OpenCloudOS-Kernel/drivers/pci/pcie/portdrv_core.c

600 lines
16 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* Purpose: PCI Express Port Bus Driver's Core Functions
*
* Copyright (C) 2004 Intel
* Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/pm.h>
PCI: Add runtime PM support for PCIe ports Add back runtime PM support for PCIe ports that was removed by fe9a743a2601 ("PCI/PM: Drop unused runtime PM support code for PCIe ports"). We cannot enable it automatically for all ports since there have been problems previously [1]. In summary suspended PCIe ports were not able to deal with ACPI-based hotplug reliably. One reason why this might happen is the fact that when a PCIe port is powered down, config space access to the devices behind the port is not possible. If the BIOS hotplug SMI handler assumes the port is always in D0 it will not be able to find the hotplugged devices. To be on the safe side only enable runtime PM if the port does not claim to support hotplug. For PCIe ports not using hotplug, we enable and allow runtime PM automatically. Since 'bridge_d3' can be changed any time we check this in driver ->runtime_idle() and ->runtime_suspend() and only allow runtime suspend if the flag is still set. Use autosuspend with default of 100ms idle time to prevent the port from repeatedly suspending and resuming on continuous configuration space access of devices behind the port. The actual power transition to D3 and back is handled in the PCI core. Idea to automatically unblock (allow) runtime PM for PCIe ports came from Dave Airlie. [1] https://bugzilla.kernel.org/show_bug.cgi?id=53811 This includes a fix for lockdep issue reported by Valdis Kletnieks. Tested-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-06-02 16:17:15 +08:00
#include <linux/pm_runtime.h>
#include <linux/string.h>
#include <linux/slab.h>
PCI: PCIe: Ask BIOS for control of all native services at once After commit 852972acff8f10f3a15679be2059bb94916cba5d (ACPI: Disable ASPM if the platform won't provide _OSC control for PCIe) control of the PCIe Capability Structure is unconditionally requested by acpi_pci_root_add(), which in principle may cause problems to happen in two ways. First, the BIOS may refuse to give control of the PCIe Capability Structure if it is not asked for any of the _OSC features depending on it at the same time. Second, the BIOS may assume that control of the _OSC features depending on the PCIe Capability Structure will be requested in the future and may behave incorrectly if that doesn't happen. For this reason, control of the PCIe Capability Structure should always be requested along with control of any other _OSC features that may depend on it (ie. PCIe native PME, PCIe native hot-plug, PCIe AER). Rework the PCIe port driver so that (1) it checks which native PCIe port services can be enabled, according to the BIOS, and (2) it requests control of all these services simultaneously. In particular, this causes pcie_portdrv_probe() to fail if the BIOS refuses to grant control of the PCIe Capability Structure, which means that no native PCIe port services can be enabled for the PCIe Root Complex the given port belongs to. If that happens, ASPM is disabled to avoid problems with mishandling it by the part of the PCIe hierarchy for which control of the PCIe Capability Structure has not been received. Make it possible to override this behavior using 'pcie_ports=native' (use the PCIe native services regardless of the BIOS response to the control request), or 'pcie_ports=compat' (do not use the PCIe native services at all). Accordingly, rework the existing PCIe port service drivers so that they don't request control of the services directly. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2010-08-22 04:02:38 +08:00
#include <linux/aer.h>
#include "../pci.h"
#include "portdrv.h"
struct portdrv_service_data {
struct pcie_port_service_driver *drv;
struct device *dev;
u32 service;
};
/**
* release_pcie_device - free PCI Express port service device structure
* @dev: Port service device to release
*
* Invoked automatically when device is being removed in response to
* device_unregister(dev). Release all resources being claimed.
*/
static void release_pcie_device(struct device *dev)
{
kfree(to_pcie_device(dev));
}
/*
* Fill in *pme, *aer, *dpc with the relevant Interrupt Message Numbers if
* services are enabled in "mask". Return the number of MSI/MSI-X vectors
* required to accommodate the largest Message Number.
