OpenCloudOS-Kernel/fs/ceph/snap.c

1271 lines
35 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/ceph/ceph_debug.h>
#include <linux/sort.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/iversion.h>
#include "super.h"
#include "mds_client.h"
#include <linux/ceph/decode.h>
/* unused map expires after 5 minutes */
#define CEPH_SNAPID_MAP_TIMEOUT (5 * 60 * HZ)
/*
* Snapshots in ceph are driven in large part by cooperation from the
* client. In contrast to local file systems or file servers that
* implement snapshots at a single point in the system, ceph's
* distributed access to storage requires clients to help decide
* whether a write logically occurs before or after a recently created
* snapshot.
*
* This provides a perfect instantanous client-wide snapshot. Between
* clients, however, snapshots may appear to be applied at slightly
* different points in time, depending on delays in delivering the
* snapshot notification.
*
* Snapshots are _not_ file system-wide. Instead, each snapshot
* applies to the subdirectory nested beneath some directory. This
* effectively divides the hierarchy into multiple "realms," where all
* of the files contained by each realm share the same set of
* snapshots. An individual realm's snap set contains snapshots
* explicitly created on that realm, as well as any snaps in its
* parent's snap set _after_ the point at which the parent became it's
* parent (due to, say, a rename). Similarly, snaps from prior parents
* during the time intervals during which they were the parent are included.
*
* The client is spared most of this detail, fortunately... it must only
* maintains a hierarchy of realms reflecting the current parent/child
* realm relationship, and for each realm has an explicit list of snaps
* inherited from prior parents.
*
* A snap_realm struct is maintained for realms containing every inode
* with an open cap in the system. (The needed snap realm information is
* provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq'
* version number is used to ensure that as realm parameters change (new
* snapshot, new parent, etc.) the client's realm hierarchy is updated.
*
* The realm hierarchy drives the generation of a 'snap context' for each
* realm, which simply lists the resulting set of snaps for the realm. This
* is attached to any writes sent to OSDs.
*/
/*
* Unfortunately error handling is a bit mixed here. If we get a snap
* update, but don't have enough memory to update our realm hierarchy,
* it's not clear what we can do about it (besides complaining to the
* console).
*/
/*
* increase ref count for the realm
*
* caller must hold snap_rwsem.
*/
void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm)
{
lockdep_assert_held(&mdsc->snap_rwsem);
/*
* The 0->1 and 1->0 transitions must take the snap_empty_lock
* atomically with the refcount change. Go ahead and bump the
* nref here, unless it's 0, in which case we take the spinlock
* and then do the increment and remove it from the list.
*/
if (atomic_inc_not_zero(&realm->nref))
return;
spin_lock(&mdsc->snap_empty_lock);
if (atomic_inc_return(&realm->nref) == 1)
list_del_init(&realm->empty_item);
spin_unlock(&mdsc->snap_empty_lock);
}
static void __insert_snap_realm(struct rb_root *root,
struct ceph_snap_realm *new)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct ceph_snap_realm *r = NULL;
while (*p) {
parent = *p;
r = rb_entry(parent, struct ceph_snap_realm, node);
if (new->ino < r->ino)
p = &(*p)->rb_left;
else if (new->ino > r->ino)
p = &(*p)->rb_right;
else
BUG();
}
rb_link_node(&new->node, parent, p);
rb_insert_color(&new->node, root);
}
/*
* create and get the realm rooted at @ino and bump its ref count.
*
* caller must hold snap_rwsem for write.
*/
static struct ceph_snap_realm *ceph_create_snap_realm(
struct ceph_mds_client *mdsc,
u64 ino)
{
struct ceph_snap_realm *realm;
lockdep_assert_held_write(&mdsc->snap_rwsem);
realm = kzalloc(sizeof(*realm), GFP_NOFS);
if (!realm)
return ERR_PTR(-ENOMEM);
/* Do not release the global dummy snaprealm until unmouting */
if (ino == CEPH_INO_GLOBAL_SNAPREALM)
atomic_set(&realm->nref, 2);
else
atomic_set(&realm->nref, 1);
realm->ino = ino;
INIT_LIST_HEAD(&realm->children);
INIT_LIST_HEAD(&realm->child_item);
INIT_LIST_HEAD(&realm->empty_item);
INIT_LIST_HEAD(&realm->dirty_item);
INIT_LIST_HEAD(&realm->rebuild_item);
INIT_LIST_HEAD(&realm->inodes_with_caps);
spin_lock_init(&realm->inodes_with_caps_lock);
__insert_snap_realm(&mdsc->snap_realms, realm);
mdsc->num_snap_realms++;
dout("%s %llx %p\n", __func__, realm->ino, realm);
return realm;
}
/*
* lookup the realm rooted at @ino.
*
* caller must hold snap_rwsem.
*/
static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
u64 ino)
{
struct rb_node *n = mdsc->snap_realms.rb_node;
struct ceph_snap_realm *r;
lockdep_assert_held(&mdsc->snap_rwsem);
while (n) {
r = rb_entry(n, struct ceph_snap_realm, node);
if (ino < r->ino)
n = n->rb_left;
else if (ino > r->ino)
n = n->rb_right;
else {
dout("%s %llx %p\n", __func__, r->ino, r);
return r;
}
}
return NULL;
}
struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
u64 ino)
{
struct ceph_snap_realm *r;
r = __lookup_snap_realm(mdsc, ino);
if (r)
ceph_get_snap_realm(mdsc, r);
return r;
}
static void __put_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm);
/*
* called with snap_rwsem (write)
*/
static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm)
{
lockdep_assert_held_write(&mdsc->snap_rwsem);
dout("%s %p %llx\n", __func__, realm, realm->ino);
rb_erase(&realm->node, &mdsc->snap_realms);
mdsc->num_snap_realms--;
if (realm->parent) {
list_del_init(&realm->child_item);
__put_snap_realm(mdsc, realm->parent);
}
kfree(realm->prior_parent_snaps);
kfree(realm->snaps);
ceph_put_snap_context(realm->cached_context);
kfree(realm);
}
/*
* caller holds snap_rwsem (write)
*/
static void __put_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm)
{
lockdep_assert_held_write(&mdsc->snap_rwsem);
/*
* We do not require the snap_empty_lock here, as any caller that
* increments the value must hold the snap_rwsem.
*/
if (atomic_dec_and_test(&realm->nref))
__destroy_snap_realm(mdsc, realm);
}
/*
* See comments in ceph_get_snap_realm. Caller needn't hold any locks.
*/
void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm)
{
if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock))
return;
if (down_write_trylock(&mdsc->snap_rwsem)) {
spin_unlock(&mdsc->snap_empty_lock);
__destroy_snap_realm(mdsc, realm);
up_write(&mdsc->snap_rwsem);
} else {
list_add(&realm->empty_item, &mdsc->snap_empty);
spin_unlock(&mdsc->snap_empty_lock);
}
}
/*
* Clean up any realms whose ref counts have dropped to zero. Note
* that this does not include realms who were created but not yet
* used.
