License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2009-09-22 08:01:57 +08:00
|
|
|
#ifndef __LINUX_KSM_H
|
|
|
|
#define __LINUX_KSM_H
|
|
|
|
/*
|
|
|
|
* Memory merging support.
|
|
|
|
*
|
|
|
|
* This code enables dynamic sharing of identical pages found in different
|
|
|
|
* memory areas, even if they are not shared by fork().
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/bitops.h>
|
|
|
|
#include <linux/mm.h>
|
ksm: let shared pages be swappable
Initial implementation for swapping out KSM's shared pages: add
page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when
faced with a PageKsm page.
Most of what's needed can be got from the rmap_items listed from the
stable_node of the ksm page, without discovering the actual vma: so in
this patch just fake up a struct vma for page_referenced_one() or
try_to_unmap_one(), then refine that in the next patch.
Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been
implicit there (being only set with VM_SHARED, already excluded), but
let's make it explicit, to help justify the lack of nonlinear unmap.
Rely on the page lock to protect against concurrent modifications to that
page's node of the stable tree.
The awkward part is not swapout but swapin: do_swap_page() and
page_add_anon_rmap() now have to allow for new possibilities - perhaps a
ksm page still in swapcache, perhaps a swapcache page associated with one
location in one anon_vma now needed for another location or anon_vma.
(And the vma might even be no longer VM_MERGEABLE when that happens.)
ksm_might_need_to_copy() checks for that case, and supplies a duplicate
page when necessary, simply leaving it to a subsequent pass of ksmd to
rediscover the identity and merge them back into one ksm page.
Disappointingly primitive: but the alternative would have to accumulate
unswappable info about the swapped out ksm pages, limiting swappability.
Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the
particular case it was handling, so just use it instead.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:24 +08:00
|
|
|
#include <linux/pagemap.h>
|
|
|
|
#include <linux/rmap.h>
|
2009-09-22 08:01:57 +08:00
|
|
|
#include <linux/sched.h>
|
2017-02-09 01:51:30 +08:00
|
|
|
#include <linux/sched/coredump.h>
|
2009-09-22 08:01:57 +08:00
|
|
|
|
2009-12-15 09:59:21 +08:00
|
|
|
struct stable_node;
|
ksm: let shared pages be swappable
Initial implementation for swapping out KSM's shared pages: add
page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when
faced with a PageKsm page.
Most of what's needed can be got from the rmap_items listed from the
stable_node of the ksm page, without discovering the actual vma: so in
this patch just fake up a struct vma for page_referenced_one() or
try_to_unmap_one(), then refine that in the next patch.
Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been
implicit there (being only set with VM_SHARED, already excluded), but
let's make it explicit, to help justify the lack of nonlinear unmap.
Rely on the page lock to protect against concurrent modifications to that
page's node of the stable tree.
The awkward part is not swapout but swapin: do_swap_page() and
page_add_anon_rmap() now have to allow for new possibilities - perhaps a
ksm page still in swapcache, perhaps a swapcache page associated with one
location in one anon_vma now needed for another location or anon_vma.
(And the vma might even be no longer VM_MERGEABLE when that happens.)
ksm_might_need_to_copy() checks for that case, and supplies a duplicate
page when necessary, simply leaving it to a subsequent pass of ksmd to
rediscover the identity and merge them back into one ksm page.
Disappointingly primitive: but the alternative would have to accumulate
unswappable info about the swapped out ksm pages, limiting swappability.
Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the
particular case it was handling, so just use it instead.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:24 +08:00
|
|
|
struct mem_cgroup;
|
2009-12-15 09:59:21 +08:00
|
|
|
|
2009-09-22 08:01:57 +08:00
|
|
|
#ifdef CONFIG_KSM
|
|
|
|
int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
|
|
|
|
unsigned long end, int advice, unsigned long *vm_flags);
|
|
|
|
int __ksm_enter(struct mm_struct *mm);
|
ksm: fix deadlock with munlock in exit_mmap
Rawhide users have reported hang at startup when cryptsetup is run: the
same problem can be simply reproduced by running a program int main() {
mlockall(MCL_CURRENT | MCL_FUTURE); return 0; }
The problem is that exit_mmap() applies munlock_vma_pages_all() to
clean up VM_LOCKED areas, and its current implementation (stupidly)
tries to fault in absent pages, for example where PROT_NONE prevented
them being faulted in when mlocking. Whereas the "ksm: fix oom
deadlock" patch, knowing there's a race by which KSM might try to fault
in pages after exit_mmap() had finally zapped the range, backs out of
such faults doing nothing when its ksm_test_exit() notices mm_users 0.
