OpenCloudOS-Kernel/arch/arm/plat-omap/dma.c

1128 lines
27 KiB
C
Raw Normal View History

/*
* linux/arch/arm/plat-omap/dma.c
*
* Copyright (C) 2003 Nokia Corporation
* Author: Juha Yrj<EFBFBD>l<EFBFBD> <juha.yrjola@nokia.com>
* DMA channel linking for 1610 by Samuel Ortiz <samuel.ortiz@nokia.com>
* Graphics DMA and LCD DMA graphics tranformations
* by Imre Deak <imre.deak@nokia.com>
* Some functions based on earlier dma-omap.c Copyright (C) 2001 RidgeRun, Inc.
*
* Support functions for the OMAP internal DMA channels.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <asm/system.h>
#include <asm/irq.h>
#include <asm/hardware.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/arch/tc.h>
#define OMAP_DMA_ACTIVE 0x01
#define OMAP_DMA_CCR_EN (1 << 7)
#define OMAP_FUNC_MUX_ARM_BASE (0xfffe1000 + 0xec)
static int enable_1510_mode = 0;
struct omap_dma_lch {
int next_lch;
int dev_id;
u16 saved_csr;
u16 enabled_irqs;
const char *dev_name;
void (* callback)(int lch, u16 ch_status, void *data);
void *data;
long flags;
};
static int dma_chan_count;
static spinlock_t dma_chan_lock;
static struct omap_dma_lch dma_chan[OMAP_LOGICAL_DMA_CH_COUNT];
const static u8 dma_irq[OMAP_LOGICAL_DMA_CH_COUNT] = {
INT_DMA_CH0_6, INT_DMA_CH1_7, INT_DMA_CH2_8, INT_DMA_CH3,
INT_DMA_CH4, INT_DMA_CH5, INT_1610_DMA_CH6, INT_1610_DMA_CH7,
INT_1610_DMA_CH8, INT_1610_DMA_CH9, INT_1610_DMA_CH10,
INT_1610_DMA_CH11, INT_1610_DMA_CH12, INT_1610_DMA_CH13,
INT_1610_DMA_CH14, INT_1610_DMA_CH15, INT_DMA_LCD
};
static inline int get_gdma_dev(int req)
{
u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4;
int shift = ((req - 1) % 5) * 6;
return ((omap_readl(reg) >> shift) & 0x3f) + 1;
}
static inline void set_gdma_dev(int req, int dev)
{
u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4;
int shift = ((req - 1) % 5) * 6;
u32 l;
l = omap_readl(reg);
l &= ~(0x3f << shift);
l |= (dev - 1) << shift;
omap_writel(l, reg);
}
static void clear_lch_regs(int lch)
{
int i;
u32 lch_base = OMAP_DMA_BASE + lch * 0x40;
for (i = 0; i < 0x2c; i += 2)
omap_writew(0, lch_base + i);
}
void omap_set_dma_priority(int dst_port, int priority)
{
unsigned long reg;
u32 l;
switch (dst_port) {
case OMAP_DMA_PORT_OCP_T1: /* FFFECC00 */
reg = OMAP_TC_OCPT1_PRIOR;
break;
case OMAP_DMA_PORT_OCP_T2: /* FFFECCD0 */
reg = OMAP_TC_OCPT2_PRIOR;
break;
case OMAP_DMA_PORT_EMIFF: /* FFFECC08 */
reg = OMAP_TC_EMIFF_PRIOR;
break;
case OMAP_DMA_PORT_EMIFS: /* FFFECC04 */
reg = OMAP_TC_EMIFS_PRIOR;
break;
default:
BUG();
return;
}
l = omap_readl(reg);
l &= ~(0xf << 8);
l |= (priority & 0xf) << 8;
omap_writel(l, reg);
}
void omap_set_dma_transfer_params(int lch, int data_type, int elem_count,
int frame_count, int sync_mode)
{
u16 w;
w = omap_readw(OMAP_DMA_CSDP(lch));
w &= ~0x03;
w |= data_type;
omap_writew(w, OMAP_DMA_CSDP(lch));
w = omap_readw(OMAP_DMA_CCR(lch));
w &= ~(1 << 5);
if (sync_mode == OMAP_DMA_SYNC_FRAME)
w |= 1 << 5;
omap_writew(w, OMAP_DMA_CCR(lch));
w = omap_readw(OMAP_DMA_CCR2(lch));
w &= ~(1 << 2);
if (sync_mode == OMAP_DMA_SYNC_BLOCK)
w |= 1 << 2;
omap_writew(w, OMAP_DMA_CCR2(lch));