*
* Called under snap_rwsem (write)
*/
static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
{
struct ceph_snap_realm *realm;
lockdep_assert_held_write(&mdsc->snap_rwsem);
spin_lock(&mdsc->snap_empty_lock);
while (!list_empty(&mdsc->snap_empty)) {
realm = list_first_entry(&mdsc->snap_empty,
struct ceph_snap_realm, empty_item);
list_del(&realm->empty_item);
spin_unlock(&mdsc->snap_empty_lock);
__destroy_snap_realm(mdsc, realm);
spin_lock(&mdsc->snap_empty_lock);
}
spin_unlock(&mdsc->snap_empty_lock);
}
void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc)
{
struct ceph_snap_realm *global_realm;
down_write(&mdsc->snap_rwsem);
global_realm = __lookup_snap_realm(mdsc, CEPH_INO_GLOBAL_SNAPREALM);
if (global_realm)
ceph_put_snap_realm(mdsc, global_realm);
__cleanup_empty_realms(mdsc);
up_write(&mdsc->snap_rwsem);
}
/*
* adjust the parent realm of a given @realm. adjust child list, and parent
* pointers, and ref counts appropriately.
*
* return true if parent was changed, 0 if unchanged, <0 on error.
*
* caller must hold snap_rwsem for write.
*/
static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
struct ceph_snap_realm *realm,
u64 parentino)
{
struct ceph_snap_realm *parent;
lockdep_assert_held_write(&mdsc->snap_rwsem);
if (realm->parent_ino == parentino)
return 0;
parent = ceph_lookup_snap_realm(mdsc, parentino);
if (!parent) {
parent = ceph_create_snap_realm(mdsc, parentino);
if (IS_ERR(parent))
return PTR_ERR(parent);
}
dout("%s %llx %p: %llx %p -> %llx %p\n", __func__, realm->ino,
realm, realm->parent_ino, realm->parent, parentino, parent);
if (realm->parent) {
list_del_init(&realm->child_item);
ceph_put_snap_realm(mdsc, realm->parent);
}
realm->parent_ino = parentino;
realm->parent = parent;
list_add(&realm->child_item, &parent->children);
return 1;
}
static int cmpu64_rev(const void *a, const void *b)
{
if (*(u64 *)a < *(u64 *)b)
return 1;
if (*(u64 *)a > *(u64 *)b)
return -1;
return 0;
}
/*
* build the snap context for a given realm.
*/
static int build_snap_context(struct ceph_snap_realm *realm,
struct list_head *realm_queue,
struct list_head *dirty_realms)
{
struct ceph_snap_realm *parent = realm->parent;
struct ceph_snap_context *snapc;
int err = 0;
u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
/*
* build parent context, if it hasn't been built.
* conservatively estimate that all parent snaps might be
* included by us.
*/
if (parent) {
if (!parent->cached_context) {
/* add to the queue head */
list_add(&parent->rebuild_item, realm_queue);
return 1;
}
num += parent->cached_context->num_snaps;
}
/* do i actually need to update? not if my context seq
matches realm seq, and my parents' does to. (this works
because we rebuild_snap_realms() works _downward_ in
hierarchy after each update.) */
if (realm->cached_context &&
realm->cached_context->seq == realm->seq &&
(!parent ||
realm->cached_context->seq >= parent->cached_context->seq)) {
dout("%s %llx %p: %p seq %lld (%u snaps) (unchanged)\n",
__func__, realm->ino, realm, realm->cached_context,
realm->cached_context->seq,
(unsigned int)realm->cached_context->num_snaps);
return 0;
}
/* alloc new snap context */
err = -ENOMEM;
if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
goto fail;
snapc = ceph_create_snap_context(num, GFP_NOFS);
if (!snapc)
goto fail;
/* build (reverse sorted) snap vector */
num = 0;
snapc->seq = realm->seq;
if (parent) {
u32 i;
/* include any of parent's snaps occurring _after_ my
parent became my parent */
for (i = 0; i < parent->cached_context->num_snaps; i++)
if (parent->cached_context->snaps[i] >=
realm->parent_since)
snapc->snaps[num++] =
parent->cached_context->snaps[i];
if (parent->cached_context->seq > snapc->seq)
snapc->seq = parent->cached_context->seq;
}
memcpy(snapc->snaps + num, realm->snaps,
sizeof(u64)*realm->num_snaps);
num += realm->num_snaps;
memcpy(snapc->snaps + num, realm->prior_parent_snaps,
sizeof(u64)*realm->num_prior_parent_snaps);
num += realm->num_prior_parent_snaps;
sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
snapc->num_snaps = num;
dout("%s %llx %p: %p seq %lld (%u snaps)\n", __func__, realm->ino,
realm, snapc, snapc->seq, (unsigned int) snapc->num_snaps);
ceph_put_snap_context(realm->cached_context);
realm->cached_context = snapc;
/* queue realm for cap_snap creation */
list_add_tail(&realm->dirty_item, dirty_realms);
return 0;
fail:
/*
* if we fail, clear old (incorrect) cached_context... hopefully
* we'll have better luck building it later
*/
if (realm->cached_context) {
ceph_put_snap_context(realm->cached_context);
realm->cached_context = NULL;
}
pr_err("%s %llx %p fail %d\n", __func__, realm->ino, realm, err);
return err;
}
/*
* rebuild snap context for the given realm and all of its children.
*/
static void rebuild_snap_realms(struct ceph_snap_realm *realm,
struct list_head *dirty_realms)
{
LIST_HEAD(realm_queue);
int last = 0;
bool skip = false;
list_add_tail(&realm->rebuild_item, &realm_queue);
while (!list_empty(&realm_queue)) {
struct ceph_snap_realm *_realm, *child;
_realm = list_first_entry(&realm_queue,
struct ceph_snap_realm,
rebuild_item);
/*
* If the last building failed dues to memory
* issue, just empty the realm_queue and return
* to avoid infinite loop.
*/
if (last < 0) {
list_del_init(&_realm->rebuild_item);
continue;
}
last = build_snap_context(_realm, &realm_queue, dirty_realms);
dout("%s %llx %p, %s\n", __func__, _realm->ino, _realm,
last > 0 ? "is deferred" : !last ? "succeeded" : "failed");
/* is any child in the list ? */
list_for_each_entry(child, &_realm->children, child_item) {
if (!list_empty(&child->rebuild_item)) {
skip = true;
break;
}
}
if (!skip) {
list_for_each_entry(child, &_realm->children, child_item)
list_add_tail(&child->rebuild_item, &realm_queue);
}
/* last == 1 means need to build parent first */
if (last <= 0)
list_del_init(&_realm->rebuild_item);
}
}
/*
* helper to allocate and decode an array of snapids. free prior
* instance, if any.
*/
static int dup_array(u64 **dst, __le64 *src, u32 num)
{
u32 i;
kfree(*dst);
if (num) {
*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
if (!*dst)
return -ENOMEM;
for (i = 0; i < num; i++)
(*dst)[i] = get_unaligned_le64(src + i);
} else {
*dst = NULL;
}
return 0;
}
static bool has_new_snaps(struct ceph_snap_context *o,
struct ceph_snap_context *n)
{
if (n->num_snaps == 0)
return false;
/* snaps are in descending order */
return n->snaps[0] > o->seq;
}
/*
* When a snapshot is applied, the size/mtime inode metadata is queued
* in a ceph_cap_snap (one for each snapshot) until writeback
* completes and the metadata can be flushed back to the MDS.
