OpenCloudOS-Kernel/include/asm-generic/bug.h

243 lines
6.6 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_GENERIC_BUG_H
#define _ASM_GENERIC_BUG_H
#include <linux/compiler.h>
#define CUT_HERE "------------[ cut here ]------------\n"
#ifdef CONFIG_GENERIC_BUG
#define BUGFLAG_WARNING (1 << 0)
#define BUGFLAG_ONCE (1 << 1)
#define BUGFLAG_DONE (1 << 2)
#define BUGFLAG_TAINT(taint) ((taint) << 8)
#define BUG_GET_TAINT(bug) ((bug)->flags >> 8)
#endif
#ifndef __ASSEMBLY__
#include <linux/kernel.h>
#ifdef CONFIG_BUG
[PATCH] Generic BUG implementation This patch adds common handling for kernel BUGs, for use by architectures as they wish. The code is derived from arch/powerpc. The advantages of having common BUG handling are: - consistent BUG reporting across architectures - shared implementation of out-of-line file/line data - implement CONFIG_DEBUG_BUGVERBOSE consistently This means that in inline impact of BUG is just the illegal instruction itself, which is an improvement for i386 and x86-64. A BUG is represented in the instruction stream as an illegal instruction, which has file/line information associated with it. This extra information is stored in the __bug_table section in the ELF file. When the kernel gets an illegal instruction, it first confirms it might possibly be from a BUG (ie, in kernel mode, the right illegal instruction). It then calls report_bug(). This searches __bug_table for a matching instruction pointer, and if found, prints the corresponding file/line information. If report_bug() determines that it wasn't a BUG which caused the trap, it returns BUG_TRAP_TYPE_NONE. Some architectures (powerpc) implement WARN using the same mechanism; if the illegal instruction was the result of a WARN, then report_bug(Q) returns CONFIG_DEBUG_BUGVERBOSE; otherwise it returns BUG_TRAP_TYPE_BUG. lib/bug.c keeps a list of loaded modules which can be searched for __bug_table entries. The architecture must call module_bug_finalize()/module_bug_cleanup() from its corresponding module_finalize/cleanup functions. Unsetting CONFIG_DEBUG_BUGVERBOSE will reduce the kernel size by some amount. At the very least, filename and line information will not be recorded for each but, but architectures may decide to store no extra information per BUG at all. Unfortunately, gcc doesn't have a general way to mark an asm() as noreturn, so architectures will generally have to include an infinite loop (or similar) in the BUG code, so that gcc knows execution won't continue beyond that point. gcc does have a __builtin_trap() operator which may be useful to achieve the same effect, unfortunately it cannot be used to actually implement the BUG itself, because there's no way to get the instruction's address for use in generating the __bug_table entry. [randy.dunlap@oracle.com: Handle BUG=n, GENERIC_BUG=n to prevent build errors] [bunk@stusta.de: include/linux/bug.h must always #include <linux/module.h] Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Andi Kleen <ak@muc.de> Cc: Hugh Dickens <hugh@veritas.com> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 18:36:19 +08:00
#ifdef CONFIG_GENERIC_BUG
struct bug_entry {
#ifndef CONFIG_GENERIC_BUG_RELATIVE_POINTERS
[PATCH] Generic BUG implementation This patch adds common handling for kernel BUGs, for use by architectures as they wish. The code is derived from arch/powerpc. The advantages of having common BUG handling are: - consistent BUG reporting across architectures - shared implementation of out-of-line file/line data - implement CONFIG_DEBUG_BUGVERBOSE consistently This means that in inline impact of BUG is just the illegal instruction itself, which is an improvement for i386 and x86-64. A BUG is represented in the instruction stream as an illegal instruction, which has file/line information associated with it. This extra information is stored in the __bug_table section in the ELF file. When the kernel gets an illegal instruction, it first confirms it might possibly be from a BUG (ie, in kernel mode, the right illegal instruction). It then calls report_bug(). This searches __bug_table for a matching instruction pointer, and if found, prints the corresponding file/line information. If report_bug() determines that it wasn't a BUG which caused the trap, it returns BUG_TRAP_TYPE_NONE. Some architectures (powerpc) implement WARN using the same mechanism; if the illegal instruction was the result of a WARN, then report_bug(Q) returns CONFIG_DEBUG_BUGVERBOSE; otherwise it returns BUG_TRAP_TYPE_BUG. lib/bug.c keeps a list of loaded modules which can be searched for __bug_table entries. The architecture must call module_bug_finalize()/module_bug_cleanup() from its corresponding module_finalize/cleanup functions. Unsetting CONFIG_DEBUG_BUGVERBOSE will reduce the kernel