, masked, unmasked);
vgpu_vreg(vgpu, reg) = imr;
ops->check_pending_irq(vgpu);
gvt_dbg_irq("IRQ: new vIMR %x\n", vgpu_vreg(vgpu, reg));
return 0;
}
/**
* intel_vgpu_reg_master_irq_handler - master IRQ write emulation handler
* @vgpu: a vGPU
* @reg: register offset written by guest
* @p_data: register data written by guest
* @bytes: register data length
*
* This function is used to emulate the master IRQ register on gen8+.
*
* Returns:
* Zero on success, negative error code if failed.
*
*/
int intel_vgpu_reg_master_irq_handler(struct intel_vgpu *vgpu,
unsigned int reg, void *p_data, unsigned int bytes)
{
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_irq_ops *ops = gvt->irq.ops;
u32 changed, enabled, disabled;
u32 ier = *(u32 *)p_data;
u32 virtual_ier = vgpu_vreg(vgpu, reg);
gvt_dbg_irq("write master irq reg %x with val %x\n",
reg, ier);
gvt_dbg_irq("old vreg %x\n", vgpu_vreg(vgpu, reg));
/*
* GEN8_MASTER_IRQ is a special irq register,
* only bit 31 is allowed to be modified
* and treated as an IER bit.
*/
ier &= GEN8_MASTER_IRQ_CONTROL;
virtual_ier &= GEN8_MASTER_IRQ_CONTROL;
vgpu_vreg(vgpu, reg) &= ~GEN8_MASTER_IRQ_CONTROL;
vgpu_vreg(vgpu, reg) |= ier;
/* figure out newly enabled/disable bits */
changed = virtual_ier ^ ier;
enabled = (virtual_ier & changed) ^ changed;
disabled = enabled ^ changed;
gvt_dbg_irq("changed %x, enabled %x, disabled %x\n",
changed, enabled, disabled);
ops->check_pending_irq(vgpu);
gvt_dbg_irq("new vreg %x\n", vgpu_vreg(vgpu, reg));
return 0;
}
/**
* intel_vgpu_reg_ier_handler - Generic IER write emulation handler
* @vgpu: a vGPU
* @reg: register offset written by guest
* @p_data: register data written by guest
* @bytes: register data length
*
* This function is used to emulate the generic IER register behavior.
*
* Returns:
* Zero on success, negative error code if failed.
*
*/
int intel_vgpu_reg_ier_handler(struct intel_vgpu *vgpu,
unsigned int reg, void *p_data, unsigned int bytes)
{
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_irq_ops *ops = gvt->irq.ops;
struct intel_gvt_irq_info *info;
u32 changed, enabled, disabled;
u32 ier = *(u32 *)p_data;
gvt_dbg_irq("write IER %x with val %x\n",
reg, ier);
gvt_dbg_irq("old vIER %x\n", vgpu_vreg(vgpu, reg));
/* figure out newly enabled/disable bits */
changed = vgpu_vreg(vgpu, reg) ^ ier;
enabled = (vgpu_vreg(vgpu, reg) & changed) ^ changed;
disabled = enabled ^ changed;
gvt_dbg_irq("changed %x, enabled %x, disabled %x\n",
changed, enabled, disabled);
vgpu_vreg(vgpu, reg) = ier;
info = regbase_to_irq_info(gvt, ier_to_regbase(reg));
if (WARN_ON(!info))
return -EINVAL;
if (info->has_upstream_irq)
update_upstream_irq(vgpu, info);
ops->check_pending_irq(vgpu);
gvt_dbg_irq("new vIER %x\n", vgpu_vreg(vgpu, reg));
return 0;
}
/**
* intel_vgpu_reg_iir_handler - Generic IIR write emulation handler
* @vgpu: a vGPU
* @reg: register offset written by guest
* @p_data: register data written by guest
* @bytes: register data length
*
* This function is used to emulate the generic IIR register behavior.
*
* Returns:
* Zero on success, negative error code if failed.