*
* However, if a (sync) write is currently in-progress when we apply
* the snapshot, we have to wait until the write succeeds or fails
* (and a final size/mtime is known). In this case the
* cap_snap->writing = 1, and is said to be "pending." When the write
* finishes, we __ceph_finish_cap_snap().
*
* Caller must hold snap_rwsem for read (i.e., the realm topology won't
* change).
*/
static void ceph_queue_cap_snap(struct ceph_inode_info *ci,
struct ceph_cap_snap **pcapsnap)
{
struct inode *inode = &ci->vfs_inode;
struct ceph_snap_context *old_snapc, *new_snapc;
struct ceph_cap_snap *capsnap = *pcapsnap;
ceph: fix buffer free while holding i_ceph_lock in __ceph_build_xattrs_blob() Calling ceph_buffer_put() in __ceph_build_xattrs_blob() may result in freeing the i_xattrs.blob buffer while holding the i_ceph_lock. This can be fixed by having this function returning the old blob buffer and have the callers of this function freeing it when the lock is released. The following backtrace was triggered by fstests generic/117. BUG: sleeping function called from invalid context at mm/vmalloc.c:2283 in_atomic(): 1, irqs_disabled(): 0, pid: 649, name: fsstress 4 locks held by fsstress/649: #0: 00000000a7478e7e (&type->s_umount_key#19){++++}, at: iterate_supers+0x77/0xf0 #1: 00000000f8de1423 (&(&ci->i_ceph_lock)->rlock){+.+.}, at: ceph_check_caps+0x7b/0xc60 #2: 00000000562f2b27 (&s->s_mutex){+.+.}, at: ceph_check_caps+0x3bd/0xc60 #3: 00000000f83ce16a (&mdsc->snap_rwsem){++++}, at: ceph_check_caps+0x3ed/0xc60 CPU: 1 PID: 649 Comm: fsstress Not tainted 5.2.0+ #439 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x67/0x90 ___might_sleep.cold+0x9f/0xb1 vfree+0x4b/0x60 ceph_buffer_release+0x1b/0x60 __ceph_build_xattrs_blob+0x12b/0x170 __send_cap+0x302/0x540 ? __lock_acquire+0x23c/0x1e40 ? __mark_caps_flushing+0x15c/0x280 ? _raw_spin_unlock+0x24/0x30 ceph_check_caps+0x5f0/0xc60 ceph_flush_dirty_caps+0x7c/0x150 ? __ia32_sys_fdatasync+0x20/0x20 ceph_sync_fs+0x5a/0x130 iterate_supers+0x8f/0xf0 ksys_sync+0x4f/0xb0 __ia32_sys_sync+0xa/0x10 do_syscall_64+0x50/0x1c0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fc6409ab617 Signed-off-by: Luis Henriques <lhenriques@suse.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2019-07-19 22:32:21 +08:00
struct ceph_buffer *old_blob = NULL;
int used, dirty;
spin_lock(&ci->i_ceph_lock);
used = __ceph_caps_used(ci);
dirty = __ceph_caps_dirty(ci);
old_snapc = ci->i_head_snapc;
new_snapc = ci->i_snap_realm->cached_context;
/*
* If there is a write in progress, treat that as a dirty Fw,
* even though it hasn't completed yet; by the time we finish
* up this capsnap it will be.
*/
if (used & CEPH_CAP_FILE_WR)
dirty |= CEPH_CAP_FILE_WR;
if (__ceph_have_pending_cap_snap(ci)) {
/* there is no point in queuing multiple "pending" cap_snaps,
as no new writes are allowed to start when pending, so any
writes in progress now were started before the previous
cap_snap. lucky us. */
dout("%s %p %llx.%llx already pending\n",
__func__, inode, ceph_vinop(inode));
goto update_snapc;
}
if (ci->i_wrbuffer_ref_head == 0 &&
!(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
dout("%s %p %llx.%llx nothing dirty|writing\n",
__func__, inode, ceph_vinop(inode));
goto update_snapc;
}
BUG_ON(!old_snapc);
/*
* There is no need to send FLUSHSNAP message to MDS if there is
* no new snapshot. But when there is dirty pages or on-going
* writes, we still need to create cap_snap. cap_snap is needed
* by the write path and page writeback path.
*
* also see ceph_try_drop_cap_snap()
*/
if (has_new_snaps(old_snapc, new_snapc)) {
if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
capsnap->need_flush = true;
} else {
if (!(used & CEPH_CAP_FILE_WR) &&
ci->i_wrbuffer_ref_head == 0) {
dout("%s %p %llx.%llx no new_snap|dirty_page|writing\n",
__func__, inode, ceph_vinop(inode));
goto update_snapc;
}
}
dout("%s %p %llx.%llx cap_snap %p queuing under %p %s %s\n",
__func__, inode, ceph_vinop(inode), capsnap, old_snapc,
ceph_cap_string(dirty), capsnap->need_flush ? "" : "no_flush");
ihold(inode);
capsnap->follows = old_snapc->seq;
capsnap->issued = __ceph_caps_issued(ci, NULL);
capsnap->dirty = dirty;
capsnap->mode = inode->i_mode;
capsnap->uid = inode->i_uid;
capsnap->gid = inode->i_gid;
if (dirty & CEPH_CAP_XATTR_EXCL) {
ceph: fix buffer free while holding i_ceph_lock in __ceph_build_xattrs_blob() Calling ceph_buffer_put() in __ceph_build_xattrs_blob() may result in freeing the i_xattrs.blob buffer while holding the i_ceph_lock. This can be fixed by having this function returning the old blob buffer and have the callers of this function freeing it when the lock is released. The following backtrace was triggered by fstests generic/117. BUG: sleeping function called from invalid context at mm/vmalloc.c:2283 in_atomic(): 1, irqs_disabled(): 0, pid: 649, name: fsstress 4 locks held by fsstress/649: #0: 00000000a7478e7e (&type->s_umount_key#19){++++}, at: iterate_supers+0x77/0xf0 #1: 00000000f8de1423 (&(&ci->i_ceph_lock)->rlock){+.+.}, at: ceph_check_caps+0x7b/0xc60 #2: 00000000562f2b27 (&s->s_mutex){+.+.}, at: ceph_check_caps+0x3bd/0xc60 #3: 00000000f83ce16a (&mdsc->snap_rwsem){++++}, at: ceph_check_caps+0x3ed/0xc60 CPU: 1 PID: 649 Comm: fsstress Not tainted 5.2.0+ #439 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x67/0x90 ___might_sleep.cold+0x9f/0xb1 vfree+0x4b/0x60 ceph_buffer_release+0x1b/0x60 __ceph_build_xattrs_blob+0x12b/0x170 __send_cap+0x302/0x540 ? __lock_acquire+0x23c/0x1e40 ? __mark_caps_flushing+0x15c/0x280 ? _raw_spin_unlock+0x24/0x30 ceph_check_caps+0x5f0/0xc60 ceph_flush_dirty_caps+0x7c/0x150 ? __ia32_sys_fdatasync+0x20/0x20 ceph_sync_fs+0x5a/0x130 iterate_supers+0x8f/0xf0 ksys_sync+0x4f/0xb0 __ia32_sys_sync+0xa/0x10 do_syscall_64+0x50/0x1c0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fc6409ab617 Signed-off-by: Luis Henriques <lhenriques@suse.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2019-07-19 22:32:21 +08:00
old_blob = __ceph_build_xattrs_blob(ci);
capsnap->xattr_blob =
ceph_buffer_get(ci->i_xattrs.blob);
capsnap->xattr_version = ci->i_xattrs.version;
} else {
