OpenCloudOS-Kernel/drivers/usb/dwc2/gadget.c

3766 lines
94 KiB
C
Raw Normal View History

/**
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* Copyright 2008 Openmoko, Inc.
* Copyright 2008 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
* http://armlinux.simtec.co.uk/
*
* S3C USB2.0 High-speed / OtG driver
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/mutex.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/regulator/consumer.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/phy.h>
#include <linux/platform_data/s3c-hsotg.h>
#include "core.h"
#include "hw.h"
/* conversion functions */
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
{
return container_of(req, struct dwc2_hsotg_req, req);
}
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
{
return container_of(ep, struct dwc2_hsotg_ep, ep);
}
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
{
return container_of(gadget, struct dwc2_hsotg, gadget);
}
static inline void __orr32(void __iomem *ptr, u32 val)
{
dwc2_writel(dwc2_readl(ptr) | val, ptr);
}
static inline void __bic32(void __iomem *ptr, u32 val)
{
dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
}
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
u32 ep_index, u32 dir_in)
{
if (dir_in)
return hsotg->eps_in[ep_index];
else
return hsotg->eps_out[ep_index];
}
/* forward declaration of functions */
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
/**
* using_dma - return the DMA status of the driver.
* @hsotg: The driver state.
*
* Return true if we're using DMA.
*
* Currently, we have the DMA support code worked into everywhere
* that needs it, but the AMBA DMA implementation in the hardware can
* only DMA from 32bit aligned addresses. This means that gadgets such
* as the CDC Ethernet cannot work as they often pass packets which are
* not 32bit aligned.
*
* Unfortunately the choice to use DMA or not is global to the controller
* and seems to be only settable when the controller is being put through
* a core reset. This means we either need to fix the gadgets to take
* account of DMA alignment, or add bounce buffers (yuerk).
*
* g_using_dma is set depending on dts flag.
*/
static inline bool using_dma(struct dwc2_hsotg *hsotg)
{
return hsotg->g_using_dma;
}
/**
* dwc2_hsotg_en_gsint - enable one or more of the general interrupt
* @hsotg: The device state
* @ints: A bitmask of the interrupts to enable
*/
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
{
u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
u32 new_gsintmsk;
new_gsintmsk = gsintmsk | ints;
if (new_gsintmsk != gsintmsk) {
dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
}
}
/**
* dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
* @hsotg: The device state
* @ints: A bitmask of the interrupts to enable
*/
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
{
u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
u32 new_gsintmsk;
new_gsintmsk = gsintmsk & ~ints;
if (new_gsintmsk != gsintmsk)
dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
}
/**
* dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
* @hsotg: The device state
* @ep: The endpoint index
* @dir_in: True if direction is in.
* @en: The enable value, true to enable
*
* Set or clear the mask for an individual endpoint's interrupt
* request.
*/
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
unsigned int ep, unsigned int dir_in,
unsigned int en)
{
unsigned long flags;
u32 bit = 1 << ep;
u32 daint;
if (!dir_in)
bit <<= 16;
local_irq_save(flags);
daint = dwc2_readl(hsotg->regs + DAINTMSK);
if (en)
daint |= bit;
else
daint &= ~bit;
dwc2_writel(daint, hsotg->regs + DAINTMSK);
local_irq_restore(flags);
}
/**
* dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
* @hsotg: The device instance.
*/
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
{
unsigned int ep;
unsigned int addr;
int timeout;
u32 val;
/* Reset fifo map if not correctly cleared during previous session */
WARN_ON(hsotg->fifo_map);
hsotg->fifo_map = 0;
/* set RX/NPTX FIFO sizes */
dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
hsotg->regs + GNPTXFSIZ);
/*
* arange all the rest of the TX FIFOs, as some versions of this
* block have overlapping default addresses. This also ensures
* that if the settings have been changed, then they are set to
* known values.
*/
/* start at the end of the GNPTXFSIZ, rounded up */
addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
/*
* Configure fifos sizes from provided configuration and assign
* them to endpoints dynamically according to maxpacket size value of
* given endpoint.
*/
for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
if (!hsotg->g_tx_fifo_sz[ep])
continue;
val = addr;
val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
"insufficient fifo memory");
addr += hsotg->g_tx_fifo_sz[ep];
dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
}
/*
* according to p428 of the design guide, we need to ensure that
* all fifos are flushed before continuing
*/
dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
/* wait until the fifos are both flushed */
timeout = 100;
while (1) {
val = dwc2_readl(hsotg->regs + GRSTCTL);
if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
break;
if (--timeout == 0) {
dev_err(hsotg->dev,
"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
__func__, val);
break;
}
udelay(1);
}
dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
}
/**
* @ep: USB endpoint to allocate request for.
* @flags: Allocation flags
*
* Allocate a new USB request structure appropriate for the specified endpoint
*/
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
gfp_t flags)
{
struct dwc2_hsotg_req *req;
req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
if (!req)
return NULL;
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
/**
* is_ep_periodic - return true if the endpoint is in periodic mode.
* @hs_ep: The endpoint to query.
*
* Returns true if the endpoint is in periodic mode, meaning it is being
* used for an Interrupt or ISO transfer.
*/
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
{
return hs_ep->periodic;
}
/**
* dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
* @hsotg: The device state.
* @hs_ep: The endpoint for the request
* @hs_req: The request being processed.
*
* This is the reverse of dwc2_hsotg_map_dma(), called for the completion
* of a request to ensure the buffer is ready for access by the caller.
*/
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
struct dwc2_hsotg_ep *hs_ep,
struct dwc2_hsotg_req *hs_req)
{
struct usb_request *req = &hs_req->req;
/* ignore this if we're not moving any data */
if (hs_req->req.length == 0)
return;
usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
}
/**
* dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
* @hsotg: The controller state.
* @hs_ep: The endpoint we're going to write for.
* @hs_req: The request to write data for.
*
* This is called when the TxFIFO has some space in it to hold a new
* transmission and we have something to give it. The actual setup of
* the data size is done elsewhere, so all we have to do is to actually
* write the data.
*
* The return value is zero if there is more space (or nothing was done)
* otherwise -ENOSPC is returned if the FIFO space was used up.
*
* This routine is only needed for PIO
*/
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
struct dwc2_hsotg_ep *hs_ep,
struct dwc2_hsotg_req *hs_req)
{
bool periodic = is_ep_periodic(hs_ep);
u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
int buf_pos = hs_req->req.actual;
int to_write = hs_ep->size_loaded;
void *data;
int can_write;
int pkt_round;
int max_transfer;
to_write -= (buf_pos - hs_ep->last_load);
/* if there's nothing to write, get out early */
if (to_write == 0)
return 0;
if (periodic && !hsotg->dedicated_fifos) {
u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
int size_left;
int size_done;
/*
* work out how much data was loaded so we can calculate
* how much data is left in the fifo.
*/
size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
/*
* if shared fifo, we cannot write anything until the
* previous data has been completely sent.
*/
if (hs_ep->fifo_load != 0) {
dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
return -ENOSPC;
}
dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
__func__, size_left,
hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
/* how much of the data has moved */
size_done = hs_ep->size_loaded - size_left;
/* how much data is left in the fifo */
can_write = hs_ep->fifo_load - size_done;
dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
__func__, can_write);
can_write = hs_ep->fifo_size - can_write;
dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
__func__, can_write);
if (can_write <= 0) {
dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
return -ENOSPC;
}
} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
can_write &= 0xffff;
can_write *= 4;
} else {
if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
dev_dbg(hsotg->dev,
"%s: no queue slots available (0x%08x)\n",
__func__, gnptxsts);
dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
return -ENOSPC;
}
can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
can_write *= 4; /* fifo size is in 32bit quantities. */
}
max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
__func__, gnptxsts, can_write, to_write, max_transfer);
/*
* limit to 512 bytes of data, it seems at least on the non-periodic
* FIFO, requests of >512 cause the endpoint to get stuck with a
* fragment of the end of the transfer in it.
*/
if (can_write > 512 && !periodic)
can_write = 512;
/*
* limit the write to one max-packet size worth of data, but allow
* the transfer to return that it did not run out of fifo space
* doing it.
*/
if (to_write > max_transfer) {
to_write = max_transfer;
/* it's needed only when we do not use dedicated fifos */
if (!hsotg->dedicated_fifos)
dwc2_hsotg_en_gsint(hsotg,
periodic ? GINTSTS_PTXFEMP :
GINTSTS_NPTXFEMP);
}
/* see if we can write data */
if (to_write > can_write) {
to_write = can_write;
pkt_round = to_write % max_transfer;
/*
* Round the write down to an
* exact number of packets.
*
* Note, we do not currently check to see if we can ever
* write a full packet or not to the FIFO.
*/
if (pkt_round)
to_write -= pkt_round;
/*
* enable correct FIFO interrupt to alert us when there
* is more room left.
*/
/* it's needed only when we do not use dedicated fifos */
if (!hsotg->dedicated_fifos)
dwc2_hsotg_en_gsint(hsotg,
periodic ? GINTSTS_PTXFEMP :
GINTSTS_NPTXFEMP);
}
dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
to_write, hs_req->req.length, can_write, buf_pos);
if (to_write <= 0)
return -ENOSPC;
hs_req->req.actual = buf_pos + to_write;
hs_ep->total_data += to_write;
if (periodic)
hs_ep->fifo_load += to_write;
to_write = DIV_ROUND_UP(to_write, 4);
data = hs_req->req.buf + buf_pos;
iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
return (to_write >= can_write) ? -ENOSPC : 0;
}
/**
* get_ep_limit - get the maximum data legnth for this endpoint
* @hs_ep: The endpoint
*
* Return the maximum data that can be queued in one go on a given endpoint
* so that transfers that are too long can be split.
*/
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
{
int index = hs_ep->index;
unsigned maxsize;
unsigned maxpkt;
if (index != 0) {
maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
} else {
maxsize = 64+64;
if (hs_ep->dir_in)
maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
else
maxpkt = 2;
}
/* we made the constant loading easier above by using +1 */
maxpkt--;
maxsize--;
/*
* constrain by packet count if maxpkts*pktsize is greater
* than the length register size.
*/
if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
maxsize = maxpkt * hs_ep->ep.maxpacket;
return maxsize;
}
/**
* dwc2_hsotg_start_req - start a USB request from an endpoint's queue
* @hsotg: The controller state.
* @hs_ep: The endpoint to process a request for
* @hs_req: The request to start.
* @continuing: True if we are doing more for the current request.
*
* Start the given request running by setting the endpoint registers
* appropriately, and writing any data to the FIFOs.