omap_writew(elem_count, OMAP_DMA_CEN(lch));
omap_writew(frame_count, OMAP_DMA_CFN(lch));
}
void omap_set_dma_color_mode(int lch, enum omap_dma_color_mode mode, u32 color)
{
u16 w;
BUG_ON(omap_dma_in_1510_mode());
w = omap_readw(OMAP_DMA_CCR2(lch)) & ~0x03;
switch (mode) {
case OMAP_DMA_CONSTANT_FILL:
w |= 0x01;
break;
case OMAP_DMA_TRANSPARENT_COPY:
w |= 0x02;
break;
case OMAP_DMA_COLOR_DIS:
break;
default:
BUG();
}
omap_writew(w, OMAP_DMA_CCR2(lch));
w = omap_readw(OMAP_DMA_LCH_CTRL(lch)) & ~0x0f;
/* Default is channel type 2D */
if (mode) {
omap_writew((u16)color, OMAP_DMA_COLOR_L(lch));
omap_writew((u16)(color >> 16), OMAP_DMA_COLOR_U(lch));
w |= 1; /* Channel type G */
}
omap_writew(w, OMAP_DMA_LCH_CTRL(lch));
}
void omap_set_dma_src_params(int lch, int src_port, int src_amode,
unsigned long src_start)
{
u16 w;
w = omap_readw(OMAP_DMA_CSDP(lch));
w &= ~(0x1f << 2);
w |= src_port << 2;
omap_writew(w, OMAP_DMA_CSDP(lch));
w = omap_readw(OMAP_DMA_CCR(lch));
w &= ~(0x03 << 12);
w |= src_amode << 12;
omap_writew(w, OMAP_DMA_CCR(lch));
omap_writew(src_start >> 16, OMAP_DMA_CSSA_U(lch));
omap_writew(src_start, OMAP_DMA_CSSA_L(lch));
}
void omap_set_dma_src_index(int lch, int eidx, int fidx)
{
omap_writew(eidx, OMAP_DMA_CSEI(lch));
omap_writew(fidx, OMAP_DMA_CSFI(lch));
}
void omap_set_dma_src_data_pack(int lch, int enable)
{
u16 w;
w = omap_readw(OMAP_DMA_CSDP(lch)) & ~(1 << 6);
w |= enable ? (1 << 6) : 0;
omap_writew(w, OMAP_DMA_CSDP(lch));
}
void omap_set_dma_src_burst_mode(int lch, enum omap_dma_burst_mode burst_mode)
{
u16 w;
w = omap_readw(OMAP_DMA_CSDP(lch)) & ~(0x03 << 7);
switch (burst_mode) {
case OMAP_DMA_DATA_BURST_DIS:
break;
case OMAP_DMA_DATA_BURST_4:
w |= (0x01 << 7);
break;
case OMAP_DMA_DATA_BURST_8:
/* not supported by current hardware
* w |= (0x03 << 7);
* fall through
*/
default:
BUG();
}
omap_writew(w, OMAP_DMA_CSDP(lch));
}
void omap_set_dma_dest_params(int lch, int dest_port, int dest_amode,
unsigned long dest_start)
{
u16 w;
w = omap_readw(OMAP_DMA_CSDP(lch));
w &= ~(0x1f << 9);
w |= dest_port << 9;
omap_writew(w, OMAP_DMA_CSDP(lch));
w = omap_readw(OMAP_DMA_CCR(lch));
w &= ~(0x03 << 14);
w |= dest_amode << 14;
omap_writew(w, OMAP_DMA_CCR(lch));
omap_writew(dest_start >> 16, OMAP_DMA_CDSA_U(lch));
omap_writew(dest_start, OMAP_DMA_CDSA_L(lch));
}
void omap_set_dma_dest_index(int lch, int eidx, int fidx)
{
omap_writew(eidx, OMAP_DMA_CDEI(lch));
omap_writew(fidx, OMAP_DMA_CDFI(lch));
}
void omap_set_dma_dest_data_pack(int lch, int enable)
{
u16 w;
w = omap_readw(OMAP_DMA_CSDP(lch)) & ~(1 << 13);
w |= enable ? (1 << 13) : 0;
omap_writew(w, OMAP_DMA_CSDP(lch));
}
void omap_set_dma_dest_burst_mode(int lch, enum omap_dma_burst_mode burst_mode)
{
u16 w;
w = omap_readw(OMAP_DMA_CSDP(lch)) & ~(0x03 << 14);
switch (burst_mode) {
case OMAP_DMA_DATA_BURST_DIS:
break;
case OMAP_DMA_DATA_BURST_4:
w |= (0x01 << 14);
break;
case OMAP_DMA_DATA_BURST_8:
w |= (0x03 << 14);
break;
default:
printk(KERN_ERR "Invalid DMA burst mode\n");
BUG();
return;
}
omap_writew(w, OMAP_DMA_CSDP(lch));
}
static inline void init_intr(int lch)