capsnap->xattr_blob = NULL;
capsnap->xattr_version = 0;
}
capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
/* dirty page count moved from _head to this cap_snap;
all subsequent writes page dirties occur _after_ this
snapshot. */
capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
ci->i_wrbuffer_ref_head = 0;
capsnap->context = old_snapc;
list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
if (used & CEPH_CAP_FILE_WR) {
dout("%s %p %llx.%llx cap_snap %p snapc %p seq %llu used WR,"
" now pending\n", __func__, inode, ceph_vinop(inode),
capsnap, old_snapc, old_snapc->seq);
capsnap->writing = 1;
} else {
/* note mtime, size NOW. */
__ceph_finish_cap_snap(ci, capsnap);
}
*pcapsnap = NULL;
old_snapc = NULL;
update_snapc:
if (ci->i_wrbuffer_ref_head == 0 &&
ci->i_wr_ref == 0 &&
ci->i_dirty_caps == 0 &&
ci->i_flushing_caps == 0) {
ci->i_head_snapc = NULL;
} else {
ci->i_head_snapc = ceph_get_snap_context(new_snapc);
dout(" new snapc is %p\n", new_snapc);
}
spin_unlock(&ci->i_ceph_lock);
ceph: fix buffer free while holding i_ceph_lock in __ceph_build_xattrs_blob() Calling ceph_buffer_put() in __ceph_build_xattrs_blob() may result in freeing the i_xattrs.blob buffer while holding the i_ceph_lock. This can be fixed by having this function returning the old blob buffer and have the callers of this function freeing it when the lock is released. The following backtrace was triggered by fstests generic/117. BUG: sleeping function called from invalid context at mm/vmalloc.c:2283 in_atomic(): 1, irqs_disabled(): 0, pid: 649, name: fsstress 4 locks held by fsstress/649: #0: 00000000a7478e7e (&type->s_umount_key#19){++++}, at: iterate_supers+0x77/0xf0 #1: 00000000f8de1423 (&(&ci->i_ceph_lock)->rlock){+.+.}, at: ceph_check_caps+0x7b/0xc60 #2: 00000000562f2b27 (&s->s_mutex){+.+.}, at: ceph_check_caps+0x3bd/0xc60 #3: 00000000f83ce16a (&mdsc->snap_rwsem){++++}, at: ceph_check_caps+0x3ed/0xc60 CPU: 1 PID: 649 Comm: fsstress Not tainted 5.2.0+ #439 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x67/0x90 ___might_sleep.cold+0x9f/0xb1 vfree+0x4b/0x60 ceph_buffer_release+0x1b/0x60 __ceph_build_xattrs_blob+0x12b/0x170 __send_cap+0x302/0x540 ? __lock_acquire+0x23c/0x1e40 ? __mark_caps_flushing+0x15c/0x280 ? _raw_spin_unlock+0x24/0x30 ceph_check_caps+0x5f0/0xc60 ceph_flush_dirty_caps+0x7c/0x150 ? __ia32_sys_fdatasync+0x20/0x20 ceph_sync_fs+0x5a/0x130 iterate_supers+0x8f/0xf0 ksys_sync+0x4f/0xb0 __ia32_sys_sync+0xa/0x10 do_syscall_64+0x50/0x1c0 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fc6409ab617 Signed-off-by: Luis Henriques <lhenriques@suse.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2019-07-19 22:32:21 +08:00
ceph_buffer_put(old_blob);
ceph_put_snap_context(old_snapc);
}
/*
* Finalize the size, mtime for a cap_snap.. that is, settle on final values
* to be used for the snapshot, to be flushed back to the mds.
*
* If capsnap can now be flushed, add to snap_flush list, and return 1.
*
* Caller must hold i_ceph_lock.
*/
int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
struct ceph_cap_snap *capsnap)
{
struct inode *inode = &ci->vfs_inode;
struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
BUG_ON(capsnap->writing);
capsnap->size = i_size_read(inode);
capsnap->mtime = inode->i_mtime;
capsnap->atime = inode->i_atime;
capsnap->ctime = inode->i_ctime;
capsnap->btime = ci->i_btime;
capsnap->change_attr = inode_peek_iversion_raw(inode);
capsnap->time_warp_seq = ci->i_time_warp_seq;
capsnap->truncate_size = ci->i_truncate_size;
capsnap->truncate_seq = ci->i_truncate_seq;
if (capsnap->dirty_pages) {
dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
"still has %d dirty pages\n", __func__, inode,
ceph_vinop(inode), capsnap, capsnap->context,
capsnap->context->seq, ceph_cap_string(capsnap->dirty),
capsnap->size, capsnap->dirty_pages);
return 0;
}
/* Fb cap still in use, delay it */
if (ci->i_wb_ref) {
dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
"used WRBUFFER, delaying\n", __func__, inode,
ceph_vinop(inode), capsnap, capsnap->context,
capsnap->context->seq, ceph_cap_string(capsnap->dirty),
capsnap->size);
capsnap->writing = 1;
return 0;
}
ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu\n",
__func__, inode, ceph_vinop(inode), capsnap, capsnap->context,
capsnap->context->seq, ceph_cap_string(capsnap->dirty),
capsnap->size);
spin_lock(&mdsc->snap_flush_lock);
if (list_empty(&ci->i_snap_flush_item))
list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
spin_unlock(&mdsc->snap_flush_lock);
return 1; /* caller may want to ceph_flush_snaps */
}
/*
* Queue cap_snaps for snap writeback for this realm and its children.
* Called under snap_rwsem, so realm topology won't change.
*/
static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
{
struct ceph_inode_info *ci;
struct inode *lastinode = NULL;
struct ceph_cap_snap *capsnap = NULL;
dout("%s %p %llx inode\n", __func__, realm, realm->ino);
spin_lock(&realm->inodes_with_caps_lock);
list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
struct inode *inode = igrab(&ci->vfs_inode);
if (!inode)
continue;
spin_unlock(&realm->inodes_with_caps_lock);
iput(lastinode);
lastinode = inode;
/*
* Allocate the capsnap memory outside of ceph_queue_cap_snap()
* to reduce very possible but unnecessary frequently memory
* allocate/free in this loop.
*/
if (!capsnap) {
capsnap = kmem_cache_zalloc(ceph_cap_snap_cachep, GFP_NOFS);
if (!capsnap) {
pr_err("ENOMEM allocating ceph_cap_snap on %p\n",
inode);
return;
}
}
capsnap->cap_flush.is_capsnap = true;
refcount_set(&capsnap->nref, 1);
INIT_LIST_HEAD(&capsnap->cap_flush.i_list);
INIT_LIST_HEAD(&capsnap->cap_flush.g_list);
INIT_LIST_HEAD(&capsnap->ci_item);
ceph_queue_cap_snap(ci, &capsnap);
spin_lock(&realm->inodes_with_caps_lock);
}
spin_unlock(&realm->inodes_with_caps_lock);
iput(lastinode);
if (capsnap)
kmem_cache_free(ceph_cap_snap_cachep, capsnap);
dout("%s %p %llx done\n", __func__, realm, realm->ino);
}
/*
* Parse and apply a snapblob "snap trace" from the MDS. This specifies
* the snap realm parameters from a given realm and all of its ancestors,
* up to the root.
