OpenCloudOS-Kernel/drivers/net/ethernet/marvell/skge.c

4184 lines
106 KiB
C
Raw Normal View History

/*
* New driver for Marvell Yukon chipset and SysKonnect Gigabit
* Ethernet adapters. Based on earlier sk98lin, e100 and
* FreeBSD if_sk drivers.
*
* This driver intentionally does not support all the features
* of the original driver such as link fail-over and link management because
* those should be done at higher levels.
*
* Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/mii.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/dmi.h>
#include <linux/prefetch.h>
#include <asm/irq.h>
#include "skge.h"
#define DRV_NAME "skge"
#define DRV_VERSION "1.14"
#define DEFAULT_TX_RING_SIZE 128
#define DEFAULT_RX_RING_SIZE 512
#define MAX_TX_RING_SIZE 1024
#define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
#define MAX_RX_RING_SIZE 4096
#define RX_COPY_THRESHOLD 128
#define RX_BUF_SIZE 1536
#define PHY_RETRIES 1000
#define ETH_JUMBO_MTU 9000
#define TX_WATCHDOG (5 * HZ)
#define NAPI_WEIGHT 64
#define BLINK_MS 250
#define LINK_HZ HZ
#define SKGE_EEPROM_MAGIC 0x9933aabb
MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
NETIF_MSG_LINK | NETIF_MSG_IFUP |
NETIF_MSG_IFDOWN);
static int debug = -1; /* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */
{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */
#ifdef CONFIG_SKGE_GENESIS
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
#endif
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */
{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */
{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
{ 0 }
};
MODULE_DEVICE_TABLE(pci, skge_id_table);
static int skge_up(struct net_device *dev);
static int skge_down(struct net_device *dev);
static void skge_phy_reset(struct skge_port *skge);
static void skge_tx_clean(struct net_device *dev);
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
static void genesis_get_stats(struct skge_port *skge, u64 *data);
static void yukon_get_stats(struct skge_port *skge, u64 *data);
static void yukon_init(struct skge_hw *hw, int port);
static void genesis_mac_init(struct skge_hw *hw, int port);
static void genesis_link_up(struct skge_port *skge);
static void skge_set_multicast(struct net_device *dev);
static irqreturn_t skge_intr(int irq, void *dev_id);
/* Avoid conditionals by using array */
static const int txqaddr[] = { Q_XA1, Q_XA2 };
static const int rxqaddr[] = { Q_R1, Q_R2 };
static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
static inline bool is_genesis(const struct skge_hw *hw)
{
#ifdef CONFIG_SKGE_GENESIS
return hw->chip_id == CHIP_ID_GENESIS;
#else
return false;
#endif
}
static int skge_get_regs_len(struct net_device *dev)
{
return 0x4000;
}
/*
* Returns copy of whole control register region
* Note: skip RAM address register because accessing it will
* cause bus hangs!
*/
static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
const struct skge_port *skge = netdev_priv(dev);
const void __iomem *io = skge->hw->regs;
regs->version = 1;
memset(p, 0, regs->len);
memcpy_fromio(p, io, B3_RAM_ADDR);
memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
regs->len - B3_RI_WTO_R1);
}
/* Wake on Lan only supported on Yukon chips with rev 1 or above */
static u32 wol_supported(const struct skge_hw *hw)
{
if (is_genesis(hw))
return 0;
if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
return 0;
return WAKE_MAGIC | WAKE_PHY;
}
static void skge_wol_init(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 ctrl;
skge_write16(hw, B0_CTST, CS_RST_CLR);
skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
/* Turn on Vaux */
skge_write8(hw, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
/* WA code for COMA mode -- clear PHY reset */
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
u32 reg = skge_read32(hw, B2_GP_IO);
reg |= GP_DIR_9;
reg &= ~GP_IO_9;
skge_write32(hw, B2_GP_IO, reg);
}
skge_write32(hw, SK_REG(port, GPHY_CTRL),
GPC_DIS_SLEEP |
GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
GPC_ANEG_1 | GPC_RST_SET);
skge_write32(hw, SK_REG(port, GPHY_CTRL),
GPC_DIS_SLEEP |
GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
GPC_ANEG_1 | GPC_RST_CLR);
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
/* Force to 10/100 skge_reset will re-enable on resume */
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
(PHY_AN_100FULL | PHY_AN_100HALF |
PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
/* no 1000 HD/FD */
gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
gm_phy_write(hw, port, PHY_MARV_CTRL,
PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
PHY_CT_RE_CFG | PHY_CT_DUP_MD);
/* Set GMAC to no flow control and auto update for speed/duplex */
gma_write16(hw, port, GM_GP_CTRL,
GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
/* Set WOL address */
memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
skge->netdev->dev_addr, ETH_ALEN);
/* Turn on appropriate WOL control bits */
skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
ctrl = 0;
if (skge->wol & WAKE_PHY)
ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
else
ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
if (skge->wol & WAKE_MAGIC)
ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
else
ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
/* block receiver */
skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
}
static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct skge_port *skge = netdev_priv(dev);
wol->supported = wol_supported(skge->hw);
wol->wolopts = skge->wol;
}
static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
if ((wol->wolopts & ~wol_supported(hw)) ||
!device_can_wakeup(&hw->pdev->dev))
return -EOPNOTSUPP;
skge->wol = wol->wolopts;
device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
return 0;
}
/* Determine supported/advertised modes based on hardware.
* Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
*/
static u32 skge_supported_modes(const struct skge_hw *hw)
{
u32 supported;
if (hw->copper) {
supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full |
SUPPORTED_Autoneg |
SUPPORTED_TP);
if (is_genesis(hw))
supported &= ~(SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full);
else if (hw->chip_id == CHIP_ID_YUKON)
supported &= ~SUPPORTED_1000baseT_Half;
} else
supported = (SUPPORTED_1000baseT_Full |
SUPPORTED_1000baseT_Half |
SUPPORTED_FIBRE |
SUPPORTED_Autoneg);
return supported;
}
static int skge_get_settings(struct net_device *dev,
struct ethtool_cmd *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
ecmd->transceiver = XCVR_INTERNAL;
ecmd->supported = skge_supported_modes(hw);
if (hw->copper) {
ecmd->port = PORT_TP;
ecmd->phy_address = hw->phy_addr;
} else
ecmd->port = PORT_FIBRE;
ecmd->advertising = skge->advertising;
ecmd->autoneg = skge->autoneg;
ethtool_cmd_speed_set(ecmd, skge->speed);
ecmd->duplex = skge->duplex;
return 0;
}
static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
const struct skge_hw *hw = skge->hw;
u32 supported = skge_supported_modes(hw);
[10/21] driver/net/skge.c: restart the interface when it's options or pauseparam is set On Wednesday 24 September 2008 07:47, Stephen Hemminger wrote: > On Mon, 22 Sep 2008 14:52:17 -0700 > > akpm@linux-foundation.org wrote: > > From: "Xiaoming.Zhang" <Xiaoming.Zhang@resilience.com> > > > > We have an issue of the skge driver: The card won't work when it's > > options are changed. Here's the hardware info: > > > > # lspci -v > > 05:04.0 Ethernet controller: Marvell Technology Group Ltd. 88E8001 > > Gigabit Ethernet Controller (rev 13) Subsystem: Marvell Technology Group > > Ltd. Marvell RDK-8001 Flags: bus master, 66MHz, medium devsel, latency > > 32, IRQ 16 Memory at d042c000 (32-bit, non-prefetchable) [size=16K] I/O > > ports at d000 [size=256] > > [virtual] Expansion ROM at 20400000 [disabled] [size=128K] > > Capabilities: [48] Power Management version 2 > > Capabilities: [50] Vital Product Data > > > > The happens in both Linux-2.6.26(skge version 1.23) and RHEL5.2(skge > > version 1.6). > > > > For example, at first it is set to "speed 1000 duplex full auto-neg on" > > and it works, then run > > > > ethtool -s <ethx> autoneg off > > or ethtool -s <ethx> speed 100 duplex full autoneg off > > > > Then it will stop working. After that if we restart the interface: > > > > ifconifg <ethx> down > > ifconfig <ethx> up > > > > It will work again. And `ethtool -A' has the same issue. > > > > So we think after setting the options, the interface should be restarted. > > > > Signed-off-by: Zhang Xiaoming <xiaoming.zhang@resilience.com> > > Cc: Stephen Hemminger <shemminger@vyatta.com> > > Cc: Jeff Garzik <jeff@garzik.org> > > Signed-off-by: Andrew Morton <akpm@linux-foundation.org> > > --- > > > > drivers/net/skge.c | 12 ++++++++---- > > 1 file changed, 8 insertions(+), 4 deletions(-) > > > > diff -puN > > drivers/net/skge.c~driver-net-skgec-restart-the-interface-when-its-option > >s-or-pauseparam-is-set drivers/net/skge.c --- > > a/drivers/net/skge.c~driver-net-skgec-restart-the-interface-when-its-opti > >ons-or-pauseparam-is-set +++ a/drivers/net/skge.c > > @@ -353,8 +353,10 @@ static int skge_set_settings(struct net_ > > skge->autoneg = ecmd->autoneg; > > skge->advertising = ecmd->advertising; > > > > - if (netif_running(dev)) > > - skge_phy_reset(skge); > > + if (netif_running(dev)) { > > + skge_down(dev); > > + skge_up(dev); > > + } > > > > return (0); > > } > > @@ -595,8 +597,10 @@ static int skge_set_pauseparam(struct ne > > skge->flow_control = FLOW_MODE_NONE; > > } > > > > - if (netif_running(dev)) > > - skge_phy_reset(skge); > > + if (netif_running(dev)) { > > + skge_down(dev); > > + skge_up(dev); > > + } > > > > return 0; > > } > > Since skge_up can fail because of out of memory, this code needs to > check the return value. And then if it fails the "limbo state" needs > to be handled in skge_down. How about like this? It is tested. Thank you. Signed-off-by: Zhang Xiaoming <xiaoming.zhang@resilience.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-09-26 04:28:05 +08:00
int err = 0;
if (ecmd->autoneg == AUTONEG_ENABLE) {
ecmd->advertising = supported;
skge->duplex = -1;
skge->speed = -1;
} else {
u32 setting;
u32 speed = ethtool_cmd_speed(ecmd);
switch (speed) {
case SPEED_1000:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_1000baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_1000baseT_Half;
else
return -EINVAL;
break;
case SPEED_100:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_100baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_100baseT_Half;
else
return -EINVAL;
break;
case SPEED_10:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_10baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_10baseT_Half;
else
return -EINVAL;
break;
default:
return -EINVAL;
}
if ((setting & supported) == 0)
return -EINVAL;
skge->speed = speed;
skge->duplex = ecmd->duplex;
}
skge->autoneg = ecmd->autoneg;
skge->advertising = ecmd->advertising;
[10/21] driver/net/skge.c: restart the interface when it's options or pauseparam is set On Wednesday 24 September 2008 07:47, Stephen Hemminger wrote: > On Mon, 22 Sep 2008 14:52:17 -0700 > > akpm@linux-foundation.org wrote: > > From: "Xiaoming.Zhang" <Xiaoming.Zhang@resilience.com> > > > > We have an issue of the skge driver: The card won't work when it's > > options are changed. Here's the hardware info: > > > > # lspci -v > > 05:04.0 Ethernet controller: Marvell Technology Group Ltd. 88E8001 > > Gigabit Ethernet Controller (rev 13) Subsystem: Marvell Technology Group > > Ltd. Marvell RDK-8001 Flags: bus master, 66MHz, medium devsel, latency > > 32, IRQ 16 Memory at d042c000 (32-bit, non-prefetchable) [size=16K] I/O > > ports at d000 [size=256] > > [virtual] Expansion ROM at 20400000 [disabled] [size=128K] > > Capabilities: [48] Power Management version 2 > > Capabilities: [50] Vital Product Data > > > > The happens in both Linux-2.6.26(skge version 1.23) and RHEL5.2(skge > > version 1.6). > > > > For example, at first it is set to "speed 1000 duplex full auto-neg on" > > and it works, then run > > > > ethtool -s <ethx> autoneg off > > or ethtool -s <ethx> speed 100 duplex full autoneg off > > > > Then it will stop working. After that if we restart the interface: > > > > ifconifg <ethx> down > > ifconfig <ethx> up > > > > It will work again. And `ethtool -A' has the same issue. > > > > So we think after setting the options, the interface should be restarted. > > > > Signed-off-by: Zhang Xiaoming <xiaoming.zhang@resilience.com> > > Cc: Stephen Hemminger <shemminger@vyatta.com> > > Cc: Jeff Garzik <jeff@garzik.org> > > Signed-off-by: Andrew Morton <akpm@linux-foundation.org> > > --- > > > > drivers/net/skge.c | 12 ++++++++---- > > 1 file changed, 8 insertions(+), 4 deletions(-) > > > > diff -puN > > drivers/net/skge.c~driver-net-skgec-restart-the-interface-when-its-option > >s-or-pauseparam-is-set drivers/net/skge.c --- > > a/drivers/net/skge.c~driver-net-skgec-restart-the-interface-when-its-opti > >ons-or-pauseparam-is-set +++ a/drivers/net/skge.c > > @@ -353,8 +353,10 @@ static int skge_set_settings(struct net_ > > skge->autoneg = ecmd->autoneg; > > skge->advertising = ecmd->advertising; > > > > - if (netif_running(dev)) > > - skge_phy_reset(skge); > > + if (netif_running(dev)) { > > + skge_down(dev); > > + skge_up(dev); > > + } > > > > return (0); > > } > > @@ -595,8 +597,10 @@ static int skge_set_pauseparam(struct ne > > skge->flow_control = FLOW_MODE_NONE; > > } > > > > - if (netif_running(dev)) > > - skge_phy_reset(skge); > > + if (netif_running(dev)) { > > + skge_down(dev); > > + skge_up(dev); > > + } > > > > return 0; > > } > > Since skge_up can fail because of out of memory, this code needs to > check the return value. And then if it fails the "limbo state" needs > to be handled in skge_down. How about like this? It is tested. Thank you. Signed-off-by: Zhang Xiaoming <xiaoming.zhang@resilience.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-09-26 04:28:05 +08:00
if (netif_running(dev)) {
skge_down(dev);
err = skge_up(dev);
if (err) {
dev_close(dev);
return err;
}
}
return 0;
}
static void skge_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct skge_port *skge = netdev_priv(dev);
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info, pci_name(skge->hw->pdev),
sizeof(info->bus_info));
}
static const struct skge_stat {
char name[ETH_GSTRING_LEN];
u16 xmac_offset;
u16 gma_offset;
} skge_stats[] = {
{ "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
{ "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
{ "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
{ "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
{ "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
{ "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
{ "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
{ "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
{ "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
{ "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
{ "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
{ "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
{ "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
{ "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
{ "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
{ "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
{ "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
{ "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
{ "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
{ "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
{ "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
};
static int skge_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(skge_stats);
default:
return -EOPNOTSUPP;
}
}
static void skge_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct skge_port *skge = netdev_priv(dev);
if (is_genesis(skge->hw))
genesis_get_stats(skge, data);
else
yukon_get_stats(skge, data);
}
/* Use hardware MIB variables for critical path statistics and
* transmit feedback not reported at interrupt.