{
u16 w;
/* Read CSR to make sure it's cleared. */
w = omap_readw(OMAP_DMA_CSR(lch));
/* Enable some nice interrupts. */
omap_writew(dma_chan[lch].enabled_irqs, OMAP_DMA_CICR(lch));
dma_chan[lch].flags |= OMAP_DMA_ACTIVE;
}
static inline void enable_lnk(int lch)
{
u16 w;
/* Clear the STOP_LNK bits */
w = omap_readw(OMAP_DMA_CLNK_CTRL(lch));
w &= ~(1 << 14);
omap_writew(w, OMAP_DMA_CLNK_CTRL(lch));
/* And set the ENABLE_LNK bits */
if (dma_chan[lch].next_lch != -1)
omap_writew(dma_chan[lch].next_lch | (1 << 15),
OMAP_DMA_CLNK_CTRL(lch));
}
static inline void disable_lnk(int lch)
{
u16 w;
/* Disable interrupts */
omap_writew(0, OMAP_DMA_CICR(lch));
/* Set the STOP_LNK bit */
w = omap_readw(OMAP_DMA_CLNK_CTRL(lch));
w |= (1 << 14);
w = omap_writew(w, OMAP_DMA_CLNK_CTRL(lch));
dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE;
}
void omap_start_dma(int lch)
{
u16 w;
if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) {
int next_lch, cur_lch;
char dma_chan_link_map[OMAP_LOGICAL_DMA_CH_COUNT];
dma_chan_link_map[lch] = 1;
/* Set the link register of the first channel */
enable_lnk(lch);
memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map));
cur_lch = dma_chan[lch].next_lch;
do {
next_lch = dma_chan[cur_lch].next_lch;
/* The loop case: we've been here already */
if (dma_chan_link_map[cur_lch])
break;
/* Mark the current channel */
dma_chan_link_map[cur_lch] = 1;
enable_lnk(cur_lch);
init_intr(cur_lch);
cur_lch = next_lch;
} while (next_lch != -1);
}
init_intr(lch);
w = omap_readw(OMAP_DMA_CCR(lch));
w |= OMAP_DMA_CCR_EN;
omap_writew(w, OMAP_DMA_CCR(lch));
dma_chan[lch].flags |= OMAP_DMA_ACTIVE;
}
void omap_stop_dma(int lch)
{
u16 w;
if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) {
int next_lch, cur_lch = lch;
char dma_chan_link_map[OMAP_LOGICAL_DMA_CH_COUNT];
memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map));
do {
/* The loop case: we've been here already */
if (dma_chan_link_map[cur_lch])
break;
/* Mark the current channel */
dma_chan_link_map[cur_lch] = 1;
disable_lnk(cur_lch);
next_lch = dma_chan[cur_lch].next_lch;
cur_lch = next_lch;
} while (next_lch != -1);
return;
}
/* Disable all interrupts on the channel */
omap_writew(0, OMAP_DMA_CICR(lch));
w = omap_readw(OMAP_DMA_CCR(lch));
w &= ~OMAP_DMA_CCR_EN;
omap_writew(w, OMAP_DMA_CCR(lch));
dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE;
}
void omap_enable_dma_irq(int lch, u16 bits)
{
dma_chan[lch].enabled_irqs |= bits;
}
void omap_disable_dma_irq(int lch, u16 bits)
{
dma_chan[lch].enabled_irqs &= ~bits;
}
static int dma_handle_ch(int ch)
{
u16 csr;
if (enable_1510_mode && ch >= 6) {
csr = dma_chan[ch].saved_csr;
dma_chan[ch].saved_csr = 0;
} else
csr = omap_readw(OMAP_DMA_CSR(ch));
if (enable_1510_mode && ch <= 2 && (csr >> 7) != 0) {
dma_chan[ch + 6].saved_csr = csr >> 7;
csr &= 0x7f;
}
if ((csr & 0x3f) == 0)
return 0;
if (unlikely(dma_chan[ch].dev_id == -1)) {
printk(KERN_WARNING "Spurious interrupt from DMA channel %d (CSR %04x)\n",
ch, csr);
return 0;
}
if (unlikely(csr & OMAP_DMA_TOUT_IRQ))