*/
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
struct dwc2_hsotg_ep *hs_ep,
struct dwc2_hsotg_req *hs_req,
bool continuing)
{
struct usb_request *ureq = &hs_req->req;
int index = hs_ep->index;
int dir_in = hs_ep->dir_in;
u32 epctrl_reg;
u32 epsize_reg;
u32 epsize;
u32 ctrl;
unsigned length;
unsigned packets;
unsigned maxreq;
if (index != 0) {
if (hs_ep->req && !continuing) {
dev_err(hsotg->dev, "%s: active request\n", __func__);
WARN_ON(1);
return;
} else if (hs_ep->req != hs_req && continuing) {
dev_err(hsotg->dev,
"%s: continue different req\n", __func__);
WARN_ON(1);
return;
}
}
epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
hs_ep->dir_in ? "in" : "out");
/* If endpoint is stalled, we will restart request later */
ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
if (ctrl & DXEPCTL_STALL) {
dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
return;
}
length = ureq->length - ureq->actual;
dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
ureq->length, ureq->actual);
maxreq = get_ep_limit(hs_ep);
if (length > maxreq) {
int round = maxreq % hs_ep->ep.maxpacket;
dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
__func__, length, maxreq, round);
/* round down to multiple of packets */
if (round)
maxreq -= round;
length = maxreq;
}
if (length)
packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
else
packets = 1; /* send one packet if length is zero. */
if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
dev_err(hsotg->dev, "req length > maxpacket*mc\n");
return;
}
if (dir_in && index != 0)
if (hs_ep->isochronous)
epsize = DXEPTSIZ_MC(packets);
else
epsize = DXEPTSIZ_MC(1);
else
epsize = 0;
/*
* zero length packet should be programmed on its own and should not
* be counted in DIEPTSIZ.PktCnt with other packets.
*/
if (dir_in && ureq->zero && !continuing) {
/* Test if zlp is actually required. */
if ((ureq->length >= hs_ep->ep.maxpacket) &&
!(ureq->length % hs_ep->ep.maxpacket))
hs_ep->send_zlp = 1;
}
epsize |= DXEPTSIZ_PKTCNT(packets);
epsize |= DXEPTSIZ_XFERSIZE(length);
dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
__func__, packets, length, ureq->length, epsize, epsize_reg);
/* store the request as the current one we're doing */
hs_ep->req = hs_req;
/* write size / packets */
dwc2_writel(epsize, hsotg->regs + epsize_reg);
if (using_dma(hsotg) && !continuing) {
unsigned int dma_reg;
/*
* write DMA address to control register, buffer already
* synced by dwc2_hsotg_ep_queue().
*/
dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
__func__, &ureq->dma, dma_reg);
}
ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
ctrl |= DXEPCTL_USBACTEP;
dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
/* For Setup request do not clear NAK */
if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
/*
* set these, it seems that DMA support increments past the end
* of the packet buffer so we need to calculate the length from
* this information.
*/
hs_ep->size_loaded = length;
hs_ep->last_load = ureq->actual;
if (dir_in && !using_dma(hsotg)) {
/* set these anyway, we may need them for non-periodic in */
hs_ep->fifo_load = 0;
dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
}
/*
* clear the INTknTXFEmpMsk when we start request, more as a aide
* to debugging to see what is going on.
*/
if (dir_in)
dwc2_writel(DIEPMSK_INTKNTXFEMPMSK,
hsotg->regs + DIEPINT(index));
/*
* Note, trying to clear the NAK here causes problems with transmit
* on the S3C6400 ending up with the TXFIFO becoming full.
*/
/* check ep is enabled */
if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
dev_dbg(hsotg->dev,
"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
index, dwc2_readl(hsotg->regs + epctrl_reg));
dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
__func__, dwc2_readl(hsotg->regs + epctrl_reg));
/* enable ep interrupts */
dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
}
/**
* dwc2_hsotg_map_dma - map the DMA memory being used for the request
* @hsotg: The device state.
* @hs_ep: The endpoint the request is on.
* @req: The request being processed.
*
* We've been asked to queue a request, so ensure that the memory buffer
* is correctly setup for DMA. If we've been passed an extant DMA address
* then ensure the buffer has been synced to memory. If our buffer has no
* DMA memory, then we map the memory and mark our request to allow us to
* cleanup on completion.
*/
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
struct dwc2_hsotg_ep *hs_ep,
struct usb_request *req)
{
struct dwc2_hsotg_req *hs_req = our_req(req);
int ret;
/* if the length is zero, ignore the DMA data */
if (hs_req->req.length == 0)
return 0;
ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
if (ret)
goto dma_error;
return 0;
dma_error:
dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
__func__, req->buf, req->length);
return -EIO;
}
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
{
void *req_buf = hs_req->req.buf;
/* If dma is not being used or buffer is aligned */
if (!using_dma(hsotg) || !((long)req_buf & 3))
return 0;
WARN_ON(hs_req->saved_req_buf);
dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
hs_ep->ep.name, req_buf, hs_req->req.length);
hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
if (!hs_req->req.buf) {
hs_req->req.buf = req_buf;
dev_err(hsotg->dev,
"%s: unable to allocate memory for bounce buffer\n",
__func__);
return -ENOMEM;
}
/* Save actual buffer */
hs_req->saved_req_buf = req_buf;
if (hs_ep->dir_in)
memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
return 0;
}
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
{
/* If dma is not being used or buffer was aligned */
if (!using_dma(hsotg) || !hs_req->saved_req_buf)
return;
dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
/* Copy data from bounce buffer on successful out transfer */
if (!hs_ep->dir_in && !hs_req->req.status)
memcpy(hs_req->saved_req_buf, hs_req->req.buf,
hs_req->req.actual);
/* Free bounce buffer */
kfree(hs_req->req.buf);
hs_req->req.buf = hs_req->saved_req_buf;
hs_req->saved_req_buf = NULL;
}
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
gfp_t gfp_flags)
{
struct dwc2_hsotg_req *hs_req = our_req(req);
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
struct dwc2_hsotg *hs = hs_ep->parent;
bool first;
int ret;
dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
ep->name, req, req->length, req->buf, req->no_interrupt,
req->zero, req->short_not_ok);
/* Prevent new request submission when controller is suspended */
if (hs->lx_state == DWC2_L2) {
dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
__func__);
return -EAGAIN;
}
/* initialise status of the request */
INIT_LIST_HEAD(&hs_req->queue);
req->actual = 0;
req->status = -EINPROGRESS;
ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
if (ret)
return ret;
/* if we're using DMA, sync the buffers as necessary */
if (using_dma(hs)) {
ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
if (ret)
return ret;
}
first = list_empty(&hs_ep->queue);
list_add_tail(&hs_req->queue, &hs_ep->queue);
if (first)
dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
return 0;
}
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
gfp_t gfp_flags)
{
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
struct dwc2_hsotg *hs = hs_ep->parent;
unsigned long flags = 0;
int ret = 0;
spin_lock_irqsave(&hs->lock, flags);
ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
spin_unlock_irqrestore(&hs->lock, flags);
return ret;
}
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
struct usb_request *req)
{
struct dwc2_hsotg_req *hs_req = our_req(req);
kfree(hs_req);
}
/**
* dwc2_hsotg_complete_oursetup - setup completion callback
* @ep: The endpoint the request was on.
* @req: The request completed.
*
* Called on completion of any requests the driver itself
* submitted that need cleaning up.
*/
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
struct usb_request *req)
{
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
struct dwc2_hsotg *hsotg = hs_ep->parent;
dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
dwc2_hsotg_ep_free_request(ep, req);
}
/**
* ep_from_windex - convert control wIndex value to endpoint
* @hsotg: The driver state.
* @windex: The control request wIndex field (in host order).
*
* Convert the given wIndex into a pointer to an driver endpoint
* structure, or return NULL if it is not a valid endpoint.
*/
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
u32 windex)
{
struct dwc2_hsotg_ep *ep;
int dir = (windex & USB_DIR_IN) ? 1 : 0;
int idx = windex & 0x7F;
if (windex >= 0x100)
return NULL;
if (idx > hsotg->num_of_eps)
return NULL;
ep = index_to_ep(hsotg, idx, dir);
if (idx && ep->dir_in != dir)
return NULL;
return ep;
}
/**
* dwc2_hsotg_set_test_mode - Enable usb Test Modes
* @hsotg: The driver state.
* @testmode: requested usb test mode
* Enable usb Test Mode requested by the Host.
*/
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
{
int dctl = dwc2_readl(hsotg->regs + DCTL);
dctl &= ~DCTL_TSTCTL_MASK;
switch (testmode) {
case TEST_J:
case TEST_K:
case TEST_SE0_NAK:
case TEST_PACKET:
case TEST_FORCE_EN:
dctl |= testmode << DCTL_TSTCTL_SHIFT;
break;
default:
return -EINVAL;
}
dwc2_writel(dctl, hsotg->regs + DCTL);
return 0;
}
/**
* dwc2_hsotg_send_reply - send reply to control request
* @hsotg: The device state
* @ep: Endpoint 0
* @buff: Buffer for request
* @length: Length of reply.
*
* Create a request and queue it on the given endpoint. This is useful as
* an internal method of sending replies to certain control requests, etc.
*/
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
struct dwc2_hsotg_ep *ep,
void *buff,
int length)
{
struct usb_request *req;
int ret;
dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
hsotg->ep0_reply = req;
if (!req) {
dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
return -ENOMEM;
}
req->buf = hsotg->ep0_buff;
req->length = length;
/*
* zero flag is for sending zlp in DATA IN stage. It has no impact on
* STATUS stage.
*/
req->zero = 0;
req->complete = dwc2_hsotg_complete_oursetup;
if (length)
memcpy(req->buf, buff, length);
ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
if (ret) {
dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
return ret;
}
return 0;
}
/**
* dwc2_hsotg_process_req_status - process request GET_STATUS
* @hsotg: The device state
* @ctrl: USB control request
*/
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
struct usb_ctrlrequest *ctrl)
{
struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
struct dwc2_hsotg_ep *ep;
__le16 reply;
int ret;
dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
if (!ep0->dir_in) {
dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
return -EINVAL;
}
switch (ctrl->bRequestType & USB_RECIP_MASK) {
case USB_RECIP_DEVICE:
reply = cpu_to_le16(0); /* bit 0 => self powered,
* bit 1 => remote wakeup */
break;
case USB_RECIP_INTERFACE:
/* currently, the data result should be zero */
reply = cpu_to_le16(0);
break;
case USB_RECIP_ENDPOINT:
ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
if (!ep)
return -ENOENT;
reply = cpu_to_le16(ep->halted ? 1 : 0);
break;
default:
return 0;
}
if (le16_to_cpu(ctrl->wLength) != 2)
return -EINVAL;
ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
if (ret) {
dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
return ret;
}
return 1;
}
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
/**
* get_ep_head - return the first request on the endpoint
* @hs_ep: The controller endpoint to get
*
* Get the first request on the endpoint.
*/
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
{
if (list_empty(&hs_ep->queue))
return NULL;
return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
}
/**
* dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
* @hsotg: The device state
* @ctrl: USB control request
*/
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
struct usb_ctrlrequest *ctrl)
{
struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
struct dwc2_hsotg_req *hs_req;
bool restart;
bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
struct dwc2_hsotg_ep *ep;
int ret;
bool halted;
u32 recip;
u32 wValue;
u32 wIndex;
dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
__func__, set ? "SET" : "CLEAR");
wValue = le16_to_cpu(ctrl->wValue);
wIndex = le16_to_cpu(ctrl->wIndex);
recip = ctrl->bRequestType & USB_RECIP_MASK;
switch (recip) {
case USB_RECIP_DEVICE:
switch (wValue) {
case USB_DEVICE_TEST_MODE:
if ((wIndex & 0xff) != 0)
return -EINVAL;
if (!set)
return -EINVAL;
hsotg->test_mode = wIndex >> 8;
ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
if (ret) {
dev_err(hsotg->dev,
"%s: failed to send reply\n", __func__);
return ret;
}
break;
default:
return -ENOENT;
}
break;
case USB_RECIP_ENDPOINT:
ep = ep_from_windex(hsotg, wIndex);
if (!ep) {
dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
__func__, wIndex);
return -ENOENT;
}
switch (wValue) {
case USB_ENDPOINT_HALT:
halted = ep->halted;
dwc2_hsotg_ep_sethalt(&ep->ep, set);
ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
if (ret) {
dev_err(hsotg->dev,
"%s: failed to send reply\n", __func__);
return ret;
}
/*
* we have to complete all requests for ep if it was
* halted, and the halt was cleared by CLEAR_FEATURE
*/
if (!set && halted) {
/*
* If we have request in progress,
* then complete it
*/
if (ep->req) {
hs_req = ep->req;
ep->req = NULL;
list_del_init(&hs_req->queue);
if (hs_req->req.complete) {
spin_unlock(&hsotg->lock);
usb_gadget_giveback_request(
&ep->ep, &hs_req->req);
spin_lock(&hsotg->lock);
}
}
/* If we have pending request, then start it */
if (!ep->req) {
restart = !list_empty(&ep->queue);
if (restart) {
hs_req = get_ep_head(ep);
dwc2_hsotg_start_req(hsotg, ep,
hs_req, false);
}
}
}
break;
default:
return -ENOENT;
}
break;
default:
return -ENOENT;
}
return 1;
}
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
/**
* dwc2_hsotg_stall_ep0 - stall ep0
* @hsotg: The device state
*
* Set stall for ep0 as response for setup request.