So revert that part of "ksm: fix oom deadlock" which moved the
ksm_exit() call from before exit_mmap() to the middle of exit_mmap();
and remove those ksm_test_exit() checks from the page fault paths, so
allowing the munlocking to proceed without interference.
ksm_exit, if there are rmap_items still chained on this mm slot, takes
mmap_sem write side: so preventing KSM from working on an mm while
exit_mmap runs. And KSM will bail out as soon as it notices that
mm_users is already zero, thanks to its internal ksm_test_exit checks.
So that when a task is killed by OOM killer or the user, KSM will not
indefinitely prevent it from running exit_mmap to release its memory.
This does break a part of what "ksm: fix oom deadlock" was trying to
achieve. When unmerging KSM (echo 2 >/sys/kernel/mm/ksm), and even
when ksmd itself has to cancel a KSM page, it is possible that the
first OOM-kill victim would be the KSM process being faulted: then its
memory won't be freed until a second victim has been selected (freeing
memory for the unmerging fault to complete).
But the OOM killer is already liable to kill a second victim once the
intended victim's p->mm goes to NULL: so there's not much point in
rejecting this KSM patch before fixing that OOM behaviour. It is very
much more important to allow KSM users to boot up, than to haggle over
an unlikely and poorly supported OOM case.
We also intend to fix munlocking to not fault pages: at which point
this patch _could_ be reverted; though that would be controversial, so
we hope to find a better solution.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Justin M. Forbes <jforbes@redhat.com>
Acked-for-now-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 08:02:22 +08:00
|
|
|
void __ksm_exit(struct mm_struct *mm);
|
2009-09-22 08:01:57 +08:00
|
|
|
|
|
|
|
static inline int ksm_fork(struct mm_struct *mm, struct mm_struct *oldmm)
|
|
|
|
{
|
|
|
|
if (test_bit(MMF_VM_MERGEABLE, &oldmm->flags))
|
|
|
|
return __ksm_enter(mm);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
ksm: fix deadlock with munlock in exit_mmap
Rawhide users have reported hang at startup when cryptsetup is run: the
same problem can be simply reproduced by running a program int main() {
mlockall(MCL_CURRENT | MCL_FUTURE); return 0; }
The problem is that exit_mmap() applies munlock_vma_pages_all() to
clean up VM_LOCKED areas, and its current implementation (stupidly)
tries to fault in absent pages, for example where PROT_NONE prevented
them being faulted in when mlocking. Whereas the "ksm: fix oom
deadlock" patch, knowing there's a race by which KSM might try to fault
in pages after exit_mmap() had finally zapped the range, backs out of
such faults doing nothing when its ksm_test_exit() notices mm_users 0.
So revert that part of "ksm: fix oom deadlock" which moved the
ksm_exit() call from before exit_mmap() to the middle of exit_mmap();
and remove those ksm_test_exit() checks from the page fault paths, so
allowing the munlocking to proceed without interference.
ksm_exit, if there are rmap_items still chained on this mm slot, takes
mmap_sem write side: so preventing KSM from working on an mm while
exit_mmap runs. And KSM will bail out as soon as it notices that
mm_users is already zero, thanks to its internal ksm_test_exit checks.
So that when a task is killed by OOM killer or the user, KSM will not
indefinitely prevent it from running exit_mmap to release its memory.
This does break a part of what "ksm: fix oom deadlock" was trying to
achieve. When unmerging KSM (echo 2 >/sys/kernel/mm/ksm), and even
when ksmd itself has to cancel a KSM page, it is possible that the
first OOM-kill victim would be the KSM process being faulted: then its
memory won't be freed until a second victim has been selected (freeing
memory for the unmerging fault to complete).