*/
static int pcie_message_numbers(struct pci_dev *dev, int mask,
u32 *pme, u32 *aer, u32 *dpc)
{
u32 nvec = 0, pos;
u16 reg16;
/*
* The Interrupt Message Number indicates which vector is used, i.e.,
* the MSI-X table entry or the MSI offset between the base Message
* Data and the generated interrupt message. See PCIe r3.1, sec
* 7.8.2, 7.10.10, 7.31.2.
*/
if (mask & (PCIE_PORT_SERVICE_PME | PCIE_PORT_SERVICE_HP)) {
pcie_capability_read_word(dev, PCI_EXP_FLAGS, &reg16);
*pme = (reg16 & PCI_EXP_FLAGS_IRQ) >> 9;
nvec = *pme + 1;
}
#ifdef CONFIG_PCIEAER
if (mask & PCIE_PORT_SERVICE_AER) {
u32 reg32;
pos = dev->aer_cap;
if (pos) {
pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS,
&reg32);
*aer = (reg32 & PCI_ERR_ROOT_AER_IRQ) >> 27;
nvec = max(nvec, *aer + 1);
}
}
#endif
if (mask & PCIE_PORT_SERVICE_DPC) {
pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DPC);
if (pos) {
pci_read_config_word(dev, pos + PCI_EXP_DPC_CAP,
&reg16);
*dpc = reg16 & PCI_EXP_DPC_IRQ;
nvec = max(nvec, *dpc + 1);
}
}
return nvec;
}
/**
* pcie_port_enable_irq_vec - try to set up MSI-X or MSI as interrupt mode
* for given port
* @dev: PCI Express port to handle
* @irqs: Array of interrupt vectors to populate
* @mask: Bitmask of port capabilities returned by get_port_device_capability()
*
* Return value: 0 on success, error code on failure
*/
static int pcie_port_enable_irq_vec(struct pci_dev *dev, int *irqs, int mask)
{
int nr_entries, nvec;
u32 pme = 0, aer = 0, dpc = 0;
/* Allocate the maximum possible number of MSI/MSI-X vectors */
nr_entries = pci_alloc_irq_vectors(dev, 1, PCIE_PORT_MAX_MSI_ENTRIES,
PCI_IRQ_MSIX | PCI_IRQ_MSI);
if (nr_entries < 0)
return nr_entries;
/* See how many and which Interrupt Message Numbers we actually use */
nvec = pcie_message_numbers(dev, mask, &pme, &aer, &dpc);
if (nvec > nr_entries) {
pci_free_irq_vectors(dev);
return -EIO;
}
/*
PCI/portdrv: Compute MSI/MSI-X IRQ vectors after final allocation When setting up portdrv MSI/MSI-X interrupts, we previously allocated the maximum possible number of vectors, read the Interrupt Message Numbers for each service, saved the IRQ for each, freed the vectors, and finally used the largest Message Number to reallocate only as many vectors as we need. The problem is that freeing the vectors invalidates their IRQs, so the saved IRQ numbers may now be invalid, which can result in errors like this: pcie_pme: probe of 0000:00:00.0:pcie001 failed with error -22 pciehp 0000:00:00.0:pcie004: Cannot get irq 20 for the hotplug controller aer: probe of 0000:00:00.0:pcie002 failed with error -22 dpc 0000:00:00.0:pcie010: request IRQ22 failed: -22 Change the setup so we save the Interrupt Message Numbers (not the IRQs) before we free the original setup, then use the Message Numbers to compute the IRQs (via pci_irq_vector()) *after* we reallocate the vectors. This should always be safe for MSI-X because the Message Numbers are fixed. For MSI, the hardware is allowed to change Message Numbers when we update the MSI Multiple Message Enable field when reallocating the vectors, but since we allocate enough vectors to accommodate the largest Message Number we found, that's unlikely. See PCIe r3.1, sec 7.8.2, 7.10.10, 7.31.2. Fixes: 3674cc49da9a ("PCI/portdrv: Use pci_irq_alloc_vectors()") Based-on-patch-by: Dongdong Liu <liudongdong3@huawei.com> Tested-by: Dongdong Liu <liudongdong3@huawei.com> # HiSilicon hip08 Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2017-10-20 21:57:16 +08:00
* If we allocated more than we need, free them and reallocate fewer.