*/
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
{
struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
u32 reg;
u32 ctrl;
dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
/*
* DxEPCTL_Stall will be cleared by EP once it has
* taken effect, so no need to clear later.
*/
ctrl = dwc2_readl(hsotg->regs + reg);
ctrl |= DXEPCTL_STALL;
ctrl |= DXEPCTL_CNAK;
dwc2_writel(ctrl, hsotg->regs + reg);
dev_dbg(hsotg->dev,
"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
ctrl, reg, dwc2_readl(hsotg->regs + reg));
/*
* complete won't be called, so we enqueue
* setup request here
*/
dwc2_hsotg_enqueue_setup(hsotg);
}
/**
* dwc2_hsotg_process_control - process a control request
* @hsotg: The device state
* @ctrl: The control request received
*
* The controller has received the SETUP phase of a control request, and
* needs to work out what to do next (and whether to pass it on to the
* gadget driver).
*/
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
struct usb_ctrlrequest *ctrl)
{
struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
int ret = 0;
u32 dcfg;
dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
ctrl->bRequest, ctrl->bRequestType,
ctrl->wValue, ctrl->wLength);
if (ctrl->wLength == 0) {
ep0->dir_in = 1;
hsotg->ep0_state = DWC2_EP0_STATUS_IN;
} else if (ctrl->bRequestType & USB_DIR_IN) {
ep0->dir_in = 1;
hsotg->ep0_state = DWC2_EP0_DATA_IN;
} else {
ep0->dir_in = 0;
hsotg->ep0_state = DWC2_EP0_DATA_OUT;
}
if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
switch (ctrl->bRequest) {
case USB_REQ_SET_ADDRESS:
hsotg->connected = 1;
dcfg = dwc2_readl(hsotg->regs + DCFG);
dcfg &= ~DCFG_DEVADDR_MASK;
dcfg |= (le16_to_cpu(ctrl->wValue) <<
DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
dwc2_writel(dcfg, hsotg->regs + DCFG);
dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
return;
case USB_REQ_GET_STATUS:
ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
break;
case USB_REQ_CLEAR_FEATURE:
case USB_REQ_SET_FEATURE:
ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
break;
}
}
/* as a fallback, try delivering it to the driver to deal with */
if (ret == 0 && hsotg->driver) {
spin_unlock(&hsotg->lock);
ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
spin_lock(&hsotg->lock);
if (ret < 0)
dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
}
/*
* the request is either unhandlable, or is not formatted correctly
* so respond with a STALL for the status stage to indicate failure.
*/
if (ret < 0)
dwc2_hsotg_stall_ep0(hsotg);
}
/**
* dwc2_hsotg_complete_setup - completion of a setup transfer
* @ep: The endpoint the request was on.
* @req: The request completed.
*
* Called on completion of any requests the driver itself submitted for
* EP0 setup packets
*/
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
struct usb_request *req)
{
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
struct dwc2_hsotg *hsotg = hs_ep->parent;
if (req->status < 0) {
dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
return;
}
spin_lock(&hsotg->lock);
if (req->actual == 0)
dwc2_hsotg_enqueue_setup(hsotg);
else
dwc2_hsotg_process_control(hsotg, req->buf);
spin_unlock(&hsotg->lock);
}
/**
* dwc2_hsotg_enqueue_setup - start a request for EP0 packets
* @hsotg: The device state.
*
* Enqueue a request on EP0 if necessary to received any SETUP packets
* received from the host.
*/
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
{
struct usb_request *req = hsotg->ctrl_req;
struct dwc2_hsotg_req *hs_req = our_req(req);
int ret;
dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
req->zero = 0;
req->length = 8;
req->buf = hsotg->ctrl_buff;
req->complete = dwc2_hsotg_complete_setup;
if (!list_empty(&hs_req->queue)) {
dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
return;
}
hsotg->eps_out[0]->dir_in = 0;
hsotg->eps_out[0]->send_zlp = 0;
hsotg->ep0_state = DWC2_EP0_SETUP;
ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
if (ret < 0) {
dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
/*
* Don't think there's much we can do other than watch the
* driver fail.
*/
}
}
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
struct dwc2_hsotg_ep *hs_ep)
{
u32 ctrl;
u8 index = hs_ep->index;
u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
if (hs_ep->dir_in)
dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
index);
else
dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
index);
dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
DXEPTSIZ_XFERSIZE(0), hsotg->regs +
epsiz_reg);
ctrl = dwc2_readl(hsotg->regs + epctl_reg);
ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
ctrl |= DXEPCTL_USBACTEP;
dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}
/**
* dwc2_hsotg_complete_request - complete a request given to us
* @hsotg: The device state.
* @hs_ep: The endpoint the request was on.
* @hs_req: The request to complete.
* @result: The result code (0 => Ok, otherwise errno)
*
* The given request has finished, so call the necessary completion
* if it has one and then look to see if we can start a new request
* on the endpoint.
*
* Note, expects the ep to already be locked as appropriate.
*/
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
struct dwc2_hsotg_ep *hs_ep,
struct dwc2_hsotg_req *hs_req,
int result)
{
bool restart;
if (!hs_req) {
dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
return;
}
dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
/*
* only replace the status if we've not already set an error
* from a previous transaction
*/
if (hs_req->req.status == -EINPROGRESS)
hs_req->req.status = result;
dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
hs_ep->req = NULL;
list_del_init(&hs_req->queue);
if (using_dma(hsotg))
dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
/*
* call the complete request with the locks off, just in case the
* request tries to queue more work for this endpoint.
*/
if (hs_req->req.complete) {
spin_unlock(&hsotg->lock);
usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
spin_lock(&hsotg->lock);
}
/*
* Look to see if there is anything else to do. Note, the completion
* of the previous request may have caused a new request to be started
* so be careful when doing this.
*/
if (!hs_ep->req && result >= 0) {
restart = !list_empty(&hs_ep->queue);
if (restart) {
hs_req = get_ep_head(hs_ep);
dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
}
}
}
/**
* dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
* @hsotg: The device state.
* @ep_idx: The endpoint index for the data
* @size: The size of data in the fifo, in bytes
*
* The FIFO status shows there is data to read from the FIFO for a given
* endpoint, so sort out whether we need to read the data into a request
* that has been made for that endpoint.
*/
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
{
struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
struct dwc2_hsotg_req *hs_req = hs_ep->req;
void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
int to_read;
int max_req;
int read_ptr;
if (!hs_req) {
u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
int ptr;
dev_dbg(hsotg->dev,
"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
__func__, size, ep_idx, epctl);
/* dump the data from the FIFO, we've nothing we can do */
for (ptr = 0; ptr < size; ptr += 4)
(void)dwc2_readl(fifo);
return;
}
to_read = size;
read_ptr = hs_req->req.actual;
max_req = hs_req->req.length - read_ptr;
dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
__func__, to_read, max_req, read_ptr, hs_req->req.length);
if (to_read > max_req) {
/*
* more data appeared than we where willing
* to deal with in this request.
*/
/* currently we don't deal this */
WARN_ON_ONCE(1);
}
hs_ep->total_data += to_read;
hs_req->req.actual += to_read;
to_read = DIV_ROUND_UP(to_read, 4);
/*
* note, we might over-write the buffer end by 3 bytes depending on
* alignment of the data.
*/
ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
}
/**
* dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
* @hsotg: The device instance
* @dir_in: If IN zlp
*
* Generate a zero-length IN packet request for terminating a SETUP
* transaction.
*
* Note, since we don't write any data to the TxFIFO, then it is
* currently believed that we do not need to wait for any space in
* the TxFIFO.
*/
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
{
/* eps_out[0] is used in both directions */
hsotg->eps_out[0]->dir_in = dir_in;
hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
}
/**
* dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
* @hsotg: The device instance
* @epnum: The endpoint received from
*
* The RXFIFO has delivered an OutDone event, which means that the data
* transfer for an OUT endpoint has been completed, either by a short
* packet or by the finish of a transfer.
*/
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
{
u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
struct dwc2_hsotg_req *hs_req = hs_ep->req;
struct usb_request *req = &hs_req->req;
unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
int result = 0;
if (!hs_req) {
dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
return;
}
if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
dev_dbg(hsotg->dev, "zlp packet received\n");
dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
dwc2_hsotg_enqueue_setup(hsotg);
return;
}
if (using_dma(hsotg)) {
unsigned size_done;
/*
* Calculate the size of the transfer by checking how much
* is left in the endpoint size register and then working it
* out from the amount we loaded for the transfer.
*
* We need to do this as DMA pointers are always 32bit aligned
* so may overshoot/undershoot the transfer.
*/
size_done = hs_ep->size_loaded - size_left;
size_done += hs_ep->last_load;
req->actual = size_done;
}
/* if there is more request to do, schedule new transfer */
if (req->actual < req->length && size_left == 0) {
dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
return;
}
if (req->actual < req->length && req->short_not_ok) {
dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
__func__, req->actual, req->length);
/*
* todo - what should we return here? there's no one else
* even bothering to check the status.
*/
}
if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
/* Move to STATUS IN */
dwc2_hsotg_ep0_zlp(hsotg, true);
return;
}
dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
}
/**
* dwc2_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
u32 dsts;
dsts = dwc2_readl(hsotg->regs + DSTS);
dsts &= DSTS_SOFFN_MASK;
dsts >>= DSTS_SOFFN_SHIFT;
return dsts;
}
/**
* dwc2_hsotg_handle_rx - RX FIFO has data
* @hsotg: The device instance
*
* The IRQ handler has detected that the RX FIFO has some data in it
* that requires processing, so find out what is in there and do the
* appropriate read.
*
* The RXFIFO is a true FIFO, the packets coming out are still in packet
* chunks, so if you have x packets received on an endpoint you'll get x
* FIFO events delivered, each with a packet's worth of data in it.
*
* When using DMA, we should not be processing events from the RXFIFO
* as the actual data should be sent to the memory directly and we turn
* on the completion interrupts to get notifications of transfer completion.