But the OOM killer is already liable to kill a second victim once the
intended victim's p->mm goes to NULL: so there's not much point in
rejecting this KSM patch before fixing that OOM behaviour. It is very
much more important to allow KSM users to boot up, than to haggle over
an unlikely and poorly supported OOM case.
We also intend to fix munlocking to not fault pages: at which point
this patch _could_ be reverted; though that would be controversial, so
we hope to find a better solution.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Justin M. Forbes <jforbes@redhat.com>
Acked-for-now-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 08:02:22 +08:00
|
|
|
static inline void ksm_exit(struct mm_struct *mm)
|
2009-09-22 08:01:57 +08:00
|
|
|
{
|
|
|
|
if (test_bit(MMF_VM_MERGEABLE, &mm->flags))
|
ksm: fix deadlock with munlock in exit_mmap
Rawhide users have reported hang at startup when cryptsetup is run: the
same problem can be simply reproduced by running a program int main() {
mlockall(MCL_CURRENT | MCL_FUTURE); return 0; }
The problem is that exit_mmap() applies munlock_vma_pages_all() to
clean up VM_LOCKED areas, and its current implementation (stupidly)
tries to fault in absent pages, for example where PROT_NONE prevented
them being faulted in when mlocking. Whereas the "ksm: fix oom
deadlock" patch, knowing there's a race by which KSM might try to fault
in pages after exit_mmap() had finally zapped the range, backs out of
such faults doing nothing when its ksm_test_exit() notices mm_users 0.
So revert that part of "ksm: fix oom deadlock" which moved the
ksm_exit() call from before exit_mmap() to the middle of exit_mmap();
and remove those ksm_test_exit() checks from the page fault paths, so
allowing the munlocking to proceed without interference.
ksm_exit, if there are rmap_items still chained on this mm slot, takes
mmap_sem write side: so preventing KSM from working on an mm while
exit_mmap runs. And KSM will bail out as soon as it notices that
mm_users is already zero, thanks to its internal ksm_test_exit checks.
So that when a task is killed by OOM killer or the user, KSM will not
indefinitely prevent it from running exit_mmap to release its memory.
This does break a part of what "ksm: fix oom deadlock" was trying to
achieve. When unmerging KSM (echo 2 >/sys/kernel/mm/ksm), and even
when ksmd itself has to cancel a KSM page, it is possible that the
first OOM-kill victim would be the KSM process being faulted: then its
memory won't be freed until a second victim has been selected (freeing
memory for the unmerging fault to complete).
But the OOM killer is already liable to kill a second victim once the
intended victim's p->mm goes to NULL: so there's not much point in
rejecting this KSM patch before fixing that OOM behaviour. It is very
much more important to allow KSM users to boot up, than to haggle over
an unlikely and poorly supported OOM case.
We also intend to fix munlocking to not fault pages: at which point
this patch _could_ be reverted; though that would be controversial, so
we hope to find a better solution.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Justin M. Forbes <jforbes@redhat.com>
Acked-for-now-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 08:02:22 +08:00
|
|
|
__ksm_exit(mm);
|
2009-09-22 08:01:57 +08:00
|
|
|
}
|
2009-09-22 08:02:01 +08:00
|
|
|
|
ksm: let shared pages be swappable
Initial implementation for swapping out KSM's shared pages: add
page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when
faced with a PageKsm page.
Most of what's needed can be got from the rmap_items listed from the
stable_node of the ksm page, without discovering the actual vma: so in
this patch just fake up a struct vma for page_referenced_one() or
try_to_unmap_one(), then refine that in the next patch.
Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been
implicit there (being only set with VM_SHARED, already excluded), but
let's make it explicit, to help justify the lack of nonlinear unmap.
Rely on the page lock to protect against concurrent modifications to that
page's node of the stable tree.
The awkward part is not swapout but swapin: do_swap_page() and
page_add_anon_rmap() now have to allow for new possibilities - perhaps a
ksm page still in swapcache, perhaps a swapcache page associated with one
location in one anon_vma now needed for another location or anon_vma.