*
*/
int intel_vgpu_reg_iir_handler(struct intel_vgpu *vgpu, unsigned int reg,
void *p_data, unsigned int bytes)
{
struct intel_gvt_irq_info *info = regbase_to_irq_info(vgpu->gvt,
iir_to_regbase(reg));
u32 iir = *(u32 *)p_data;
gvt_dbg_irq("write IIR %x with val %x\n", reg, iir);
if (WARN_ON(!info))
return -EINVAL;
vgpu_vreg(vgpu, reg) &= ~iir;
if (info->has_upstream_irq)
update_upstream_irq(vgpu, info);
return 0;
}
static struct intel_gvt_irq_map gen8_irq_map[] = {
{ INTEL_GVT_IRQ_INFO_MASTER, 0, INTEL_GVT_IRQ_INFO_GT0, 0xffff },
{ INTEL_GVT_IRQ_INFO_MASTER, 1, INTEL_GVT_IRQ_INFO_GT0, 0xffff0000 },
{ INTEL_GVT_IRQ_INFO_MASTER, 2, INTEL_GVT_IRQ_INFO_GT1, 0xffff },
{ INTEL_GVT_IRQ_INFO_MASTER, 3, INTEL_GVT_IRQ_INFO_GT1, 0xffff0000 },
{ INTEL_GVT_IRQ_INFO_MASTER, 4, INTEL_GVT_IRQ_INFO_GT2, 0xffff },
{ INTEL_GVT_IRQ_INFO_MASTER, 6, INTEL_GVT_IRQ_INFO_GT3, 0xffff },
{ INTEL_GVT_IRQ_INFO_MASTER, 16, INTEL_GVT_IRQ_INFO_DE_PIPE_A, ~0 },
{ INTEL_GVT_IRQ_INFO_MASTER, 17, INTEL_GVT_IRQ_INFO_DE_PIPE_B, ~0 },
{ INTEL_GVT_IRQ_INFO_MASTER, 18, INTEL_GVT_IRQ_INFO_DE_PIPE_C, ~0 },
{ INTEL_GVT_IRQ_INFO_MASTER, 20, INTEL_GVT_IRQ_INFO_DE_PORT, ~0 },
{ INTEL_GVT_IRQ_INFO_MASTER, 22, INTEL_GVT_IRQ_INFO_DE_MISC, ~0 },
{ INTEL_GVT_IRQ_INFO_MASTER, 23, INTEL_GVT_IRQ_INFO_PCH, ~0 },
{ INTEL_GVT_IRQ_INFO_MASTER, 30, INTEL_GVT_IRQ_INFO_PCU, ~0 },
{ -1, -1, ~0 },
};
static void update_upstream_irq(struct intel_vgpu *vgpu,
struct intel_gvt_irq_info *info)
{
struct intel_gvt_irq *irq = &vgpu->gvt->irq;
struct intel_gvt_irq_map *map = irq->irq_map;
struct intel_gvt_irq_info *up_irq_info = NULL;
u32 set_bits = 0;
u32 clear_bits = 0;
int bit;
u32 val = vgpu_vreg(vgpu,
regbase_to_iir(i915_mmio_reg_offset(info->reg_base)))
& vgpu_vreg(vgpu,
regbase_to_ier(i915_mmio_reg_offset(info->reg_base)));
if (!info->has_upstream_irq)
return;
for (map = irq->irq_map; map->up_irq_bit != -1; map++) {
if (info->group != map->down_irq_group)
continue;
if (!up_irq_info)
up_irq_info = irq->info[map->up_irq_group];
else
WARN_ON(up_irq_info != irq->info[map->up_irq_group]);
bit = map->up_irq_bit;
if (val & map->down_irq_bitmask)
set_bits |= (1 << bit);
else
clear_bits |= (1 << bit);
}
WARN_ON(!up_irq_info);
if (up_irq_info->group == INTEL_GVT_IRQ_INFO_MASTER) {
u32 isr = i915_mmio_reg_offset(up_irq_info->reg_base);
vgpu_vreg(vgpu, isr) &= ~clear_bits;
vgpu_vreg(vgpu, isr) |= set_bits;
} else {
u32 iir = regbase_to_iir(
i915_mmio_reg_offset(up_irq_info->reg_base));
u32 imr = regbase_to_imr(
i915_mmio_reg_offset(up_irq_info->reg_base));
vgpu_vreg(vgpu, iir) |= (set_bits & ~vgpu_vreg(vgpu, imr));
}
if (up_irq_info->has_upstream_irq)
update_upstream_irq(vgpu, up_irq_info);
}
static void init_irq_map(struct intel_gvt_irq *irq)
{
struct intel_gvt_irq_map *map;
struct intel_gvt_irq_info *up_info, *down_info;
int up_bit;
for (map = irq->irq_map; map->up_irq_bit != -1; map++) {
up_info = irq->info[map->up_irq_group];
up_bit = map->up_irq_bit;
down_info = irq->info[map->down_irq_group];
set_bit(up_bit, up_info->downstream_irq_bitmap);
down_info->has_upstream_irq = true;
gvt_dbg_irq("[up] grp %d bit %d -> [down] grp %d bitmask %x\n",
up_info->group, up_bit,
down_info->group, map->down_irq_bitmask);
}
}
/* =======================vEvent injection===================== */
static int inject_virtual_interrupt(struct intel_vgpu *vgpu)
{
return intel_gvt_hypervisor_inject_msi(vgpu);
}
static void propagate_event(struct intel_gvt_irq *irq,
enum intel_gvt_event_type event, struct intel_vgpu *vgpu)
{
struct intel_gvt_irq_info *info;