*
* Reallocating may change the specific vectors we get, so
* pci_irq_vector() must be done *after* the reallocation.
*
* If we're using MSI, hardware is *allowed* to change the Interrupt
* Message Numbers when we free and reallocate the vectors, but we
* assume it won't because we allocate enough vectors for the
* biggest Message Number we found.
*/
if (nvec != nr_entries) {
pci_free_irq_vectors(dev);
nr_entries = pci_alloc_irq_vectors(dev, nvec, nvec,
PCI_IRQ_MSIX | PCI_IRQ_MSI);
if (nr_entries < 0)
return nr_entries;
}
/* PME and hotplug share an MSI/MSI-X vector */
if (mask & (PCIE_PORT_SERVICE_PME | PCIE_PORT_SERVICE_HP)) {
irqs[PCIE_PORT_SERVICE_PME_SHIFT] = pci_irq_vector(dev, pme);
irqs[PCIE_PORT_SERVICE_HP_SHIFT] = pci_irq_vector(dev, pme);
}
if (mask & PCIE_PORT_SERVICE_AER)
irqs[PCIE_PORT_SERVICE_AER_SHIFT] = pci_irq_vector(dev, aer);
if (mask & PCIE_PORT_SERVICE_DPC)
irqs[PCIE_PORT_SERVICE_DPC_SHIFT] = pci_irq_vector(dev, dpc);
return 0;
}
/**
* pcie_init_service_irqs - initialize irqs for PCI Express port services
* @dev: PCI Express port to handle
* @irqs: Array of irqs to populate
* @mask: Bitmask of port capabilities returned by get_port_device_capability()
*
* Return value: Interrupt mode associated with the port
*/
static int pcie_init_service_irqs(struct pci_dev *dev, int *irqs, int mask)
{
int ret, i;
for (i = 0; i < PCIE_PORT_DEVICE_MAXSERVICES; i++)
irqs[i] = -1;
/*
* If we support PME but can't use MSI/MSI-X for it, we have to
* fall back to INTx or other interrupts, e.g., a system shared
* interrupt.
*/
if ((mask & PCIE_PORT_SERVICE_PME) && pcie_pme_no_msi())
goto legacy_irq;
/* Try to use MSI-X or MSI if supported */
if (pcie_port_enable_irq_vec(dev, irqs, mask) == 0)
return 0;
legacy_irq:
/* fall back to legacy IRQ */
ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_LEGACY);
if (ret < 0)
return -ENODEV;
for (i = 0; i < PCIE_PORT_DEVICE_MAXSERVICES; i++)
irqs[i] = pci_irq_vector(dev, 0);
return 0;
}
/**
* get_port_device_capability - discover capabilities of a PCI Express port
* @dev: PCI Express port to examine
*
* The capabilities are read from the port's PCI Express configuration registers
* as described in PCI Express Base Specification 1.0a sections 7.8.2, 7.8.9 and
* 7.9 - 7.11.
*
* Return value: Bitmask of discovered port capabilities
*/
static int get_port_device_capability(struct pci_dev *dev)
{
struct pci_host_bridge *host = pci_find_host_bridge(dev->bus);
int services = 0;
PCI: PCIe: Ask BIOS for control of all native services at once After commit 852972acff8f10f3a15679be2059bb94916cba5d (ACPI: Disable ASPM if the platform won't provide _OSC control for PCIe) control of the PCIe Capability Structure is unconditionally requested by acpi_pci_root_add(), which in principle may cause problems to happen in two ways. First, the BIOS may refuse to give control of the PCIe Capability Structure if it is not asked for any of the _OSC features depending on it at the same time. Second, the BIOS may assume that control of the _OSC features depending on the PCIe Capability Structure will be requested in the future and may behave incorrectly if that doesn't happen. For this reason, control of the PCIe Capability Structure should always be requested along with control of any other _OSC features that may depend on it (ie. PCIe native PME, PCIe native hot-plug, PCIe AER). Rework the PCIe port driver so that (1) it checks which native PCIe port services can be enabled, according to the BIOS, and (2) it requests control of all these services simultaneously. In particular, this causes pcie_portdrv_probe() to fail if the BIOS refuses to grant control of the PCIe Capability Structure, which means that no native PCIe port services can be enabled for the PCIe Root Complex the given port belongs to. If that happens, ASPM is disabled to avoid problems with mishandling it by the part of the PCIe hierarchy for which control of the PCIe Capability Structure has not been received. Make it possible to override this behavior using 'pcie_ports=native' (use the PCIe native services regardless of the BIOS response to the control request), or 'pcie_ports=compat' (do not use the PCIe native services at all). Accordingly, rework the existing PCIe port service drivers so that they don't request control of the services directly. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2010-08-22 04:02:38 +08:00
if (dev->is_hotplug_bridge &&
(pcie_ports_native || host->native_pcie_hotplug)) {
services |= PCIE_PORT_SERVICE_HP;
/*
* Disable hot-plug interrupts in case they have been enabled
* by the BIOS and the hot-plug service driver is not loaded.