*/
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
{
u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
u32 epnum, status, size;
WARN_ON(using_dma(hsotg));
epnum = grxstsr & GRXSTS_EPNUM_MASK;
status = grxstsr & GRXSTS_PKTSTS_MASK;
size = grxstsr & GRXSTS_BYTECNT_MASK;
size >>= GRXSTS_BYTECNT_SHIFT;
dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
__func__, grxstsr, size, epnum);
switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
case GRXSTS_PKTSTS_GLOBALOUTNAK:
dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
break;
case GRXSTS_PKTSTS_OUTDONE:
dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
dwc2_hsotg_read_frameno(hsotg));
if (!using_dma(hsotg))
dwc2_hsotg_handle_outdone(hsotg, epnum);
break;
case GRXSTS_PKTSTS_SETUPDONE:
dev_dbg(hsotg->dev,
"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
dwc2_hsotg_read_frameno(hsotg),
dwc2_readl(hsotg->regs + DOEPCTL(0)));
/*
* Call dwc2_hsotg_handle_outdone here if it was not called from
* GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
* generate GRXSTS_PKTSTS_OUTDONE for setup packet.
*/
if (hsotg->ep0_state == DWC2_EP0_SETUP)
dwc2_hsotg_handle_outdone(hsotg, epnum);
break;
case GRXSTS_PKTSTS_OUTRX:
dwc2_hsotg_rx_data(hsotg, epnum, size);
break;
case GRXSTS_PKTSTS_SETUPRX:
dev_dbg(hsotg->dev,
"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
dwc2_hsotg_read_frameno(hsotg),
dwc2_readl(hsotg->regs + DOEPCTL(0)));
WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
dwc2_hsotg_rx_data(hsotg, epnum, size);
break;
default:
dev_warn(hsotg->dev, "%s: unknown status %08x\n",
__func__, grxstsr);
dwc2_hsotg_dump(hsotg);
break;
}
}
/**
* dwc2_hsotg_ep0_mps - turn max packet size into register setting
* @mps: The maximum packet size in bytes.
*/
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
{
switch (mps) {
case 64:
return D0EPCTL_MPS_64;
case 32:
return D0EPCTL_MPS_32;
case 16:
return D0EPCTL_MPS_16;
case 8:
return D0EPCTL_MPS_8;
}
/* bad max packet size, warn and return invalid result */
WARN_ON(1);
return (u32)-1;
}
/**
* dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
* @hsotg: The driver state.
* @ep: The index number of the endpoint
* @mps: The maximum packet size in bytes
*
* Configure the maximum packet size for the given endpoint, updating
* the hardware control registers to reflect this.
*/
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
unsigned int ep, unsigned int mps, unsigned int dir_in)
{
struct dwc2_hsotg_ep *hs_ep;
void __iomem *regs = hsotg->regs;
u32 mpsval;
u32 mcval;
u32 reg;
hs_ep = index_to_ep(hsotg, ep, dir_in);
if (!hs_ep)
return;
if (ep == 0) {
/* EP0 is a special case */
mpsval = dwc2_hsotg_ep0_mps(mps);
if (mpsval > 3)
goto bad_mps;
hs_ep->ep.maxpacket = mps;
hs_ep->mc = 1;
} else {
mpsval = mps & DXEPCTL_MPS_MASK;
if (mpsval > 1024)
goto bad_mps;
mcval = ((mps >> 11) & 0x3) + 1;
hs_ep->mc = mcval;
if (mcval > 3)
goto bad_mps;
hs_ep->ep.maxpacket = mpsval;
}
if (dir_in) {
reg = dwc2_readl(regs + DIEPCTL(ep));
reg &= ~DXEPCTL_MPS_MASK;
reg |= mpsval;
dwc2_writel(reg, regs + DIEPCTL(ep));
} else {
reg = dwc2_readl(regs + DOEPCTL(ep));
reg &= ~DXEPCTL_MPS_MASK;
reg |= mpsval;
dwc2_writel(reg, regs + DOEPCTL(ep));
}
return;
bad_mps:
dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}
/**
* dwc2_hsotg_txfifo_flush - flush Tx FIFO
* @hsotg: The driver state
* @idx: The index for the endpoint (0..15)
*/
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
{
int timeout;
int val;
dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
hsotg->regs + GRSTCTL);
/* wait until the fifo is flushed */
timeout = 100;
while (1) {
val = dwc2_readl(hsotg->regs + GRSTCTL);
if ((val & (GRSTCTL_TXFFLSH)) == 0)
break;
if (--timeout == 0) {
dev_err(hsotg->dev,
"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
__func__, val);
break;
}
udelay(1);
}
}
/**
* dwc2_hsotg_trytx - check to see if anything needs transmitting
* @hsotg: The driver state
* @hs_ep: The driver endpoint to check.
*
* Check to see if there is a request that has data to send, and if so
* make an attempt to write data into the FIFO.
*/
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
struct dwc2_hsotg_ep *hs_ep)
{
struct dwc2_hsotg_req *hs_req = hs_ep->req;
if (!hs_ep->dir_in || !hs_req) {
/**
* if request is not enqueued, we disable interrupts
* for endpoints, excepting ep0
*/
if (hs_ep->index != 0)
dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
hs_ep->dir_in, 0);
return 0;
}
if (hs_req->req.actual < hs_req->req.length) {
dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
hs_ep->index);
return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
}
return 0;
}
/**
* dwc2_hsotg_complete_in - complete IN transfer
* @hsotg: The device state.
* @hs_ep: The endpoint that has just completed.
*
* An IN transfer has been completed, update the transfer's state and then
* call the relevant completion routines.
*/
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
struct dwc2_hsotg_ep *hs_ep)
{
struct dwc2_hsotg_req *hs_req = hs_ep->req;
u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
int size_left, size_done;
if (!hs_req) {
dev_dbg(hsotg->dev, "XferCompl but no req\n");
return;
}
/* Finish ZLP handling for IN EP0 transactions */
if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
dev_dbg(hsotg->dev, "zlp packet sent\n");
dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
if (hsotg->test_mode) {
int ret;
ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
if (ret < 0) {
dev_dbg(hsotg->dev, "Invalid Test #%d\n",
hsotg->test_mode);
dwc2_hsotg_stall_ep0(hsotg);
return;
}
}
dwc2_hsotg_enqueue_setup(hsotg);
return;
}
/*
* Calculate the size of the transfer by checking how much is left
* in the endpoint size register and then working it out from
* the amount we loaded for the transfer.
*
* We do this even for DMA, as the transfer may have incremented
* past the end of the buffer (DMA transfers are always 32bit
* aligned).
*/
size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
size_done = hs_ep->size_loaded - size_left;
size_done += hs_ep->last_load;
if (hs_req->req.actual != size_done)
dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
__func__, hs_req->req.actual, size_done);
hs_req->req.actual = size_done;
dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
if (!size_left && hs_req->req.actual < hs_req->req.length) {
dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
return;
}
/* Zlp for all endpoints, for ep0 only in DATA IN stage */
if (hs_ep->send_zlp) {
dwc2_hsotg_program_zlp(hsotg, hs_ep);
hs_ep->send_zlp = 0;
/* transfer will be completed on next complete interrupt */
return;
}
if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
/* Move to STATUS OUT */
dwc2_hsotg_ep0_zlp(hsotg, false);
return;
}
dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
}
/**
* dwc2_hsotg_epint - handle an in/out endpoint interrupt
* @hsotg: The driver state
* @idx: The index for the endpoint (0..15)
* @dir_in: Set if this is an IN endpoint
*
* Process and clear any interrupt pending for an individual endpoint
*/
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
int dir_in)
{
struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
u32 ints;
u32 ctrl;
ints = dwc2_readl(hsotg->regs + epint_reg);
ctrl = dwc2_readl(hsotg->regs + epctl_reg);
/* Clear endpoint interrupts */
dwc2_writel(ints, hsotg->regs + epint_reg);
if (!hs_ep) {
dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
__func__, idx, dir_in ? "in" : "out");
return;
}
dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
__func__, idx, dir_in ? "in" : "out", ints);
/* Don't process XferCompl interrupt if it is a setup packet */
if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
ints &= ~DXEPINT_XFERCOMPL;
if (ints & DXEPINT_XFERCOMPL) {
if (hs_ep->isochronous && hs_ep->interval == 1) {
if (ctrl & DXEPCTL_EOFRNUM)
ctrl |= DXEPCTL_SETEVENFR;
else
ctrl |= DXEPCTL_SETODDFR;
dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}
dev_dbg(hsotg->dev,
"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
__func__, dwc2_readl(hsotg->regs + epctl_reg),
dwc2_readl(hsotg->regs + epsiz_reg));
/*
* we get OutDone from the FIFO, so we only need to look
* at completing IN requests here
*/
if (dir_in) {
dwc2_hsotg_complete_in(hsotg, hs_ep);
if (idx == 0 && !hs_ep->req)
dwc2_hsotg_enqueue_setup(hsotg);
} else if (using_dma(hsotg)) {
/*
* We're using DMA, we need to fire an OutDone here
* as we ignore the RXFIFO.
*/
dwc2_hsotg_handle_outdone(hsotg, idx);
}
}
if (ints & DXEPINT_EPDISBLD) {
dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
if (dir_in) {
int epctl = dwc2_readl(hsotg->regs + epctl_reg);
dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
if ((epctl & DXEPCTL_STALL) &&
(epctl & DXEPCTL_EPTYPE_BULK)) {
int dctl = dwc2_readl(hsotg->regs + DCTL);
dctl |= DCTL_CGNPINNAK;
dwc2_writel(dctl, hsotg->regs + DCTL);
}
}
}
if (ints & DXEPINT_AHBERR)
dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
if (using_dma(hsotg) && idx == 0) {
/*
* this is the notification we've received a
* setup packet. In non-DMA mode we'd get this
* from the RXFIFO, instead we need to process
* the setup here.
*/
if (dir_in)
WARN_ON_ONCE(1);
else
dwc2_hsotg_handle_outdone(hsotg, 0);
}
}
if (ints & DXEPINT_BACK2BACKSETUP)
dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
if (dir_in && !hs_ep->isochronous) {
/* not sure if this is important, but we'll clear it anyway */
if (ints & DIEPMSK_INTKNTXFEMPMSK) {
dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
__func__, idx);
}
/* this probably means something bad is happening */
if (ints & DIEPMSK_INTKNEPMISMSK) {
dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
__func__, idx);
}
/* FIFO has space or is empty (see GAHBCFG) */
if (hsotg->dedicated_fifos &&
ints & DIEPMSK_TXFIFOEMPTY) {
dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
__func__, idx);
if (!using_dma(hsotg))
dwc2_hsotg_trytx(hsotg, hs_ep);
}
}
}
/**
* dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
* @hsotg: The device state.
*
* Handle updating the device settings after the enumeration phase has
* been completed.
*/
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
{
u32 dsts = dwc2_readl(hsotg->regs + DSTS);
int ep0_mps = 0, ep_mps = 8;
/*
* This should signal the finish of the enumeration phase
* of the USB handshaking, so we should now know what rate
* we connected at.
*/
dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
/*
* note, since we're limited by the size of transfer on EP0, and
* it seems IN transfers must be a even number of packets we do
* not advertise a 64byte MPS on EP0.
*/
/* catch both EnumSpd_FS and EnumSpd_FS48 */
switch (dsts & DSTS_ENUMSPD_MASK) {
case DSTS_ENUMSPD_FS:
case DSTS_ENUMSPD_FS48:
hsotg->gadget.speed = USB_SPEED_FULL;
ep0_mps = EP0_MPS_LIMIT;
ep_mps = 1023;
break;
case DSTS_ENUMSPD_HS:
hsotg->gadget.speed = USB_SPEED_HIGH;
ep0_mps = EP0_MPS_LIMIT;
ep_mps = 1024;
break;
case DSTS_ENUMSPD_LS:
hsotg->gadget.speed = USB_SPEED_LOW;
/*
* note, we don't actually support LS in this driver at the
* moment, and the documentation seems to imply that it isn't
* supported by the PHYs on some of the devices.