printk(KERN_WARNING "DMA timeout with device %d\n", dma_chan[ch].dev_id);
if (unlikely(csr & OMAP_DMA_DROP_IRQ))
printk(KERN_WARNING "DMA synchronization event drop occurred with device %d\n",
dma_chan[ch].dev_id);
if (likely(csr & OMAP_DMA_BLOCK_IRQ))
dma_chan[ch].flags &= ~OMAP_DMA_ACTIVE;
if (likely(dma_chan[ch].callback != NULL))
dma_chan[ch].callback(ch, csr, dma_chan[ch].data);
return 1;
}
static irqreturn_t dma_irq_handler(int irq, void *dev_id, struct pt_regs *regs)
{
int ch = ((int) dev_id) - 1;
int handled = 0;
for (;;) {
int handled_now = 0;
handled_now += dma_handle_ch(ch);
if (enable_1510_mode && dma_chan[ch + 6].saved_csr)
handled_now += dma_handle_ch(ch + 6);
if (!handled_now)
break;
handled += handled_now;
}
return handled ? IRQ_HANDLED : IRQ_NONE;
}
int omap_request_dma(int dev_id, const char *dev_name,
void (* callback)(int lch, u16 ch_status, void *data),
void *data, int *dma_ch_out)
{
int ch, free_ch = -1;
unsigned long flags;
struct omap_dma_lch *chan;
spin_lock_irqsave(&dma_chan_lock, flags);
for (ch = 0; ch < dma_chan_count; ch++) {
if (free_ch == -1 && dma_chan[ch].dev_id == -1) {
free_ch = ch;
if (dev_id == 0)
break;
}
}
if (free_ch == -1) {
spin_unlock_irqrestore(&dma_chan_lock, flags);
return -EBUSY;
}
chan = dma_chan + free_ch;
chan->dev_id = dev_id;
clear_lch_regs(free_ch);
spin_unlock_irqrestore(&dma_chan_lock, flags);
chan->dev_id = dev_id;
chan->dev_name = dev_name;
chan->callback = callback;
chan->data = data;
chan->enabled_irqs = OMAP_DMA_TOUT_IRQ | OMAP_DMA_DROP_IRQ | OMAP_DMA_BLOCK_IRQ;
if (cpu_is_omap16xx()) {
/* If the sync device is set, configure it dynamically. */
if (dev_id != 0) {
set_gdma_dev(free_ch + 1, dev_id);
dev_id = free_ch + 1;
}
/* Disable the 1510 compatibility mode and set the sync device
* id. */
omap_writew(dev_id | (1 << 10), OMAP_DMA_CCR(free_ch));
} else {
omap_writew(dev_id, OMAP_DMA_CCR(free_ch));
}
*dma_ch_out = free_ch;
return 0;
}
void omap_free_dma(int ch)
{
unsigned long flags;
spin_lock_irqsave(&dma_chan_lock, flags);
if (dma_chan[ch].dev_id == -1) {
printk("omap_dma: trying to free nonallocated DMA channel %d\n", ch);
spin_unlock_irqrestore(&dma_chan_lock, flags);
return;
}
dma_chan[ch].dev_id = -1;
spin_unlock_irqrestore(&dma_chan_lock, flags);
/* Disable all DMA interrupts for the channel. */
omap_writew(0, OMAP_DMA_CICR(ch));
/* Make sure the DMA transfer is stopped. */
omap_writew(0, OMAP_DMA_CCR(ch));
}
int omap_dma_in_1510_mode(void)
{
return enable_1510_mode;
}
/*
* lch_queue DMA will start right after lch_head one is finished.
* For this DMA link to start, you still need to start (see omap_start_dma)
* the first one. That will fire up the entire queue.
*/
void omap_dma_link_lch (int lch_head, int lch_queue)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA linking is not supported in 1510 mode\n");
BUG();
return;
}
if ((dma_chan[lch_head].dev_id == -1) ||
(dma_chan[lch_queue].dev_id == -1)) {
printk(KERN_ERR "omap_dma: trying to link non requested channels\n");
dump_stack();
}
dma_chan[lch_head].next_lch = lch_queue;
}
/*
* Once the DMA queue is stopped, we can destroy it.