size by some amount. At the very least, filename and line information will not be recorded for each but, but architectures may decide to store no extra information per BUG at all. Unfortunately, gcc doesn't have a general way to mark an asm() as noreturn, so architectures will generally have to include an infinite loop (or similar) in the BUG code, so that gcc knows execution won't continue beyond that point. gcc does have a __builtin_trap() operator which may be useful to achieve the same effect, unfortunately it cannot be used to actually implement the BUG itself, because there's no way to get the instruction's address for use in generating the __bug_table entry. [randy.dunlap@oracle.com: Handle BUG=n, GENERIC_BUG=n to prevent build errors] [bunk@stusta.de: include/linux/bug.h must always #include <linux/module.h] Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Andi Kleen <ak@muc.de> Cc: Hugh Dickens <hugh@veritas.com> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 18:36:19 +08:00
unsigned long bug_addr;
#else
signed int bug_addr_disp;
#endif
[PATCH] Generic BUG implementation This patch adds common handling for kernel BUGs, for use by architectures as they wish. The code is derived from arch/powerpc. The advantages of having common BUG handling are: - consistent BUG reporting across architectures - shared implementation of out-of-line file/line data - implement CONFIG_DEBUG_BUGVERBOSE consistently This means that in inline impact of BUG is just the illegal instruction itself, which is an improvement for i386 and x86-64. A BUG is represented in the instruction stream as an illegal instruction, which has file/line information associated with it. This extra information is stored in the __bug_table section in the ELF file. When the kernel gets an illegal instruction, it first confirms it might possibly be from a BUG (ie, in kernel mode, the right illegal instruction). It then calls report_bug(). This searches __bug_table for a matching instruction pointer, and if found, prints the corresponding file/line information. If report_bug() determines that it wasn't a BUG which caused the trap, it returns BUG_TRAP_TYPE_NONE. Some architectures (powerpc) implement WARN using the same mechanism; if the illegal instruction was the result of a WARN, then report_bug(Q) returns CONFIG_DEBUG_BUGVERBOSE; otherwise it returns BUG_TRAP_TYPE_BUG. lib/bug.c keeps a list of loaded modules which can be searched for __bug_table entries. The architecture must call module_bug_finalize()/module_bug_cleanup() from its corresponding module_finalize/cleanup functions. Unsetting CONFIG_DEBUG_BUGVERBOSE will reduce the kernel size by some amount. At the very least, filename and line information will not be recorded for each but, but architectures may decide to store no extra information per BUG at all. Unfortunately, gcc doesn't have a general way to mark an asm() as noreturn, so architectures will generally have to include an infinite loop (or similar) in the BUG code, so that gcc knows execution won't continue beyond that point. gcc does have a __builtin_trap() operator which may be useful to achieve the same effect, unfortunately it cannot be used to actually implement the BUG itself, because there's no way to get the instruction's address for use in generating the __bug_table entry. [randy.dunlap@oracle.com: Handle BUG=n, GENERIC_BUG=n to prevent build errors] [bunk@stusta.de: include/linux/bug.h must always #include <linux/module.h] Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Andi Kleen <ak@muc.de> Cc: Hugh Dickens <hugh@veritas.com> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 18:36:19 +08:00
#ifdef CONFIG_DEBUG_BUGVERBOSE
#ifndef CONFIG_GENERIC_BUG_RELATIVE_POINTERS
[PATCH] Generic BUG implementation This patch adds common handling for kernel BUGs, for use by architectures as they wish. The code is derived from arch/powerpc. The advantages of having common BUG handling are: - consistent BUG reporting across architectures - shared implementation of out-of-line file/line data - implement CONFIG_DEBUG_BUGVERBOSE consistently This means that in inline impact of BUG is just the illegal instruction itself, which is an improvement for i386 and x86-64. A BUG is represented in the instruction stream as an illegal instruction, which has file/line information associated with it. This extra information is stored in the __bug_table section in the ELF file. When the kernel gets an illegal instruction, it first confirms it might possibly be from a BUG (ie, in kernel mode, the right illegal instruction). It then calls report_bug(). This searches __bug_table for a matching instruction pointer, and if found, prints the corresponding file/line information. If report_bug() determines that it wasn't a BUG which