(And the vma might even be no longer VM_MERGEABLE when that happens.)
ksm_might_need_to_copy() checks for that case, and supplies a duplicate
page when necessary, simply leaving it to a subsequent pass of ksmd to
rediscover the identity and merge them back into one ksm page.
Disappointingly primitive: but the alternative would have to accumulate
unswappable info about the swapped out ksm pages, limiting swappability.
Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the
particular case it was handling, so just use it instead.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:24 +08:00
|
|
|
/*
|
|
|
|
* When do_swap_page() first faults in from swap what used to be a KSM page,
|
|
|
|
* no problem, it will be assigned to this vma's anon_vma; but thereafter,
|
|
|
|
* it might be faulted into a different anon_vma (or perhaps to a different
|
|
|
|
* offset in the same anon_vma). do_swap_page() cannot do all the locking
|
|
|
|
* needed to reconstitute a cross-anon_vma KSM page: for now it has to make
|
|
|
|
* a copy, and leave remerging the pages to a later pass of ksmd.
|
|
|
|
*
|
|
|
|
* We'd like to make this conditional on vma->vm_flags & VM_MERGEABLE,
|
|
|
|
* but what if the vma was unmerged while the page was swapped out?
|
|
|
|
*/
|
ksm: remove old stable nodes more thoroughly
Switching merge_across_nodes after running KSM is liable to oops on stale
nodes still left over from the previous stable tree. It's not something
that people will often want to do, but it would be lame to demand a reboot
when they're trying to determine which merge_across_nodes setting is best.
How can this happen? We only permit switching merge_across_nodes when
pages_shared is 0, and usually set run 2 to force that beforehand, which
ought to unmerge everything: yet oopses still occur when you then run 1.
Three causes:
1. The old stable tree (built according to the inverse
merge_across_nodes) has not been fully torn down. A stable node
lingers until get_ksm_page() notices that the page it references no
longer references it: but the page is not necessarily freed as soon as
expected, particularly when swapcache.
Fix this with a pass through the old stable tree, applying
get_ksm_page() to each of the remaining nodes (most found stale and
removed immediately), with forced removal of any left over. Unless the
page is still mapped: I've not seen that case, it shouldn't occur, but
better to WARN_ON_ONCE and EBUSY than BUG.
2. __ksm_enter() has a nice little optimization, to insert the new mm
just behind ksmd's cursor, so there's a full pass for it to stabilize
(or be removed) before ksmd addresses it. Nice when ksmd is running,
but not so nice when we're trying to unmerge all mms: we were missing
those mms forked and inserted behind the unmerge cursor. Easily fixed
by inserting at the end when KSM_RUN_UNMERGE.
3. It is possible for a KSM page to be faulted back from swapcache
into an mm, just after unmerge_and_remove_all_rmap_items() scanned past
it. Fix this by copying on fault when KSM_RUN_UNMERGE: but that is
private to ksm.c, so dissolve the distinction between
ksm_might_need_to_copy() and ksm_does_need_to_copy(), doing it all in
the one call into ksm.c.
A long outstanding, unrelated bugfix sneaks in with that third fix:
ksm_does_need_to_copy() would copy from a !PageUptodate page (implying I/O
error when read in from swap) to a page which it then marks Uptodate. Fix
this case by not copying, letting do_swap_page() discover the error.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 08:35:08 +08:00
|
|
|
struct page *ksm_might_need_to_copy(struct page *page,
|
|
|
|
struct vm_area_struct *vma, unsigned long address);
|
ksm: let shared pages be swappable
Initial implementation for swapping out KSM's shared pages: add
page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when
faced with a PageKsm page.
Most of what's needed can be got from the rmap_items listed from the
stable_node of the ksm page, without discovering the actual vma: so in
this patch just fake up a struct vma for page_referenced_one() or
try_to_unmap_one(), then refine that in the next patch.
Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been
implicit there (being only set with VM_SHARED, already excluded), but
let's make it explicit, to help justify the lack of nonlinear unmap.
Rely on the page lock to protect against concurrent modifications to that
page's node of the stable tree.