*/
pcie_capability_clear_word(dev, PCI_EXP_SLTCTL,
PCI_EXP_SLTCTL_CCIE | PCI_EXP_SLTCTL_HPIE);
}
#ifdef CONFIG_PCIEAER
if (dev->aer_cap && pci_aer_available() &&
(pcie_ports_native || host->native_aer)) {
services |= PCIE_PORT_SERVICE_AER;
/*
* Disable AER on this port in case it's been enabled by the
* BIOS (the AER service driver will enable it when necessary).
*/
pci_disable_pcie_error_reporting(dev);
}
#endif
/*
* Root ports are capable of generating PME too. Root Complex
* Event Collectors can also generate PMEs, but we don't handle
* those yet.
*/
if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT &&
(pcie_ports_native || host->native_pme)) {
services |= PCIE_PORT_SERVICE_PME;
/*
* Disable PME interrupt on this port in case it's been enabled
* by the BIOS (the PME service driver will enable it when
* necessary).
*/
pcie_pme_interrupt_enable(dev, false);
}
if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DPC) &&
pci_aer_available() && services & PCIE_PORT_SERVICE_AER)
services |= PCIE_PORT_SERVICE_DPC;
return services;
}
/**
* pcie_device_init - allocate and initialize PCI Express port service device
* @pdev: PCI Express port to associate the service device with
* @service: Type of service to associate with the service device
* @irq: Interrupt vector to associate with the service device
*/
static int pcie_device_init(struct pci_dev *pdev, int service, int irq)
{
int retval;
struct pcie_device *pcie;
struct device *device;
pcie = kzalloc(sizeof(*pcie), GFP_KERNEL);
if (!pcie)
return -ENOMEM;
pcie->port = pdev;
pcie->irq = irq;
pcie->service = service;
/* Initialize generic device interface */
device = &pcie->device;
device->bus = &pcie_port_bus_type;
device->release = release_pcie_device; /* callback to free pcie dev */
dev_set_name(device, "%s:pcie%03x",
pci_name(pdev),
get_descriptor_id(pci_pcie_type(pdev), service));
device->parent = &pdev->dev;
device_enable_async_suspend(device);
retval = device_register(device);
if (retval) {
put_device(device);
return retval;
}
PCI: Add runtime PM support for PCIe ports Add back runtime PM support for PCIe ports that was removed by fe9a743a2601 ("PCI/PM: Drop unused runtime PM support code for PCIe ports"). We cannot enable it automatically for all ports since there have been problems previously [1]. In summary suspended PCIe ports were not able to deal with ACPI-based hotplug reliably. One reason why this might happen is the fact that when a PCIe port is powered down, config space access to the devices behind the port is not possible. If the BIOS hotplug SMI handler assumes the port is always in D0 it will not be able to find the hotplugged devices. To be on the safe side only enable runtime PM if the port does not claim to support hotplug. For PCIe ports not using hotplug, we enable and allow runtime PM automatically. Since 'bridge_d3' can be changed any time we check this in driver ->runtime_idle() and ->runtime_suspend() and only allow runtime suspend if the flag is still set. Use autosuspend with default of 100ms idle time to prevent the port from repeatedly suspending and resuming on continuous configuration space access of devices behind the port. The actual power transition to D3 and back is handled in the PCI core. Idea to automatically unblock (allow) runtime PM for PCIe ports came from Dave Airlie. [1] https://bugzilla.kernel.org/show_bug.cgi?id=53811 This includes a fix for lockdep issue reported by Valdis Kletnieks. Tested-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-06-02 16:17:15 +08:00
pm_runtime_no_callbacks(device);
return 0;
}
/**
* pcie_port_device_register - register PCI Express port
* @dev: PCI Express port to register
*
* Allocate the port extension structure and register services associated with
* the port.