caused the trap, it returns BUG_TRAP_TYPE_NONE. Some architectures (powerpc) implement WARN using the same mechanism; if the illegal instruction was the result of a WARN, then report_bug(Q) returns CONFIG_DEBUG_BUGVERBOSE; otherwise it returns BUG_TRAP_TYPE_BUG. lib/bug.c keeps a list of loaded modules which can be searched for __bug_table entries. The architecture must call module_bug_finalize()/module_bug_cleanup() from its corresponding module_finalize/cleanup functions. Unsetting CONFIG_DEBUG_BUGVERBOSE will reduce the kernel size by some amount. At the very least, filename and line information will not be recorded for each but, but architectures may decide to store no extra information per BUG at all. Unfortunately, gcc doesn't have a general way to mark an asm() as noreturn, so architectures will generally have to include an infinite loop (or similar) in the BUG code, so that gcc knows execution won't continue beyond that point. gcc does have a __builtin_trap() operator which may be useful to achieve the same effect, unfortunately it cannot be used to actually implement the BUG itself, because there's no way to get the instruction's address for use in generating the __bug_table entry. [randy.dunlap@oracle.com: Handle BUG=n, GENERIC_BUG=n to prevent build errors] [bunk@stusta.de: include/linux/bug.h must always #include <linux/module.h] Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Andi Kleen <ak@muc.de> Cc: Hugh Dickens <hugh@veritas.com> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 18:36:19 +08:00
const char *file;
#else
signed int file_disp;
#endif
[PATCH] Generic BUG implementation This patch adds common handling for kernel BUGs, for use by architectures as they wish. The code is derived from arch/powerpc. The advantages of having common BUG handling are: - consistent BUG reporting across architectures - shared implementation of out-of-line file/line data - implement CONFIG_DEBUG_BUGVERBOSE consistently This means that in inline impact of BUG is just the illegal instruction itself, which is an improvement for i386 and x86-64. A BUG is represented in the instruction stream as an illegal instruction, which has file/line information associated with it. This extra information is stored in the __bug_table section in the ELF file. When the kernel gets an illegal instruction, it first confirms it might possibly be from a BUG (ie, in kernel mode, the right illegal instruction). It then calls report_bug(). This searches __bug_table for a matching instruction pointer, and if found, prints the corresponding file/line information. If report_bug() determines that it wasn't a BUG which caused the trap, it returns BUG_TRAP_TYPE_NONE. Some architectures (powerpc) implement WARN using the same mechanism; if the illegal instruction was the result of a WARN, then report_bug(Q) returns CONFIG_DEBUG_BUGVERBOSE; otherwise it returns BUG_TRAP_TYPE_BUG. lib/bug.c keeps a list of loaded modules which can be searched for __bug_table entries. The architecture must call module_bug_finalize()/module_bug_cleanup() from its corresponding module_finalize/cleanup functions. Unsetting CONFIG_DEBUG_BUGVERBOSE will reduce the kernel size by some amount. At the very least, filename and line information will not be recorded for each but, but architectures may decide to store no extra information per BUG at all. Unfortunately, gcc doesn't have a general way to mark an asm() as noreturn, so architectures will generally have to include an infinite loop (or similar) in the BUG code, so that gcc knows execution won't continue beyond that point. gcc does have a __builtin_trap() operator which may be useful to achieve the same effect, unfortunately it cannot be used to actually implement the BUG itself, because there's no way to get the instruction's address for use in generating the __bug_table entry. [randy.dunlap@oracle.com: Handle BUG=n, GENERIC_BUG=n to prevent build errors] [bunk@stusta.de: include/linux/bug.h must always #include <linux/module.h] Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Andi Kleen <ak@muc.de> Cc: Hugh Dickens <hugh@veritas.com> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 18:36:19 +08:00
unsigned short line;
#endif
unsigned short flags;
};
#endif /* CONFIG_GENERIC_BUG */
/*
* Don't use BUG() or BUG_ON() unless there's really no way out; one
* example might be detecting data structure corruption in the middle
* of an operation that can't be backed out of. If the (sub)system
* can somehow continue operating, perhaps with reduced functionality,
* it's probably not BUG-worthy.
*
* If you're tempted to BUG(), think again: is completely giving up
* really the *only* solution? There are usually better options, where
* users don't need to reboot ASAP and can mostly shut down cleanly.