*/
void omap_dma_unlink_lch (int lch_head, int lch_queue)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA linking is not supported in 1510 mode\n");
BUG();
return;
}
if (dma_chan[lch_head].next_lch != lch_queue ||
dma_chan[lch_head].next_lch == -1) {
printk(KERN_ERR "omap_dma: trying to unlink non linked channels\n");
dump_stack();
}
if ((dma_chan[lch_head].flags & OMAP_DMA_ACTIVE) ||
(dma_chan[lch_head].flags & OMAP_DMA_ACTIVE)) {
printk(KERN_ERR "omap_dma: You need to stop the DMA channels before unlinking\n");
dump_stack();
}
dma_chan[lch_head].next_lch = -1;
}
static struct lcd_dma_info {
spinlock_t lock;
int reserved;
void (* callback)(u16 status, void *data);
void *cb_data;
int active;
unsigned long addr, size;
int rotate, data_type, xres, yres;
int vxres;
int mirror;
int xscale, yscale;
int ext_ctrl;
int src_port;
int single_transfer;
} lcd_dma;
void omap_set_lcd_dma_b1(unsigned long addr, u16 fb_xres, u16 fb_yres,
int data_type)
{
lcd_dma.addr = addr;
lcd_dma.data_type = data_type;
lcd_dma.xres = fb_xres;
lcd_dma.yres = fb_yres;
}
void omap_set_lcd_dma_src_port(int port)
{
lcd_dma.src_port = port;
}
void omap_set_lcd_dma_ext_controller(int external)
{
lcd_dma.ext_ctrl = external;
}
void omap_set_lcd_dma_single_transfer(int single)
{
lcd_dma.single_transfer = single;
}
void omap_set_lcd_dma_b1_rotation(int rotate)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA rotation is not supported in 1510 mode\n");
BUG();
return;
}
lcd_dma.rotate = rotate;
}
void omap_set_lcd_dma_b1_mirror(int mirror)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA mirror is not supported in 1510 mode\n");
BUG();
}
lcd_dma.mirror = mirror;
}
void omap_set_lcd_dma_b1_vxres(unsigned long vxres)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA virtual resulotion is not supported "
"in 1510 mode\n");
BUG();
}
lcd_dma.vxres = vxres;
}
void omap_set_lcd_dma_b1_scale(unsigned int xscale, unsigned int yscale)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA scale is not supported in 1510 mode\n");
BUG();
}
lcd_dma.xscale = xscale;
lcd_dma.yscale = yscale;
}
static void set_b1_regs(void)
{
unsigned long top, bottom;
int es;
u16 w;
unsigned long en, fn;
long ei, fi;
unsigned long vxres;
unsigned int xscale, yscale;
switch (lcd_dma.data_type) {
case OMAP_DMA_DATA_TYPE_S8:
es = 1;
break;
case OMAP_DMA_DATA_TYPE_S16:
es = 2;
break;
case OMAP_DMA_DATA_TYPE_S32:
es = 4;
break;
default:
BUG();
return;
}
vxres = lcd_dma.vxres ? lcd_dma.vxres : lcd_dma.xres;
xscale = lcd_dma.xscale ? lcd_dma.xscale : 1;
yscale = lcd_dma.yscale ? lcd_dma.yscale : 1;
BUG_ON(vxres < lcd_dma.xres);
#define PIXADDR(x,y) (lcd_dma.addr + ((y) * vxres * yscale + (x) * xscale) * es)
#define PIXSTEP(sx, sy, dx, dy) (PIXADDR(dx, dy) - PIXADDR(sx, sy) - es + 1)
switch (lcd_dma.rotate) {
case 0:
if (!lcd_dma.mirror) {
top = PIXADDR(0, 0);
bottom = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
/* 1510 DMA requires the bottom address to be 2 more
* than the actual last memory access location. */
if (omap_dma_in_1510_mode() &&
lcd_dma.data_type == OMAP_DMA_DATA_TYPE_S32)
bottom += 2;
ei = PIXSTEP(0, 0, 1, 0);
fi = PIXSTEP(lcd_dma.xres - 1, 0, 0, 1);
} else {
top = PIXADDR(lcd_dma.xres - 1, 0);
bottom = PIXADDR(0, lcd_dma.yres - 1);
ei = PIXSTEP(1, 0, 0, 0);
fi = PIXSTEP(0, 0, lcd_dma.xres - 1, 1);
}
en = lcd_dma.xres;
fn = lcd_dma.yres;
break;
case 90:
if (!lcd_dma.mirror) {
top = PIXADDR(0, lcd_dma.yres - 1);
bottom = PIXADDR(lcd_dma.xres - 1, 0);
ei = PIXSTEP(0, 1, 0, 0);
fi = PIXSTEP(0, 0, 1, lcd_dma.yres - 1);
} else {
top = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
bottom = PIXADDR(0, 0);
ei = PIXSTEP(0, 1, 0, 0);
fi = PIXSTEP(1, 0, 0, lcd_dma.yres - 1);
}
en = lcd_dma.yres;