*/
int pcie_port_device_register(struct pci_dev *dev)
{
int status, capabilities, i, nr_service;
int irqs[PCIE_PORT_DEVICE_MAXSERVICES];
/* Enable PCI Express port device */
status = pci_enable_device(dev);
if (status)
return status;
/* Get and check PCI Express port services */
capabilities = get_port_device_capability(dev);
PCI: Disable ASPM when _OSC control is not granted for PCIe services v3 -> v2: Added text to describe the problem v2 -> v1: Split this patch from v1 v1 : Part of: http://marc.info/?l=linux-pci&m=130042212003242&w=2 Disable ASPM when no _OSC control for PCIe services is granted by the BIOS. This is to protect systems with a buggy BIOS that did not set the ACPI FADT "ASPM Controls" bit even though the underlying HW can't do ASPM. To turn "on" ASPM the minimum the BIOS needs to do: 1. Clear the ACPI FADT "ASPM Controls" bit. 2. Support _OSC appropriately There is no _OSC Control bit for ASPM. However, we expect the BIOS to support _OSC for a Root Bridge that originates a PCIe hierarchy. If this is not the case - we are better off not enabling ASPM on that server. Commit 852972acff8f10f3a15679be2059bb94916cba5d (ACPI: Disable ASPM if the Platform won't provide _OSC control for PCIe) describes the above scenario. To quote verbatim from there: [The PCI SIG documentation for the _OSC OS/firmware handshaking interface states: "If the _OSC control method is absent from the scope of a host bridge device, then the operating system must not enable or attempt to use any features defined in this section for the hierarchy originated by the host bridge." The obvious interpretation of this is that the OS should not attempt to use PCIe hotplug, PME or AER - however, the specification also notes that an _OSC method is *required* for PCIe hierarchies, and experimental validation with An Alternative OS indicates that it doesn't use any PCIe functionality if the _OSC method is missing. That arguably means we shouldn't be using MSI or extended config space, but right now our problems seem to be limited to vendors being surprised when ASPM gets enabled on machines when other OSs refuse to do so. So, for now, let's just disable ASPM if the _OSC method doesn't exist or refuses to hand over PCIe capability control.] Signed-off-by: Naga Chumbalkar <nagananda.chumbalkar@hp.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2011-03-21 11:29:20 +08:00
if (!capabilities)
return 0;
pci_set_master(dev);
/*
* Initialize service irqs. Don't use service devices that
* require interrupts if there is no way to generate them.
* However, some drivers may have a polling mode (e.g. pciehp_poll_mode)
* that can be used in the absence of irqs. Allow them to determine
* if that is to be used.