*/
#ifndef HAVE_ARCH_BUG
#define BUG() do { \
printk("BUG: failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); \
bug.h: work around GCC PR82365 in BUG() Looking at functions with large stack frames across all architectures led me discovering that BUG() suffers from the same problem as fortify_panic(), which I've added a workaround for already. In short, variables that go out of scope by calling a noreturn function or __builtin_unreachable() keep using stack space in functions afterwards. A workaround that was identified is to insert an empty assembler statement just before calling the function that doesn't return. I'm adding a macro "barrier_before_unreachable()" to document this, and insert calls to that in all instances of BUG() that currently suffer from this problem. The files that saw the largest change from this had these frame sizes before, and much less with my patch: fs/ext4/inode.c:82:1: warning: the frame size of 1672 bytes is larger than 800 bytes [-Wframe-larger-than=] fs/ext4/namei.c:434:1: warning: the frame size of 904 bytes is larger than 800 bytes [-Wframe-larger-than=] fs/ext4/super.c:2279:1: warning: the frame size of 1160 bytes is larger than 800 bytes [-Wframe-larger-than=] fs/ext4/xattr.c:146:1: warning: the frame size of 1168 bytes is larger than 800 bytes [-Wframe-larger-than=] fs/f2fs/inode.c:152:1: warning: the frame size of 1424 bytes is larger than 800 bytes [-Wframe-larger-than=] net/netfilter/ipvs/ip_vs_core.c:1195:1: warning: the frame size of 1068 bytes is larger than 800 bytes [-Wframe-larger-than=] net/netfilter/ipvs/ip_vs_core.c:395:1: warning: the frame size of 1084 bytes is larger than 800 bytes [-Wframe-larger-than=] net/netfilter/ipvs/ip_vs_ftp.c:298:1: warning: the frame size of 928 bytes is larger than 800 bytes [-Wframe-larger-than=] net/netfilter/ipvs/ip_vs_ftp.c:418:1: warning: the frame size of 908 bytes is larger than 800 bytes [-Wframe-larger-than=] net/netfilter/ipvs/ip_vs_lblcr.c:718:1: warning: the frame size of 960 bytes is larger than 800 bytes [-Wframe-larger-than=] drivers/net/xen-netback/netback.c:1500:1: warning: the frame size of 1088 bytes is larger than 800 bytes [-Wframe-larger-than=] In case of ARC and CRIS, it turns out that the BUG() implementation actually does return (or at least the compiler thinks it does), resulting in lots of warnings about uninitialized variable use and leaving noreturn functions, such as: block/cfq-iosched.c: In function 'cfq_async_queue_prio': block/cfq-iosched.c:3804:1: error: control reaches end of non-void function [-Werror=return-type] include/linux/dmaengine.h: In function 'dma_maxpq': include/linux/dmaengine.h:1123:1: error: control reaches end of non-void function [-Werror=return-type] This makes them call __builtin_trap() instead, which should normally dump the stack and kill the current process, like some of the other architectures already do. I tried adding barrier_before_unreachable() to panic() and fortify_panic() as well, but that had very little effect, so I'm not submitting that patch. Vineet said: : For ARC, it is double win. : : 1. Fixes 3 -Wreturn-type warnings : : | ../net/core/ethtool.c:311:1: warning: control reaches end of non-void function : [-Wreturn-type] : | ../kernel/sched/core.c:3246:1: warning: control reaches end of non-void function : [-Wreturn-type] : | ../include/linux/sunrpc/svc_xprt.h:180:1: warning: control reaches end of : non-void function [-Wreturn-type] : : 2. bloat-o-meter reports code size improvements as gcc elides the : generated code for stack return. Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82365 Link: http://lkml.kernel.org/r/20171219114112.939391-1-arnd@arndb.de Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc] Tested-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc] Cc: Mikael Starvik <starvik@axis.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Christopher Li <sparse@chrisli.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Kees Cook <keescook@chromium.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-22 06:45:54 +08:00
barrier_before_unreachable(); \
panic("BUG!"); \
} while (0)
#endif
#ifndef HAVE_ARCH_BUG_ON
#define BUG_ON(condition) do { if (unlikely(condition)) BUG(); } while (0)
#endif
#ifdef __WARN_FLAGS
#define __WARN_TAINT(taint) __WARN_FLAGS(BUGFLAG_TAINT(taint))
#define __WARN_ONCE_TAINT(taint) __WARN_FLAGS(BUGFLAG_ONCE|BUGFLAG_TAINT(taint))
#define WARN_ON_ONCE(condition) ({ \
int __ret_warn_on = !!(condition); \
if (unlikely(__ret_warn_on)) \
__WARN_ONCE_TAINT(TAINT_WARN); \
unlikely(__ret_warn_on); \
})
#endif
/*
* WARN(), WARN_ON(), WARN_ON_ONCE, and so on can be used to report
* significant issues that need prompt attention if they should ever
* appear at runtime. Use the versions with printk format strings
* to provide better diagnostics.