* Other errors are accounted for in interrupt handler.
*/
static struct net_device_stats *skge_get_stats(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
u64 data[ARRAY_SIZE(skge_stats)];
if (is_genesis(skge->hw))
genesis_get_stats(skge, data);
else
yukon_get_stats(skge, data);
dev->stats.tx_bytes = data[0];
dev->stats.rx_bytes = data[1];
dev->stats.tx_packets = data[2] + data[4] + data[6];
dev->stats.rx_packets = data[3] + data[5] + data[7];
dev->stats.multicast = data[3] + data[5];
dev->stats.collisions = data[10];
dev->stats.tx_aborted_errors = data[12];
return &dev->stats;
}
static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
memcpy(data + i * ETH_GSTRING_LEN,
skge_stats[i].name, ETH_GSTRING_LEN);
break;
}
}
static void skge_get_ring_param(struct net_device *dev,
struct ethtool_ringparam *p)
{
struct skge_port *skge = netdev_priv(dev);
p->rx_max_pending = MAX_RX_RING_SIZE;
p->tx_max_pending = MAX_TX_RING_SIZE;
p->rx_pending = skge->rx_ring.count;
p->tx_pending = skge->tx_ring.count;
}
static int skge_set_ring_param(struct net_device *dev,
struct ethtool_ringparam *p)
{
struct skge_port *skge = netdev_priv(dev);
int err = 0;
if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
return -EINVAL;
skge->rx_ring.count = p->rx_pending;
skge->tx_ring.count = p->tx_pending;
if (netif_running(dev)) {
skge_down(dev);
err = skge_up(dev);
if (err)
dev_close(dev);
}
return err;
}
static u32 skge_get_msglevel(struct net_device *netdev)
{
struct skge_port *skge = netdev_priv(netdev);
return skge->msg_enable;
}
static void skge_set_msglevel(struct net_device *netdev, u32 value)
{
struct skge_port *skge = netdev_priv(netdev);
skge->msg_enable = value;
}
static int skge_nway_reset(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
return -EINVAL;
skge_phy_reset(skge);
return 0;
}
static void skge_get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
(skge->flow_control == FLOW_MODE_SYM_OR_REM));
ecmd->tx_pause = (ecmd->rx_pause ||
(skge->flow_control == FLOW_MODE_LOC_SEND));
ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
}
static int skge_set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
struct ethtool_pauseparam old;
[10/21] driver/net/skge.c: restart the interface when it's options or pauseparam is set On Wednesday 24 September 2008 07:47, Stephen Hemminger wrote: > On Mon, 22 Sep 2008 14:52:17 -0700 > > akpm@linux-foundation.org wrote: > > From: "Xiaoming.Zhang" <Xiaoming.Zhang@resilience.com> > > > > We have an issue of the skge driver: The card won't work when it's > > options are changed. Here's the hardware info: > > > > # lspci -v > > 05:04.0 Ethernet controller: Marvell Technology Group Ltd. 88E8001 > > Gigabit Ethernet Controller (rev 13) Subsystem: Marvell Technology Group > > Ltd. Marvell RDK-8001 Flags: bus master, 66MHz, medium devsel, latency > > 32, IRQ 16 Memory at d042c000 (32-bit, non-prefetchable) [size=16K] I/O > > ports at d000 [size=256] > > [virtual] Expansion ROM at 20400000 [disabled] [size=128K] > > Capabilities: [48] Power Management version 2 > > Capabilities: [50] Vital Product Data > > > > The happens in both Linux-2.6.26(skge version 1.23) and RHEL5.2(skge > > version 1.6). > > > > For example, at first it is set to "speed 1000 duplex full auto-neg on" > > and it works, then run > > > > ethtool -s <ethx> autoneg off > > or ethtool -s <ethx> speed 100 duplex full autoneg off > > > > Then it will stop working. After that if we restart the interface: > > > > ifconifg <ethx> down > > ifconfig <ethx> up > > > > It will work again. And `ethtool -A' has the same issue. > > > > So we think after setting the options, the interface should be restarted. > > > > Signed-off-by: Zhang Xiaoming <xiaoming.zhang@resilience.com> > > Cc: Stephen Hemminger <shemminger@vyatta.com> > > Cc: Jeff Garzik <jeff@garzik.org> > > Signed-off-by: Andrew Morton <akpm@linux-foundation.org> > > --- > > > > drivers/net/skge.c | 12 ++++++++---- > > 1 file changed, 8 insertions(+), 4 deletions(-) > > > > diff -puN > > drivers/net/skge.c~driver-net-skgec-restart-the-interface-when-its-option > >s-or-pauseparam-is-set drivers/net/skge.c --- > > a/drivers/net/skge.c~driver-net-skgec-restart-the-interface-when-its-opti > >ons-or-pauseparam-is-set +++ a/drivers/net/skge.c > > @@ -353,8 +353,10 @@ static int skge_set_settings(struct net_ > > skge->autoneg = ecmd->autoneg; > > skge->advertising = ecmd->advertising; > > > > - if (netif_running(dev)) > > - skge_phy_reset(skge); > > + if (netif_running(dev)) { > > + skge_down(dev); > > + skge_up(dev); > > + } > > > > return (0); > > } > > @@ -595,8 +597,10 @@ static int skge_set_pauseparam(struct ne > > skge->flow_control = FLOW_MODE_NONE; > > } > > > > - if (netif_running(dev)) > > - skge_phy_reset(skge); > > + if (netif_running(dev)) { > > + skge_down(dev); > > + skge_up(dev); > > + } > > > > return 0; > > } > > Since skge_up can fail because of out of memory, this code needs to > check the return value. And then if it fails the "limbo state" needs > to be handled in skge_down. How about like this? It is tested. Thank you. Signed-off-by: Zhang Xiaoming <xiaoming.zhang@resilience.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-09-26 04:28:05 +08:00
int err = 0;
skge_get_pauseparam(dev, &old);
if (ecmd->autoneg != old.autoneg)
skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
else {
if (ecmd->rx_pause && ecmd->tx_pause)
skge->flow_control = FLOW_MODE_SYMMETRIC;
else if (ecmd->rx_pause && !ecmd->tx_pause)
skge->flow_control = FLOW_MODE_SYM_OR_REM;
else if (!ecmd->rx_pause && ecmd->tx_pause)
skge->flow_control = FLOW_MODE_LOC_SEND;
else
skge->flow_control = FLOW_MODE_NONE;
}
[10/21] driver/net/skge.c: restart the interface when it's options or pauseparam is set On Wednesday 24 September 2008 07:47, Stephen Hemminger wrote: > On Mon, 22 Sep 2008 14:52:17 -0700 > > akpm@linux-foundation.org wrote: > > From: "Xiaoming.Zhang" <Xiaoming.Zhang@resilience.com> > > > > We have an issue of the skge driver: The card won't work when it's > > options are changed. Here's the hardware info: > > > > # lspci -v > > 05:04.0 Ethernet controller: Marvell Technology Group Ltd. 88E8001 > > Gigabit Ethernet Controller (rev 13) Subsystem: Marvell Technology Group > > Ltd. Marvell RDK-8001 Flags: bus master, 66MHz, medium devsel, latency > > 32, IRQ 16 Memory at d042c000 (32-bit, non-prefetchable) [size=16K] I/O > > ports at d000 [size=256] > > [virtual] Expansion ROM at 20400000 [disabled] [size=128K] > > Capabilities: [48] Power Management version 2 > > Capabilities: [50] Vital Product Data > > > > The happens in both Linux-2.6.26(skge version 1.23) and RHEL5.2(skge > > version 1.6). > > > > For example, at first it is set to "speed 1000 duplex full auto-neg on" > > and it works, then run > > > > ethtool -s <ethx> autoneg off > > or ethtool -s <ethx> speed 100 duplex full autoneg off > > > > Then it will stop working. After that if we restart the interface: > > > > ifconifg <ethx> down > > ifconfig <ethx> up > > > > It will work again. And `ethtool -A' has the same issue. > > > > So we think after setting the options, the interface should be restarted. > > > > Signed-off-by: Zhang Xiaoming <xiaoming.zhang@resilience.com> > > Cc: Stephen Hemminger <shemminger@vyatta.com> > > Cc: Jeff Garzik <jeff@garzik.org> > > Signed-off-by: Andrew Morton <akpm@linux-foundation.org> > > --- > > > > drivers/net/skge.c | 12 ++++++++---- > > 1 file changed, 8 insertions(+), 4 deletions(-) > > > > diff -puN > > drivers/net/skge.c~driver-net-skgec-restart-the-interface-when-its-option > >s-or-pauseparam-is-set drivers/net/skge.c --- > > a/drivers/net/skge.c~driver-net-skgec-restart-the-interface-when-its-opti > >ons-or-pauseparam-is-set +++ a/drivers/net/skge.c > > @@ -353,8 +353,10 @@ static int skge_set_settings(struct net_ > > skge->autoneg = ecmd->autoneg; > > skge->advertising = ecmd->advertising; > > > > - if (netif_running(dev)) > > - skge_phy_reset(skge); > > + if (netif_running(dev)) { > > + skge_down(dev); > > + skge_up(dev); > > + } > > > > return (0); > > } > > @@ -595,8 +597,10 @@ static int skge_set_pauseparam(struct ne > > skge->flow_control = FLOW_MODE_NONE; > > } > > > > - if (netif_running(dev)) > > - skge_phy_reset(skge); > > + if (netif_running(dev)) { > > + skge_down(dev); > > + skge_up(dev); > > + } > > > > return 0; > > } > > Since skge_up can fail because of out of memory, this code needs to > check the return value. And then if it fails the "limbo state" needs > to be handled in skge_down. How about like this? It is tested. Thank you. Signed-off-by: Zhang Xiaoming <xiaoming.zhang@resilience.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-09-26 04:28:05 +08:00
if (netif_running(dev)) {
skge_down(dev);
err = skge_up(dev);
if (err) {
dev_close(dev);
return err;
}
}
return 0;
}
/* Chip internal frequency for clock calculations */
static inline u32 hwkhz(const struct skge_hw *hw)
{
return is_genesis(hw) ? 53125 : 78125;
}
/* Chip HZ to microseconds */
static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
{
return (ticks * 1000) / hwkhz(hw);
}
/* Microseconds to chip HZ */
static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
{
return hwkhz(hw) * usec / 1000;
}
static int skge_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
ecmd->rx_coalesce_usecs = 0;
ecmd->tx_coalesce_usecs = 0;
if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
u32 msk = skge_read32(hw, B2_IRQM_MSK);
if (msk & rxirqmask[port])
ecmd->rx_coalesce_usecs = delay;
if (msk & txirqmask[port])
ecmd->tx_coalesce_usecs = delay;
}
return 0;
}
/* Note: interrupt timer is per board, but can turn on/off per port */
static int skge_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
u32 msk = skge_read32(hw, B2_IRQM_MSK);
u32 delay = 25;
if (ecmd->rx_coalesce_usecs == 0)
msk &= ~rxirqmask[port];
else if (ecmd->rx_coalesce_usecs < 25 ||
ecmd->rx_coalesce_usecs > 33333)
return -EINVAL;
else {
msk |= rxirqmask[port];
delay = ecmd->rx_coalesce_usecs;
}
if (ecmd->tx_coalesce_usecs == 0)
msk &= ~txirqmask[port];
else if (ecmd->tx_coalesce_usecs < 25 ||
ecmd->tx_coalesce_usecs > 33333)
return -EINVAL;
else {
msk |= txirqmask[port];
delay = min(delay, ecmd->rx_coalesce_usecs);
}
skge_write32(hw, B2_IRQM_MSK, msk);
if (msk == 0)
skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
else {
skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
skge_write32(hw, B2_IRQM_CTRL, TIM_START);
}
return 0;
}
enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
static void skge_led(struct skge_port *skge, enum led_mode mode)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
spin_lock_bh(&hw->phy_lock);
if (is_genesis(hw)) {
switch (mode) {
case LED_MODE_OFF:
if (hw->phy_type == SK_PHY_BCOM)
xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
else {
skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
}
skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
break;
case LED_MODE_ON:
skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
break;
case LED_MODE_TST:
skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
if (hw->phy_type == SK_PHY_BCOM)
xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
else {
skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
}
}
} else {
switch (mode) {
case LED_MODE_OFF:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(MO_LED_OFF) |
PHY_M_LED_MO_10(MO_LED_OFF) |
PHY_M_LED_MO_100(MO_LED_OFF) |
PHY_M_LED_MO_1000(MO_LED_OFF) |
PHY_M_LED_MO_RX(MO_LED_OFF));
break;
case LED_MODE_ON:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
PHY_M_LED_PULS_DUR(PULS_170MS) |
PHY_M_LED_BLINK_RT(BLINK_84MS) |
PHY_M_LEDC_TX_CTRL |
PHY_M_LEDC_DP_CTRL);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_RX(MO_LED_OFF) |
(skge->speed == SPEED_100 ?