*/
break;
}
dev_info(hsotg->dev, "new device is %s\n",
usb_speed_string(hsotg->gadget.speed));
/*
* we should now know the maximum packet size for an
* endpoint, so set the endpoints to a default value.
*/
if (ep0_mps) {
int i;
/* Initialize ep0 for both in and out directions */
dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
for (i = 1; i < hsotg->num_of_eps; i++) {
if (hsotg->eps_in[i])
dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
if (hsotg->eps_out[i])
dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
}
}
/* ensure after enumeration our EP0 is active */
dwc2_hsotg_enqueue_setup(hsotg);
dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
dwc2_readl(hsotg->regs + DIEPCTL0),
dwc2_readl(hsotg->regs + DOEPCTL0));
}
/**
* kill_all_requests - remove all requests from the endpoint's queue
* @hsotg: The device state.
* @ep: The endpoint the requests may be on.
* @result: The result code to use.
*
* Go through the requests on the given endpoint and mark them
* completed with the given result code.
*/
static void kill_all_requests(struct dwc2_hsotg *hsotg,
struct dwc2_hsotg_ep *ep,
int result)
{
struct dwc2_hsotg_req *req, *treq;
unsigned size;
ep->req = NULL;
list_for_each_entry_safe(req, treq, &ep->queue, queue)
dwc2_hsotg_complete_request(hsotg, ep, req,
result);
if (!hsotg->dedicated_fifos)
return;
size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
if (size < ep->fifo_size)
dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
}
/**
* dwc2_hsotg_disconnect - disconnect service
* @hsotg: The device state.
*
* The device has been disconnected. Remove all current
* transactions and signal the gadget driver that this
* has happened.
*/
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
{
unsigned ep;
if (!hsotg->connected)
return;
hsotg->connected = 0;
hsotg->test_mode = 0;
for (ep = 0; ep < hsotg->num_of_eps; ep++) {
if (hsotg->eps_in[ep])
kill_all_requests(hsotg, hsotg->eps_in[ep],
-ESHUTDOWN);
if (hsotg->eps_out[ep])
kill_all_requests(hsotg, hsotg->eps_out[ep],
-ESHUTDOWN);
}
call_gadget(hsotg, disconnect);
}
/**
* dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
* @hsotg: The device state:
* @periodic: True if this is a periodic FIFO interrupt
*/
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
{
struct dwc2_hsotg_ep *ep;
int epno, ret;
/* look through for any more data to transmit */
for (epno = 0; epno < hsotg->num_of_eps; epno++) {
ep = index_to_ep(hsotg, epno, 1);
if (!ep)
continue;
if (!ep->dir_in)
continue;
if ((periodic && !ep->periodic) ||
(!periodic && ep->periodic))
continue;
ret = dwc2_hsotg_trytx(hsotg, ep);
if (ret < 0)
break;
}
}
/* IRQ flags which will trigger a retry around the IRQ loop */
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
GINTSTS_PTXFEMP | \
GINTSTS_RXFLVL)
/**
* dwc2_hsotg_corereset - issue softreset to the core
* @hsotg: The device state
*
* Issue a soft reset to the core, and await the core finishing it.
*/
static int dwc2_hsotg_corereset(struct dwc2_hsotg *hsotg)
{
int timeout;
u32 grstctl;
dev_dbg(hsotg->dev, "resetting core\n");
/* issue soft reset */
dwc2_writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
timeout = 10000;
do {
grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
if (grstctl & GRSTCTL_CSFTRST) {
dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
return -EINVAL;
}
timeout = 10000;
while (1) {
u32 grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
if (timeout-- < 0) {
dev_info(hsotg->dev,
"%s: reset failed, GRSTCTL=%08x\n",
__func__, grstctl);
return -ETIMEDOUT;
}
if (!(grstctl & GRSTCTL_AHBIDLE))
continue;
break; /* reset done */
}
dev_dbg(hsotg->dev, "reset successful\n");
return 0;
}
/**
* dwc2_hsotg_core_init - issue softreset to the core
* @hsotg: The device state
*
* Issue a soft reset to the core, and await the core finishing it.
*/
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
bool is_usb_reset)
{
u32 val;
if (!is_usb_reset)
dwc2_hsotg_corereset(hsotg);
/*
* we must now enable ep0 ready for host detection and then
* set configuration.
*/
/* set the PLL on, remove the HNP/SRP and set the PHY */
val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
(val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
dwc2_hsotg_init_fifo(hsotg);
if (!is_usb_reset)
__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS, hsotg->regs + DCFG);
/* Clear any pending OTG interrupts */
dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
/* Clear any pending interrupts */
dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
dwc2_writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
GINTSTS_RESETDET | GINTSTS_ENUMDONE |
GINTSTS_OTGINT | GINTSTS_USBSUSP |
GINTSTS_WKUPINT,
hsotg->regs + GINTMSK);
if (using_dma(hsotg))
dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
(GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
hsotg->regs + GAHBCFG);
else
dwc2_writel(((hsotg->dedicated_fifos) ?
(GAHBCFG_NP_TXF_EMP_LVL |
GAHBCFG_P_TXF_EMP_LVL) : 0) |
GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
/*
* If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
* when we have no data to transfer. Otherwise we get being flooded by
* interrupts.
*/
dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
DIEPMSK_INTKNEPMISMSK,
hsotg->regs + DIEPMSK);
/*
* don't need XferCompl, we get that from RXFIFO in slave mode. In
* DMA mode we may need this.
*/
dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
DIEPMSK_TIMEOUTMSK) : 0) |
DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
DOEPMSK_SETUPMSK,
hsotg->regs + DOEPMSK);
dwc2_writel(0, hsotg->regs + DAINTMSK);
dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
dwc2_readl(hsotg->regs + DIEPCTL0),
dwc2_readl(hsotg->regs + DOEPCTL0));
/* enable in and out endpoint interrupts */
dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
/*
* Enable the RXFIFO when in slave mode, as this is how we collect
* the data. In DMA mode, we get events from the FIFO but also
* things we cannot process, so do not use it.
*/
if (!using_dma(hsotg))
dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
/* Enable interrupts for EP0 in and out */
dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
if (!is_usb_reset) {
__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
udelay(10); /* see openiboot */
__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
}
dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
/*
* DxEPCTL_USBActEp says RO in manual, but seems to be set by
* writing to the EPCTL register..
*/
/* set to read 1 8byte packet */
dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
DXEPCTL_CNAK | DXEPCTL_EPENA |
DXEPCTL_USBACTEP,
hsotg->regs + DOEPCTL0);
/* enable, but don't activate EP0in */
dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
dwc2_hsotg_enqueue_setup(hsotg);
dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
dwc2_readl(hsotg->regs + DIEPCTL0),
dwc2_readl(hsotg->regs + DOEPCTL0));
/* clear global NAKs */
val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
if (!is_usb_reset)
val |= DCTL_SFTDISCON;
__orr32(hsotg->regs + DCTL, val);
/* must be at-least 3ms to allow bus to see disconnect */
mdelay(3);
hsotg->last_rst = jiffies;
}
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
{
/* set the soft-disconnect bit */
__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
{
/* remove the soft-disconnect and let's go */
__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
/**
* dwc2_hsotg_irq - handle device interrupt
* @irq: The IRQ number triggered
* @pw: The pw value when registered the handler.
*/
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
{
struct dwc2_hsotg *hsotg = pw;
int retry_count = 8;
u32 gintsts;
u32 gintmsk;
spin_lock(&hsotg->lock);
irq_retry:
gintsts = dwc2_readl(hsotg->regs + GINTSTS);
gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
gintsts &= gintmsk;
if (gintsts & GINTSTS_ENUMDONE) {
dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
dwc2_hsotg_irq_enumdone(hsotg);
}
if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
u32 daint = dwc2_readl(hsotg->regs + DAINT);
u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
u32 daint_out, daint_in;
int ep;
daint &= daintmsk;
daint_out = daint >> DAINT_OUTEP_SHIFT;
daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
for (ep = 0; ep < hsotg->num_of_eps && daint_out;
ep++, daint_out >>= 1) {
if (daint_out & 1)
dwc2_hsotg_epint(hsotg, ep, 0);
}
for (ep = 0; ep < hsotg->num_of_eps && daint_in;
ep++, daint_in >>= 1) {
if (daint_in & 1)
dwc2_hsotg_epint(hsotg, ep, 1);
}
}
if (gintsts & GINTSTS_RESETDET) {
dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
/* This event must be used only if controller is suspended */
if (hsotg->lx_state == DWC2_L2) {
dwc2_exit_hibernation(hsotg, true);
hsotg->lx_state = DWC2_L0;
}
}
if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
dwc2_readl(hsotg->regs + GNPTXSTS));
dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
/* Report disconnection if it is not already done. */
dwc2_hsotg_disconnect(hsotg);
if (usb_status & GOTGCTL_BSESVLD) {
if (time_after(jiffies, hsotg->last_rst +
msecs_to_jiffies(200))) {
kill_all_requests(hsotg, hsotg->eps_out[0],
-ECONNRESET);
hsotg->lx_state = DWC2_L0;
dwc2_hsotg_core_init_disconnected(hsotg, true);
}
}
}
/* check both FIFOs */
if (gintsts & GINTSTS_NPTXFEMP) {
dev_dbg(hsotg->dev, "NPTxFEmp\n");
/*
* Disable the interrupt to stop it happening again
* unless one of these endpoint routines decides that
* it needs re-enabling
*/
dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
dwc2_hsotg_irq_fifoempty(hsotg, false);
}
if (gintsts & GINTSTS_PTXFEMP) {
dev_dbg(hsotg->dev, "PTxFEmp\n");
/* See note in GINTSTS_NPTxFEmp */
dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
dwc2_hsotg_irq_fifoempty(hsotg, true);
}
if (gintsts & GINTSTS_RXFLVL) {
/*
* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
* we need to retry dwc2_hsotg_handle_rx if this is still
* set.
*/
dwc2_hsotg_handle_rx(hsotg);
}
if (gintsts & GINTSTS_ERLYSUSP) {
dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
}
/*
* these next two seem to crop-up occasionally causing the core
* to shutdown the USB transfer, so try clearing them and logging
* the occurrence.
*/
if (gintsts & GINTSTS_GOUTNAKEFF) {
dev_info(hsotg->dev, "GOUTNakEff triggered\n");
dwc2_writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
dwc2_hsotg_dump(hsotg);
}
if (gintsts & GINTSTS_GINNAKEFF) {
dev_info(hsotg->dev, "GINNakEff triggered\n");
dwc2_writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
dwc2_hsotg_dump(hsotg);
}
/*
* if we've had fifo events, we should try and go around the
* loop again to see if there's any point in returning yet.
*/
if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
goto irq_retry;
spin_unlock(&hsotg->lock);
return IRQ_HANDLED;
}
/**
* dwc2_hsotg_ep_enable - enable the given endpoint
* @ep: The USB endpint to configure
* @desc: The USB endpoint descriptor to configure with.
*
* This is called from the USB gadget code's usb_ep_enable().