*/
#ifndef __WARN_TAINT
extern __printf(3, 4)
void warn_slowpath_fmt(const char *file, const int line,
const char *fmt, ...);
extern __printf(4, 5)
void warn_slowpath_fmt_taint(const char *file, const int line, unsigned taint,
const char *fmt, ...);
extern void warn_slowpath_null(const char *file, const int line);
#define WANT_WARN_ON_SLOWPATH
#define __WARN() warn_slowpath_null(__FILE__, __LINE__)
#define __WARN_printf(arg...) warn_slowpath_fmt(__FILE__, __LINE__, arg)
#define __WARN_printf_taint(taint, arg...) \
warn_slowpath_fmt_taint(__FILE__, __LINE__, taint, arg)
#else
bug: fix "cut here" location for __WARN_TAINT architectures Prior to v4.11, x86 used warn_slowpath_fmt() for handling WARN()s. After WARN() was moved to using UD0 on x86, the warning text started appearing _before_ the "cut here" line. This appears to have been a long-standing bug on architectures that used __WARN_TAINT, but it didn't get fixed. v4.11 and earlier on x86: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 2956 at drivers/misc/lkdtm_bugs.c:65 lkdtm_WARNING+0x21/0x30 This is a warning message Modules linked in: v4.12 and later on x86: This is a warning message ------------[ cut here ]------------ WARNING: CPU: 1 PID: 2982 at drivers/misc/lkdtm_bugs.c:68 lkdtm_WARNING+0x15/0x20 Modules linked in: With this fix: ------------[ cut here ]------------ This is a warning message WARNING: CPU: 3 PID: 3009 at drivers/misc/lkdtm_bugs.c:67 lkdtm_WARNING+0x15/0x20 Since the __FILE__ reporting happens as part of the UD0 handler, it isn't trivial to move the message to after the WARNING line, but at least we can fix the position of the "cut here" line so all the various logging tools will start including the actual runtime warning message again, when they follow the instruction and "cut here". Link: http://lkml.kernel.org/r/1510100869-73751-4-git-send-email-keescook@chromium.org Fixes: 9a93848fe787 ("x86/debug: Implement __WARN() using UD0") Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-18 07:27:24 +08:00
extern __printf(1, 2) void __warn_printk(const char *fmt, ...);
#define __WARN() __WARN_TAINT(TAINT_WARN)
bug: fix "cut here" location for __WARN_TAINT architectures Prior to v4.11, x86 used warn_slowpath_fmt() for handling WARN()s. After WARN() was moved to using UD0 on x86, the warning text started appearing _before_ the "cut here" line. This appears to have been a long-standing bug on architectures that used __WARN_TAINT, but it didn't get fixed. v4.11 and earlier on x86: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 2956 at drivers/misc/lkdtm_bugs.c:65 lkdtm_WARNING+0x21/0x30 This is a warning message Modules linked in: v4.12 and later on x86: This is a warning message ------------[ cut here ]------------ WARNING: CPU: 1 PID: 2982 at drivers/misc/lkdtm_bugs.c:68 lkdtm_WARNING+0x15/0x20 Modules linked in: With this fix: ------------[ cut here ]------------ This is a warning message WARNING: CPU: 3 PID: 3009 at drivers/misc/lkdtm_bugs.c:67 lkdtm_WARNING+0x15/0x20 Since the __FILE__ reporting happens as part of the UD0 handler, it isn't trivial to move the message to after the WARNING line, but at least we can fix the position of the "cut here" line so all the various logging tools will start including the actual runtime warning message again, when they follow the instruction and "cut here". Link: http://lkml.kernel.org/r/1510100869-73751-4-git-send-email-keescook@chromium.org Fixes: 9a93848fe787 ("x86/debug: Implement __WARN() using UD0") Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-18 07:27:24 +08:00
#define __WARN_printf(arg...) do { __warn_printk(arg); __WARN(); } while (0)
#define __WARN_printf_taint(taint, arg...) \