*
* Caller must hold snap_rwsem for write.
*/
int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
void *p, void *e, bool deletion,
struct ceph_snap_realm **realm_ret)
{
struct ceph_mds_snap_realm *ri; /* encoded */
__le64 *snaps; /* encoded */
__le64 *prior_parent_snaps; /* encoded */
struct ceph_snap_realm *realm = NULL;
struct ceph_snap_realm *first_realm = NULL;
ceph: do not update snapshot context when there is no new snapshot We will only track the uppest parent snapshot realm from which we need to rebuild the snapshot contexts _downward_ in hierarchy. For all the others having no new snapshot we will do nothing. This fix will avoid calling ceph_queue_cap_snap() on some inodes inappropriately. For example, with the code in mainline, suppose there are 2 directory hierarchies (with 6 directories total), like this: /dir_X1/dir_X2/dir_X3/ /dir_Y1/dir_Y2/dir_Y3/ Firstly, make a snapshot under /dir_X1/dir_X2/.snap/snap_X2, then make a root snapshot under /.snap/root_snap. Every time we make snapshots under /dir_Y1/..., the kclient will always try to rebuild the snap context for snap_X2 realm and finally will always try to queue cap snaps for dir_Y2 and dir_Y3, which makes no sense. That's because the snap_X2's seq is 2 and root_snap's seq is 3. So when creating a new snapshot under /dir_Y1/... the new seq will be 4, and the mds will send the kclient a snapshot backtrace in _downward_ order: seqs 4, 3. When ceph_update_snap_trace() is called, it will always rebuild the from the last realm, that's the root_snap. So later when rebuilding the snap context, the current logic will always cause it to rebuild the snap_X2 realm and then try to queue cap snaps for all the inodes related in that realm, even though it's not necessary. This is accompanied by a lot of these sorts of dout messages: "ceph: queue_cap_snap 00000000a42b796b nothing dirty|writing" Fix the logic to avoid this situation. Also, the 'invalidate' word is not precise here. In actuality, it will cause a rebuild of the existing snapshot contexts or just build non-existent ones. Rename it to 'rebuild_snapcs'. URL: https://tracker.ceph.com/issues/44100 Signed-off-by: Xiubo Li <xiubli@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2022-02-19 14:28:33 +08:00
struct ceph_snap_realm *realm_to_rebuild = NULL;
int rebuild_snapcs;
int err = -ENOMEM;
LIST_HEAD(dirty_realms);
lockdep_assert_held_write(&mdsc->snap_rwsem);
dout("%s deletion=%d\n", __func__, deletion);
more:
ceph: do not update snapshot context when there is no new snapshot We will only track the uppest parent snapshot realm from which we need to rebuild the snapshot contexts _downward_ in hierarchy. For all the others having no new snapshot we will do nothing. This fix will avoid calling ceph_queue_cap_snap() on some inodes inappropriately. For example, with the code in mainline, suppose there are 2 directory hierarchies (with 6 directories total), like this: /dir_X1/dir_X2/dir_X3/ /dir_Y1/dir_Y2/dir_Y3/ Firstly, make a snapshot under /dir_X1/dir_X2/.snap/snap_X2, then make a root snapshot under /.snap/root_snap. Every time we make snapshots under /dir_Y1/..., the kclient will always try to rebuild the snap context for snap_X2 realm and finally will always try to queue cap snaps for dir_Y2 and dir_Y3, which makes no sense. That's because the snap_X2's seq is 2 and root_snap's seq is 3. So when creating a new snapshot under /dir_Y1/... the new seq will be 4, and the mds will send the kclient a snapshot backtrace in _downward_ order: seqs 4, 3. When ceph_update_snap_trace() is called, it will always rebuild the from the last realm, that's the root_snap. So later when rebuilding the snap context, the current logic will always cause it to rebuild the snap_X2 realm and then try to queue cap snaps for all the inodes related in that realm, even though it's not necessary. This is accompanied by a lot of these sorts of dout messages: "ceph: queue_cap_snap 00000000a42b796b nothing dirty|writing" Fix the logic to avoid this situation. Also, the 'invalidate' word is not precise here. In actuality, it will cause a rebuild of the existing snapshot contexts or just build non-existent ones. Rename it to 'rebuild_snapcs'. URL: https://tracker.ceph.com/issues/44100 Signed-off-by: Xiubo Li <xiubli@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2022-02-19 14:28:33 +08:00
rebuild_snapcs = 0;
ceph_decode_need(&p, e, sizeof(*ri), bad);
ri = p;
p += sizeof(*ri);
ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
le32_to_cpu(ri->num_prior_parent_snaps)), bad);
snaps = p;
p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
prior_parent_snaps = p;
p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
if (!realm) {
realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
if (IS_ERR(realm)) {
err = PTR_ERR(realm);
goto fail;
}
}
/* ensure the parent is correct */
err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
if (err < 0)
goto fail;
ceph: do not update snapshot context when there is no new snapshot We will only track the uppest parent snapshot realm from which we need to rebuild the snapshot contexts _downward_ in hierarchy. For all the others having no new snapshot we will do nothing. This fix will avoid calling ceph_queue_cap_snap() on some inodes inappropriately. For example, with the code in mainline, suppose there are 2 directory hierarchies (with 6 directories total), like this: /dir_X1/dir_X2/dir_X3/ /dir_Y1/dir_Y2/dir_Y3/ Firstly, make a snapshot under /dir_X1/dir_X2/.snap/snap_X2, then make a root snapshot under /.snap/root_snap. Every time we make snapshots under /dir_Y1/..., the kclient will always try to rebuild the snap context for snap_X2 realm and finally will always try to queue cap snaps for dir_Y2 and dir_Y3, which makes no sense. That's because the snap_X2's seq is 2 and root_snap's seq is 3. So when creating a new snapshot under /dir_Y1/... the new seq will be 4, and the mds will send the kclient a snapshot backtrace in _downward_ order: seqs 4, 3. When ceph_update_snap_trace() is called, it will always rebuild the from the last realm, that's the root_snap. So later when rebuilding the snap context, the current logic will always cause it to rebuild the snap_X2 realm and then try to queue cap snaps for all the inodes related in that realm, even though it's not necessary. This is accompanied by a lot of these sorts of dout messages: "ceph: queue_cap_snap 00000000a42b796b nothing dirty|writing" Fix the logic to avoid this situation. Also, the 'invalidate' word is not precise here. In actuality, it will cause a rebuild of the existing snapshot contexts or just build non-existent ones. Rename it to 'rebuild_snapcs'. URL: https://tracker.ceph.com/issues/44100 Signed-off-by: Xiubo Li <xiubli@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2022-02-19 14:28:33 +08:00
rebuild_snapcs += err;
if (le64_to_cpu(ri->seq) > realm->seq) {
dout("%s updating %llx %p %lld -> %lld\n", __func__,
realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
/* update realm parameters, snap lists */
realm->seq = le64_to_cpu(ri->seq);
realm->created = le64_to_cpu(ri->created);
realm->parent_since = le64_to_cpu(ri->parent_since);
realm->num_snaps = le32_to_cpu(ri->num_snaps);
err = dup_array(&realm->snaps, snaps, realm->num_snaps);
if (err < 0)
goto fail;
realm->num_prior_parent_snaps =
le32_to_cpu(ri->num_prior_parent_snaps);
err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
realm->num_prior_parent_snaps);
if (err < 0)
goto fail;
if (realm->seq > mdsc->last_snap_seq)
mdsc->last_snap_seq = realm->seq;