*/
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc)
{
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
struct dwc2_hsotg *hsotg = hs_ep->parent;
unsigned long flags;
unsigned int index = hs_ep->index;
u32 epctrl_reg;
u32 epctrl;
u32 mps;
unsigned int dir_in;
unsigned int i, val, size;
int ret = 0;
dev_dbg(hsotg->dev,
"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
desc->wMaxPacketSize, desc->bInterval);
/* not to be called for EP0 */
WARN_ON(index == 0);
dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
if (dir_in != hs_ep->dir_in) {
dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
return -EINVAL;
}
USB: use usb_endpoint_maxp() instead of le16_to_cpu() Now ${LINUX}/drivers/usb/* can use usb_endpoint_maxp(desc) to get maximum packet size instead of le16_to_cpu(desc->wMaxPacketSize). This patch fix it up Cc: Armin Fuerst <fuerst@in.tum.de> Cc: Pavel Machek <pavel@ucw.cz> Cc: Johannes Erdfelt <johannes@erdfelt.com> Cc: Vojtech Pavlik <vojtech@suse.cz> Cc: Oliver Neukum <oliver@neukum.name> Cc: David Kubicek <dave@awk.cz> Cc: Johan Hovold <jhovold@gmail.com> Cc: Brad Hards <bhards@bigpond.net.au> Acked-by: Felipe Balbi <balbi@ti.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Thomas Dahlmann <dahlmann.thomas@arcor.de> Cc: David Brownell <david-b@pacbell.net> Cc: David Lopo <dlopo@chipidea.mips.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Michal Nazarewicz <m.nazarewicz@samsung.com> Cc: Xie Xiaobo <X.Xie@freescale.com> Cc: Li Yang <leoli@freescale.com> Cc: Jiang Bo <tanya.jiang@freescale.com> Cc: Yuan-hsin Chen <yhchen@faraday-tech.com> Cc: Darius Augulis <augulis.darius@gmail.com> Cc: Xiaochen Shen <xiaochen.shen@intel.com> Cc: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com> Cc: OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com> Cc: Robert Jarzmik <robert.jarzmik@free.fr> Cc: Ben Dooks <ben@simtec.co.uk> Cc: Thomas Abraham <thomas.ab@samsung.com> Cc: Herbert Pötzl <herbert@13thfloor.at> Cc: Arnaud Patard <arnaud.patard@rtp-net.org> Cc: Roman Weissgaerber <weissg@vienna.at> Acked-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: Tony Olech <tony.olech@elandigitalsystems.com> Cc: Florian Floe Echtler <echtler@fs.tum.de> Cc: Christian Lucht <lucht@codemercs.com> Cc: Juergen Stuber <starblue@sourceforge.net> Cc: Georges Toth <g.toth@e-biz.lu> Cc: Bill Ryder <bryder@sgi.com> Cc: Kuba Ober <kuba@mareimbrium.org> Cc: Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-08-23 18:12:03 +08:00
mps = usb_endpoint_maxp(desc);
/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
__func__, epctrl, epctrl_reg);
spin_lock_irqsave(&hsotg->lock, flags);
epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
epctrl |= DXEPCTL_MPS(mps);
/*
* mark the endpoint as active, otherwise the core may ignore
* transactions entirely for this endpoint
*/
epctrl |= DXEPCTL_USBACTEP;
/*
* set the NAK status on the endpoint, otherwise we might try and
* do something with data that we've yet got a request to process
* since the RXFIFO will take data for an endpoint even if the
* size register hasn't been set.
*/
epctrl |= DXEPCTL_SNAK;
/* update the endpoint state */
dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
/* default, set to non-periodic */
hs_ep->isochronous = 0;
hs_ep->periodic = 0;
hs_ep->halted = 0;
hs_ep->interval = desc->bInterval;
if (hs_ep->interval > 1 && hs_ep->mc > 1)
dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_ISOC:
epctrl |= DXEPCTL_EPTYPE_ISO;
epctrl |= DXEPCTL_SETEVENFR;
hs_ep->isochronous = 1;
if (dir_in)
hs_ep->periodic = 1;
break;
case USB_ENDPOINT_XFER_BULK:
epctrl |= DXEPCTL_EPTYPE_BULK;
break;
case USB_ENDPOINT_XFER_INT:
if (dir_in)
hs_ep->periodic = 1;
epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
break;
case USB_ENDPOINT_XFER_CONTROL:
epctrl |= DXEPCTL_EPTYPE_CONTROL;
break;
}
/* If fifo is already allocated for this ep */
if (hs_ep->fifo_index) {
size = hs_ep->ep.maxpacket * hs_ep->mc;
/* If bigger fifo is required deallocate current one */
if (size > hs_ep->fifo_size) {
hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
hs_ep->fifo_index = 0;
hs_ep->fifo_size = 0;
}
}
/*
* if the hardware has dedicated fifos, we must give each IN EP
* a unique tx-fifo even if it is non-periodic.
*/
if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
u32 fifo_index = 0;
u32 fifo_size = UINT_MAX;
size = hs_ep->ep.maxpacket*hs_ep->mc;
for (i = 1; i < hsotg->num_of_eps; ++i) {
if (hsotg->fifo_map & (1<<i))
continue;
val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
if (val < size)
continue;
/* Search for smallest acceptable fifo */
if (val < fifo_size) {
fifo_size = val;
fifo_index = i;
}
}
if (!fifo_index) {
dev_err(hsotg->dev,
"%s: No suitable fifo found\n", __func__);
ret = -ENOMEM;
goto error;
}
hsotg->fifo_map |= 1 << fifo_index;
epctrl |= DXEPCTL_TXFNUM(fifo_index);
hs_ep->fifo_index = fifo_index;
hs_ep->fifo_size = fifo_size;
}
/* for non control endpoints, set PID to D0 */
if (index)
epctrl |= DXEPCTL_SETD0PID;
dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
__func__, epctrl);
dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
__func__, dwc2_readl(hsotg->regs + epctrl_reg));
/* enable the endpoint interrupt */
dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
error:
spin_unlock_irqrestore(&hsotg->lock, flags);
return ret;
}
/**
* dwc2_hsotg_ep_disable - disable given endpoint
* @ep: The endpoint to disable.
*/
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
{
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
struct dwc2_hsotg *hsotg = hs_ep->parent;
int dir_in = hs_ep->dir_in;
int index = hs_ep->index;
unsigned long flags;
u32 epctrl_reg;
u32 ctrl;
dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
if (ep == &hsotg->eps_out[0]->ep) {
dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
return -EINVAL;
}
epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
spin_lock_irqsave(&hsotg->lock, flags);
hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
hs_ep->fifo_index = 0;
hs_ep->fifo_size = 0;
ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
ctrl &= ~DXEPCTL_EPENA;
ctrl &= ~DXEPCTL_USBACTEP;
ctrl |= DXEPCTL_SNAK;
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
/* disable endpoint interrupts */
dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
/* terminate all requests with shutdown */
kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
spin_unlock_irqrestore(&hsotg->lock, flags);
return 0;
}
/**
* on_list - check request is on the given endpoint
* @ep: The endpoint to check.
* @test: The request to test if it is on the endpoint.
*/
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
{
struct dwc2_hsotg_req *req, *treq;
list_for_each_entry_safe(req, treq, &ep->queue, queue) {
if (req == test)
return true;
}
return false;
}
/**
* dwc2_hsotg_ep_dequeue - dequeue given endpoint
* @ep: The endpoint to dequeue.
* @req: The request to be removed from a queue.
*/
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
struct dwc2_hsotg_req *hs_req = our_req(req);
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
struct dwc2_hsotg *hs = hs_ep->parent;
unsigned long flags;
dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
spin_lock_irqsave(&hs->lock, flags);
if (!on_list(hs_ep, hs_req)) {
spin_unlock_irqrestore(&hs->lock, flags);
return -EINVAL;
}
dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
spin_unlock_irqrestore(&hs->lock, flags);
return 0;
}
/**
* dwc2_hsotg_ep_sethalt - set halt on a given endpoint
* @ep: The endpoint to set halt.
* @value: Set or unset the halt.
*/
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
struct dwc2_hsotg *hs = hs_ep->parent;
int index = hs_ep->index;
u32 epreg;
u32 epctl;
u32 xfertype;
dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
if (index == 0) {
if (value)
dwc2_hsotg_stall_ep0(hs);
else
dev_warn(hs->dev,
"%s: can't clear halt on ep0\n", __func__);
return 0;
}
if (hs_ep->dir_in) {
epreg = DIEPCTL(index);
epctl = dwc2_readl(hs->regs + epreg);
if (value) {
epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
if (epctl & DXEPCTL_EPENA)
epctl |= DXEPCTL_EPDIS;
} else {
epctl &= ~DXEPCTL_STALL;
xfertype = epctl & DXEPCTL_EPTYPE_MASK;
if (xfertype == DXEPCTL_EPTYPE_BULK ||
xfertype == DXEPCTL_EPTYPE_INTERRUPT)
epctl |= DXEPCTL_SETD0PID;
}
dwc2_writel(epctl, hs->regs + epreg);
} else {
epreg = DOEPCTL(index);
epctl = dwc2_readl(hs->regs + epreg);
if (value)
epctl |= DXEPCTL_STALL;
else {
epctl &= ~DXEPCTL_STALL;
xfertype = epctl & DXEPCTL_EPTYPE_MASK;
if (xfertype == DXEPCTL_EPTYPE_BULK ||
xfertype == DXEPCTL_EPTYPE_INTERRUPT)
epctl |= DXEPCTL_SETD0PID;
}
dwc2_writel(epctl, hs->regs + epreg);
}
hs_ep->halted = value;
return 0;
}
/**
* dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
* @ep: The endpoint to set halt.
* @value: Set or unset the halt.
*/
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
struct dwc2_hsotg *hs = hs_ep->parent;
unsigned long flags = 0;
int ret = 0;
spin_lock_irqsave(&hs->lock, flags);
ret = dwc2_hsotg_ep_sethalt(ep, value);
spin_unlock_irqrestore(&hs->lock, flags);
return ret;
}
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
.enable = dwc2_hsotg_ep_enable,
.disable = dwc2_hsotg_ep_disable,
.alloc_request = dwc2_hsotg_ep_alloc_request,
.free_request = dwc2_hsotg_ep_free_request,
.queue = dwc2_hsotg_ep_queue_lock,
.dequeue = dwc2_hsotg_ep_dequeue,
.set_halt = dwc2_hsotg_ep_sethalt_lock,
/* note, don't believe we have any call for the fifo routines */
};
/**
* dwc2_hsotg_phy_enable - enable platform phy dev
* @hsotg: The driver state
*
* A wrapper for platform code responsible for controlling
* low-level USB code
*/
static void dwc2_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
{
struct platform_device *pdev = to_platform_device(hsotg->dev);
dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
if (hsotg->uphy)
usb_phy_init(hsotg->uphy);
else if (hsotg->plat && hsotg->plat->phy_init)
hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
else {
phy_init(hsotg->phy);
phy_power_on(hsotg->phy);
}
}
/**
* dwc2_hsotg_phy_disable - disable platform phy dev
* @hsotg: The driver state
*
* A wrapper for platform code responsible for controlling
* low-level USB code
*/
static void dwc2_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
{
struct platform_device *pdev = to_platform_device(hsotg->dev);
if (hsotg->uphy)
usb_phy_shutdown(hsotg->uphy);
else if (hsotg->plat && hsotg->plat->phy_exit)
hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
else {
phy_power_off(hsotg->phy);
phy_exit(hsotg->phy);
}
}
/**
* dwc2_hsotg_init - initalize the usb core
* @hsotg: The driver state
*/
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
{
u32 trdtim;
/* unmask subset of endpoint interrupts */
dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
hsotg->regs + DIEPMSK);
dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
hsotg->regs + DOEPMSK);
dwc2_writel(0, hsotg->regs + DAINTMSK);
/* Be in disconnected state until gadget is registered */
__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
/* setup fifos */
dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
dwc2_readl(hsotg->regs + GRXFSIZ),
dwc2_readl(hsotg->regs + GNPTXFSIZ));
dwc2_hsotg_init_fifo(hsotg);
/* set the PLL on, remove the HNP/SRP and set the PHY */
trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
(trdtim << GUSBCFG_USBTRDTIM_SHIFT),
hsotg->regs + GUSBCFG);
if (using_dma(hsotg))
__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
}
/**
* dwc2_hsotg_udc_start - prepare the udc for work
* @gadget: The usb gadget state
* @driver: The usb gadget driver
*
* Perform initialization to prepare udc device and driver
* to work.