bug: fix "cut here" location for __WARN_TAINT architectures Prior to v4.11, x86 used warn_slowpath_fmt() for handling WARN()s. After WARN() was moved to using UD0 on x86, the warning text started appearing _before_ the "cut here" line. This appears to have been a long-standing bug on architectures that used __WARN_TAINT, but it didn't get fixed. v4.11 and earlier on x86: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 2956 at drivers/misc/lkdtm_bugs.c:65 lkdtm_WARNING+0x21/0x30 This is a warning message Modules linked in: v4.12 and later on x86: This is a warning message ------------[ cut here ]------------ WARNING: CPU: 1 PID: 2982 at drivers/misc/lkdtm_bugs.c:68 lkdtm_WARNING+0x15/0x20 Modules linked in: With this fix: ------------[ cut here ]------------ This is a warning message WARNING: CPU: 3 PID: 3009 at drivers/misc/lkdtm_bugs.c:67 lkdtm_WARNING+0x15/0x20 Since the __FILE__ reporting happens as part of the UD0 handler, it isn't trivial to move the message to after the WARNING line, but at least we can fix the position of the "cut here" line so all the various logging tools will start including the actual runtime warning message again, when they follow the instruction and "cut here". Link: http://lkml.kernel.org/r/1510100869-73751-4-git-send-email-keescook@chromium.org Fixes: 9a93848fe787 ("x86/debug: Implement __WARN() using UD0") Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-18 07:27:24 +08:00
do { __warn_printk(arg); __WARN_TAINT(taint); } while (0)
#endif
/* used internally by panic.c */
struct warn_args;
asm-generic/bug.h: declare struct pt_regs; before function prototype This series of patches splits BUILD_BUG related macros out of "include/linux/bug.h" into new file "include/linux/build_bug.h" (patch 5), and changes the pointer type checking in the `container_of()` macro to deal with pointers of array type better (patch 6). Patches 1 to 4 are prerequisites. Patches 2, 3, 4, and 5 have been inserted since the previous version of this patch series. Patch 6 here corresponds to v3 and v4's patch 2. Patch 1 was a prerequisite in v3 of this series to avoid a lot of warnings when <linux/bug.h> was included by <linux/kernel.h>. That is no longer relevant for v5 of the series, but I left it in because it was acked by a Arnd Bergmann and Michal Nazarewicz. Patches 2, 3, and 4 are some checkpatch clean-ups on "include/linux/bug.h" before splitting out the BUILD_BUG stuff in patch 5. Patch 5 splits the BUILD_BUG related macros out of "include/linux/bug.h" into new file "include/linux/build_bug.h" because including <linux/bug.h> in "include/linux/kernel.h" would result in build failures due to circular dependencies. Patch 6 changes the pointer type checking by `container_of()` to avoid some incompatible pointer warnings when the dereferenced pointer has array type. 1) asm-generic/bug.h: declare struct pt_regs; before function prototype 2) linux/bug.h: correct formatting of block comment 3) linux/bug.h: correct "(foo*)" should be "(foo *)" 4) linux/bug.h: correct "space required before that '-'" 5) bug: split BUILD_BUG stuff out into <linux/build_bug.h> 6) kernel.h: handle pointers to arrays better in container_of() This patch (of 6): The declaration of `__warn()` has `struct pt_regs *regs` as one of its parameters. This can result in compiler warnings if `struct regs` is not already declared. Add an empty declaration of `struct pt_regs` to avoid the warnings. Link: http://lkml.kernel.org/r/20170525120316.24473-2-abbotti@mev.co.uk Signed-off-by: Ian Abbott <abbotti@mev.co.uk> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 06:50:55 +08:00
struct pt_regs;
void __warn(const char *file, int line, void *caller, unsigned taint,
struct pt_regs *regs, struct warn_args *args);
#ifndef WARN_ON
#define WARN_ON(condition) ({ \
int __ret_warn_on = !!(condition); \
if (unlikely(__ret_warn_on)) \
__WARN(); \
unlikely(__ret_warn_on); \