ceph: do not update snapshot context when there is no new snapshot We will only track the uppest parent snapshot realm from which we need to rebuild the snapshot contexts _downward_ in hierarchy. For all the others having no new snapshot we will do nothing. This fix will avoid calling ceph_queue_cap_snap() on some inodes inappropriately. For example, with the code in mainline, suppose there are 2 directory hierarchies (with 6 directories total), like this: /dir_X1/dir_X2/dir_X3/ /dir_Y1/dir_Y2/dir_Y3/ Firstly, make a snapshot under /dir_X1/dir_X2/.snap/snap_X2, then make a root snapshot under /.snap/root_snap. Every time we make snapshots under /dir_Y1/..., the kclient will always try to rebuild the snap context for snap_X2 realm and finally will always try to queue cap snaps for dir_Y2 and dir_Y3, which makes no sense. That's because the snap_X2's seq is 2 and root_snap's seq is 3. So when creating a new snapshot under /dir_Y1/... the new seq will be 4, and the mds will send the kclient a snapshot backtrace in _downward_ order: seqs 4, 3. When ceph_update_snap_trace() is called, it will always rebuild the from the last realm, that's the root_snap. So later when rebuilding the snap context, the current logic will always cause it to rebuild the snap_X2 realm and then try to queue cap snaps for all the inodes related in that realm, even though it's not necessary. This is accompanied by a lot of these sorts of dout messages: "ceph: queue_cap_snap 00000000a42b796b nothing dirty|writing" Fix the logic to avoid this situation. Also, the 'invalidate' word is not precise here. In actuality, it will cause a rebuild of the existing snapshot contexts or just build non-existent ones. Rename it to 'rebuild_snapcs'. URL: https://tracker.ceph.com/issues/44100 Signed-off-by: Xiubo Li <xiubli@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2022-02-19 14:28:33 +08:00
rebuild_snapcs = 1;
} else if (!realm->cached_context) {
dout("%s %llx %p seq %lld new\n", __func__,
realm->ino, realm, realm->seq);
ceph: do not update snapshot context when there is no new snapshot We will only track the uppest parent snapshot realm from which we need to rebuild the snapshot contexts _downward_ in hierarchy. For all the others having no new snapshot we will do nothing. This fix will avoid calling ceph_queue_cap_snap() on some inodes inappropriately. For example, with the code in mainline, suppose there are 2 directory hierarchies (with 6 directories total), like this: /dir_X1/dir_X2/dir_X3/ /dir_Y1/dir_Y2/dir_Y3/ Firstly, make a snapshot under /dir_X1/dir_X2/.snap/snap_X2, then make a root snapshot under /.snap/root_snap. Every time we make snapshots under /dir_Y1/..., the kclient will always try to rebuild the snap context for snap_X2 realm and finally will always try to queue cap snaps for dir_Y2 and dir_Y3, which makes no sense. That's because the snap_X2's seq is 2 and root_snap's seq is 3. So when creating a new snapshot under /dir_Y1/... the new seq will be 4, and the mds will send the kclient a snapshot backtrace in _downward_ order: seqs 4, 3. When ceph_update_snap_trace() is called, it will always rebuild the from the last realm, that's the root_snap. So later when rebuilding the snap context, the current logic will always cause it to rebuild the snap_X2 realm and then try to queue cap snaps for all the inodes related in that realm, even though it's not necessary. This is accompanied by a lot of these sorts of dout messages: "ceph: queue_cap_snap 00000000a42b796b nothing dirty|writing" Fix the logic to avoid this situation. Also, the 'invalidate' word is not precise here. In actuality, it will cause a rebuild of the existing snapshot contexts or just build non-existent ones. Rename it to 'rebuild_snapcs'. URL: https://tracker.ceph.com/issues/44100 Signed-off-by: Xiubo Li <xiubli@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2022-02-19 14:28:33 +08:00
rebuild_snapcs = 1;
} else {
dout("%s %llx %p seq %lld unchanged\n", __func__,
realm->ino, realm, realm->seq);
}
ceph: do not update snapshot context when there is no new snapshot We will only track the uppest parent snapshot realm from which we need to rebuild the snapshot contexts _downward_ in hierarchy. For all the others having no new snapshot we will do nothing. This fix will avoid calling ceph_queue_cap_snap() on some inodes inappropriately. For example, with the code in mainline, suppose there are 2 directory hierarchies (with 6 directories total), like this: /dir_X1/dir_X2/dir_X3/ /dir_Y1/dir_Y2/dir_Y3/ Firstly, make a snapshot under /dir_X1/dir_X2/.snap/snap_X2, then make a root snapshot under /.snap/root_snap. Every time we make snapshots under /dir_Y1/..., the kclient will always try to rebuild the snap context for snap_X2 realm and finally will always try to queue cap snaps for dir_Y2 and dir_Y3, which makes no sense. That's because the snap_X2's seq is 2 and root_snap's seq is 3. So when creating a new snapshot under /dir_Y1/... the new seq will be 4, and the mds will send the kclient a snapshot backtrace in _downward_ order: seqs 4, 3. When ceph_update_snap_trace() is called, it will always rebuild the from the last realm, that's the root_snap. So later when rebuilding the snap context, the current logic will always cause it to rebuild the snap_X2 realm and then try to queue cap snaps for all the inodes related in that realm, even though it's not necessary. This is accompanied by a lot of these sorts of dout messages: "ceph: queue_cap_snap 00000000a42b796b nothing dirty|writing" Fix the logic to avoid this situation. Also, the 'invalidate' word is not precise here. In actuality, it will cause a rebuild of the existing snapshot contexts or just build non-existent ones. Rename it to 'rebuild_snapcs'. URL: https://tracker.ceph.com/issues/44100 Signed-off-by: Xiubo Li <xiubli@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2022-02-19 14:28:33 +08:00
dout("done with %llx %p, rebuild_snapcs=%d, %p %p\n", realm->ino,
realm, rebuild_snapcs, p, e);
ceph: do not update snapshot context when there is no new snapshot We will only track the uppest parent snapshot realm from which we need to rebuild the snapshot contexts _downward_ in hierarchy. For all the others having no new snapshot we will do nothing. This fix will avoid calling ceph_queue_cap_snap() on some inodes inappropriately. For example, with the code in mainline, suppose there are 2 directory hierarchies (with 6 directories total), like this: /dir_X1/dir_X2/dir_X3/ /dir_Y1/dir_Y2/dir_Y3/ Firstly, make a snapshot under /dir_X1/dir_X2/.snap/snap_X2, then make a root snapshot under /.snap/root_snap. Every time we make snapshots under /dir_Y1/..., the kclient will always try to rebuild the snap context for snap_X2 realm and finally will always try to queue cap snaps for dir_Y2 and dir_Y3, which makes no sense. That's because the snap_X2's seq is 2 and root_snap's seq is 3. So when creating a new snapshot under /dir_Y1/... the new seq will be 4, and the mds will send the kclient a snapshot backtrace in _downward_ order: seqs 4, 3. When ceph_update_snap_trace() is called, it will always rebuild the from the last realm, that's the root_snap. So later when rebuilding the snap context, the current logic will always cause it to rebuild the snap_X2 realm and then try to queue cap snaps for all the inodes related in that realm, even though it's not necessary. This is accompanied by a lot of these sorts of dout messages: "ceph: queue_cap_snap 00000000a42b796b nothing dirty|writing" Fix the logic to avoid this situation. Also, the 'invalidate' word is not precise here. In actuality, it will cause a rebuild of the existing snapshot contexts or just build non-existent ones. Rename it to 'rebuild_snapcs'. URL: https://tracker.ceph.com/issues/44100 Signed-off-by: Xiubo Li <xiubli@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2022-02-19 14:28:33 +08:00
/*
* this will always track the uppest parent realm from which
* we need to rebuild the snapshot contexts _downward_ in
* hierarchy.