unsigned int reg_base;
int bit;
info = get_irq_info(irq, event);
if (WARN_ON(!info))
return;
reg_base = i915_mmio_reg_offset(info->reg_base);
bit = irq->events[event].bit;
if (!test_bit(bit, (void *)&vgpu_vreg(vgpu,
regbase_to_imr(reg_base)))) {
gvt_dbg_irq("set bit (%d) for (%s) for vgpu (%d)\n",
bit, irq_name[event], vgpu->id);
set_bit(bit, (void *)&vgpu_vreg(vgpu,
regbase_to_iir(reg_base)));
}
}
/* =======================vEvent Handlers===================== */
static void handle_default_event_virt(struct intel_gvt_irq *irq,
enum intel_gvt_event_type event, struct intel_vgpu *vgpu)
{
if (!vgpu->irq.irq_warn_once[event]) {
gvt_dbg_core("vgpu%d: IRQ receive event %d (%s)\n",
vgpu->id, event, irq_name[event]);
vgpu->irq.irq_warn_once[event] = true;
}
propagate_event(irq, event, vgpu);
}
/* =====================GEN specific logic======================= */
/* GEN8 interrupt routines. */
#define DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(regname, regbase) \
static struct intel_gvt_irq_info gen8_##regname##_info = { \
.name = #regname"-IRQ", \
.reg_base = (regbase), \
.bit_to_event = {[0 ... INTEL_GVT_IRQ_BITWIDTH-1] = \
INTEL_GVT_EVENT_RESERVED}, \
}
DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt0, GEN8_GT_ISR(0));
DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt1, GEN8_GT_ISR(1));
DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt2, GEN8_GT_ISR(2));
DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt3, GEN8_GT_ISR(3));
DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_a, GEN8_DE_PIPE_ISR(PIPE_A));
DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_b, GEN8_DE_PIPE_ISR(PIPE_B));
DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_c, GEN8_DE_PIPE_ISR(PIPE_C));
DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_port, GEN8_DE_PORT_ISR);
DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_misc, GEN8_DE_MISC_ISR);
DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(pcu, GEN8_PCU_ISR);
DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(master, GEN8_MASTER_IRQ);
static struct intel_gvt_irq_info gvt_base_pch_info = {
.name = "PCH-IRQ",
.reg_base = SDEISR,
.bit_to_event = {[0 ... INTEL_GVT_IRQ_BITWIDTH-1] =
INTEL_GVT_EVENT_RESERVED},
};
static void gen8_check_pending_irq(struct intel_vgpu *vgpu)
{
struct intel_gvt_irq *irq = &vgpu->gvt->irq;
int i;
if (!(vgpu_vreg(vgpu, i915_mmio_reg_offset(GEN8_MASTER_IRQ)) &
GEN8_MASTER_IRQ_CONTROL))
return;
for_each_set_bit(i, irq->irq_info_bitmap, INTEL_GVT_IRQ_INFO_MAX) {
struct intel_gvt_irq_info *info = irq->info[i];
u32 reg_base;
if (!info->has_upstream_irq)
continue;
reg_base = i915_mmio_reg_offset(info->reg_base);
if ((vgpu_vreg(vgpu, regbase_to_iir(reg_base))
& vgpu_vreg(vgpu, regbase_to_ier(reg_base))))
update_upstream_irq(vgpu, info);
}
if (vgpu_vreg(vgpu, i915_mmio_reg_offset(GEN8_MASTER_IRQ))
& ~GEN8_MASTER_IRQ_CONTROL)
inject_virtual_interrupt(vgpu);
}
static void gen8_init_irq(
struct intel_gvt_irq *irq)
{
struct intel_gvt *gvt = irq_to_gvt(irq);
#define SET_BIT_INFO(s, b, e, i) \
do { \
s->events[e].bit = b; \
s->events[e].info = s->info[i]; \
s->info[i]->bit_to_event[b] = e;\
} while (0)
#define SET_IRQ_GROUP(s, g, i) \
do { \
s->info[g] = i; \
(i)->group = g; \
set_bit(g, s->irq_info_bitmap); \
} while (0)
SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_MASTER, &gen8_master_info);
SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT0, &gen8_gt0_info);
SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT1, &gen8_gt1_info);
SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT2, &gen8_gt2_info);
SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT3, &gen8_gt3_info);
SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_A, &gen8_de_pipe_a_info);
SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_B, &gen8_de_pipe_b_info);
SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_C, &gen8_de_pipe_c_info);
SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PORT, &gen8_de_port_info);
SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_MISC, &gen8_de_misc_info);
SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_PCU, &gen8_pcu_info);
SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_PCH, &gvt_base_pch_info);
/* GEN8 level 2 interrupts. */
/* GEN8 interrupt GT0 events */
SET_BIT_INFO(irq, 0, RCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT0);
SET_BIT_INFO(irq, 4, RCS_PIPE_CONTROL, INTEL_GVT_IRQ_INFO_GT0);
SET_BIT_INFO(irq, 8, RCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT0);
SET_BIT_INFO(irq, 16, BCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT0);
SET_BIT_INFO(irq, 20, BCS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT0);
SET_BIT_INFO(irq, 24, BCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT0);
/* GEN8 interrupt GT1 events */
SET_BIT_INFO(irq, 0, VCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT1);
SET_BIT_INFO(irq, 4, VCS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT1);
SET_BIT_INFO(irq, 8, VCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT1);
if (HAS_BSD2(gvt->dev_priv)) {
SET_BIT_INFO(irq, 16, VCS2_MI_USER_INTERRUPT,
INTEL_GVT_IRQ_INFO_GT1);
SET_BIT_INFO(irq, 20, VCS2_MI_FLUSH_DW,
INTEL_GVT_IRQ_INFO_GT1);
SET_BIT_INFO(irq, 24, VCS2_AS_CONTEXT_SWITCH,
INTEL_GVT_IRQ_INFO_GT1);
}
/* GEN8 interrupt GT3 events */
SET_BIT_INFO(irq, 0, VECS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT3);
SET_BIT_INFO(irq, 4, VECS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT3);
SET_BIT_INFO(irq, 8, VECS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT3);
SET_BIT_INFO(irq, 0, PIPE_A_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
SET_BIT_INFO(irq, 0, PIPE_B_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
SET_BIT_INFO(irq, 0, PIPE_C_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
/* GEN8 interrupt DE PORT events */
SET_BIT_INFO(irq, 0, AUX_CHANNEL_A, INTEL_GVT_IRQ_INFO_DE_PORT);
SET_BIT_INFO(irq, 3, DP_A_HOTPLUG, INTEL_GVT_IRQ_INFO_DE_PORT);
/* GEN8 interrupt DE MISC events */
SET_BIT_INFO(irq, 0, GSE, INTEL_GVT_IRQ_INFO_DE_MISC);
/* PCH events */
SET_BIT_INFO(irq, 17, GMBUS, INTEL_GVT_IRQ_INFO_PCH);
SET_BIT_INFO(irq, 19, CRT_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH);
SET_BIT_INFO(irq, 21, DP_B_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH);
SET_BIT_INFO(irq, 22, DP_C_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH);
SET_BIT_INFO(irq, 23, DP_D_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH);
if (IS_BROADWELL(gvt->dev_priv)) {
SET_BIT_INFO(irq, 25, AUX_CHANNEL_B, INTEL_GVT_IRQ_INFO_PCH);
SET_BIT_INFO(irq, 26, AUX_CHANNEL_C, INTEL_GVT_IRQ_INFO_PCH);
SET_BIT_INFO(irq, 27, AUX_CHANNEL_D, INTEL_GVT_IRQ_INFO_PCH);
SET_BIT_INFO(irq, 4, PRIMARY_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
SET_BIT_INFO(irq, 5, SPRITE_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
SET_BIT_INFO(irq, 4, PRIMARY_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
SET_BIT_INFO(irq, 5, SPRITE_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
SET_BIT_INFO(irq, 4, PRIMARY_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