PHY_M_LED_MO_100(MO_LED_ON) : 0));
break;
case LED_MODE_TST:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(MO_LED_ON) |
PHY_M_LED_MO_10(MO_LED_ON) |
PHY_M_LED_MO_100(MO_LED_ON) |
PHY_M_LED_MO_1000(MO_LED_ON) |
PHY_M_LED_MO_RX(MO_LED_ON));
}
}
spin_unlock_bh(&hw->phy_lock);
}
/* blink LED's for finding board */
static int skge_set_phys_id(struct net_device *dev,
enum ethtool_phys_id_state state)
{
struct skge_port *skge = netdev_priv(dev);
switch (state) {
case ETHTOOL_ID_ACTIVE:
ethtool: allow custom interval for physical identification When physical identification of an adapter is done by toggling the mechanism on and off through software utilizing the set_phys_id operation, it is done with a fixed duration for both on and off states. Some drivers may want to set a custom duration for the on/off intervals. This patch changes the API so the return code from the driver's entry point when it is called with ETHTOOL_ID_ACTIVE can specify the frequency at which to cycle the on/off states, and updates the drivers that have already been converted to use the new set_phys_id and use the synchronous method for identifying an adapter. The physical identification frequency set in the updated drivers is based on how it was done prior to the introduction of set_phys_id. Compile tested only. Also fixes a compiler warning in sfc. v2: drivers do not return -EINVAL for ETHOOL_ID_ACTIVE v3: fold patchset into single patch and cleanup per Ben's feedback Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Sathya Perla <sathya.perla@emulex.com> Cc: Subbu Seetharaman <subbu.seetharaman@emulex.com> Cc: Ajit Khaparde <ajit.khaparde@emulex.com> Cc: Michael Chan <mchan@broadcom.com> Cc: Eilon Greenstein <eilong@broadcom.com> Cc: Divy Le Ray <divy@chelsio.com> Cc: Don Fry <pcnet32@frontier.com> Cc: Jon Mason <jdmason@kudzu.us> Cc: Solarflare linux maintainers <linux-net-drivers@solarflare.com> Cc: Steve Hodgson <shodgson@solarflare.com> Cc: Stephen Hemminger <shemminger@linux-foundation.org> Cc: Matt Carlson <mcarlson@broadcom.com> Acked-by: Jon Mason <jdmason@kudzu.us> Acked-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-13 21:09:10 +08:00
return 2; /* cycle on/off twice per second */
case ETHTOOL_ID_ON:
skge_led(skge, LED_MODE_TST);
break;
case ETHTOOL_ID_OFF:
skge_led(skge, LED_MODE_OFF);
break;
case ETHTOOL_ID_INACTIVE:
/* back to regular LED state */
skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
}
return 0;
}
static int skge_get_eeprom_len(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
u32 reg2;
pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
}
static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
{
u32 val;
pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
do {
pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
} while (!(offset & PCI_VPD_ADDR_F));
pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
return val;
}
static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
{
pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
offset | PCI_VPD_ADDR_F);
do {
pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
} while (offset & PCI_VPD_ADDR_F);
}
static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
u8 *data)
{
struct skge_port *skge = netdev_priv(dev);
struct pci_dev *pdev = skge->hw->pdev;
int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
int length = eeprom->len;
u16 offset = eeprom->offset;
if (!cap)
return -EINVAL;
eeprom->magic = SKGE_EEPROM_MAGIC;
while (length > 0) {
u32 val = skge_vpd_read(pdev, cap, offset);
int n = min_t(int, length, sizeof(val));
memcpy(data, &val, n);
length -= n;
data += n;
offset += n;
}
return 0;
}
static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
u8 *data)
{
struct skge_port *skge = netdev_priv(dev);
struct pci_dev *pdev = skge->hw->pdev;
int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
int length = eeprom->len;
u16 offset = eeprom->offset;
if (!cap)
return -EINVAL;
if (eeprom->magic != SKGE_EEPROM_MAGIC)
return -EINVAL;
while (length > 0) {
u32 val;
int n = min_t(int, length, sizeof(val));
if (n < sizeof(val))
val = skge_vpd_read(pdev, cap, offset);
memcpy(&val, data, n);
skge_vpd_write(pdev, cap, offset, val);
length -= n;
data += n;
offset += n;
}
return 0;
}
static const struct ethtool_ops skge_ethtool_ops = {
.get_settings = skge_get_settings,
.set_settings = skge_set_settings,
.get_drvinfo = skge_get_drvinfo,
.get_regs_len = skge_get_regs_len,
.get_regs = skge_get_regs,
.get_wol = skge_get_wol,
.set_wol = skge_set_wol,
.get_msglevel = skge_get_msglevel,
.set_msglevel = skge_set_msglevel,
.nway_reset = skge_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = skge_get_eeprom_len,
.get_eeprom = skge_get_eeprom,
.set_eeprom = skge_set_eeprom,
.get_ringparam = skge_get_ring_param,
.set_ringparam = skge_set_ring_param,
.get_pauseparam = skge_get_pauseparam,
.set_pauseparam = skge_set_pauseparam,
.get_coalesce = skge_get_coalesce,
.set_coalesce = skge_set_coalesce,
.get_strings = skge_get_strings,
.set_phys_id = skge_set_phys_id,
.get_sset_count = skge_get_sset_count,
.get_ethtool_stats = skge_get_ethtool_stats,
};
/*
* Allocate ring elements and chain them together
* One-to-one association of board descriptors with ring elements
*/
static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
{
struct skge_tx_desc *d;
struct skge_element *e;
int i;
ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
if (!ring->start)
return -ENOMEM;
for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
e->desc = d;
if (i == ring->count - 1) {
e->next = ring->start;
d->next_offset = base;
} else {
e->next = e + 1;
d->next_offset = base + (i+1) * sizeof(*d);
}
}
ring->to_use = ring->to_clean = ring->start;
return 0;
}
/* Allocate and setup a new buffer for receiving */
static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
struct sk_buff *skb, unsigned int bufsize)
{
struct skge_rx_desc *rd = e->desc;
u64 map;
map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
PCI_DMA_FROMDEVICE);
rd->dma_lo = map;
rd->dma_hi = map >> 32;
e->skb = skb;
rd->csum1_start = ETH_HLEN;
rd->csum2_start = ETH_HLEN;
rd->csum1 = 0;
rd->csum2 = 0;
wmb();
rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
dma_unmap_addr_set(e, mapaddr, map);
dma_unmap_len_set(e, maplen, bufsize);
}
/* Resume receiving using existing skb,
* Note: DMA address is not changed by chip.
* MTU not changed while receiver active.
*/
static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
{
struct skge_rx_desc *rd = e->desc;
rd->csum2 = 0;
rd->csum2_start = ETH_HLEN;
wmb();
rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
}
/* Free all buffers in receive ring, assumes receiver stopped */
static void skge_rx_clean(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
struct skge_ring *ring = &skge->rx_ring;
struct skge_element *e;
e = ring->start;
do {
struct skge_rx_desc *rd = e->desc;
rd->control = 0;
if (e->skb) {
pci_unmap_single(hw->pdev,
dma_unmap_addr(e, mapaddr),
dma_unmap_len(e, maplen),
PCI_DMA_FROMDEVICE);
dev_kfree_skb(e->skb);
e->skb = NULL;
}
} while ((e = e->next) != ring->start);
}
/* Allocate buffers for receive ring
* For receive: to_clean is next received frame.
*/
static int skge_rx_fill(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_ring *ring = &skge->rx_ring;
struct skge_element *e;
e = ring->start;
do {
struct sk_buff *skb;
skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
GFP_KERNEL);
if (!skb)
return -ENOMEM;
skb_reserve(skb, NET_IP_ALIGN);
skge_rx_setup(skge, e, skb, skge->rx_buf_size);
} while ((e = e->next) != ring->start);
ring->to_clean = ring->start;
return 0;
}
static const char *skge_pause(enum pause_status status)
{
switch (status) {
case FLOW_STAT_NONE:
return "none";
case FLOW_STAT_REM_SEND:
return "rx only";
case FLOW_STAT_LOC_SEND:
return "tx_only";
case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
return "both";
default:
return "indeterminated";
}
}
static void skge_link_up(struct skge_port *skge)
{
skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
netif_carrier_on(skge->netdev);
netif_wake_queue(skge->netdev);
netif_info(skge, link, skge->netdev,
"Link is up at %d Mbps, %s duplex, flow control %s\n",
skge->speed,
skge->duplex == DUPLEX_FULL ? "full" : "half",
skge_pause(skge->flow_status));
}
static void skge_link_down(struct skge_port *skge)
{
skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
netif_carrier_off(skge->netdev);
netif_stop_queue(skge->netdev);
netif_info(skge, link, skge->netdev, "Link is down\n");
}
static void xm_link_down(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
if (netif_carrier_ok(dev))
skge_link_down(skge);
}
static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
{
int i;
xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
*val = xm_read16(hw, port, XM_PHY_DATA);
if (hw->phy_type == SK_PHY_XMAC)
goto ready;
for (i = 0; i < PHY_RETRIES; i++) {
if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
goto ready;
udelay(1);
}
return -ETIMEDOUT;
ready:
*val = xm_read16(hw, port, XM_PHY_DATA);
return 0;
}
static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
u16 v = 0;
if (__xm_phy_read(hw, port, reg, &v))
pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
return v;
}
static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{
int i;
xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
for (i = 0; i < PHY_RETRIES; i++) {
if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
goto ready;
udelay(1);
}
return -EIO;
ready:
xm_write16(hw, port, XM_PHY_DATA, val);
for (i = 0; i < PHY_RETRIES; i++) {
if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static void genesis_init(struct skge_hw *hw)
{
/* set blink source counter */
skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
skge_write8(hw, B2_BSC_CTRL, BSC_START);
/* configure mac arbiter */
skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
/* configure mac arbiter timeout values */
skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
skge_write8(hw, B3_MA_RCINI_RX1, 0);
skge_write8(hw, B3_MA_RCINI_RX2, 0);
skge_write8(hw, B3_MA_RCINI_TX1, 0);
skge_write8(hw, B3_MA_RCINI_TX2, 0);
/* configure packet arbiter timeout */
skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
}
static void genesis_reset(struct skge_hw *hw, int port)
{
static const u8 zero[8] = { 0 };
u32 reg;
skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
/* reset the statistics module */
xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
/* disable Broadcom PHY IRQ */
if (hw->phy_type == SK_PHY_BCOM)
xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
xm_outhash(hw, port, XM_HSM, zero);
/* Flush TX and RX fifo */
reg = xm_read32(hw, port, XM_MODE);
xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
}
/* Convert mode to MII values */
static const u16 phy_pause_map[] = {
[FLOW_MODE_NONE] = 0,
[FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
[FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
};
/* special defines for FIBER (88E1011S only) */
static const u16 fiber_pause_map[] = {
[FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
[FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
[FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
[FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
};
/* Check status of Broadcom phy link */
static void bcom_check_link(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
u16 status;
/* read twice because of latch */
xm_phy_read(hw, port, PHY_BCOM_STAT);
status = xm_phy_read(hw, port, PHY_BCOM_STAT);
if ((status & PHY_ST_LSYNC) == 0) {
xm_link_down(hw, port);
return;
}
if (skge->autoneg == AUTONEG_ENABLE) {
u16 lpa, aux;
if (!(status & PHY_ST_AN_OVER))
return;
lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
if (lpa & PHY_B_AN_RF) {
netdev_notice(dev, "remote fault\n");
return;
}
aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
/* Check Duplex mismatch */
switch (aux & PHY_B_AS_AN_RES_MSK) {
case PHY_B_RES_1000FD:
skge->duplex = DUPLEX_FULL;
break;
case PHY_B_RES_1000HD:
skge->duplex = DUPLEX_HALF;
break;
default:
netdev_notice(dev, "duplex mismatch\n");
return;
}
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
switch (aux & PHY_B_AS_PAUSE_MSK) {
case PHY_B_AS_PAUSE_MSK:
skge->flow_status = FLOW_STAT_SYMMETRIC;
break;
case PHY_B_AS_PRR:
skge->flow_status = FLOW_STAT_REM_SEND;
break;
case PHY_B_AS_PRT:
skge->flow_status = FLOW_STAT_LOC_SEND;
break;
default:
skge->flow_status = FLOW_STAT_NONE;
}
skge->speed = SPEED_1000;
}
if (!netif_carrier_ok(dev))
genesis_link_up(skge);
}
/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
* Phy on for 100 or 10Mbit operation
*/
static void bcom_phy_init(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i;
u16 id1, r, ext, ctl;
/* magic workaround patterns for Broadcom */
static const struct {
u16 reg;
u16 val;
} A1hack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
}, C0hack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
};
/* read Id from external PHY (all have the same address) */
id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
/* Optimize MDIO transfer by suppressing preamble. */
r = xm_read16(hw, port, XM_MMU_CMD);
r |= XM_MMU_NO_PRE;
xm_write16(hw, port, XM_MMU_CMD, r);
switch (id1) {
case PHY_BCOM_ID1_C0:
/*
* Workaround BCOM Errata for the C0 type.