*/
if (rebuild_snapcs)
realm_to_rebuild = realm;
/* rebuild_snapcs when we reach the _end_ (root) of the trace */
if (realm_to_rebuild && p >= e)
rebuild_snap_realms(realm_to_rebuild, &dirty_realms);
if (!first_realm)
first_realm = realm;
else
ceph_put_snap_realm(mdsc, realm);
if (p < e)
goto more;
/*
* queue cap snaps _after_ we've built the new snap contexts,
* so that i_head_snapc can be set appropriately.
*/
while (!list_empty(&dirty_realms)) {
realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
dirty_item);
list_del_init(&realm->dirty_item);
queue_realm_cap_snaps(realm);
}
if (realm_ret)
*realm_ret = first_realm;
else
ceph_put_snap_realm(mdsc, first_realm);
__cleanup_empty_realms(mdsc);
return 0;
bad:
err = -EIO;
fail:
if (realm && !IS_ERR(realm))
ceph_put_snap_realm(mdsc, realm);
if (first_realm)
ceph_put_snap_realm(mdsc, first_realm);
pr_err("%s error %d\n", __func__, err);
return err;
}
/*
* Send any cap_snaps that are queued for flush. Try to carry
* s_mutex across multiple snap flushes to avoid locking overhead.
*
* Caller holds no locks.
*/
static void flush_snaps(struct ceph_mds_client *mdsc)
{
struct ceph_inode_info *ci;
struct inode *inode;
struct ceph_mds_session *session = NULL;
dout("%s\n", __func__);
spin_lock(&mdsc->snap_flush_lock);
while (!list_empty(&mdsc->snap_flush_list)) {
ci = list_first_entry(&mdsc->snap_flush_list,
struct ceph_inode_info, i_snap_flush_item);
inode = &ci->vfs_inode;
ihold(inode);
spin_unlock(&mdsc->snap_flush_lock);
ceph_flush_snaps(ci, &session);
iput(inode);
spin_lock(&mdsc->snap_flush_lock);
}
spin_unlock(&mdsc->snap_flush_lock);
ceph_put_mds_session(session);
dout("%s done\n", __func__);
}
/**
* ceph_change_snap_realm - change the snap_realm for an inode
* @inode: inode to move to new snap realm
* @realm: new realm to move inode into (may be NULL)
*
* Detach an inode from its old snaprealm (if any) and attach it to
* the new snaprealm (if any). The old snap realm reference held by
* the inode is put. If realm is non-NULL, then the caller's reference
* to it is taken over by the inode.
*/
void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
struct ceph_snap_realm *oldrealm = ci->i_snap_realm;
lockdep_assert_held(&ci->i_ceph_lock);
if (oldrealm) {
spin_lock(&oldrealm->inodes_with_caps_lock);
list_del_init(&ci->i_snap_realm_item);
if (oldrealm->ino == ci->i_vino.ino)
oldrealm->inode = NULL;
spin_unlock(&oldrealm->inodes_with_caps_lock);
ceph_put_snap_realm(mdsc, oldrealm);
}
ci->i_snap_realm = realm;
if (realm) {
spin_lock(&realm->inodes_with_caps_lock);
list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps);
if (realm->ino == ci->i_vino.ino)
realm->inode = inode;
spin_unlock(&realm->inodes_with_caps_lock);
}
}
/*
* Handle a snap notification from the MDS.
*
* This can take two basic forms: the simplest is just a snap creation
* or deletion notification on an existing realm. This should update the
* realm and its children.
*
* The more difficult case is realm creation, due to snap creation at a
* new point in the file hierarchy, or due to a rename that moves a file or
* directory into another realm.
*/
void ceph_handle_snap(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session,
struct ceph_msg *msg)
{
struct super_block *sb = mdsc->fsc->sb;
int mds = session->s_mds;
u64 split;
int op;
int trace_len;
struct ceph_snap_realm *realm = NULL;
void *p = msg->front.iov_base;
void *e = p + msg->front.iov_len;
struct ceph_mds_snap_head *h;
int num_split_inos, num_split_realms;
__le64 *split_inos = NULL, *split_realms = NULL;
int i;
int locked_rwsem = 0;
/* decode */
if (msg->front.iov_len < sizeof(*h))
goto bad;
h = p;
op = le32_to_cpu(h->op);
split = le64_to_cpu(h->split); /* non-zero if we are splitting an
* existing realm */
num_split_inos = le32_to_cpu(h->num_split_inos);
num_split_realms = le32_to_cpu(h->num_split_realms);
trace_len = le32_to_cpu(h->trace_len);
p += sizeof(*h);
dout("%s from mds%d op %s split %llx tracelen %d\n", __func__,
mds, ceph_snap_op_name(op), split, trace_len);
mutex_lock(&session->s_mutex);
ceph: check session state after bumping session->s_seq Some messages sent by the MDS entail a session sequence number increment, and the MDS will drop certain types of requests on the floor when the sequence numbers don't match. In particular, a REQUEST_CLOSE message can cross with one of the sequence morphing messages from the MDS which can cause the client to stall, waiting for a response that will never come. Originally, this meant an up to 5s delay before the recurring workqueue job kicked in and resent the request, but a recent change made it so that the client would never resend, causing a 60s stall unmounting and sometimes a blockisting event. Add a new helper for incrementing the session sequence and then testing to see whether a REQUEST_CLOSE needs to be resent, and move the handling of CEPH_MDS_SESSION_CLOSING into that function. Change all of the bare sequence counter increments to use the new helper. Reorganize check_session_state with a switch statement. It should no longer be called when the session is CLOSING, so throw a warning if it ever is (but still handle that case sanely). [ idryomov: whitespace, pr_err() call fixup ] URL: https://tracker.ceph.com/issues/47563 Fixes: fa9967734227 ("ceph: fix potential mdsc use-after-free crash") Reported-by: Patrick Donnelly <pdonnell@redhat.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Xiubo Li <xiubli@redhat.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2020-10-12 21:39:06 +08:00
inc_session_sequence(session);
mutex_unlock(&session->s_mutex);
down_write(&mdsc->snap_rwsem);
locked_rwsem = 1;
if (op == CEPH_SNAP_OP_SPLIT) {
struct ceph_mds_snap_realm *ri;
/*
* A "split" breaks part of an existing realm off into
* a new realm. The MDS provides a list of inodes
* (with caps) and child realms that belong to the new
* child.