*/
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct dwc2_hsotg *hsotg = to_hsotg(gadget);
unsigned long flags;
int ret;
if (!hsotg) {
pr_err("%s: called with no device\n", __func__);
return -ENODEV;
}
if (!driver) {
dev_err(hsotg->dev, "%s: no driver\n", __func__);
return -EINVAL;
}
if (driver->max_speed < USB_SPEED_FULL)
dev_err(hsotg->dev, "%s: bad speed\n", __func__);
if (!driver->setup) {
dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
return -EINVAL;
}
mutex_lock(&hsotg->init_mutex);
WARN_ON(hsotg->driver);
driver->driver.bus = NULL;
hsotg->driver = driver;
hsotg->gadget.dev.of_node = hsotg->dev->of_node;
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
clk_enable(hsotg->clk);
ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
hsotg->supplies);
if (ret) {
dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
goto err;
}
dwc2_hsotg_phy_enable(hsotg);
if (!IS_ERR_OR_NULL(hsotg->uphy))
otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
spin_lock_irqsave(&hsotg->lock, flags);
dwc2_hsotg_init(hsotg);
dwc2_hsotg_core_init_disconnected(hsotg, false);
hsotg->enabled = 0;
spin_unlock_irqrestore(&hsotg->lock, flags);
dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
mutex_unlock(&hsotg->init_mutex);
return 0;
err:
mutex_unlock(&hsotg->init_mutex);
hsotg->driver = NULL;
return ret;
}
/**
* dwc2_hsotg_udc_stop - stop the udc
* @gadget: The usb gadget state
* @driver: The usb gadget driver
*
* Stop udc hw block and stay tunned for future transmissions
*/
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
{
struct dwc2_hsotg *hsotg = to_hsotg(gadget);
unsigned long flags = 0;
int ep;
if (!hsotg)
return -ENODEV;
mutex_lock(&hsotg->init_mutex);
/* all endpoints should be shutdown */
for (ep = 1; ep < hsotg->num_of_eps; ep++) {
if (hsotg->eps_in[ep])
dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
if (hsotg->eps_out[ep])
dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
}
spin_lock_irqsave(&hsotg->lock, flags);
hsotg->driver = NULL;
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
hsotg->enabled = 0;
spin_unlock_irqrestore(&hsotg->lock, flags);
if (!IS_ERR_OR_NULL(hsotg->uphy))
otg_set_peripheral(hsotg->uphy->otg, NULL);
dwc2_hsotg_phy_disable(hsotg);
regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
clk_disable(hsotg->clk);
mutex_unlock(&hsotg->init_mutex);
return 0;
}
/**
* dwc2_hsotg_gadget_getframe - read the frame number
* @gadget: The usb gadget state
*
* Read the {micro} frame number
*/
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
return dwc2_hsotg_read_frameno(to_hsotg(gadget));
}
/**
* dwc2_hsotg_pullup - connect/disconnect the USB PHY
* @gadget: The usb gadget state
* @is_on: Current state of the USB PHY
*
* Connect/Disconnect the USB PHY pullup
*/
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
struct dwc2_hsotg *hsotg = to_hsotg(gadget);
unsigned long flags = 0;
dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
mutex_lock(&hsotg->init_mutex);
spin_lock_irqsave(&hsotg->lock, flags);
if (is_on) {
clk_enable(hsotg->clk);
hsotg->enabled = 1;
dwc2_hsotg_core_init_disconnected(hsotg, false);
dwc2_hsotg_core_connect(hsotg);
} else {
dwc2_hsotg_core_disconnect(hsotg);
dwc2_hsotg_disconnect(hsotg);
hsotg->enabled = 0;
clk_disable(hsotg->clk);
}
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
spin_unlock_irqrestore(&hsotg->lock, flags);
mutex_unlock(&hsotg->init_mutex);
return 0;
}
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
{
struct dwc2_hsotg *hsotg = to_hsotg(gadget);
unsigned long flags;
dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
spin_lock_irqsave(&hsotg->lock, flags);
if (is_active) {
/*
* If controller is hibernated, it must exit from hibernation
* before being initialized
*/
if (hsotg->lx_state == DWC2_L2) {
dwc2_exit_hibernation(hsotg, false);
hsotg->lx_state = DWC2_L0;
}
/* Kill any ep0 requests as controller will be reinitialized */
kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
dwc2_hsotg_core_init_disconnected(hsotg, false);
if (hsotg->enabled)
dwc2_hsotg_core_connect(hsotg);
} else {
dwc2_hsotg_core_disconnect(hsotg);
dwc2_hsotg_disconnect(hsotg);
}
spin_unlock_irqrestore(&hsotg->lock, flags);
return 0;
}
/**
* dwc2_hsotg_vbus_draw - report bMaxPower field
* @gadget: The usb gadget state
* @mA: Amount of current
*
* Report how much power the device may consume to the phy.
*/
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
struct dwc2_hsotg *hsotg = to_hsotg(gadget);
if (IS_ERR_OR_NULL(hsotg->uphy))
return -ENOTSUPP;
return usb_phy_set_power(hsotg->uphy, mA);
}
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
.get_frame = dwc2_hsotg_gadget_getframe,
.udc_start = dwc2_hsotg_udc_start,
.udc_stop = dwc2_hsotg_udc_stop,
.pullup = dwc2_hsotg_pullup,
.vbus_session = dwc2_hsotg_vbus_session,
.vbus_draw = dwc2_hsotg_vbus_draw,
};
/**
* dwc2_hsotg_initep - initialise a single endpoint
* @hsotg: The device state.
* @hs_ep: The endpoint to be initialised.
* @epnum: The endpoint number
*
* Initialise the given endpoint (as part of the probe and device state
* creation) to give to the gadget driver. Setup the endpoint name, any
* direction information and other state that may be required.
*/
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
struct dwc2_hsotg_ep *hs_ep,
int epnum,
bool dir_in)
{
char *dir;
if (epnum == 0)
dir = "";
else if (dir_in)
dir = "in";
else
dir = "out";
hs_ep->dir_in = dir_in;
hs_ep->index = epnum;
snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
INIT_LIST_HEAD(&hs_ep->queue);
INIT_LIST_HEAD(&hs_ep->ep.ep_list);
/* add to the list of endpoints known by the gadget driver */
if (epnum)
list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
hs_ep->parent = hsotg;
hs_ep->ep.name = hs_ep->name;
usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
if (epnum == 0) {
hs_ep->ep.caps.type_control = true;
} else {
hs_ep->ep.caps.type_iso = true;
hs_ep->ep.caps.type_bulk = true;
hs_ep->ep.caps.type_int = true;
}
if (dir_in)
hs_ep->ep.caps.dir_in = true;
else
hs_ep->ep.caps.dir_out = true;
/*
* if we're using dma, we need to set the next-endpoint pointer
* to be something valid.
*/
if (using_dma(hsotg)) {
u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
if (dir_in)
dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
else
dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
}
}
/**
* dwc2_hsotg_hw_cfg - read HW configuration registers
* @param: The device state
*
* Read the USB core HW configuration registers
*/
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
{
u32 cfg;
u32 ep_type;
u32 i;
/* check hardware configuration */
cfg = dwc2_readl(hsotg->regs + GHWCFG2);
hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
/* Add ep0 */
hsotg->num_of_eps++;
hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
GFP_KERNEL);
if (!hsotg->eps_in[0])
return -ENOMEM;
/* Same dwc2_hsotg_ep is used in both directions for ep0 */
hsotg->eps_out[0] = hsotg->eps_in[0];
cfg = dwc2_readl(hsotg->regs + GHWCFG1);
for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
ep_type = cfg & 3;
/* Direction in or both */
if (!(ep_type & 2)) {
hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
if (!hsotg->eps_in[i])
return -ENOMEM;
}
/* Direction out or both */
if (!(ep_type & 1)) {
hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
if (!hsotg->eps_out[i])
return -ENOMEM;
}
}
cfg = dwc2_readl(hsotg->regs + GHWCFG3);
hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
cfg = dwc2_readl(hsotg->regs + GHWCFG4);
hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
hsotg->num_of_eps,
hsotg->dedicated_fifos ? "dedicated" : "shared",
hsotg->fifo_mem);
return 0;
}
/**
* dwc2_hsotg_dump - dump state of the udc
* @param: The device state
*/
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
struct device *dev = hsotg->dev;
void __iomem *regs = hsotg->regs;
u32 val;
int idx;
dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
dwc2_readl(regs + DIEPMSK));
dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
/* show periodic fifo settings */
for (idx = 1; idx < hsotg->num_of_eps; idx++) {
val = dwc2_readl(regs + DPTXFSIZN(idx));
dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
val >> FIFOSIZE_DEPTH_SHIFT,
val & FIFOSIZE_STARTADDR_MASK);
}
for (idx = 0; idx < hsotg->num_of_eps; idx++) {
dev_info(dev,
"ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
dwc2_readl(regs + DIEPCTL(idx)),
dwc2_readl(regs + DIEPTSIZ(idx)),
dwc2_readl(regs + DIEPDMA(idx)));
val = dwc2_readl(regs + DOEPCTL(idx));
dev_info(dev,
"ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
idx, dwc2_readl(regs + DOEPCTL(idx)),
dwc2_readl(regs + DOEPTSIZ(idx)),
dwc2_readl(regs + DOEPDMA(idx)));
}
dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
#endif
}
#ifdef CONFIG_OF
static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
{
struct device_node *np = hsotg->dev->of_node;
u32 len = 0;
u32 i = 0;
/* Enable dma if requested in device tree */
hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
/*
* Register TX periodic fifo size per endpoint.
* EP0 is excluded since it has no fifo configuration.
*/
if (!of_find_property(np, "g-tx-fifo-size", &len))
goto rx_fifo;
len /= sizeof(u32);
/* Read tx fifo sizes other than ep0 */
if (of_property_read_u32_array(np, "g-tx-fifo-size",
&hsotg->g_tx_fifo_sz[1], len))
goto rx_fifo;
/* Add ep0 */
len++;
/* Make remaining TX fifos unavailable */
if (len < MAX_EPS_CHANNELS) {
for (i = len; i < MAX_EPS_CHANNELS; i++)
hsotg->g_tx_fifo_sz[i] = 0;
}
rx_fifo:
/* Register RX fifo size */
of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
/* Register NPTX fifo size */
of_property_read_u32(np, "g-np-tx-fifo-size",
&hsotg->g_np_g_tx_fifo_sz);
}
#else
static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
#endif
/**
* dwc2_gadget_init - init function for gadget
* @dwc2: The data structure for the DWC2 driver.