fn = lcd_dma.xres;
break;
case 180:
if (!lcd_dma.mirror) {
top = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
bottom = PIXADDR(0, 0);
ei = PIXSTEP(1, 0, 0, 0);
fi = PIXSTEP(0, 1, lcd_dma.xres - 1, 0);
} else {
top = PIXADDR(0, lcd_dma.yres - 1);
bottom = PIXADDR(lcd_dma.xres - 1, 0);
ei = PIXSTEP(0, 0, 1, 0);
fi = PIXSTEP(lcd_dma.xres - 1, 1, 0, 0);
}
en = lcd_dma.xres;
fn = lcd_dma.yres;
break;
case 270:
if (!lcd_dma.mirror) {
top = PIXADDR(lcd_dma.xres - 1, 0);
bottom = PIXADDR(0, lcd_dma.yres - 1);
ei = PIXSTEP(0, 0, 0, 1);
fi = PIXSTEP(1, lcd_dma.yres - 1, 0, 0);
} else {
top = PIXADDR(0, 0);
bottom = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
ei = PIXSTEP(0, 0, 0, 1);
fi = PIXSTEP(0, lcd_dma.yres - 1, 1, 0);
}
en = lcd_dma.yres;
fn = lcd_dma.xres;
break;
default:
BUG();
return; /* Supress warning about uninitialized vars */
}
if (omap_dma_in_1510_mode()) {
omap_writew(top >> 16, OMAP1510_DMA_LCD_TOP_F1_U);
omap_writew(top, OMAP1510_DMA_LCD_TOP_F1_L);
omap_writew(bottom >> 16, OMAP1510_DMA_LCD_BOT_F1_U);
omap_writew(bottom, OMAP1510_DMA_LCD_BOT_F1_L);
return;
}
/* 1610 regs */
omap_writew(top >> 16, OMAP1610_DMA_LCD_TOP_B1_U);
omap_writew(top, OMAP1610_DMA_LCD_TOP_B1_L);
omap_writew(bottom >> 16, OMAP1610_DMA_LCD_BOT_B1_U);
omap_writew(bottom, OMAP1610_DMA_LCD_BOT_B1_L);
omap_writew(en, OMAP1610_DMA_LCD_SRC_EN_B1);
omap_writew(fn, OMAP1610_DMA_LCD_SRC_FN_B1);
w = omap_readw(OMAP1610_DMA_LCD_CSDP);
w &= ~0x03;
w |= lcd_dma.data_type;
omap_writew(w, OMAP1610_DMA_LCD_CSDP);
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
/* Always set the source port as SDRAM for now*/
w &= ~(0x03 << 6);
if (lcd_dma.callback != NULL)
w |= 1 << 1; /* Block interrupt enable */
else
w &= ~(1 << 1);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
if (!(lcd_dma.rotate || lcd_dma.mirror ||
lcd_dma.vxres || lcd_dma.xscale || lcd_dma.yscale))
return;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
/* Set the double-indexed addressing mode */
w |= (0x03 << 12);
omap_writew(w, OMAP1610_DMA_LCD_CCR);
omap_writew(ei, OMAP1610_DMA_LCD_SRC_EI_B1);
omap_writew(fi >> 16, OMAP1610_DMA_LCD_SRC_FI_B1_U);
omap_writew(fi, OMAP1610_DMA_LCD_SRC_FI_B1_L);
}
static irqreturn_t lcd_dma_irq_handler(int irq, void *dev_id, struct pt_regs *regs)
{
u16 w;
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
if (unlikely(!(w & (1 << 3)))) {
printk(KERN_WARNING "Spurious LCD DMA IRQ\n");
return IRQ_NONE;
}
/* Ack the IRQ */
w |= (1 << 3);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
lcd_dma.active = 0;
if (lcd_dma.callback != NULL)
lcd_dma.callback(w, lcd_dma.cb_data);
return IRQ_HANDLED;
}
int omap_request_lcd_dma(void (* callback)(u16 status, void *data),
void *data)
{
spin_lock_irq(&lcd_dma.lock);
if (lcd_dma.reserved) {
spin_unlock_irq(&lcd_dma.lock);
printk(KERN_ERR "LCD DMA channel already reserved\n");
BUG();
return -EBUSY;
}
lcd_dma.reserved = 1;
spin_unlock_irq(&lcd_dma.lock);
lcd_dma.callback = callback;
lcd_dma.cb_data = data;
lcd_dma.active = 0;
lcd_dma.single_transfer = 0;
lcd_dma.rotate = 0;
lcd_dma.vxres = 0;
lcd_dma.mirror = 0;
lcd_dma.xscale = 0;
lcd_dma.yscale = 0;
lcd_dma.ext_ctrl = 0;
lcd_dma.src_port = 0;
return 0;
}
void omap_free_lcd_dma(void)
{
spin_lock(&lcd_dma.lock);
if (!lcd_dma.reserved) {
spin_unlock(&lcd_dma.lock);
printk(KERN_ERR "LCD DMA is not reserved\n");
BUG();
return;
}
if (!enable_1510_mode)
omap_writew(omap_readw(OMAP1610_DMA_LCD_CCR) & ~1, OMAP1610_DMA_LCD_CCR);
lcd_dma.reserved = 0;
spin_unlock(&lcd_dma.lock);
}
void omap_enable_lcd_dma(void)
{
u16 w;
/* Set the Enable bit only if an external controller is
* connected. Otherwise the OMAP internal controller will
* start the transfer when it gets enabled.