The awkward part is not swapout but swapin: do_swap_page() and
page_add_anon_rmap() now have to allow for new possibilities - perhaps a
ksm page still in swapcache, perhaps a swapcache page associated with one
location in one anon_vma now needed for another location or anon_vma.
(And the vma might even be no longer VM_MERGEABLE when that happens.)
ksm_might_need_to_copy() checks for that case, and supplies a duplicate
page when necessary, simply leaving it to a subsequent pass of ksmd to
rediscover the identity and merge them back into one ksm page.
Disappointingly primitive: but the alternative would have to accumulate
unswappable info about the swapped out ksm pages, limiting swappability.
Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the
particular case it was handling, so just use it instead.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:24 +08:00
|
|
|
|
2022-01-30 05:06:53 +08:00
|
|
|
void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc);
|
2021-05-08 03:26:29 +08:00
|
|
|
void folio_migrate_ksm(struct folio *newfolio, struct folio *folio);
|
ksm: let shared pages be swappable
Initial implementation for swapping out KSM's shared pages: add
page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when
faced with a PageKsm page.
Most of what's needed can be got from the rmap_items listed from the
stable_node of the ksm page, without discovering the actual vma: so in
this patch just fake up a struct vma for page_referenced_one() or
try_to_unmap_one(), then refine that in the next patch.
Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been
implicit there (being only set with VM_SHARED, already excluded), but
let's make it explicit, to help justify the lack of nonlinear unmap.
Rely on the page lock to protect against concurrent modifications to that
page's node of the stable tree.
The awkward part is not swapout but swapin: do_swap_page() and
page_add_anon_rmap() now have to allow for new possibilities - perhaps a
ksm page still in swapcache, perhaps a swapcache page associated with one
location in one anon_vma now needed for another location or anon_vma.
(And the vma might even be no longer VM_MERGEABLE when that happens.)
ksm_might_need_to_copy() checks for that case, and supplies a duplicate
page when necessary, simply leaving it to a subsequent pass of ksmd to
rediscover the identity and merge them back into one ksm page.
Disappointingly primitive: but the alternative would have to accumulate
unswappable info about the swapped out ksm pages, limiting swappability.
Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the
particular case it was handling, so just use it instead.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:24 +08:00
|
|
|
|
2009-09-22 08:01:57 +08:00
|
|
|
#else /* !CONFIG_KSM */
|
|
|
|
|
|
|
|
static inline int ksm_fork(struct mm_struct *mm, struct mm_struct *oldmm)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
ksm: fix deadlock with munlock in exit_mmap
Rawhide users have reported hang at startup when cryptsetup is run: the
same problem can be simply reproduced by running a program int main() {
mlockall(MCL_CURRENT | MCL_FUTURE); return 0; }
The problem is that exit_mmap() applies munlock_vma_pages_all() to
clean up VM_LOCKED areas, and its current implementation (stupidly)
tries to fault in absent pages, for example where PROT_NONE prevented
them being faulted in when mlocking. Whereas the "ksm: fix oom
deadlock" patch, knowing there's a race by which KSM might try to fault
in pages after exit_mmap() had finally zapped the range, backs out of
such faults doing nothing when its ksm_test_exit() notices mm_users 0.
So revert that part of "ksm: fix oom deadlock" which moved the
ksm_exit() call from before exit_mmap() to the middle of exit_mmap();
and remove those ksm_test_exit() checks from the page fault paths, so
allowing the munlocking to proceed without interference.
ksm_exit, if there are rmap_items still chained on this mm slot, takes
mmap_sem write side: so preventing KSM from working on an mm while
exit_mmap runs. And KSM will bail out as soon as it notices that
mm_users is already zero, thanks to its internal ksm_test_exit checks.
So that when a task is killed by OOM killer or the user, KSM will not
indefinitely prevent it from running exit_mmap to release its memory.
This does break a part of what "ksm: fix oom deadlock" was trying to
achieve. When unmerging KSM (echo 2 >/sys/kernel/mm/ksm), and even
when ksmd itself has to cancel a KSM page, it is possible that the
first OOM-kill victim would be the KSM process being faulted: then its
memory won't be freed until a second victim has been selected (freeing
memory for the unmerging fault to complete).