* @irq: The IRQ number for the controller.
*/
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
{
struct device *dev = hsotg->dev;
struct dwc2_hsotg_plat *plat = dev->platform_data;
int epnum;
int ret;
int i;
u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
/* Set default UTMI width */
hsotg->phyif = GUSBCFG_PHYIF16;
dwc2_hsotg_of_probe(hsotg);
/* Initialize to legacy fifo configuration values */
hsotg->g_rx_fifo_sz = 2048;
hsotg->g_np_g_tx_fifo_sz = 1024;
memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
/* Device tree specific probe */
dwc2_hsotg_of_probe(hsotg);
/* Dump fifo information */
dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
hsotg->g_np_g_tx_fifo_sz);
dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
for (i = 0; i < MAX_EPS_CHANNELS; i++)
dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
hsotg->g_tx_fifo_sz[i]);
/*
* If platform probe couldn't find a generic PHY or an old style
* USB PHY, fall back to pdata
*/
if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
plat = dev_get_platdata(dev);
if (!plat) {
dev_err(dev,
"no platform data or transceiver defined\n");
return -EPROBE_DEFER;
}
hsotg->plat = plat;
} else if (hsotg->phy) {
/*
* If using the generic PHY framework, check if the PHY bus
* width is 8-bit and set the phyif appropriately.
*/
if (phy_get_bus_width(hsotg->phy) == 8)
hsotg->phyif = GUSBCFG_PHYIF8;
}
hsotg->clk = devm_clk_get(dev, "otg");
if (IS_ERR(hsotg->clk)) {
hsotg->clk = NULL;
dev_dbg(dev, "cannot get otg clock\n");
}
hsotg->gadget.max_speed = USB_SPEED_HIGH;
hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
hsotg->gadget.name = dev_name(dev);
if (hsotg->dr_mode == USB_DR_MODE_OTG)
hsotg->gadget.is_otg = 1;
/* reset the system */
ret = clk_prepare_enable(hsotg->clk);
if (ret) {
dev_err(dev, "failed to enable otg clk\n");
goto err_clk;
}
/* regulators */
for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
hsotg->supplies[i].supply = dwc2_hsotg_supply_names[i];
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
hsotg->supplies);
if (ret) {
dev_err(dev, "failed to request supplies: %d\n", ret);
goto err_clk;
}
ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
hsotg->supplies);
if (ret) {
dev_err(dev, "failed to enable supplies: %d\n", ret);
goto err_clk;
}
/* usb phy enable */
dwc2_hsotg_phy_enable(hsotg);
/*
* Force Device mode before initialization.
* This allows correctly configuring fifo for device mode.
*/
__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
__orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
/*
* According to Synopsys databook, this sleep is needed for the force
* device mode to take effect.
*/
msleep(25);
dwc2_hsotg_corereset(hsotg);
ret = dwc2_hsotg_hw_cfg(hsotg);
if (ret) {
dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
goto err_clk;
}
dwc2_hsotg_init(hsotg);
/* Switch back to default configuration */
__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
if (!hsotg->ctrl_buff) {
dev_err(dev, "failed to allocate ctrl request buff\n");
ret = -ENOMEM;
goto err_supplies;
}
hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
if (!hsotg->ep0_buff) {
dev_err(dev, "failed to allocate ctrl reply buff\n");
ret = -ENOMEM;
goto err_supplies;
}
ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
dev_name(hsotg->dev), hsotg);
if (ret < 0) {
dwc2_hsotg_phy_disable(hsotg);
clk_disable_unprepare(hsotg->clk);
regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
hsotg->supplies);
dev_err(dev, "cannot claim IRQ for gadget\n");
goto err_supplies;
}
/* hsotg->num_of_eps holds number of EPs other than ep0 */
if (hsotg->num_of_eps == 0) {
dev_err(dev, "wrong number of EPs (zero)\n");
ret = -EINVAL;
goto err_supplies;
}
/* setup endpoint information */
INIT_LIST_HEAD(&hsotg->gadget.ep_list);
hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
/* allocate EP0 request */
hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
GFP_KERNEL);
if (!hsotg->ctrl_req) {
dev_err(dev, "failed to allocate ctrl req\n");
ret = -ENOMEM;
goto err_supplies;
}
/* initialise the endpoints now the core has been initialised */
for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
if (hsotg->eps_in[epnum])
dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
epnum, 1);
if (hsotg->eps_out[epnum])
dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
epnum, 0);
}
/* disable power and clock */
dwc2_hsotg_phy_disable(hsotg);
ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
hsotg->supplies);
if (ret) {
dev_err(dev, "failed to disable supplies: %d\n", ret);
goto err_supplies;
}
ret = usb_add_gadget_udc(dev, &hsotg->gadget);
usb: gadget: convert all users to the new udc infrastructure peripheral drivers are using usb_add_gadget()/usb_del_gadget() to register/unregister to the udc-core. The udc-core will take the first available gadget driver and attach function driver which is calling usb_gadget_register_driver(). This is the same behaviour we have right now. Only dummy_hcd was tested, the others were compiled tested. Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Anton Tikhomirov <av.tikhomirov@samsung.com> Cc: Ben Dooks <ben-linux@fluff.org> Cc: Dan Carpenter <error27@gmail.com> Cc: Darius Augulis <augulis.darius@gmail.com> Cc: Eric Miao <eric.y.miao@gmail.com> Cc: Jingoo Han <jg1.han@samsung.com> Cc: Kukjin Kim <kgene.kim@samsung.com> Cc: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> Cc: Li Yang <leoli@freescale.com> Cc: Michael Hennerich <michael.hennerich@analog.com> Acked-by: Mike Frysinger <vapier@gentoo.org> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Roy Huang <roy.huang@analog.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Toshiharu Okada <toshiharu-linux@dsn.okisemi.com> Cc: Xiaochen Shen <xiaochen.shen@intel.com> Cc: Yoshihiro Shimoda <shimoda.yoshihiro@renesas.com> Cc: Yuan-Hsin Chen <yhchen@faraday-tech.com> Cc: cxie4 <cxie4@marvell.com> Cc: linux-geode@lists.infradead.org Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-06-28 21:33:47 +08:00
if (ret)
goto err_supplies;
usb: gadget: convert all users to the new udc infrastructure peripheral drivers are using usb_add_gadget()/usb_del_gadget() to register/unregister to the udc-core. The udc-core will take the first available gadget driver and attach function driver which is calling usb_gadget_register_driver(). This is the same behaviour we have right now. Only dummy_hcd was tested, the others were compiled tested. Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Anton Tikhomirov <av.tikhomirov@samsung.com> Cc: Ben Dooks <ben-linux@fluff.org> Cc: Dan Carpenter <error27@gmail.com> Cc: Darius Augulis <augulis.darius@gmail.com> Cc: Eric Miao <eric.y.miao@gmail.com> Cc: Jingoo Han <jg1.han@samsung.com> Cc: Kukjin Kim <kgene.kim@samsung.com> Cc: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> Cc: Li Yang <leoli@freescale.com> Cc: Michael Hennerich <michael.hennerich@analog.com> Acked-by: Mike Frysinger <vapier@gentoo.org> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Roy Huang <roy.huang@analog.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Toshiharu Okada <toshiharu-linux@dsn.okisemi.com> Cc: Xiaochen Shen <xiaochen.shen@intel.com> Cc: Yoshihiro Shimoda <shimoda.yoshihiro@renesas.com> Cc: Yuan-Hsin Chen <yhchen@faraday-tech.com> Cc: cxie4 <cxie4@marvell.com> Cc: linux-geode@lists.infradead.org Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-06-28 21:33:47 +08:00
dwc2_hsotg_dump(hsotg);
return 0;
err_supplies:
dwc2_hsotg_phy_disable(hsotg);
err_clk:
clk_disable_unprepare(hsotg->clk);
return ret;
}
/**
* dwc2_hsotg_remove - remove function for hsotg driver
* @pdev: The platform information for the driver
*/
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
{
usb: gadget: convert all users to the new udc infrastructure peripheral drivers are using usb_add_gadget()/usb_del_gadget() to register/unregister to the udc-core. The udc-core will take the first available gadget driver and attach function driver which is calling usb_gadget_register_driver(). This is the same behaviour we have right now. Only dummy_hcd was tested, the others were compiled tested. Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Anton Tikhomirov <av.tikhomirov@samsung.com> Cc: Ben Dooks <ben-linux@fluff.org> Cc: Dan Carpenter <error27@gmail.com> Cc: Darius Augulis <augulis.darius@gmail.com> Cc: Eric Miao <eric.y.miao@gmail.com> Cc: Jingoo Han <jg1.han@samsung.com> Cc: Kukjin Kim <kgene.kim@samsung.com> Cc: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> Cc: Li Yang <leoli@freescale.com> Cc: Michael Hennerich <michael.hennerich@analog.com> Acked-by: Mike Frysinger <vapier@gentoo.org> Cc: Nicolas Ferre <nicolas.ferre@atmel.com> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Roy Huang <roy.huang@analog.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Toshiharu Okada <toshiharu-linux@dsn.okisemi.com> Cc: Xiaochen Shen <xiaochen.shen@intel.com> Cc: Yoshihiro Shimoda <shimoda.yoshihiro@renesas.com> Cc: Yuan-Hsin Chen <yhchen@faraday-tech.com> Cc: cxie4 <cxie4@marvell.com> Cc: linux-geode@lists.infradead.org Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-06-28 21:33:47 +08:00
usb_del_gadget_udc(&hsotg->gadget);
clk_disable_unprepare(hsotg->clk);
return 0;
}
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
{
unsigned long flags;
int ret = 0;
if (hsotg->lx_state != DWC2_L0)
return ret;
mutex_lock(&hsotg->init_mutex);
if (hsotg->driver) {
int ep;
dev_info(hsotg->dev, "suspending usb gadget %s\n",
hsotg->driver->driver.name);
spin_lock_irqsave(&hsotg->lock, flags);
if (hsotg->enabled)
dwc2_hsotg_core_disconnect(hsotg);
dwc2_hsotg_disconnect(hsotg);
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
spin_unlock_irqrestore(&hsotg->lock, flags);
dwc2_hsotg_phy_disable(hsotg);
for (ep = 0; ep < hsotg->num_of_eps; ep++) {
if (hsotg->eps_in[ep])
dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
if (hsotg->eps_out[ep])
dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
}
ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
hsotg->supplies);
clk_disable(hsotg->clk);
}
mutex_unlock(&hsotg->init_mutex);
return ret;
}
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
{
unsigned long flags;
int ret = 0;
if (hsotg->lx_state == DWC2_L2)
return ret;
mutex_lock(&hsotg->init_mutex);
if (hsotg->driver) {
dev_info(hsotg->dev, "resuming usb gadget %s\n",
hsotg->driver->driver.name);
clk_enable(hsotg->clk);
ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
hsotg->supplies);
dwc2_hsotg_phy_enable(hsotg);
spin_lock_irqsave(&hsotg->lock, flags);
dwc2_hsotg_core_init_disconnected(hsotg, false);
if (hsotg->enabled)
dwc2_hsotg_core_connect(hsotg);
spin_unlock_irqrestore(&hsotg->lock, flags);
}
mutex_unlock(&hsotg->init_mutex);
return ret;
}