*/
if (enable_1510_mode || !lcd_dma.ext_ctrl)
return;
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
w |= 1 << 8;
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
lcd_dma.active = 1;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
w |= 1 << 7;
omap_writew(w, OMAP1610_DMA_LCD_CCR);
}
void omap_setup_lcd_dma(void)
{
BUG_ON(lcd_dma.active);
if (!enable_1510_mode) {
/* Set some reasonable defaults */
omap_writew(0x5440, OMAP1610_DMA_LCD_CCR);
omap_writew(0x9102, OMAP1610_DMA_LCD_CSDP);
omap_writew(0x0004, OMAP1610_DMA_LCD_LCH_CTRL);
}
set_b1_regs();
if (!enable_1510_mode) {
u16 w;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
/* If DMA was already active set the end_prog bit to have
* the programmed register set loaded into the active
* register set.
*/
w |= 1 << 11; /* End_prog */
if (!lcd_dma.single_transfer)
w |= (3 << 8); /* Auto_init, repeat */
omap_writew(w, OMAP1610_DMA_LCD_CCR);
}
}
void omap_stop_lcd_dma(void)
{
u16 w;
lcd_dma.active = 0;
if (enable_1510_mode || !lcd_dma.ext_ctrl)
return;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
w &= ~(1 << 7);
omap_writew(w, OMAP1610_DMA_LCD_CCR);
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
w &= ~(1 << 8);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
}
/*
* Clears any DMA state so the DMA engine is ready to restart with new buffers
* through omap_start_dma(). Any buffers in flight are discarded.
*/
void omap_clear_dma(int lch)
{
unsigned long flags;
int status;
local_irq_save(flags);
omap_writew(omap_readw(OMAP_DMA_CCR(lch)) & ~OMAP_DMA_CCR_EN,
OMAP_DMA_CCR(lch));
status = OMAP_DMA_CSR(lch); /* clear pending interrupts */
local_irq_restore(flags);
}
/*
* Returns current physical source address for the given DMA channel.
* If the channel is running the caller must disable interrupts prior calling
* this function and process the returned value before re-enabling interrupt to
* prevent races with the interrupt handler. Note that in continuous mode there
* is a chance for CSSA_L register overflow inbetween the two reads resulting
* in incorrect return value.
*/
dma_addr_t omap_get_dma_src_pos(int lch)
{
return (dma_addr_t) (omap_readw(OMAP_DMA_CSSA_L(lch)) |
(omap_readw(OMAP_DMA_CSSA_U(lch)) << 16));
}
/*
* Returns current physical destination address for the given DMA channel.
* If the channel is running the caller must disable interrupts prior calling
* this function and process the returned value before re-enabling interrupt to
* prevent races with the interrupt handler. Note that in continuous mode there
* is a chance for CDSA_L register overflow inbetween the two reads resulting
* in incorrect return value.
*/
dma_addr_t omap_get_dma_dst_pos(int lch)
{
return (dma_addr_t) (omap_readw(OMAP_DMA_CDSA_L(lch)) |
(omap_readw(OMAP_DMA_CDSA_U(lch)) << 16));
}
/*
* Returns current source transfer counting for the given DMA channel.
* Can be used to monitor the progress of a transfer inside a block.
* It must be called with disabled interrupts.