But the OOM killer is already liable to kill a second victim once the
intended victim's p->mm goes to NULL: so there's not much point in
rejecting this KSM patch before fixing that OOM behaviour. It is very
much more important to allow KSM users to boot up, than to haggle over
an unlikely and poorly supported OOM case.
We also intend to fix munlocking to not fault pages: at which point
this patch _could_ be reverted; though that would be controversial, so
we hope to find a better solution.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Justin M. Forbes <jforbes@redhat.com>
Acked-for-now-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 08:02:22 +08:00
|
|
|
static inline void ksm_exit(struct mm_struct *mm)
|
2009-09-22 08:01:57 +08:00
|
|
|
{
|
|
|
|
}
|
2009-09-22 08:02:01 +08:00
|
|
|
|
2009-12-16 16:56:57 +08:00
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
static inline int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
|
|
|
|
unsigned long end, int advice, unsigned long *vm_flags)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
ksm: remove old stable nodes more thoroughly
Switching merge_across_nodes after running KSM is liable to oops on stale
nodes still left over from the previous stable tree. It's not something
that people will often want to do, but it would be lame to demand a reboot
when they're trying to determine which merge_across_nodes setting is best.
How can this happen? We only permit switching merge_across_nodes when
pages_shared is 0, and usually set run 2 to force that beforehand, which
ought to unmerge everything: yet oopses still occur when you then run 1.
Three causes:
1. The old stable tree (built according to the inverse
merge_across_nodes) has not been fully torn down. A stable node
lingers until get_ksm_page() notices that the page it references no
longer references it: but the page is not necessarily freed as soon as
expected, particularly when swapcache.
Fix this with a pass through the old stable tree, applying
get_ksm_page() to each of the remaining nodes (most found stale and
removed immediately), with forced removal of any left over. Unless the
page is still mapped: I've not seen that case, it shouldn't occur, but
better to WARN_ON_ONCE and EBUSY than BUG.
2. __ksm_enter() has a nice little optimization, to insert the new mm
just behind ksmd's cursor, so there's a full pass for it to stabilize
(or be removed) before ksmd addresses it. Nice when ksmd is running,
but not so nice when we're trying to unmerge all mms: we were missing
those mms forked and inserted behind the unmerge cursor. Easily fixed
by inserting at the end when KSM_RUN_UNMERGE.
3. It is possible for a KSM page to be faulted back from swapcache
into an mm, just after unmerge_and_remove_all_rmap_items() scanned past
it. Fix this by copying on fault when KSM_RUN_UNMERGE: but that is
private to ksm.c, so dissolve the distinction between
ksm_might_need_to_copy() and ksm_does_need_to_copy(), doing it all in
the one call into ksm.c.
A long outstanding, unrelated bugfix sneaks in with that third fix:
ksm_does_need_to_copy() would copy from a !PageUptodate page (implying I/O
error when read in from swap) to a page which it then marks Uptodate. Fix
this case by not copying, letting do_swap_page() discover the error.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 08:35:08 +08:00
|
|
|
static inline struct page *ksm_might_need_to_copy(struct page *page,
|
ksm: let shared pages be swappable
Initial implementation for swapping out KSM's shared pages: add
page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when
faced with a PageKsm page.
Most of what's needed can be got from the rmap_items listed from the
stable_node of the ksm page, without discovering the actual vma: so in
this patch just fake up a struct vma for page_referenced_one() or
try_to_unmap_one(), then refine that in the next patch.
Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been
implicit there (being only set with VM_SHARED, already excluded), but
let's make it explicit, to help justify the lack of nonlinear unmap.
Rely on the page lock to protect against concurrent modifications to that
page's node of the stable tree.
The awkward part is not swapout but swapin: do_swap_page() and
page_add_anon_rmap() now have to allow for new possibilities - perhaps a
ksm page still in swapcache, perhaps a swapcache page associated with one
location in one anon_vma now needed for another location or anon_vma.
(And the vma might even be no longer VM_MERGEABLE when that happens.)
ksm_might_need_to_copy() checks for that case, and supplies a duplicate
page when necessary, simply leaving it to a subsequent pass of ksmd to
rediscover the identity and merge them back into one ksm page.