*/
status = pcie_init_service_irqs(dev, irqs, capabilities);
if (status) {
capabilities &= PCIE_PORT_SERVICE_HP;
if (!capabilities)
goto error_disable;
}
/* Allocate child services if any */
status = -ENODEV;
nr_service = 0;
for (i = 0; i < PCIE_PORT_DEVICE_MAXSERVICES; i++) {
int service = 1 << i;
if (!(capabilities & service))
continue;
if (!pcie_device_init(dev, service, irqs[i]))
nr_service++;
}
if (!nr_service)
goto error_cleanup_irqs;
return 0;
error_cleanup_irqs:
pci_free_irq_vectors(dev);
error_disable:
pci_disable_device(dev);
return status;
}
#ifdef CONFIG_PM
typedef int (*pcie_pm_callback_t)(struct pcie_device *);
static int pm_iter(struct device *dev, void *data)
{
struct pcie_port_service_driver *service_driver;
size_t offset = *(size_t *)data;
pcie_pm_callback_t cb;
if ((dev->bus == &pcie_port_bus_type) && dev->driver) {
service_driver = to_service_driver(dev->driver);
cb = *(pcie_pm_callback_t *)((void *)service_driver + offset);
if (cb)
return cb(to_pcie_device(dev));
}
return 0;
}
/**
* pcie_port_device_suspend - suspend port services associated with a PCIe port
* @dev: PCI Express port to handle
*/
int pcie_port_device_suspend(struct device *dev)
{
size_t off = offsetof(struct pcie_port_service_driver, suspend);
return device_for_each_child(dev, &off, pm_iter);
}
PCI: pciehp: Clear spurious events earlier on resume Thunderbolt hotplug ports that were occupied before system sleep resume with their downstream link in "off" state. Only after the Thunderbolt controller has reestablished the PCIe tunnels does the link go up. As a result, a spurious Presence Detect Changed and/or Data Link Layer State Changed event occurs. The events are not immediately acted upon because tunnel reestablishment happens in the ->resume_noirq phase, when interrupts are still disabled. Also, notification of events may initially be disabled in the Slot Control register when coming out of system sleep and is reenabled in the ->resume_noirq phase through: pci_pm_resume_noirq() pci_pm_default_resume_early() pci_restore_state() pci_restore_pcie_state() It is not guaranteed that the events are acted upon at all: PCIe r4.0, sec 6.7.3.4 says that "a port may optionally send an MSI when there are hot-plug events that occur while interrupt generation is disabled, and interrupt generation is subsequently enabled." Note the "optionally". If an MSI is sent, pciehp will gratuitously turn the slot off and back on once the ->resume_early phase has commenced. If an MSI is not sent, the extant, unacknowledged events in the Slot Status register will prevent future notification of presence or link changes. Commit 13c65840feab ("PCI: pciehp: Clear Presence Detect and Data Link Layer Status Changed on resume") fixed the latter by clearing the events in the ->resume phase. Move this to the ->resume_noirq phase to also fix the gratuitous disable/enablement of the slot. The commit further restored the Slot Control register in the ->resume phase, but that's dispensable because as shown above it's already been done in the ->resume_noirq phase. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
2018-07-20 06:27:53 +08:00
int pcie_port_device_resume_noirq(struct device *dev)
{
size_t off = offsetof(struct pcie_port_service_driver, resume_noirq);
return device_for_each_child(dev, &off, pm_iter);
}
/**
* pcie_port_device_resume - resume port services associated with a PCIe port
* @dev: PCI Express port to handle
*/
int pcie_port_device_resume(struct device *dev)
{
size_t off = offsetof(struct pcie_port_service_driver, resume);
return device_for_each_child(dev, &off, pm_iter);
}
/**
* pcie_port_device_runtime_suspend - runtime suspend port services
* @dev: PCI Express port to handle
*/
int pcie_port_device_runtime_suspend(struct device *dev)
{
size_t off = offsetof(struct pcie_port_service_driver, runtime_suspend);
return device_for_each_child(dev, &off, pm_iter);
}
/**
* pcie_port_device_runtime_resume - runtime resume port services
* @dev: PCI Express port to handle
*/
int pcie_port_device_runtime_resume(struct device *dev)
{
size_t off = offsetof(struct pcie_port_service_driver, runtime_resume);
return device_for_each_child(dev, &off, pm_iter);
}
#endif /* PM */
static int remove_iter(struct device *dev, void *data)
{
if (dev->bus == &pcie_port_bus_type)
device_unregister(dev);
return 0;
}
static int find_service_iter(struct device *device, void *data)
{
struct pcie_port_service_driver *service_driver;
struct portdrv_service_data *pdrvs;