*/
int omap_get_dma_src_addr_counter(int lch)
{
return (dma_addr_t) omap_readw(OMAP_DMA_CSAC(lch));
}
int omap_dma_running(void)
{
int lch;
/* Check if LCD DMA is running */
if (cpu_is_omap16xx())
if (omap_readw(OMAP1610_DMA_LCD_CCR) & OMAP_DMA_CCR_EN)
return 1;
for (lch = 0; lch < dma_chan_count; lch++) {
u16 w;
w = omap_readw(OMAP_DMA_CCR(lch));
if (w & OMAP_DMA_CCR_EN)
return 1;
}
return 0;
}
static int __init omap_init_dma(void)
{
int ch, r;
if (cpu_is_omap1510()) {
printk(KERN_INFO "DMA support for OMAP1510 initialized\n");
dma_chan_count = 9;
enable_1510_mode = 1;
} else if (cpu_is_omap16xx() || cpu_is_omap730()) {
printk(KERN_INFO "OMAP DMA hardware version %d\n",
omap_readw(OMAP_DMA_HW_ID));
printk(KERN_INFO "DMA capabilities: %08x:%08x:%04x:%04x:%04x\n",
(omap_readw(OMAP_DMA_CAPS_0_U) << 16) | omap_readw(OMAP_DMA_CAPS_0_L),
(omap_readw(OMAP_DMA_CAPS_1_U) << 16) | omap_readw(OMAP_DMA_CAPS_1_L),
omap_readw(OMAP_DMA_CAPS_2), omap_readw(OMAP_DMA_CAPS_3),
omap_readw(OMAP_DMA_CAPS_4));
if (!enable_1510_mode) {
u16 w;
/* Disable OMAP 3.0/3.1 compatibility mode. */
w = omap_readw(OMAP_DMA_GSCR);
w |= 1 << 3;
omap_writew(w, OMAP_DMA_GSCR);
dma_chan_count = 16;
} else
dma_chan_count = 9;
} else {
dma_chan_count = 0;
return 0;
}
memset(&lcd_dma, 0, sizeof(lcd_dma));
spin_lock_init(&lcd_dma.lock);
spin_lock_init(&dma_chan_lock);
memset(&dma_chan, 0, sizeof(dma_chan));
for (ch = 0; ch < dma_chan_count; ch++) {
dma_chan[ch].dev_id = -1;
dma_chan[ch].next_lch = -1;
if (ch >= 6 && enable_1510_mode)
continue;
/* request_irq() doesn't like dev_id (ie. ch) being zero,
* so we have to kludge around this. */
r = request_irq(dma_irq[ch], dma_irq_handler, 0, "DMA",
(void *) (ch + 1));
if (r != 0) {
int i;
printk(KERN_ERR "unable to request IRQ %d for DMA (error %d)\n",
dma_irq[ch], r);
for (i = 0; i < ch; i++)
free_irq(dma_irq[i], (void *) (i + 1));
return r;
}
}
r = request_irq(INT_DMA_LCD, lcd_dma_irq_handler, 0, "LCD DMA", NULL);
if (r != 0) {
int i;
printk(KERN_ERR "unable to request IRQ for LCD DMA (error %d)\n", r);
for (i = 0; i < dma_chan_count; i++)
free_irq(dma_irq[i], (void *) (i + 1));
return r;
}
return 0;
}
arch_initcall(omap_init_dma);
EXPORT_SYMBOL(omap_get_dma_src_pos);
EXPORT_SYMBOL(omap_get_dma_dst_pos);
EXPORT_SYMBOL(omap_get_dma_src_addr_counter);
EXPORT_SYMBOL(omap_clear_dma);
EXPORT_SYMBOL(omap_set_dma_priority);
EXPORT_SYMBOL(omap_request_dma);
EXPORT_SYMBOL(omap_free_dma);
EXPORT_SYMBOL(omap_start_dma);
EXPORT_SYMBOL(omap_stop_dma);
EXPORT_SYMBOL(omap_enable_dma_irq);
EXPORT_SYMBOL(omap_disable_dma_irq);
EXPORT_SYMBOL(omap_set_dma_transfer_params);
EXPORT_SYMBOL(omap_set_dma_color_mode);
EXPORT_SYMBOL(omap_set_dma_src_params);
EXPORT_SYMBOL(omap_set_dma_src_index);
EXPORT_SYMBOL(omap_set_dma_src_data_pack);
EXPORT_SYMBOL(omap_set_dma_src_burst_mode);
EXPORT_SYMBOL(omap_set_dma_dest_params);
EXPORT_SYMBOL(omap_set_dma_dest_index);
EXPORT_SYMBOL(omap_set_dma_dest_data_pack);
EXPORT_SYMBOL(omap_set_dma_dest_burst_mode);
EXPORT_SYMBOL(omap_dma_link_lch);
EXPORT_SYMBOL(omap_dma_unlink_lch);
EXPORT_SYMBOL(omap_request_lcd_dma);
EXPORT_SYMBOL(omap_free_lcd_dma);
EXPORT_SYMBOL(omap_enable_lcd_dma);
EXPORT_SYMBOL(omap_setup_lcd_dma);
EXPORT_SYMBOL(omap_stop_lcd_dma);
EXPORT_SYMBOL(omap_set_lcd_dma_b1);
EXPORT_SYMBOL(omap_set_lcd_dma_single_transfer);
EXPORT_SYMBOL(omap_set_lcd_dma_ext_controller);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_rotation);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_vxres);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_scale);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_mirror);