})
#endif
#ifndef WARN
#define WARN(condition, format...) ({ \
int __ret_warn_on = !!(condition); \
if (unlikely(__ret_warn_on)) \
__WARN_printf(format); \
unlikely(__ret_warn_on); \
})
#endif
#define WARN_TAINT(condition, taint, format...) ({ \
int __ret_warn_on = !!(condition); \
if (unlikely(__ret_warn_on)) \
__WARN_printf_taint(taint, format); \
unlikely(__ret_warn_on); \
})
#ifndef WARN_ON_ONCE
#define WARN_ON_ONCE(condition) ({ \
static bool __section(.data.once) __warned; \
int __ret_warn_once = !!(condition); \
\
if (unlikely(__ret_warn_once && !__warned)) { \
__warned = true; \
WARN_ON(1); \
} \
unlikely(__ret_warn_once); \
})
#endif
#define WARN_ONCE(condition, format...) ({ \
static bool __section(.data.once) __warned; \
int __ret_warn_once = !!(condition); \
\
if (unlikely(__ret_warn_once && !__warned)) { \
__warned = true; \
WARN(1, format); \
} \
unlikely(__ret_warn_once); \
})
#define WARN_TAINT_ONCE(condition, taint, format...) ({ \
static bool __section(.data.once) __warned; \
int __ret_warn_once = !!(condition); \
\
if (unlikely(__ret_warn_once && !__warned)) { \
__warned = true; \
WARN_TAINT(1, taint, format); \
} \
unlikely(__ret_warn_once); \
})
#else /* !CONFIG_BUG */
#ifndef HAVE_ARCH_BUG
bug: Make BUG() always stop the machine When !CONFIG_BUG and !HAVE_ARCH_BUG, define the generic BUG() as an infinite loop rather than a no-op. This avoids undefined behavior if execution ever actually reaches BUG(), and avoids warnings about code after BUG() (such as on non-void functions calling BUG() and then not returning). bloat-o-meter results: add/remove: 0/0 grow/shrink: 43/10 up/down: 235/-98 (137) function old new delta umount_collect 119 138 +19 notify_change 306 324 +18 xstate_enable_boot_cpu 252 269 +17 kunmap 54 70 +16 balloon_page_dequeue 112 126 +14 mm_take_all_locks 223 233 +10 list_lru_walk_node 143 152 +9 vma_adjust 1059 1067 +8 pcpu_setup_first_chunk 1130 1138 +8 mm_drop_all_locks 143 151 +8 ns_capable 55 62 +7 anon_transport_class_unregister 8 15 +7 srcu_init_notifier_head 35 41 +6 shrink_dcache_for_umount 174 180 +6 kunmap_high 99 105 +6 end_page_writeback 43 49 +6 do_exit 1339 1345 +6 __kfifo_dma_out_prepare_r 86 92 +6 __kfifo_dma_in_prepare_r 90 96 +6 fixup_user_fault 120 125 +5 repair_env_string 73 77 +4 read_cache_pages_invalidate_page 56 60 +4 isolate_lru_pages.isra 142 146 +4 do_notify_parent_cldstop 255 259 +4 cpu_init 370 374 +4 utimes_common 270 272 +2 tasklet_hi_action 91 93 +2 tasklet_action 91 93 +2 set_pte_vaddr 46 48 +2 find_get_pages_tag 202 204 +2 early_iounmap 185 187 +2 __native_set_fixmap 36 38 +2 __get_user_pages 822 824 +2 __early_ioremap 299 301 +2 yield_task_stop 1 2 +1 tick_resume 37 38 +1 switched_to_stop 1 2 +1 switched_to_idle 1 2 +1 prio_changed_stop 1 2 +1 prio_changed_idle 1 2 +1 pm_qos_power_read 111 112 +1 arch_cpu_idle_dead 1 2 +1 __insert_vmap_area 140 141 +1 sys_renameat 614 612 -2 mm_fault_error 297 295 -2 SyS_renameat 614 612 -2 sys_linkat 416 413 -3 SyS_linkat 416 413 -3 chmod_common 129 122 -7 proc_cap_handler 240 225 -15 __schedule 849 831 -18 sys_madvise 1077 1054 -23 SyS_madvise 1077 1054 -23 Signed-off-by: Josh Triplett <josh@joshtriplett.org> Reported-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:39:13 +08:00
#define BUG() do {} while (1)
#endif
#ifndef HAVE_ARCH_BUG_ON