* Write magic patterns to reserved registers.
*/
for (i = 0; i < ARRAY_SIZE(C0hack); i++)
xm_phy_write(hw, port,
C0hack[i].reg, C0hack[i].val);
break;
case PHY_BCOM_ID1_A1:
/*
* Workaround BCOM Errata for the A1 type.
* Write magic patterns to reserved registers.
*/
for (i = 0; i < ARRAY_SIZE(A1hack); i++)
xm_phy_write(hw, port,
A1hack[i].reg, A1hack[i].val);
break;
}
/*
* Workaround BCOM Errata (#10523) for all BCom PHYs.
* Disable Power Management after reset.
*/
r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
r |= PHY_B_AC_DIS_PM;
xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
/* Dummy read */
xm_read16(hw, port, XM_ISRC);
ext = PHY_B_PEC_EN_LTR; /* enable tx led */
ctl = PHY_CT_SP1000; /* always 1000mbit */
if (skge->autoneg == AUTONEG_ENABLE) {
/*
* Workaround BCOM Errata #1 for the C5 type.
* 1000Base-T Link Acquisition Failure in Slave Mode
* Set Repeater/DTE bit 10 of the 1000Base-T Control Register
*/
u16 adv = PHY_B_1000C_RD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
adv |= PHY_B_1000C_AHD;
if (skge->advertising & ADVERTISED_1000baseT_Full)
adv |= PHY_B_1000C_AFD;
xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
if (skge->duplex == DUPLEX_FULL)
ctl |= PHY_CT_DUP_MD;
/* Force to slave */
xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
}
/* Set autonegotiation pause parameters */
xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
/* Handle Jumbo frames */
if (hw->dev[port]->mtu > ETH_DATA_LEN) {
xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
ext |= PHY_B_PEC_HIGH_LA;
}
xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
/* Use link status change interrupt */
xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
}
static void xm_phy_init(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 ctrl = 0;
if (skge->autoneg == AUTONEG_ENABLE) {
if (skge->advertising & ADVERTISED_1000baseT_Half)
ctrl |= PHY_X_AN_HD;
if (skge->advertising & ADVERTISED_1000baseT_Full)
ctrl |= PHY_X_AN_FD;
ctrl |= fiber_pause_map[skge->flow_control];
xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
/* Restart Auto-negotiation */
ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
/* Set DuplexMode in Config register */
if (skge->duplex == DUPLEX_FULL)
ctrl |= PHY_CT_DUP_MD;
/*
* Do NOT enable Auto-negotiation here. This would hold
* the link down because no IDLEs are transmitted
*/
}
xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
/* Poll PHY for status changes */
mod_timer(&skge->link_timer, jiffies + LINK_HZ);
}
static int xm_check_link(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 status;
/* read twice because of latch */
xm_phy_read(hw, port, PHY_XMAC_STAT);
status = xm_phy_read(hw, port, PHY_XMAC_STAT);
if ((status & PHY_ST_LSYNC) == 0) {
xm_link_down(hw, port);
return 0;
}
if (skge->autoneg == AUTONEG_ENABLE) {
u16 lpa, res;
if (!(status & PHY_ST_AN_OVER))
return 0;
lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
if (lpa & PHY_B_AN_RF) {
netdev_notice(dev, "remote fault\n");
return 0;
}
res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
/* Check Duplex mismatch */
switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
case PHY_X_RS_FD:
skge->duplex = DUPLEX_FULL;
break;
case PHY_X_RS_HD:
skge->duplex = DUPLEX_HALF;
break;
default:
netdev_notice(dev, "duplex mismatch\n");
return 0;
}
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
(lpa & PHY_X_P_SYM_MD))
skge->flow_status = FLOW_STAT_SYMMETRIC;
else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
(lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
/* Enable PAUSE receive, disable PAUSE transmit */
skge->flow_status = FLOW_STAT_REM_SEND;
else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
(lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
/* Disable PAUSE receive, enable PAUSE transmit */
skge->flow_status = FLOW_STAT_LOC_SEND;
else
skge->flow_status = FLOW_STAT_NONE;
skge->speed = SPEED_1000;
}
if (!netif_carrier_ok(dev))
genesis_link_up(skge);
return 1;
}
/* Poll to check for link coming up.
*
* Since internal PHY is wired to a level triggered pin, can't
* get an interrupt when carrier is detected, need to poll for
* link coming up.
*/
static void xm_link_timer(unsigned long arg)
{
struct skge_port *skge = (struct skge_port *) arg;
struct net_device *dev = skge->netdev;
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i;
unsigned long flags;
if (!netif_running(dev))
return;
spin_lock_irqsave(&hw->phy_lock, flags);
/*
* Verify that the link by checking GPIO register three times.
* This pin has the signal from the link_sync pin connected to it.
*/
for (i = 0; i < 3; i++) {
if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
goto link_down;
}
/* Re-enable interrupt to detect link down */
if (xm_check_link(dev)) {
u16 msk = xm_read16(hw, port, XM_IMSK);
msk &= ~XM_IS_INP_ASS;
xm_write16(hw, port, XM_IMSK, msk);
xm_read16(hw, port, XM_ISRC);
} else {
link_down:
mod_timer(&skge->link_timer,
round_jiffies(jiffies + LINK_HZ));
}
spin_unlock_irqrestore(&hw->phy_lock, flags);
}
static void genesis_mac_init(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
int i;
u32 r;
static const u8 zero[6] = { 0 };
for (i = 0; i < 10; i++) {
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
MFF_SET_MAC_RST);
if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
goto reset_ok;
udelay(1);
}
netdev_warn(dev, "genesis reset failed\n");
reset_ok:
/* Unreset the XMAC. */
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
/*
* Perform additional initialization for external PHYs,
* namely for the 1000baseTX cards that use the XMAC's
* GMII mode.
*/
if (hw->phy_type != SK_PHY_XMAC) {
/* Take external Phy out of reset */
r = skge_read32(hw, B2_GP_IO);
if (port == 0)
r |= GP_DIR_0|GP_IO_0;
else
r |= GP_DIR_2|GP_IO_2;
skge_write32(hw, B2_GP_IO, r);
/* Enable GMII interface */
xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
}
switch (hw->phy_type) {
case SK_PHY_XMAC:
xm_phy_init(skge);
break;
case SK_PHY_BCOM:
bcom_phy_init(skge);
bcom_check_link(hw, port);
}
/* Set Station Address */
xm_outaddr(hw, port, XM_SA, dev->dev_addr);
/* We don't use match addresses so clear */
for (i = 1; i < 16; i++)
xm_outaddr(hw, port, XM_EXM(i), zero);
/* Clear MIB counters */
xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* Clear two times according to Errata #3 */
xm_write16(hw, port, XM_STAT_CMD,
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* configure Rx High Water Mark (XM_RX_HI_WM) */
xm_write16(hw, port, XM_RX_HI_WM, 1450);
/* We don't need the FCS appended to the packet. */
r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
if (jumbo)
r |= XM_RX_BIG_PK_OK;
if (skge->duplex == DUPLEX_HALF) {
/*
* If in manual half duplex mode the other side might be in
* full duplex mode, so ignore if a carrier extension is not seen
* on frames received
*/
r |= XM_RX_DIS_CEXT;
}
xm_write16(hw, port, XM_RX_CMD, r);
/* We want short frames padded to 60 bytes. */
xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
/* Increase threshold for jumbo frames on dual port */
if (hw->ports > 1 && jumbo)
xm_write16(hw, port, XM_TX_THR, 1020);
else
xm_write16(hw, port, XM_TX_THR, 512);
/*
* Enable the reception of all error frames. This is is
* a necessary evil due to the design of the XMAC. The
* XMAC's receive FIFO is only 8K in size, however jumbo
* frames can be up to 9000 bytes in length. When bad
* frame filtering is enabled, the XMAC's RX FIFO operates
* in 'store and forward' mode. For this to work, the
* entire frame has to fit into the FIFO, but that means
* that jumbo frames larger than 8192 bytes will be
* truncated. Disabling all bad frame filtering causes
* the RX FIFO to operate in streaming mode, in which
* case the XMAC will start transferring frames out of the
* RX FIFO as soon as the FIFO threshold is reached.
*/
xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
/*
* Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
* - Enable all bits excepting 'Octets Rx OK Low CntOv'
* and 'Octets Rx OK Hi Cnt Ov'.
*/
xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
/*
* Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
* - Enable all bits excepting 'Octets Tx OK Low CntOv'
* and 'Octets Tx OK Hi Cnt Ov'.
*/
xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
/* Configure MAC arbiter */
skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
/* configure timeout values */
skge_write8(hw, B3_MA_TOINI_RX1, 72);
skge_write8(hw, B3_MA_TOINI_RX2, 72);
skge_write8(hw, B3_MA_TOINI_TX1, 72);
skge_write8(hw, B3_MA_TOINI_TX2, 72);
skge_write8(hw, B3_MA_RCINI_RX1, 0);
skge_write8(hw, B3_MA_RCINI_RX2, 0);
skge_write8(hw, B3_MA_RCINI_TX1, 0);
skge_write8(hw, B3_MA_RCINI_TX2, 0);
/* Configure Rx MAC FIFO */
skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
/* Configure Tx MAC FIFO */
skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
if (jumbo) {
/* Enable frame flushing if jumbo frames used */
skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
} else {
/* enable timeout timers if normal frames */
skge_write16(hw, B3_PA_CTRL,
(port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
}
}
static void genesis_stop(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
unsigned retries = 1000;
u16 cmd;
/* Disable Tx and Rx */
cmd = xm_read16(hw, port, XM_MMU_CMD);
cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
xm_write16(hw, port, XM_MMU_CMD, cmd);
genesis_reset(hw, port);
/* Clear Tx packet arbiter timeout IRQ */
skge_write16(hw, B3_PA_CTRL,
port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
/* Reset the MAC */
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
do {
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
break;
} while (--retries > 0);
/* For external PHYs there must be special handling */
if (hw->phy_type != SK_PHY_XMAC) {
u32 reg = skge_read32(hw, B2_GP_IO);
if (port == 0) {
reg |= GP_DIR_0;
reg &= ~GP_IO_0;
} else {
reg |= GP_DIR_2;
reg &= ~GP_IO_2;
}
skge_write32(hw, B2_GP_IO, reg);
skge_read32(hw, B2_GP_IO);
}
xm_write16(hw, port, XM_MMU_CMD,
xm_read16(hw, port, XM_MMU_CMD)
& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
xm_read16(hw, port, XM_MMU_CMD);
}
static void genesis_get_stats(struct skge_port *skge, u64 *data)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i;
unsigned long timeout = jiffies + HZ;
xm_write16(hw, port,
XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
/* wait for update to complete */
while (xm_read16(hw, port, XM_STAT_CMD)
& (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
if (time_after(jiffies, timeout))
break;
udelay(10);
}
/* special case for 64 bit octet counter */
data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
| xm_read32(hw, port, XM_TXO_OK_LO);
data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
| xm_read32(hw, port, XM_RXO_OK_LO);
for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
}
static void genesis_mac_intr(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
u16 status = xm_read16(hw, port, XM_ISRC);
netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
"mac interrupt status 0x%x\n", status);
if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
xm_link_down(hw, port);
mod_timer(&skge->link_timer, jiffies + 1);
}
if (status & XM_IS_TXF_UR) {
xm_write32(hw, port, XM_MODE, XM_MD_FTF);
++dev->stats.tx_fifo_errors;
}
}
static void genesis_link_up(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 cmd, msk;
u32 mode;
cmd = xm_read16(hw, port, XM_MMU_CMD);
/*
* enabling pause frame reception is required for 1000BT
* because the XMAC is not reset if the link is going down
*/
if (skge->flow_status == FLOW_STAT_NONE ||
skge->flow_status == FLOW_STAT_LOC_SEND)
/* Disable Pause Frame Reception */
cmd |= XM_MMU_IGN_PF;
else
/* Enable Pause Frame Reception */
cmd &= ~XM_MMU_IGN_PF;
xm_write16(hw, port, XM_MMU_CMD, cmd);
mode = xm_read32(hw, port, XM_MODE);
if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
skge->flow_status == FLOW_STAT_LOC_SEND) {
/*
* Configure Pause Frame Generation
* Use internal and external Pause Frame Generation.