SET_BIT_INFO(irq, 5, SPRITE_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
} else if (IS_SKYLAKE(gvt->dev_priv)) {
SET_BIT_INFO(irq, 25, AUX_CHANNEL_B, INTEL_GVT_IRQ_INFO_DE_PORT);
SET_BIT_INFO(irq, 26, AUX_CHANNEL_C, INTEL_GVT_IRQ_INFO_DE_PORT);
SET_BIT_INFO(irq, 27, AUX_CHANNEL_D, INTEL_GVT_IRQ_INFO_DE_PORT);
SET_BIT_INFO(irq, 3, PRIMARY_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
SET_BIT_INFO(irq, 3, PRIMARY_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
SET_BIT_INFO(irq, 3, PRIMARY_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
}
/* GEN8 interrupt PCU events */
SET_BIT_INFO(irq, 24, PCU_THERMAL, INTEL_GVT_IRQ_INFO_PCU);
SET_BIT_INFO(irq, 25, PCU_PCODE2DRIVER_MAILBOX, INTEL_GVT_IRQ_INFO_PCU);
}
static struct intel_gvt_irq_ops gen8_irq_ops = {
.init_irq = gen8_init_irq,
.check_pending_irq = gen8_check_pending_irq,
};
/**
* intel_vgpu_trigger_virtual_event - Trigger a virtual event for a vGPU
* @vgpu: a vGPU
* @event: interrupt event
*
* This function is used to trigger a virtual interrupt event for vGPU.
* The caller provides the event to be triggered, the framework itself
* will emulate the IRQ register bit change.
*
*/
void intel_vgpu_trigger_virtual_event(struct intel_vgpu *vgpu,
enum intel_gvt_event_type event)
{
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_irq *irq = &gvt->irq;
gvt_event_virt_handler_t handler;
struct intel_gvt_irq_ops *ops = gvt->irq.ops;
handler = get_event_virt_handler(irq, event);
WARN_ON(!handler);
handler(irq, event, vgpu);
ops->check_pending_irq(vgpu);
}
static void init_events(
struct intel_gvt_irq *irq)
{
int i;
for (i = 0; i < INTEL_GVT_EVENT_MAX; i++) {
irq->events[i].info = NULL;
irq->events[i].v_handler = handle_default_event_virt;
}
}
static enum hrtimer_restart vblank_timer_fn(struct hrtimer *data)
{
struct intel_gvt_vblank_timer *vblank_timer;
struct intel_gvt_irq *irq;
struct intel_gvt *gvt;
vblank_timer = container_of(data, struct intel_gvt_vblank_timer, timer);
irq = container_of(vblank_timer, struct intel_gvt_irq, vblank_timer);
gvt = container_of(irq, struct intel_gvt, irq);
intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EMULATE_VBLANK);
hrtimer_add_expires_ns(&vblank_timer->timer, vblank_timer->period);
return HRTIMER_RESTART;
}
/**
* intel_gvt_clean_irq - clean up GVT-g IRQ emulation subsystem
* @gvt: a GVT device
*
* This function is called at driver unloading stage, to clean up GVT-g IRQ
* emulation subsystem.
*
*/
void intel_gvt_clean_irq(struct intel_gvt *gvt)
{
struct intel_gvt_irq *irq = &gvt->irq;
hrtimer_cancel(&irq->vblank_timer.timer);
}
#define VBLNAK_TIMER_PERIOD 16000000
/**
* intel_gvt_init_irq - initialize GVT-g IRQ emulation subsystem
* @gvt: a GVT device
*
* This function is called at driver loading stage, to initialize the GVT-g IRQ
* emulation subsystem.
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_gvt_init_irq(struct intel_gvt *gvt)
{
struct intel_gvt_irq *irq = &gvt->irq;
struct intel_gvt_vblank_timer *vblank_timer = &irq->vblank_timer;
gvt_dbg_core("init irq framework\n");
if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) {
irq->ops = &gen8_irq_ops;
irq->irq_map = gen8_irq_map;
} else {
WARN_ON(1);
return -ENODEV;
}
/* common event initialization */
init_events(irq);
/* gen specific initialization */
irq->ops->init_irq(irq);
init_irq_map(irq);
hrtimer_init(&vblank_timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
vblank_timer->timer.function = vblank_timer_fn;
vblank_timer->period = VBLNAK_TIMER_PERIOD;
return 0;
}