asm-generic: default BUG_ON(x) to if(x)BUG() When CONFIG_BUG is disabled, BUG_ON() will only evaluate the condition, but will not actually stop the current thread. GCC warns about a couple of BUG_ON() users where this actually leads to further undefined behavior: include/linux/ceph/osdmap.h: In function 'ceph_can_shift_osds': include/linux/ceph/osdmap.h:54:1: warning: control reaches end of non-void function fs/ext4/inode.c: In function 'ext4_map_blocks': fs/ext4/inode.c:548:5: warning: 'retval' may be used uninitialized in this function drivers/mfd/db8500-prcmu.c: In function 'prcmu_config_clkout': drivers/mfd/db8500-prcmu.c:762:10: warning: 'div_mask' may be used uninitialized in this function drivers/mfd/db8500-prcmu.c:769:13: warning: 'mask' may be used uninitialized in this function drivers/mfd/db8500-prcmu.c:757:7: warning: 'bits' may be used uninitialized in this function drivers/tty/serial/8250/8250_core.c: In function 'univ8250_release_irq': drivers/tty/serial/8250/8250_core.c:252:18: warning: 'i' may be used uninitialized in this function drivers/tty/serial/8250/8250_core.c:235:19: note: 'i' was declared here There is an obvious conflict of interest here: on the one hand, someone who disables CONFIG_BUG() will want the kernel to be as small as possible and doesn't care about printing error messages to a console that nobody looks at. On the other hand, running into a BUG_ON() condition means that something has gone wrong, and we probably want to also stop doing things that might cause data corruption. This patch picks the second choice, and changes the NOP to BUG(), which normally stops the execution of the current thread in some form (endless loop or a trap). This follows the logic we applied in a4b5d580e078 ("bug: Make BUG() always stop the machine"). For ARM multi_v7_defconfig, the size slightly increases: section CONFIG_BUG=y CONFIG_BUG=n CONFIG_BUG=n+patch .text 8320248 | 8180944 | 8207688 .rodata 3633720 | 3567144 | 3570648 __bug_table 32508 | --- | --- __modver 692 | 1584 | 2176 .init.text 558132 | 548300 | 550088 .exit.text 12380 | 12256 | 12380 .data 1016672 | 1016064 | 1016128 Total 14622556 | 14374510 | 14407326 So instead of saving 1.70% of the total image size, we only save 1.48% by turning off CONFIG_BUG, but in return we can ensure that we don't run into cases of uninitialized variable or return code uses when something bad happens. Aside from that, we significantly reduce the number of warnings in randconfig builds, which makes it easier to fix the warnings about other problems. Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2015-11-21 07:27:26 +08:00
#define BUG_ON(condition) do { if (condition) BUG(); } while (0)
#endif
#ifndef HAVE_ARCH_WARN_ON
#define WARN_ON(condition) ({ \
int __ret_warn_on = !!(condition); \
unlikely(__ret_warn_on); \
})
#endif
#ifndef WARN
#define WARN(condition, format...) ({ \
int __ret_warn_on = !!(condition); \
no_printk(format); \
unlikely(__ret_warn_on); \
})
#endif
#define WARN_ON_ONCE(condition) WARN_ON(condition)
#define WARN_ONCE(condition, format...) WARN(condition, format)
#define WARN_TAINT(condition, taint, format...) WARN(condition, format)
#define WARN_TAINT_ONCE(condition, taint, format...) WARN(condition, format)
#endif
/*
* WARN_ON_SMP() is for cases that the warning is either
* meaningless for !SMP or may even cause failures.
* This is usually used for cases that we have
* WARN_ON(!spin_is_locked(&lock)) checks, as spin_is_locked()
* returns 0 for uniprocessor settings.
* It can also be used with values that are only defined
* on SMP:
*
* struct foo {
* [...]
* #ifdef CONFIG_SMP
* int bar;
* #endif
* };
*
* void func(struct foo *zoot)
* {
* WARN_ON_SMP(!zoot->bar);
*
* For CONFIG_SMP, WARN_ON_SMP() should act the same as WARN_ON(),
* and should be a nop and return false for uniprocessor.
*
* if (WARN_ON_SMP(x)) returns true only when CONFIG_SMP is set
* and x is true.
*/
#ifdef CONFIG_SMP
# define WARN_ON_SMP(x) WARN_ON(x)
#else
/*
* Use of ({0;}) because WARN_ON_SMP(x) may be used either as
* a stand alone line statement or as a condition in an if ()
* statement.
* A simple "0" would cause gcc to give a "statement has no effect"
* warning.
*/
# define WARN_ON_SMP(x) ({0;})
#endif
#endif /* __ASSEMBLY__ */
#endif