* Sending pause frames is edge triggered.
* Send a Pause frame with the maximum pause time if
* internal oder external FIFO full condition occurs.
* Send a zero pause time frame to re-start transmission.
*/
/* XM_PAUSE_DA = '010000C28001' (default) */
/* XM_MAC_PTIME = 0xffff (maximum) */
/* remember this value is defined in big endian (!) */
xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
mode |= XM_PAUSE_MODE;
skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
} else {
/*
* disable pause frame generation is required for 1000BT
* because the XMAC is not reset if the link is going down
*/
/* Disable Pause Mode in Mode Register */
mode &= ~XM_PAUSE_MODE;
skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
}
xm_write32(hw, port, XM_MODE, mode);
/* Turn on detection of Tx underrun */
msk = xm_read16(hw, port, XM_IMSK);
msk &= ~XM_IS_TXF_UR;
xm_write16(hw, port, XM_IMSK, msk);
xm_read16(hw, port, XM_ISRC);
/* get MMU Command Reg. */
cmd = xm_read16(hw, port, XM_MMU_CMD);
if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
cmd |= XM_MMU_GMII_FD;
/*
* Workaround BCOM Errata (#10523) for all BCom Phys
* Enable Power Management after link up
*/
if (hw->phy_type == SK_PHY_BCOM) {
xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
& ~PHY_B_AC_DIS_PM);
xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
}
/* enable Rx/Tx */
xm_write16(hw, port, XM_MMU_CMD,
cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
skge_link_up(skge);
}
static inline void bcom_phy_intr(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 isrc;
isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
"phy interrupt status 0x%x\n", isrc);
if (isrc & PHY_B_IS_PSE)
pr_err("%s: uncorrectable pair swap error\n",
hw->dev[port]->name);
/* Workaround BCom Errata:
* enable and disable loopback mode if "NO HCD" occurs.
*/
if (isrc & PHY_B_IS_NO_HDCL) {
u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
xm_phy_write(hw, port, PHY_BCOM_CTRL,
ctrl | PHY_CT_LOOP);
xm_phy_write(hw, port, PHY_BCOM_CTRL,
ctrl & ~PHY_CT_LOOP);
}
if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
bcom_check_link(hw, port);
}
static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
{
int i;
gma_write16(hw, port, GM_SMI_DATA, val);
gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
for (i = 0; i < PHY_RETRIES; i++) {
udelay(1);
if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
return 0;
}
pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
return -EIO;
}
static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
{
int i;
gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(hw->phy_addr)
| GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
for (i = 0; i < PHY_RETRIES; i++) {
udelay(1);
if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
goto ready;
}
return -ETIMEDOUT;
ready:
*val = gma_read16(hw, port, GM_SMI_DATA);
return 0;
}
static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
{
u16 v = 0;
if (__gm_phy_read(hw, port, reg, &v))
pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
return v;
}
/* Marvell Phy Initialization */
static void yukon_init(struct skge_hw *hw, int port)
{
struct skge_port *skge = netdev_priv(hw->dev[port]);
u16 ctrl, ct1000, adv;
if (skge->autoneg == AUTONEG_ENABLE) {
u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
PHY_M_EC_MAC_S_MSK);
ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
}
ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
if (skge->autoneg == AUTONEG_DISABLE)
ctrl &= ~PHY_CT_ANE;
ctrl |= PHY_CT_RESET;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
ctrl = 0;
ct1000 = 0;
adv = PHY_AN_CSMA;
if (skge->autoneg == AUTONEG_ENABLE) {
if (hw->copper) {
if (skge->advertising & ADVERTISED_1000baseT_Full)
ct1000 |= PHY_M_1000C_AFD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
ct1000 |= PHY_M_1000C_AHD;
if (skge->advertising & ADVERTISED_100baseT_Full)
adv |= PHY_M_AN_100_FD;
if (skge->advertising & ADVERTISED_100baseT_Half)
adv |= PHY_M_AN_100_HD;
if (skge->advertising & ADVERTISED_10baseT_Full)
adv |= PHY_M_AN_10_FD;
if (skge->advertising & ADVERTISED_10baseT_Half)
adv |= PHY_M_AN_10_HD;
/* Set Flow-control capabilities */
adv |= phy_pause_map[skge->flow_control];
} else {
if (skge->advertising & ADVERTISED_1000baseT_Full)
adv |= PHY_M_AN_1000X_AFD;
if (skge->advertising & ADVERTISED_1000baseT_Half)
adv |= PHY_M_AN_1000X_AHD;
adv |= fiber_pause_map[skge->flow_control];
}
/* Restart Auto-negotiation */
ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
/* forced speed/duplex settings */
ct1000 = PHY_M_1000C_MSE;
if (skge->duplex == DUPLEX_FULL)
ctrl |= PHY_CT_DUP_MD;
switch (skge->speed) {
case SPEED_1000:
ctrl |= PHY_CT_SP1000;
break;
case SPEED_100:
ctrl |= PHY_CT_SP100;
break;
}
ctrl |= PHY_CT_RESET;
}
gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* Enable phy interrupt on autonegotiation complete (or link up) */
if (skge->autoneg == AUTONEG_ENABLE)
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
else
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
}
static void yukon_reset(struct skge_hw *hw, int port)
{
gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
gma_write16(hw, port, GM_MC_ADDR_H2, 0);
gma_write16(hw, port, GM_MC_ADDR_H3, 0);
gma_write16(hw, port, GM_MC_ADDR_H4, 0);
gma_write16(hw, port, GM_RX_CTRL,
gma_read16(hw, port, GM_RX_CTRL)
| GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
}
/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
static int is_yukon_lite_a0(struct skge_hw *hw)
{
u32 reg;
int ret;
if (hw->chip_id != CHIP_ID_YUKON)
return 0;
reg = skge_read32(hw, B2_FAR);
skge_write8(hw, B2_FAR + 3, 0xff);
ret = (skge_read8(hw, B2_FAR + 3) != 0);
skge_write32(hw, B2_FAR, reg);
return ret;
}
static void yukon_mac_init(struct skge_hw *hw, int port)
{
struct skge_port *skge = netdev_priv(hw->dev[port]);
int i;
u32 reg;
const u8 *addr = hw->dev[port]->dev_addr;
/* WA code for COMA mode -- set PHY reset */
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
reg = skge_read32(hw, B2_GP_IO);
reg |= GP_DIR_9 | GP_IO_9;
skge_write32(hw, B2_GP_IO, reg);
}
/* hard reset */
skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
/* WA code for COMA mode -- clear PHY reset */
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
reg = skge_read32(hw, B2_GP_IO);
reg |= GP_DIR_9;
reg &= ~GP_IO_9;
skge_write32(hw, B2_GP_IO, reg);
}
/* Set hardware config mode */
reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
/* Clear GMC reset */
skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
if (skge->autoneg == AUTONEG_DISABLE) {
reg = GM_GPCR_AU_ALL_DIS;
gma_write16(hw, port, GM_GP_CTRL,
gma_read16(hw, port, GM_GP_CTRL) | reg);
switch (skge->speed) {
case SPEED_1000:
reg &= ~GM_GPCR_SPEED_100;
reg |= GM_GPCR_SPEED_1000;
break;
case SPEED_100:
reg &= ~GM_GPCR_SPEED_1000;
reg |= GM_GPCR_SPEED_100;
break;
case SPEED_10:
reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
break;
}
if (skge->duplex == DUPLEX_FULL)
reg |= GM_GPCR_DUP_FULL;
} else
reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
switch (skge->flow_control) {
case FLOW_MODE_NONE:
skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
break;
case FLOW_MODE_LOC_SEND:
/* disable Rx flow-control */
reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
break;
case FLOW_MODE_SYMMETRIC:
case FLOW_MODE_SYM_OR_REM:
/* enable Tx & Rx flow-control */
break;
}
gma_write16(hw, port, GM_GP_CTRL, reg);
skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
yukon_init(hw, port);
/* MIB clear */
reg = gma_read16(hw, port, GM_PHY_ADDR);
gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
for (i = 0; i < GM_MIB_CNT_SIZE; i++)
gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
gma_write16(hw, port, GM_PHY_ADDR, reg);
/* transmit control */
gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
/* receive control reg: unicast + multicast + no FCS */
gma_write16(hw, port, GM_RX_CTRL,
GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
/* transmit flow control */
gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
/* transmit parameter */
gma_write16(hw, port, GM_TX_PARAM,
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
/* configure the Serial Mode Register */
reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
| GM_SMOD_VLAN_ENA
| IPG_DATA_VAL(IPG_DATA_DEF);
if (hw->dev[port]->mtu > ETH_DATA_LEN)
reg |= GM_SMOD_JUMBO_ENA;
gma_write16(hw, port, GM_SERIAL_MODE, reg);
/* physical address: used for pause frames */
gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
/* virtual address for data */
gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
/* enable interrupt mask for counter overflows */
gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
/* Initialize Mac Fifo */
/* Configure Rx MAC FIFO */
skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
if (is_yukon_lite_a0(hw))
reg &= ~GMF_RX_F_FL_ON;
skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
/*
* because Pause Packet Truncation in GMAC is not working
* we have to increase the Flush Threshold to 64 bytes
* in order to flush pause packets in Rx FIFO on Yukon-1
*/
skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
/* Configure Tx MAC FIFO */
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
}
/* Go into power down mode */
static void yukon_suspend(struct skge_hw *hw, int port)
{
u16 ctrl;
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
ctrl |= PHY_M_PC_POL_R_DIS;
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
ctrl |= PHY_CT_RESET;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* switch IEEE compatible power down mode on */
ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
ctrl |= PHY_CT_PDOWN;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
}
static void yukon_stop(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
yukon_reset(hw, port);
gma_write16(hw, port, GM_GP_CTRL,
gma_read16(hw, port, GM_GP_CTRL)
& ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
gma_read16(hw, port, GM_GP_CTRL);
yukon_suspend(hw, port);
/* set GPHY Control reset */
skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
}
static void yukon_get_stats(struct skge_port *skge, u64 *data)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
int i;
data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
| gma_read32(hw, port, GM_TXO_OK_LO);
data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
| gma_read32(hw, port, GM_RXO_OK_LO);
for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
data[i] = gma_read32(hw, port,
skge_stats[i].gma_offset);
}
static void yukon_mac_intr(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
struct skge_port *skge = netdev_priv(dev);
u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
"mac interrupt status 0x%x\n", status);
if (status & GM_IS_RX_FF_OR) {
++dev->stats.rx_fifo_errors;
skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
}
if (status & GM_IS_TX_FF_UR) {
++dev->stats.tx_fifo_errors;
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
}
}
static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
{
switch (aux & PHY_M_PS_SPEED_MSK) {
case PHY_M_PS_SPEED_1000:
return SPEED_1000;
case PHY_M_PS_SPEED_100:
return SPEED_100;
default:
return SPEED_10;
}
}
static void yukon_link_up(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 reg;
/* Enable Transmit FIFO Underrun */
skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
reg = gma_read16(hw, port, GM_GP_CTRL);
if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
reg |= GM_GPCR_DUP_FULL;
/* enable Rx/Tx */
reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
gma_write16(hw, port, GM_GP_CTRL, reg);
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
skge_link_up(skge);
}
static void yukon_link_down(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
u16 ctrl;
ctrl = gma_read16(hw, port, GM_GP_CTRL);
ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
gma_write16(hw, port, GM_GP_CTRL, ctrl);
if (skge->flow_status == FLOW_STAT_REM_SEND) {
ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
ctrl |= PHY_M_AN_ASP;
/* restore Asymmetric Pause bit */
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
}
skge_link_down(skge);
yukon_init(hw, port);
}
static void yukon_phy_intr(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
const char *reason = NULL;
u16 istatus, phystat;
istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
"phy interrupt status 0x%x 0x%x\n", istatus, phystat);
if (istatus & PHY_M_IS_AN_COMPL) {
if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
& PHY_M_AN_RF) {
reason = "remote fault";
goto failed;
}
if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
reason = "master/slave fault";
goto failed;
}
if (!(phystat & PHY_M_PS_SPDUP_RES)) {
reason = "speed/duplex";
goto failed;
}
skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
? DUPLEX_FULL : DUPLEX_HALF;
skge->speed = yukon_speed(hw, phystat);
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
switch (phystat & PHY_M_PS_PAUSE_MSK) {
case PHY_M_PS_PAUSE_MSK:
skge->flow_status = FLOW_STAT_SYMMETRIC;
break;
case PHY_M_PS_RX_P_EN:
skge->flow_status = FLOW_STAT_REM_SEND;
break;
case PHY_M_PS_TX_P_EN:
skge->flow_status = FLOW_STAT_LOC_SEND;
break;
default:
skge->flow_status = FLOW_STAT_NONE;
}
if (skge->flow_status == FLOW_STAT_NONE ||
(skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
else
skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
yukon_link_up(skge);
return;
}
if (istatus & PHY_M_IS_LSP_CHANGE)
skge->speed = yukon_speed(hw, phystat);
if (istatus & PHY_M_IS_DUP_CHANGE)
skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
if (istatus & PHY_M_IS_LST_CHANGE) {
if (phystat & PHY_M_PS_LINK_UP)
yukon_link_up(skge);
else
yukon_link_down(skge);
}
return;
failed:
pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
/* XXX restart autonegotiation? */
}
static void skge_phy_reset(struct skge_port *skge)
{
struct skge_hw *hw = skge->hw;
int port = skge->port;
struct net_device *dev = hw->dev[port];
netif_stop_queue(skge->netdev);
netif_carrier_off(skge->netdev);
spin_lock_bh(&hw->phy_lock);
if (is_genesis(hw)) {
genesis_reset(hw, port);
genesis_mac_init(hw, port);
} else {
yukon_reset(hw, port);
yukon_init(hw, port);
}
spin_unlock_bh(&hw->phy_lock);
skge_set_multicast(dev);
}
/* Basic MII support */
static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int err = -EOPNOTSUPP;
if (!netif_running(dev))
return -ENODEV; /* Phy still in reset */
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = hw->phy_addr;
/* fallthru */
case SIOCGMIIREG: {
u16 val = 0;
spin_lock_bh(&hw->phy_lock);
if (is_genesis(hw))
err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
else
err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
spin_unlock_bh(&hw->phy_lock);
data->val_out = val;
break;
}
case SIOCSMIIREG:
spin_lock_bh(&hw->phy_lock);
if (is_genesis(hw))
err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
data->val_in);
else
err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
data->val_in);
spin_unlock_bh(&hw->phy_lock);
break;
}
return err;
}
static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
{
u32 end;
start /= 8;
len /= 8;
end = start + len - 1;
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
skge_write32(hw, RB_ADDR(q, RB_START), start);
skge_write32(hw, RB_ADDR(q, RB_WP), start);
skge_write32(hw, RB_ADDR(q, RB_RP), start);
skge_write32(hw, RB_ADDR(q, RB_END), end);
if (q == Q_R1 || q == Q_R2) {
/* Set thresholds on receive queue's */
skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
start + (2*len)/3);
skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
start + (len/3));
} else {
/* Enable store & forward on Tx queue's because
* Tx FIFO is only 4K on Genesis and 1K on Yukon
*/
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
}
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
}
/* Setup Bus Memory Interface */
static void skge_qset(struct skge_port *skge, u16 q,
const struct skge_element *e)
{
struct skge_hw *hw = skge->hw;
u32 watermark = 0x600;
u64 base = skge->dma + (e->desc - skge->mem);
/* optimization to reduce window on 32bit/33mhz */
if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
watermark /= 2;
skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
skge_write32(hw, Q_ADDR(q, Q_F), watermark);
skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
}
static int skge_up(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
u32 chunk, ram_addr;
size_t rx_size, tx_size;
int err;
if (!is_valid_ether_addr(dev->dev_addr))
return -EINVAL;
netif_info(skge, ifup, skge->netdev, "enabling interface\n");
if (dev->mtu > RX_BUF_SIZE)
skge->rx_buf_size = dev->mtu + ETH_HLEN;
else
skge->rx_buf_size = RX_BUF_SIZE;
rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
skge->mem_size = tx_size + rx_size;
skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
if (!skge->mem)
return -ENOMEM;
BUG_ON(skge->dma & 7);
if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
err = -EINVAL;
goto free_pci_mem;
}
memset(skge->mem, 0, skge->mem_size);
err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
if (err)
goto free_pci_mem;
err = skge_rx_fill(dev);
if (err)
goto free_rx_ring;
err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
skge->dma + rx_size);
if (err)
goto free_rx_ring;
if (hw->ports == 1) {
err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
dev->name, hw);
if (err) {
netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
hw->pdev->irq, err);
goto free_tx_ring;
}
}
/* Initialize MAC */
netif_carrier_off(dev);
spin_lock_bh(&hw->phy_lock);
if (is_genesis(hw))
genesis_mac_init(hw, port);
else
yukon_mac_init(hw, port);
spin_unlock_bh(&hw->phy_lock);
/* Configure RAMbuffers - equally between ports and tx/rx */
chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
ram_addr = hw->ram_offset + 2 * chunk * port;
skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
/* Start receiver BMU */
wmb();
skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
skge_led(skge, LED_MODE_ON);
spin_lock_irq(&hw->hw_lock);
hw->intr_mask |= portmask[port];
skge_write32(hw, B0_IMSK, hw->intr_mask);
skge_read32(hw, B0_IMSK);
spin_unlock_irq(&hw->hw_lock);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
napi_enable(&skge->napi);
skge_set_multicast(dev);
return 0;
free_tx_ring:
kfree(skge->tx_ring.start);
free_rx_ring:
skge_rx_clean(skge);
kfree(skge->rx_ring.start);
free_pci_mem:
pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
skge->mem = NULL;
return err;
}
/* stop receiver */
static void skge_rx_stop(struct skge_hw *hw, int port)
{
skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
RB_RST_SET|RB_DIS_OP_MD);
skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
}
static int skge_down(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
if (skge->mem == NULL)
return 0;
netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
netif_tx_disable(dev);
if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
del_timer_sync(&skge->link_timer);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
napi_disable(&skge->napi);
netif_carrier_off(dev);
spin_lock_irq(&hw->hw_lock);
hw->intr_mask &= ~portmask[port];
skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
skge_read32(hw, B0_IMSK);
spin_unlock_irq(&hw->hw_lock);
if (hw->ports == 1)
free_irq(hw->pdev->irq, hw);
skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
if (is_genesis(hw))
genesis_stop(skge);
else
yukon_stop(skge);
/* Stop transmitter */
skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
RB_RST_SET|RB_DIS_OP_MD);
/* Disable Force Sync bit and Enable Alloc bit */
skge_write8(hw, SK_REG(port, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Stop Interval Timer and Limit Counter of Tx Arbiter */
skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
/* Reset PCI FIFO */
skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
/* Reset the RAM Buffer async Tx queue */
skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
skge_rx_stop(hw, port);
if (is_genesis(hw)) {
skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
} else {
skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
}
skge_led(skge, LED_MODE_OFF);
netif_tx_lock_bh(dev);
skge_tx_clean(dev);
netif_tx_unlock_bh(dev);
skge_rx_clean(skge);
kfree(skge->rx_ring.start);
kfree(skge->tx_ring.start);
pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
skge->mem = NULL;
return 0;
}
static inline int skge_avail(const struct skge_ring *ring)
{
smp_mb();
return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
+ (ring->to_clean - ring->to_use) - 1;
}
static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
struct skge_element *e;
struct skge_tx_desc *td;
int i;
u32 control, len;
u64 map;
if (skb_padto(skb, ETH_ZLEN))
return NETDEV_TX_OK;
if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
return NETDEV_TX_BUSY;
e = skge->tx_ring.to_use;
td = e->desc;
BUG_ON(td->control & BMU_OWN);
e->skb = skb;
len = skb_headlen(skb);
map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
dma_unmap_addr_set(e, mapaddr, map);
dma_unmap_len_set(e, maplen, len);
td->dma_lo = map;
td->dma_hi = map >> 32;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
const int offset = skb_checksum_start_offset(skb);
/* This seems backwards, but it is what the sk98lin
* does. Looks like hardware is wrong?
*/
if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
control = BMU_TCP_CHECK;
else
control = BMU_UDP_CHECK;
td->csum_offs = 0;
td->csum_start = offset;
td->csum_write = offset + skb->csum_offset;
} else
control = BMU_CHECK;
if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
control |= BMU_EOF | BMU_IRQ_EOF;
else {
struct skge_tx_desc *tf = td;
control |= BMU_STFWD;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
skb_frag_size(frag), DMA_TO_DEVICE);
e = e->next;
e->skb = skb;
tf = e->desc;
BUG_ON(tf->control & BMU_OWN);
tf->dma_lo = map;
tf->dma_hi = (u64) map >> 32;
dma_unmap_addr_set(e, mapaddr, map);
dma_unmap_len_set(e, maplen, skb_frag_size(frag));
tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
}
tf->control |= BMU_EOF | BMU_IRQ_EOF;
}
/* Make sure all the descriptors written */
wmb();
td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
wmb();
netdev_sent_queue(dev, skb->len);
skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
"tx queued, slot %td, len %d\n",
e - skge->tx_ring.start, skb->len);
skge->tx_ring.to_use = e->next;
smp_wmb();
if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
netdev_dbg(dev, "transmit queue full\n");
netif_stop_queue(dev);
}
return NETDEV_TX_OK;
}
/* Free resources associated with this reing element */
static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
u32 control)
{
/* skb header vs. fragment */
if (control & BMU_STF)
pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
dma_unmap_len(e, maplen),
PCI_DMA_TODEVICE);
else
pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
dma_unmap_len(e, maplen),
PCI_DMA_TODEVICE);
}
/* Free all buffers in transmit ring */
static void skge_tx_clean(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_element *e;
for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
struct skge_tx_desc *td = e->desc;
skge_tx_unmap(skge->hw->pdev, e, td->control);
if (td->control & BMU_EOF)
dev_kfree_skb(e->skb);
td->control = 0;
}
netdev_reset_queue(dev);
skge->tx_ring.to_clean = e;
}
static void skge_tx_timeout(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
skge_tx_clean(dev);
netif_wake_queue(dev);
}
static int skge_change_mtu(struct net_device *dev, int new_mtu)
{
int err;
if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
return -EINVAL;
if (!netif_running(dev)) {
dev->mtu = new_mtu;
return 0;
}
skge_down(dev);
dev->mtu = new_mtu;
err = skge_up(dev);
if (err)
dev_close(dev);
return err;
}
static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
static void genesis_add_filter(u8 filter[8], const u8 *addr)
{
u32 crc, bit;
crc = ether_crc_le(ETH_ALEN, addr);
bit = ~crc & 0x3f;
filter[bit/8] |= 1 << (bit%8);
}
static void genesis_set_multicast(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
struct netdev_hw_addr *ha;
u32 mode;
u8 filter[8];
mode = xm_read32(hw, port, XM_MODE);
mode |= XM_MD_ENA_HASH;
if (dev->flags & IFF_PROMISC)
mode |= XM_MD_ENA_PROM;
else
mode &= ~XM_MD_ENA_PROM;
if (dev->flags & IFF_ALLMULTI)
memset(filter, 0xff, sizeof(filter));
else {
memset(filter, 0, sizeof(filter));
if (skge->flow_status == FLOW_STAT_REM_SEND ||
skge->flow_status == FLOW_STAT_SYMMETRIC)
genesis_add_filter(filter, pause_mc_addr);
netdev_for_each_mc_addr(ha, dev)
genesis_add_filter(filter, ha->addr);
}
xm_write32(hw, port, XM_MODE, mode);
xm_outhash(hw, port, XM_HSM, filter);
}
static void yukon_add_filter(u8 filter[8], const u8 *addr)
{
u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
filter[bit/8] |= 1 << (bit%8);
}
static void yukon_set_multicast(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
int port = skge->port;
struct netdev_hw_addr *ha;
int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
skge->flow_status == FLOW_STAT_SYMMETRIC);
u16 reg;
u8 filter[8];
memset(filter, 0, sizeof(filter));
reg = gma_read16(hw, port, GM_RX_CTRL);
reg |= GM_RXCR_UCF_ENA;
if (dev->flags & IFF_PROMISC) /* promiscuous */
reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
else if (dev->flags & IFF_ALLMULTI) /* all multicast */
memset(filter, 0xff, sizeof(filter));
else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
reg &= ~GM_RXCR_MCF_ENA;
else {
reg |= GM_RXCR_MCF_ENA;
if (rx_pause)
yukon_add_filter(filter, pause_mc_addr);
netdev_for_each_mc_addr(ha, dev)
yukon_add_filter(filter, ha->addr);
}
gma_write16(hw, port, GM_MC_ADDR_H1,
(u16)filter[0] | ((u16)filter[1] << 8));
gma_write16(hw, port, GM_MC_ADDR_H2,
(u16)filter[2] | ((u16)filter[3] << 8));
gma_write16(hw, port, GM_MC_ADDR_H3,
(u16)filter[4] | ((u16)filter[5] << 8));
gma_write16(hw, port, GM_MC_ADDR_H4,
(u16)filter[6] | ((u16)filter[7] << 8));
gma_write16(hw, port, GM_RX_CTRL, reg);
}
static inline u16 phy_length(const struct skge_hw *hw, u32 status)
{
if (is_genesis(hw))
return status >> XMR_FS_LEN_SHIFT;
else
return status >> GMR_FS_LEN_SHIFT;
}
static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
{
if (is_genesis(hw))
return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
else
return (status & GMR_FS_ANY_ERR) ||
(status & GMR_FS_RX_OK) == 0;
}
static void skge_set_multicast(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
if (is_genesis(skge->hw))
genesis_set_multicast(dev);
else
yukon_set_multicast(dev);
}
/* Get receive buffer from descriptor.