u32 service;
pdrvs = (struct portdrv_service_data *) data;
service = pdrvs->service;
if (device->bus == &pcie_port_bus_type && device->driver) {
service_driver = to_service_driver(device->driver);
if (service_driver->service == service) {
pdrvs->drv = service_driver;
pdrvs->dev = device;
return 1;
}
}
return 0;
}
/**
* pcie_port_find_service - find the service driver
* @dev: PCI Express port the service is associated with
* @service: Service to find
*
* Find PCI Express port service driver associated with given service
*/
struct pcie_port_service_driver *pcie_port_find_service(struct pci_dev *dev,
u32 service)
{
struct pcie_port_service_driver *drv;
struct portdrv_service_data pdrvs;
pdrvs.drv = NULL;
pdrvs.service = service;
device_for_each_child(&dev->dev, &pdrvs, find_service_iter);
drv = pdrvs.drv;
return drv;
}
/**
* pcie_port_find_device - find the struct device
* @dev: PCI Express port the service is associated with
* @service: For the service to find
*
* Find the struct device associated with given service on a pci_dev
*/
struct device *pcie_port_find_device(struct pci_dev *dev,
u32 service)
{
struct device *device;
struct portdrv_service_data pdrvs;
pdrvs.dev = NULL;
pdrvs.service = service;
device_for_each_child(&dev->dev, &pdrvs, find_service_iter);
device = pdrvs.dev;
return device;
}
EXPORT_SYMBOL_GPL(pcie_port_find_device);
/**
* pcie_port_device_remove - unregister PCI Express port service devices
* @dev: PCI Express port the service devices to unregister are associated with
*
* Remove PCI Express port service devices associated with given port and
* disable MSI-X or MSI for the port.
*/
void pcie_port_device_remove(struct pci_dev *dev)
{
device_for_each_child(&dev->dev, NULL, remove_iter);
pci_free_irq_vectors(dev);
pci_disable_device(dev);
}
/**
* pcie_port_probe_service - probe driver for given PCI Express port service
* @dev: PCI Express port service device to probe against
*
* If PCI Express port service driver is registered with
* pcie_port_service_register(), this function will be called by the driver core
* whenever match is found between the driver and a port service device.
*/
static int pcie_port_probe_service(struct device *dev)
{
struct pcie_device *pciedev;
struct pcie_port_service_driver *driver;
int status;
if (!dev || !dev->driver)
return -ENODEV;
driver = to_service_driver(dev->driver);
if (!driver || !driver->probe)
return -ENODEV;
pciedev = to_pcie_device(dev);
status = driver->probe(pciedev);
if (status)
return status;
get_device(dev);
return 0;
}
/**
* pcie_port_remove_service - detach driver from given PCI Express port service
* @dev: PCI Express port service device to handle
*
* If PCI Express port service driver is registered with
* pcie_port_service_register(), this function will be called by the driver core
* when device_unregister() is called for the port service device associated
* with the driver.
*/
static int pcie_port_remove_service(struct device *dev)
{
struct pcie_device *pciedev;
struct pcie_port_service_driver *driver;
if (!dev || !dev->driver)
return 0;
pciedev = to_pcie_device(dev);
driver = to_service_driver(dev->driver);
if (driver && driver->remove) {
driver->remove(pciedev);
put_device(dev);
}
return 0;
}
/**
* pcie_port_shutdown_service - shut down given PCI Express port service
* @dev: PCI Express port service device to handle
*
* If PCI Express port service driver is registered with
* pcie_port_service_register(), this function will be called by the driver core
* when device_shutdown() is called for the port service device associated
* with the driver.
*/
static void pcie_port_shutdown_service(struct device *dev) {}
/**
* pcie_port_service_register - register PCI Express port service driver
* @new: PCI Express port service driver to register
*/
int pcie_port_service_register(struct pcie_port_service_driver *new)
{
if (pcie_ports_disabled)
return -ENODEV;
new->driver.name = new->name;
new->driver.bus = &pcie_port_bus_type;
new->driver.probe = pcie_port_probe_service;
new->driver.remove = pcie_port_remove_service;
new->driver.shutdown = pcie_port_shutdown_service;
return driver_register(&new->driver);
}
EXPORT_SYMBOL(pcie_port_service_register);
/**
* pcie_port_service_unregister - unregister PCI Express port service driver
* @drv: PCI Express port service driver to unregister
*/
void pcie_port_service_unregister(struct pcie_port_service_driver *drv)
{
driver_unregister(&drv->driver);
}
EXPORT_SYMBOL(pcie_port_service_unregister);