Disappointingly primitive: but the alternative would have to accumulate
unswappable info about the swapped out ksm pages, limiting swappability.
Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the
particular case it was handling, so just use it instead.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:24 +08:00
|
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
|
|
{
|
ksm: remove old stable nodes more thoroughly
Switching merge_across_nodes after running KSM is liable to oops on stale
nodes still left over from the previous stable tree. It's not something
that people will often want to do, but it would be lame to demand a reboot
when they're trying to determine which merge_across_nodes setting is best.
How can this happen? We only permit switching merge_across_nodes when
pages_shared is 0, and usually set run 2 to force that beforehand, which
ought to unmerge everything: yet oopses still occur when you then run 1.
Three causes:
1. The old stable tree (built according to the inverse
merge_across_nodes) has not been fully torn down. A stable node
lingers until get_ksm_page() notices that the page it references no
longer references it: but the page is not necessarily freed as soon as
expected, particularly when swapcache.
Fix this with a pass through the old stable tree, applying
get_ksm_page() to each of the remaining nodes (most found stale and
removed immediately), with forced removal of any left over. Unless the
page is still mapped: I've not seen that case, it shouldn't occur, but
better to WARN_ON_ONCE and EBUSY than BUG.
2. __ksm_enter() has a nice little optimization, to insert the new mm
just behind ksmd's cursor, so there's a full pass for it to stabilize
(or be removed) before ksmd addresses it. Nice when ksmd is running,
but not so nice when we're trying to unmerge all mms: we were missing
those mms forked and inserted behind the unmerge cursor. Easily fixed
by inserting at the end when KSM_RUN_UNMERGE.
3. It is possible for a KSM page to be faulted back from swapcache
into an mm, just after unmerge_and_remove_all_rmap_items() scanned past
it. Fix this by copying on fault when KSM_RUN_UNMERGE: but that is
private to ksm.c, so dissolve the distinction between
ksm_might_need_to_copy() and ksm_does_need_to_copy(), doing it all in
the one call into ksm.c.
A long outstanding, unrelated bugfix sneaks in with that third fix:
ksm_does_need_to_copy() would copy from a !PageUptodate page (implying I/O
error when read in from swap) to a page which it then marks Uptodate. Fix
this case by not copying, letting do_swap_page() discover the error.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 08:35:08 +08:00
|
|
|
return page;
|
ksm: let shared pages be swappable
Initial implementation for swapping out KSM's shared pages: add
page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when
faced with a PageKsm page.
Most of what's needed can be got from the rmap_items listed from the
stable_node of the ksm page, without discovering the actual vma: so in
this patch just fake up a struct vma for page_referenced_one() or
try_to_unmap_one(), then refine that in the next patch.
Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been
implicit there (being only set with VM_SHARED, already excluded), but
let's make it explicit, to help justify the lack of nonlinear unmap.
Rely on the page lock to protect against concurrent modifications to that
page's node of the stable tree.
The awkward part is not swapout but swapin: do_swap_page() and
page_add_anon_rmap() now have to allow for new possibilities - perhaps a
ksm page still in swapcache, perhaps a swapcache page associated with one
location in one anon_vma now needed for another location or anon_vma.
(And the vma might even be no longer VM_MERGEABLE when that happens.)
ksm_might_need_to_copy() checks for that case, and supplies a duplicate
page when necessary, simply leaving it to a subsequent pass of ksmd to
rediscover the identity and merge them back into one ksm page.
Disappointingly primitive: but the alternative would have to accumulate
unswappable info about the swapped out ksm pages, limiting swappability.
Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the
particular case it was handling, so just use it instead.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:24 +08:00
|
|
|
}
|
|
|
|
|
2022-01-30 05:06:53 +08:00
|
|
|
static inline void rmap_walk_ksm(struct folio *folio,
|
2014-01-22 07:49:48 +08:00
|
|
|
struct rmap_walk_control *rwc)
|
ksm: rmap_walk to remove_migation_ptes
A side-effect of making ksm pages swappable is that they have to be placed
on the LRUs: which then exposes them to isolate_lru_page() and hence to
page migration.