*/
split_inos = p;
p += sizeof(u64) * num_split_inos;
split_realms = p;
p += sizeof(u64) * num_split_realms;
ceph_decode_need(&p, e, sizeof(*ri), bad);
/* we will peek at realm info here, but will _not_
* advance p, as the realm update will occur below in
* ceph_update_snap_trace. */
ri = p;
realm = ceph_lookup_snap_realm(mdsc, split);
if (!realm) {
realm = ceph_create_snap_realm(mdsc, split);
if (IS_ERR(realm))
goto out;
}
dout("splitting snap_realm %llx %p\n", realm->ino, realm);
for (i = 0; i < num_split_inos; i++) {
struct ceph_vino vino = {
.ino = le64_to_cpu(split_inos[i]),
.snap = CEPH_NOSNAP,
};
struct inode *inode = ceph_find_inode(sb, vino);
struct ceph_inode_info *ci;
if (!inode)
continue;
ci = ceph_inode(inode);
spin_lock(&ci->i_ceph_lock);
if (!ci->i_snap_realm)
goto skip_inode;
/*
* If this inode belongs to a realm that was
* created after our new realm, we experienced
* a race (due to another split notifications
* arriving from a different MDS). So skip
* this inode.
*/
if (ci->i_snap_realm->created >
le64_to_cpu(ri->created)) {
dout(" leaving %p %llx.%llx in newer realm %llx %p\n",
inode, ceph_vinop(inode), ci->i_snap_realm->ino,
ci->i_snap_realm);
goto skip_inode;
}
dout(" will move %p %llx.%llx to split realm %llx %p\n",
inode, ceph_vinop(inode), realm->ino, realm);
ceph_get_snap_realm(mdsc, realm);
ceph_change_snap_realm(inode, realm);
spin_unlock(&ci->i_ceph_lock);
iput(inode);
continue;
skip_inode:
spin_unlock(&ci->i_ceph_lock);
iput(inode);
}
/* we may have taken some of the old realm's children. */
for (i = 0; i < num_split_realms; i++) {
struct ceph_snap_realm *child =
__lookup_snap_realm(mdsc,
le64_to_cpu(split_realms[i]));
if (!child)
continue;
adjust_snap_realm_parent(mdsc, child, realm->ino);
}
}
/*
* update using the provided snap trace. if we are deleting a
* snap, we can avoid queueing cap_snaps.
*/
ceph_update_snap_trace(mdsc, p, e,
op == CEPH_SNAP_OP_DESTROY, NULL);
if (op == CEPH_SNAP_OP_SPLIT)
/* we took a reference when we created the realm, above */
ceph_put_snap_realm(mdsc, realm);
__cleanup_empty_realms(mdsc);
up_write(&mdsc->snap_rwsem);
flush_snaps(mdsc);
return;
bad:
pr_err("%s corrupt snap message from mds%d\n", __func__, mds);
ceph_msg_dump(msg);
out:
if (locked_rwsem)
up_write(&mdsc->snap_rwsem);
return;
}
struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
u64 snap)
{
struct ceph_snapid_map *sm, *exist;
struct rb_node **p, *parent;
int ret;
exist = NULL;
spin_lock(&mdsc->snapid_map_lock);
p = &mdsc->snapid_map_tree.rb_node;
while (*p) {
exist = rb_entry(*p, struct ceph_snapid_map, node);
if (snap > exist->snap) {
p = &(*p)->rb_left;
} else if (snap < exist->snap) {
p = &(*p)->rb_right;
} else {
if (atomic_inc_return(&exist->ref) == 1)
list_del_init(&exist->lru);
break;
}
exist = NULL;
}
spin_unlock(&mdsc->snapid_map_lock);
if (exist) {
dout("%s found snapid map %llx -> %x\n", __func__,
exist->snap, exist->dev);
return exist;
}
sm = kmalloc(sizeof(*sm), GFP_NOFS);
if (!sm)
return NULL;
ret = get_anon_bdev(&sm->dev);
if (ret < 0) {
kfree(sm);
return NULL;
}
INIT_LIST_HEAD(&sm->lru);
atomic_set(&sm->ref, 1);
sm->snap = snap;
exist = NULL;
parent = NULL;
p = &mdsc->snapid_map_tree.rb_node;
spin_lock(&mdsc->snapid_map_lock);
while (*p) {
parent = *p;
exist = rb_entry(*p, struct ceph_snapid_map, node);
if (snap > exist->snap)
p = &(*p)->rb_left;
else if (snap < exist->snap)
p = &(*p)->rb_right;
else
break;
exist = NULL;
}
if (exist) {
if (atomic_inc_return(&exist->ref) == 1)
list_del_init(&exist->lru);
} else {
rb_link_node(&sm->node, parent, p);
rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
}
spin_unlock(&mdsc->snapid_map_lock);
if (exist) {
free_anon_bdev(sm->dev);
kfree(sm);
dout("%s found snapid map %llx -> %x\n", __func__,
exist->snap, exist->dev);
return exist;
}
dout("%s create snapid map %llx -> %x\n", __func__,
sm->snap, sm->dev);
return sm;
}
void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
struct ceph_snapid_map *sm)
{
if (!sm)
return;
if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
if (!RB_EMPTY_NODE(&sm->node)) {
sm->last_used = jiffies;
list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
spin_unlock(&mdsc->snapid_map_lock);
} else {
/* already cleaned up by
* ceph_cleanup_snapid_map() */
spin_unlock(&mdsc->snapid_map_lock);
kfree(sm);
}
}
}
void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
{
struct ceph_snapid_map *sm;
unsigned long now;
LIST_HEAD(to_free);
spin_lock(&mdsc->snapid_map_lock);
now = jiffies;
while (!list_empty(&mdsc->snapid_map_lru)) {
sm = list_first_entry(&mdsc->snapid_map_lru,
struct ceph_snapid_map, lru);
if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
break;
rb_erase(&sm->node, &mdsc->snapid_map_tree);
list_move(&sm->lru, &to_free);
}
spin_unlock(&mdsc->snapid_map_lock);
while (!list_empty(&to_free)) {
sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
list_del(&sm->lru);
dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev);
free_anon_bdev(sm->dev);
kfree(sm);
}
}
void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
{
struct ceph_snapid_map *sm;
struct rb_node *p;
LIST_HEAD(to_free);
spin_lock(&mdsc->snapid_map_lock);
while ((p = rb_first(&mdsc->snapid_map_tree))) {
sm = rb_entry(p, struct ceph_snapid_map, node);
rb_erase(p, &mdsc->snapid_map_tree);
RB_CLEAR_NODE(p);
list_move(&sm->lru, &to_free);
}
spin_unlock(&mdsc->snapid_map_lock);
while (!list_empty(&to_free)) {
sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
list_del(&sm->lru);
free_anon_bdev(sm->dev);
if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
pr_err("snapid map %llx -> %x still in use\n",
sm->snap, sm->dev);
}
kfree(sm);
}
}