* Handles copy of small buffers and reallocation failures
*/
static struct sk_buff *skge_rx_get(struct net_device *dev,
struct skge_element *e,
u32 control, u32 status, u16 csum)
{
struct skge_port *skge = netdev_priv(dev);
struct sk_buff *skb;
u16 len = control & BMU_BBC;
netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
"rx slot %td status 0x%x len %d\n",
e - skge->rx_ring.start, status, len);
if (len > skge->rx_buf_size)
goto error;
if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
goto error;
if (bad_phy_status(skge->hw, status))
goto error;
if (phy_length(skge->hw, status) != len)
goto error;
if (len < RX_COPY_THRESHOLD) {
skb = netdev_alloc_skb_ip_align(dev, len);
if (!skb)
goto resubmit;
pci_dma_sync_single_for_cpu(skge->hw->pdev,
dma_unmap_addr(e, mapaddr),
len, PCI_DMA_FROMDEVICE);
skb_copy_from_linear_data(e->skb, skb->data, len);
pci_dma_sync_single_for_device(skge->hw->pdev,
dma_unmap_addr(e, mapaddr),
len, PCI_DMA_FROMDEVICE);
skge_rx_reuse(e, skge->rx_buf_size);
} else {
struct sk_buff *nskb;
nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
if (!nskb)
goto resubmit;
pci_unmap_single(skge->hw->pdev,
dma_unmap_addr(e, mapaddr),
dma_unmap_len(e, maplen),
PCI_DMA_FROMDEVICE);
skb = e->skb;
prefetch(skb->data);
skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
}
skb_put(skb, len);
if (dev->features & NETIF_F_RXCSUM) {
skb->csum = csum;
skb->ip_summed = CHECKSUM_COMPLETE;
}
skb->protocol = eth_type_trans(skb, dev);
return skb;
error:
netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
"rx err, slot %td control 0x%x status 0x%x\n",
e - skge->rx_ring.start, control, status);
if (is_genesis(skge->hw)) {
if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
dev->stats.rx_length_errors++;
if (status & XMR_FS_FRA_ERR)
dev->stats.rx_frame_errors++;
if (status & XMR_FS_FCS_ERR)
dev->stats.rx_crc_errors++;
} else {
if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
dev->stats.rx_length_errors++;
if (status & GMR_FS_FRAGMENT)
dev->stats.rx_frame_errors++;
if (status & GMR_FS_CRC_ERR)
dev->stats.rx_crc_errors++;
}
resubmit:
skge_rx_reuse(e, skge->rx_buf_size);
return NULL;
}
/* Free all buffers in Tx ring which are no longer owned by device */
static void skge_tx_done(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_ring *ring = &skge->tx_ring;
struct skge_element *e;
unsigned int bytes_compl = 0, pkts_compl = 0;
skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
for (e = ring->to_clean; e != ring->to_use; e = e->next) {
u32 control = ((const struct skge_tx_desc *) e->desc)->control;
if (control & BMU_OWN)
break;
skge_tx_unmap(skge->hw->pdev, e, control);
if (control & BMU_EOF) {
netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
"tx done slot %td\n",
e - skge->tx_ring.start);
pkts_compl++;
bytes_compl += e->skb->len;
dev_kfree_skb(e->skb);
}
}
netdev_completed_queue(dev, pkts_compl, bytes_compl);
skge->tx_ring.to_clean = e;
/* Can run lockless until we need to synchronize to restart queue. */
smp_mb();
if (unlikely(netif_queue_stopped(dev) &&
skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
netif_tx_lock(dev);
if (unlikely(netif_queue_stopped(dev) &&
skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
netif_wake_queue(dev);
}
netif_tx_unlock(dev);
}
}
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
static int skge_poll(struct napi_struct *napi, int to_do)
{
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
struct skge_port *skge = container_of(napi, struct skge_port, napi);
struct net_device *dev = skge->netdev;
struct skge_hw *hw = skge->hw;
struct skge_ring *ring = &skge->rx_ring;
struct skge_element *e;
int work_done = 0;
skge_tx_done(dev);
skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
struct skge_rx_desc *rd = e->desc;
struct sk_buff *skb;
u32 control;
rmb();
control = rd->control;
if (control & BMU_OWN)
break;
skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
if (likely(skb)) {
napi_gro_receive(napi, skb);
++work_done;
}
}
ring->to_clean = e;
/* restart receiver */
wmb();
skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
if (work_done < to_do) {
unsigned long flags;
napi_gro_flush(napi, false);
spin_lock_irqsave(&hw->hw_lock, flags);
__napi_complete(napi);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
hw->intr_mask |= napimask[skge->port];
skge_write32(hw, B0_IMSK, hw->intr_mask);
skge_read32(hw, B0_IMSK);
spin_unlock_irqrestore(&hw->hw_lock, flags);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
}
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
return work_done;
}
/* Parity errors seem to happen when Genesis is connected to a switch
* with no other ports present. Heartbeat error??
*/
static void skge_mac_parity(struct skge_hw *hw, int port)
{
struct net_device *dev = hw->dev[port];
++dev->stats.tx_heartbeat_errors;
if (is_genesis(hw))
skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
MFF_CLR_PERR);
else
/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
(hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
}
static void skge_mac_intr(struct skge_hw *hw, int port)
{
if (is_genesis(hw))
genesis_mac_intr(hw, port);
else
yukon_mac_intr(hw, port);
}
/* Handle device specific framing and timeout interrupts */
static void skge_error_irq(struct skge_hw *hw)
{
struct pci_dev *pdev = hw->pdev;
u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
if (is_genesis(hw)) {
/* clear xmac errors */
if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
} else {
/* Timestamp (unused) overflow */
if (hwstatus & IS_IRQ_TIST_OV)
skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
}
if (hwstatus & IS_RAM_RD_PAR) {
dev_err(&pdev->dev, "Ram read data parity error\n");
skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
}
if (hwstatus & IS_RAM_WR_PAR) {
dev_err(&pdev->dev, "Ram write data parity error\n");
skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
}
if (hwstatus & IS_M1_PAR_ERR)
skge_mac_parity(hw, 0);
if (hwstatus & IS_M2_PAR_ERR)
skge_mac_parity(hw, 1);
if (hwstatus & IS_R1_PAR_ERR) {
dev_err(&pdev->dev, "%s: receive queue parity error\n",
hw->dev[0]->name);
skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
}
if (hwstatus & IS_R2_PAR_ERR) {
dev_err(&pdev->dev, "%s: receive queue parity error\n",
hw->dev[1]->name);
skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
}
if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
u16 pci_status, pci_cmd;
pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
pci_read_config_word(pdev, PCI_STATUS, &pci_status);
dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
pci_cmd, pci_status);
/* Write the error bits back to clear them. */
pci_status &= PCI_STATUS_ERROR_BITS;
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_write_config_word(pdev, PCI_COMMAND,
pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
pci_write_config_word(pdev, PCI_STATUS, pci_status);
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
/* if error still set then just ignore it */
hwstatus = skge_read32(hw, B0_HWE_ISRC);
if (hwstatus & IS_IRQ_STAT) {
dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
hw->intr_mask &= ~IS_HW_ERR;
}
}
}
/*
* Interrupt from PHY are handled in tasklet (softirq)
* because accessing phy registers requires spin wait which might
* cause excess interrupt latency.
*/
static void skge_extirq(unsigned long arg)
{
struct skge_hw *hw = (struct skge_hw *) arg;
int port;
for (port = 0; port < hw->ports; port++) {
struct net_device *dev = hw->dev[port];
if (netif_running(dev)) {
struct skge_port *skge = netdev_priv(dev);
spin_lock(&hw->phy_lock);
if (!is_genesis(hw))
yukon_phy_intr(skge);
else if (hw->phy_type == SK_PHY_BCOM)
bcom_phy_intr(skge);
spin_unlock(&hw->phy_lock);
}
}
spin_lock_irq(&hw->hw_lock);
hw->intr_mask |= IS_EXT_REG;
skge_write32(hw, B0_IMSK, hw->intr_mask);
skge_read32(hw, B0_IMSK);
spin_unlock_irq(&hw->hw_lock);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t skge_intr(int irq, void *dev_id)
{
struct skge_hw *hw = dev_id;
u32 status;
int handled = 0;
spin_lock(&hw->hw_lock);
/* Reading this register masks IRQ */
status = skge_read32(hw, B0_SP_ISRC);
if (status == 0 || status == ~0)
goto out;
handled = 1;
status &= hw->intr_mask;
if (status & IS_EXT_REG) {
hw->intr_mask &= ~IS_EXT_REG;
tasklet_schedule(&hw->phy_task);
}
if (status & (IS_XA1_F|IS_R1_F)) {
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
struct skge_port *skge = netdev_priv(hw->dev[0]);
hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
napi_schedule(&skge->napi);
}
if (status & IS_PA_TO_TX1)
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
if (status & IS_PA_TO_RX1) {
++hw->dev[0]->stats.rx_over_errors;
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
}
if (status & IS_MAC1)
skge_mac_intr(hw, 0);
if (hw->dev[1]) {
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
struct skge_port *skge = netdev_priv(hw->dev[1]);
if (status & (IS_XA2_F|IS_R2_F)) {
hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
napi_schedule(&skge->napi);
}
if (status & IS_PA_TO_RX2) {
++hw->dev[1]->stats.rx_over_errors;
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
}
if (status & IS_PA_TO_TX2)
skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
if (status & IS_MAC2)
skge_mac_intr(hw, 1);
}
if (status & IS_HW_ERR)
skge_error_irq(hw);
skge_write32(hw, B0_IMSK, hw->intr_mask);
skge_read32(hw, B0_IMSK);
out:
spin_unlock(&hw->hw_lock);
return IRQ_RETVAL(handled);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void skge_netpoll(struct net_device *dev)
{
struct skge_port *skge = netdev_priv(dev);
disable_irq(dev->irq);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
skge_intr(dev->irq, skge->hw);
enable_irq(dev->irq);
}
#endif
static int skge_set_mac_address(struct net_device *dev, void *p)
{
struct skge_port *skge = netdev_priv(dev);
struct skge_hw *hw = skge->hw;
unsigned port = skge->port;
const struct sockaddr *addr = p;
u16 ctrl;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
if (!netif_running(dev)) {
memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
} else {
/* disable Rx */
spin_lock_bh(&hw->phy_lock);
ctrl = gma_read16(hw, port, GM_GP_CTRL);
gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
if (is_genesis(hw))
xm_outaddr(hw, port, XM_SA, dev->dev_addr);
else {
gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
}
gma_write16(hw, port, GM_GP_CTRL, ctrl);
spin_unlock_bh(&hw->phy_lock);
}
return 0;
}
static const struct {
u8 id;
const char *name;
} skge_chips[] = {
{ CHIP_ID_GENESIS, "Genesis" },
{ CHIP_ID_YUKON, "Yukon" },
{ CHIP_ID_YUKON_LITE, "Yukon-Lite"},
{ CHIP_ID_YUKON_LP, "Yukon-LP"},
};
static const char *skge_board_name(const struct skge_hw *hw)
{
int i;
static char buf[16];
for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
if (skge_chips[i].id == hw->chip_id)
return skge_chips[i].name;
snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
return buf;
}
/*
* Setup the board data structure, but don't bring up
* the port(s)
*/
static int skge_reset(struct skge_hw *hw)
{
u32 reg;
u16 ctst, pci_status;
u8 t8, mac_cfg, pmd_type;
int i;
ctst = skge_read16(hw, B0_CTST);
/* do a SW reset */
skge_write8(hw, B0_CTST, CS_RST_SET);
skge_write8(hw, B0_CTST, CS_RST_CLR);
/* clear PCI errors, if any */
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
skge_write8(hw, B2_TST_CTRL2, 0);
pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
pci_write_config_word(hw->pdev, PCI_STATUS,
pci_status | PCI_STATUS_ERROR_BITS);
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
skge_write8(hw, B0_CTST, CS_MRST_CLR);
/* restore CLK_RUN bits (for Yukon-Lite) */
skge_write16(hw, B0_CTST,
ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
hw->chip_id = skge_read8(hw, B2_CHIP_ID);
hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
pmd_type = skge_read8(hw, B2_PMD_TYP);
hw->copper = (pmd_type == 'T' || pmd_type == '1');
switch (hw->chip_id) {
case CHIP_ID_GENESIS:
#ifdef CONFIG_SKGE_GENESIS
switch (hw->phy_type) {
case SK_PHY_XMAC:
hw->phy_addr = PHY_ADDR_XMAC;
break;
case SK_PHY_BCOM:
hw->phy_addr = PHY_ADDR_BCOM;
break;
default:
dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
hw->phy_type);
return -EOPNOTSUPP;
}
break;
#else
dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
return -EOPNOTSUPP;
#endif
case CHIP_ID_YUKON:
case CHIP_ID_YUKON_LITE:
case CHIP_ID_YUKON_LP:
if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
hw->copper = 1;
hw->phy_addr = PHY_ADDR_MARV;
break;
default:
dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
hw->chip_id);
return -EOPNOTSUPP;
}
mac_cfg = skge_read8(hw, B2_MAC_CFG);
hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
/* read the adapters RAM size */
t8 = skge_read8(hw, B2_E_0);
if (is_genesis(hw)) {
if (t8 == 3) {
/* special case: 4 x 64k x 36, offset = 0x80000 */
hw->ram_size = 0x100000;
hw->ram_offset = 0x80000;
} else
hw->ram_size = t8 * 512;
} else if (t8 == 0)
hw->ram_size = 0x20000;
else
hw->ram_size = t8 * 4096;
hw->intr_mask = IS_HW_ERR;
/* Use PHY IRQ for all but fiber based Genesis board */
if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
hw->intr_mask |= IS_EXT_REG;
if (is_genesis(hw))
genesis_init(hw);
else {
/* switch power to VCC (WA for VAUX problem) */
skge_write8(hw, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
/* avoid boards with stuck Hardware error bits */
if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
(skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
hw->intr_mask &= ~IS_HW_ERR;
}
/* Clear PHY COMA */
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
reg &= ~PCI_PHY_COMA;
pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
for (i = 0; i < hw->ports; i++) {
skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
}
}
/* turn off hardware timer (unused) */
skge_write8(hw, B2_TI_CTRL, TIM_STOP);
skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
skge_write8(hw, B0_LED, LED_STAT_ON);
/* enable the Tx Arbiters */
for (i = 0; i < hw->ports; i++)
skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
/* Initialize ram interface */
skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
/* Set interrupt moderation for Transmit only
* Receive interrupts avoided by NAPI
*/
skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
skge_write32(hw, B2_IRQM_CTRL, TIM_START);
/* Leave irq disabled until first port is brought up. */
skge_write32(hw, B0_IMSK, 0);
for (i = 0; i < hw->ports; i++) {
if (is_genesis(hw))
genesis_reset(hw, i);
else
yukon_reset(hw, i);
}
return 0;
}
#ifdef CONFIG_SKGE_DEBUG
static struct dentry *skge_debug;
static int skge_debug_show(struct seq_file *seq, void *v)
{
struct net_device *dev = seq->private;
const struct skge_port *skge = netdev_priv(dev);
const struct skge_hw *hw = skge->hw;
const struct skge_element *e;
if (!netif_running(dev))
return -ENETDOWN;
seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
skge_read32(hw, B0_IMSK));
seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
const struct skge_tx_desc *t = e->desc;
seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
t->control, t->dma_hi, t->dma_lo, t->status,
t->csum_offs, t->csum_write, t->csum_start);
}
seq_printf(seq, "\nRx Ring:\n");
for (e = skge->rx_ring.to_clean; ; e = e->next) {
const struct skge_rx_desc *r = e->desc;
if (r->control & BMU_OWN)
break;
seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
r->control, r->dma_hi, r->dma_lo, r->status,
r->timestamp, r->csum1, r->csum1_start);
}
return 0;
}
static int skge_debug_open(struct inode *inode, struct file *file)
{
return single_open(file, skge_debug_show, inode->i_private);
}
static const struct file_operations skge_debug_fops = {
.owner = THIS_MODULE,
.open = skge_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/*
* Use network device events to create/remove/rename
* debugfs file entries
*/
static int skge_device_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct net_device *dev = ptr;
struct skge_port *skge;
struct dentry *d;
if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
goto done;
skge = netdev_priv(dev);
switch (event) {
case NETDEV_CHANGENAME:
if (skge->debugfs) {
d = debugfs_rename(skge_debug, skge->debugfs,
skge_debug, dev->name);
if (d)
skge->debugfs = d;
else {
netdev_info(dev, "rename failed\n");
debugfs_remove(skge->debugfs);
}
}
break;
case NETDEV_GOING_DOWN:
if (skge->debugfs) {
debugfs_remove(skge->debugfs);
skge->debugfs = NULL;
}
break;
case NETDEV_UP:
d = debugfs_create_file(dev->name, S_IRUGO,
skge_debug, dev,
&skge_debug_fops);
if (!d || IS_ERR(d))
netdev_info(dev, "debugfs create failed\n");
else
skge->debugfs = d;
break;
}
done:
return NOTIFY_DONE;
}
static struct notifier_block skge_notifier = {
.notifier_call = skge_device_event,
};
static __init void skge_debug_init(void)
{
struct dentry *ent;
ent = debugfs_create_dir("skge", NULL);
if (!ent || IS_ERR(ent)) {
pr_info("debugfs create directory failed\n");
return;
}
skge_debug = ent;
register_netdevice_notifier(&skge_notifier);
}
static __exit void skge_debug_cleanup(void)
{
if (skge_debug) {
unregister_netdevice_notifier(&skge_notifier);
debugfs_remove(skge_debug);
skge_debug = NULL;
}
}
#else
#define skge_debug_init()
#define skge_debug_cleanup()
#endif
static const struct net_device_ops skge_netdev_ops = {
.ndo_open = skge_up,
.ndo_stop = skge_down,
.ndo_start_xmit = skge_xmit_frame,
.ndo_do_ioctl = skge_ioctl,
.ndo_get_stats = skge_get_stats,
.ndo_tx_timeout = skge_tx_timeout,
.ndo_change_mtu = skge_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_rx_mode = skge_set_multicast,
.ndo_set_mac_address = skge_set_mac_address,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = skge_netpoll,
#endif
};
/* Initialize network device */
static struct net_device *skge_devinit(struct skge_hw *hw, int port,
int highmem)
{
struct skge_port *skge;
struct net_device *dev = alloc_etherdev(sizeof(*skge));
if (!dev)
return NULL;
SET_NETDEV_DEV(dev, &hw->pdev->dev);
dev->netdev_ops = &skge_netdev_ops;
dev->ethtool_ops = &skge_ethtool_ops;
dev->watchdog_timeo = TX_WATCHDOG;
dev->irq = hw->pdev->irq;
if (highmem)
dev->features |= NETIF_F_HIGHDMA;
skge = netdev_priv(dev);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
skge->netdev = dev;
skge->hw = hw;
skge->msg_enable = netif_msg_init(debug, default_msg);
skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
/* Auto speed and flow control */
skge->autoneg = AUTONEG_ENABLE;
skge->flow_control = FLOW_MODE_SYM_OR_REM;
skge->duplex = -1;
skge->speed = -1;
skge->advertising = skge_supported_modes(hw);
if (device_can_wakeup(&hw->pdev->dev)) {
skge->wol = wol_supported(hw) & WAKE_MAGIC;
device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
}
hw->dev[port] = dev;
skge->port = port;
/* Only used for Genesis XMAC */
if (is_genesis(hw))
setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
else {
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_RXCSUM;
dev->features |= dev->hw_features;
}
/* read the mac address */
memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
return dev;
}
static void __devinit skge_show_addr(struct net_device *dev)
{
const struct skge_port *skge = netdev_priv(dev);
netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
}
static int only_32bit_dma;
static int __devinit skge_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev, *dev1;
struct skge_hw *hw;
int err, using_dac = 0;
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "cannot enable PCI device\n");
goto err_out;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(&pdev->dev, "cannot obtain PCI resources\n");
goto err_out_disable_pdev;
}
pci_set_master(pdev);
if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
using_dac = 1;
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
using_dac = 0;
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
}
if (err) {
dev_err(&pdev->dev, "no usable DMA configuration\n");
goto err_out_free_regions;
}
#ifdef __BIG_ENDIAN
/* byte swap descriptors in hardware */
{
u32 reg;
pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
reg |= PCI_REV_DESC;
pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
}
#endif
err = -ENOMEM;
/* space for skge@pci:0000:04:00.0 */
hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
+ strlen(pci_name(pdev)) + 1, GFP_KERNEL);
if (!hw) {
dev_err(&pdev->dev, "cannot allocate hardware struct\n");
goto err_out_free_regions;
}
sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
hw->pdev = pdev;
spin_lock_init(&hw->hw_lock);
spin_lock_init(&hw->phy_lock);
tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
if (!hw->regs) {
dev_err(&pdev->dev, "cannot map device registers\n");
goto err_out_free_hw;
}
err = skge_reset(hw);
if (err)
goto err_out_iounmap;
pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
DRV_VERSION,
(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
skge_board_name(hw), hw->chip_rev);
dev = skge_devinit(hw, 0, using_dac);
if (!dev) {
err = -ENOMEM;
goto err_out_led_off;
}
/* Some motherboards are broken and has zero in ROM. */
if (!is_valid_ether_addr(dev->dev_addr))
dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
err = register_netdev(dev);
if (err) {
dev_err(&pdev->dev, "cannot register net device\n");
goto err_out_free_netdev;
}
skge_show_addr(dev);
if (hw->ports > 1) {
dev1 = skge_devinit(hw, 1, using_dac);
if (!dev1) {
err = -ENOMEM;
goto err_out_unregister;
}
err = register_netdev(dev1);
if (err) {
dev_err(&pdev->dev, "cannot register second net device\n");
goto err_out_free_dev1;
}
err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
hw->irq_name, hw);
if (err) {
dev_err(&pdev->dev, "cannot assign irq %d\n",
pdev->irq);
goto err_out_unregister_dev1;
}
skge_show_addr(dev1);
}
pci_set_drvdata(pdev, hw);
return 0;
err_out_unregister_dev1:
unregister_netdev(dev1);
err_out_free_dev1:
free_netdev(dev1);
err_out_unregister:
unregister_netdev(dev);
err_out_free_netdev:
free_netdev(dev);
err_out_led_off:
skge_write16(hw, B0_LED, LED_STAT_OFF);
err_out_iounmap:
iounmap(hw->regs);
err_out_free_hw:
kfree(hw);
err_out_free_regions:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
err_out:
return err;
}
static void __devexit skge_remove(struct pci_dev *pdev)
{
struct skge_hw *hw = pci_get_drvdata(pdev);
struct net_device *dev0, *dev1;
if (!hw)
return;
dev1 = hw->dev[1];
if (dev1)
unregister_netdev(dev1);
dev0 = hw->dev[0];
unregister_netdev(dev0);
tasklet_disable(&hw->phy_task);
spin_lock_irq(&hw->hw_lock);
hw->intr_mask = 0;
if (hw->ports > 1) {
skge_write32(hw, B0_IMSK, 0);
skge_read32(hw, B0_IMSK);
free_irq(pdev->irq, hw);
}
spin_unlock_irq(&hw->hw_lock);
skge_write16(hw, B0_LED, LED_STAT_OFF);
skge_write8(hw, B0_CTST, CS_RST_SET);
if (hw->ports > 1)
free_irq(pdev->irq, hw);
pci_release_regions(pdev);
pci_disable_device(pdev);
if (dev1)
free_netdev(dev1);
free_netdev(dev0);
iounmap(hw->regs);
kfree(hw);
pci_set_drvdata(pdev, NULL);
}
#ifdef CONFIG_PM_SLEEP
static int skge_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct skge_hw *hw = pci_get_drvdata(pdev);
int i;
if (!hw)
return 0;
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
struct skge_port *skge = netdev_priv(dev);
if (netif_running(dev))
skge_down(dev);
if (skge->wol)
skge_wol_init(skge);
}
skge_write32(hw, B0_IMSK, 0);
return 0;
}
static int skge_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct skge_hw *hw = pci_get_drvdata(pdev);
int i, err;
if (!hw)
return 0;
err = skge_reset(hw);
if (err)
goto out;
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
if (netif_running(dev)) {
err = skge_up(dev);
if (err) {
netdev_err(dev, "could not up: %d\n", err);
dev_close(dev);
goto out;
}
}
}
out:
return err;
}
static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
#define SKGE_PM_OPS (&skge_pm_ops)
#else
#define SKGE_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
static void skge_shutdown(struct pci_dev *pdev)
{
struct skge_hw *hw = pci_get_drvdata(pdev);
int i;
if (!hw)
return;
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
struct skge_port *skge = netdev_priv(dev);
if (skge->wol)
skge_wol_init(skge);
}
pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
pci_set_power_state(pdev, PCI_D3hot);
}
static struct pci_driver skge_driver = {
.name = DRV_NAME,
.id_table = skge_id_table,
.probe = skge_probe,
.remove = __devexit_p(skge_remove),
.shutdown = skge_shutdown,
.driver.pm = SKGE_PM_OPS,
};
static struct dmi_system_id skge_32bit_dma_boards[] = {
{
.ident = "Gigabyte nForce boards",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
DMI_MATCH(DMI_BOARD_NAME, "nForce"),
},
},
{
.ident = "ASUS P5NSLI",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
},
},
{}
};
static int __init skge_init_module(void)
{
if (dmi_check_system(skge_32bit_dma_boards))
only_32bit_dma = 1;
skge_debug_init();
return pci_register_driver(&skge_driver);
}
static void __exit skge_cleanup_module(void)
{
pci_unregister_driver(&skge_driver);
skge_debug_cleanup();
}
module_init(skge_init_module);
module_exit(skge_cleanup_module);