Add rmap_walk() for remove_migration_ptes() to use: rmap_walk_anon() and
rmap_walk_file() in rmap.c, but rmap_walk_ksm() in ksm.c. Perhaps some
consolidation with existing code is possible, but don't attempt that yet
(try_to_unmap needs to handle nonlinears, but migration pte removal does
not).
rmap_walk() is sadly less general than it appears: rmap_walk_anon(), like
remove_anon_migration_ptes() which it replaces, avoids calling
page_lock_anon_vma(), because that includes a page_mapped() test which
fails when all migration ptes are in place. That was valid when NUMA page
migration was introduced (holding mmap_sem provided the missing guarantee
that anon_vma's slab had not already been destroyed), but I believe not
valid in the memory hotremove case added since.
For now do the same as before, and consider the best way to fix that
unlikely race later on. When fixed, we can probably use rmap_walk() on
hwpoisoned ksm pages too: for now, they remain among hwpoison's various
exceptions (its PageKsm test comes before the page is locked, but its
page_lock_anon_vma fails safely if an anon gets upgraded).
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:31 +08:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2021-05-08 03:26:29 +08:00
|
|
|
static inline void folio_migrate_ksm(struct folio *newfolio, struct folio *old)
|
ksm: rmap_walk to remove_migation_ptes
A side-effect of making ksm pages swappable is that they have to be placed
on the LRUs: which then exposes them to isolate_lru_page() and hence to
page migration.
Add rmap_walk() for remove_migration_ptes() to use: rmap_walk_anon() and
rmap_walk_file() in rmap.c, but rmap_walk_ksm() in ksm.c. Perhaps some
consolidation with existing code is possible, but don't attempt that yet
(try_to_unmap needs to handle nonlinears, but migration pte removal does
not).
rmap_walk() is sadly less general than it appears: rmap_walk_anon(), like
remove_anon_migration_ptes() which it replaces, avoids calling
page_lock_anon_vma(), because that includes a page_mapped() test which
fails when all migration ptes are in place. That was valid when NUMA page
migration was introduced (holding mmap_sem provided the missing guarantee
that anon_vma's slab had not already been destroyed), but I believe not
valid in the memory hotremove case added since.
For now do the same as before, and consider the best way to fix that
unlikely race later on. When fixed, we can probably use rmap_walk() on
hwpoisoned ksm pages too: for now, they remain among hwpoison's various
exceptions (its PageKsm test comes before the page is locked, but its
page_lock_anon_vma fails safely if an anon gets upgraded).
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:31 +08:00
|
|
|
{
|
|
|
|
}
|
2009-12-16 16:56:57 +08:00
|
|
|
#endif /* CONFIG_MMU */
|
2009-09-22 08:01:57 +08:00
|
|
|
#endif /* !CONFIG_KSM */
|
|
|
|
|
ksm: let shared pages be swappable
Initial implementation for swapping out KSM's shared pages: add
page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when
faced with a PageKsm page.
Most of what's needed can be got from the rmap_items listed from the
stable_node of the ksm page, without discovering the actual vma: so in
this patch just fake up a struct vma for page_referenced_one() or
try_to_unmap_one(), then refine that in the next patch.
Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been
implicit there (being only set with VM_SHARED, already excluded), but
let's make it explicit, to help justify the lack of nonlinear unmap.
Rely on the page lock to protect against concurrent modifications to that
page's node of the stable tree.
The awkward part is not swapout but swapin: do_swap_page() and
page_add_anon_rmap() now have to allow for new possibilities - perhaps a
ksm page still in swapcache, perhaps a swapcache page associated with one
location in one anon_vma now needed for another location or anon_vma.
(And the vma might even be no longer VM_MERGEABLE when that happens.)
ksm_might_need_to_copy() checks for that case, and supplies a duplicate
page when necessary, simply leaving it to a subsequent pass of ksmd to
rediscover the identity and merge them back into one ksm page.
Disappointingly primitive: but the alternative would have to accumulate
unswappable info about the swapped out ksm pages, limiting swappability.
Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the
particular case it was handling, so just use it instead.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:59:24 +08:00
|
|
|
#endif /* __LINUX_KSM_H */
|