OpenCloudOS-Kernel/include/linux/types.h

237 lines
5.6 KiB
C
Raw Normal View History

#ifndef _LINUX_TYPES_H
#define _LINUX_TYPES_H
#define __EXPORTED_HEADERS__
#include <uapi/linux/types.h>
#ifndef __ASSEMBLY__
#define DECLARE_BITMAP(name,bits) \
unsigned long name[BITS_TO_LONGS(bits)]
typedef __u32 __kernel_dev_t;
typedef __kernel_fd_set fd_set;
typedef __kernel_dev_t dev_t;
typedef __kernel_ino_t ino_t;
typedef __kernel_mode_t mode_t;
typedef unsigned short umode_t;
typedef __u32 nlink_t;
typedef __kernel_off_t off_t;
typedef __kernel_pid_t pid_t;
typedef __kernel_daddr_t daddr_t;
typedef __kernel_key_t key_t;
typedef __kernel_suseconds_t suseconds_t;
typedef __kernel_timer_t timer_t;
typedef __kernel_clockid_t clockid_t;
typedef __kernel_mqd_t mqd_t;
typedef _Bool bool;
typedef __kernel_uid32_t uid_t;
typedef __kernel_gid32_t gid_t;
typedef __kernel_uid16_t uid16_t;
typedef __kernel_gid16_t gid16_t;
typedef unsigned long uintptr_t;
#ifdef CONFIG_HAVE_UID16
/* This is defined by include/asm-{arch}/posix_types.h */
typedef __kernel_old_uid_t old_uid_t;
typedef __kernel_old_gid_t old_gid_t;
#endif /* CONFIG_UID16 */
#if defined(__GNUC__)
typedef __kernel_loff_t loff_t;
#endif
/*
* The following typedefs are also protected by individual ifdefs for
* historical reasons:
*/
#ifndef _SIZE_T
#define _SIZE_T
typedef __kernel_size_t size_t;
#endif
#ifndef _SSIZE_T
#define _SSIZE_T
typedef __kernel_ssize_t ssize_t;
#endif
#ifndef _PTRDIFF_T
#define _PTRDIFF_T
typedef __kernel_ptrdiff_t ptrdiff_t;
#endif
#ifndef _TIME_T
#define _TIME_T
typedef __kernel_time_t time_t;
#endif
#ifndef _CLOCK_T
#define _CLOCK_T
typedef __kernel_clock_t clock_t;
#endif
#ifndef _CADDR_T
#define _CADDR_T
typedef __kernel_caddr_t caddr_t;
#endif
/* bsd */
typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned int u_int;
typedef unsigned long u_long;
/* sysv */
typedef unsigned char unchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;
#ifndef __BIT_TYPES_DEFINED__
#define __BIT_TYPES_DEFINED__
typedef __u8 u_int8_t;
typedef __s8 int8_t;
typedef __u16 u_int16_t;
typedef __s16 int16_t;
typedef __u32 u_int32_t;
typedef __s32 int32_t;
#endif /* !(__BIT_TYPES_DEFINED__) */
typedef __u8 uint8_t;
typedef __u16 uint16_t;
typedef __u32 uint32_t;
#if defined(__GNUC__)
typedef __u64 uint64_t;
typedef __u64 u_int64_t;
typedef __s64 int64_t;
#endif
/* this is a special 64bit data type that is 8-byte aligned */
#define aligned_u64 __u64 __attribute__((aligned(8)))
#define aligned_be64 __be64 __attribute__((aligned(8)))
#define aligned_le64 __le64 __attribute__((aligned(8)))
/**
* The type used for indexing onto a disc or disc partition.
*
* Linux always considers sectors to be 512 bytes long independently
* of the devices real block size.
*
* blkcnt_t is the type of the inode's block count.
*/
#ifdef CONFIG_LBDAF
typedef u64 sector_t;
typedef u64 blkcnt_t;
#else
typedef unsigned long sector_t;
typedef unsigned long blkcnt_t;
#endif
/*
* The type of an index into the pagecache.
*/
#define pgoff_t unsigned long
PCI: Add pci_bus_addr_t David Ahern reported that d63e2e1f3df9 ("sparc/PCI: Clip bridge windows to fit in upstream windows") fails to boot on sparc/T5-8: pci 0000:06:00.0: reg 0x184: can't handle BAR above 4GB (bus address 0x110204000) The problem is that sparc64 assumed that dma_addr_t only needed to hold DMA addresses, i.e., bus addresses returned via the DMA API (dma_map_single(), etc.), while the PCI core assumed dma_addr_t could hold *any* bus address, including raw BAR values. On sparc64, all DMA addresses fit in 32 bits, so dma_addr_t is a 32-bit type. However, BAR values can be 64 bits wide, so they don't fit in a dma_addr_t. d63e2e1f3df9 added new checking that tripped over this mismatch. Add pci_bus_addr_t, which is wide enough to hold any PCI bus address, including both raw BAR values and DMA addresses. This will be 64 bits on 64-bit platforms and on platforms with a 64-bit dma_addr_t. Then dma_addr_t only needs to be wide enough to hold addresses from the DMA API. [bhelgaas: changelog, bugzilla, Kconfig to ensure pci_bus_addr_t is at least as wide as dma_addr_t, documentation] Fixes: d63e2e1f3df9 ("sparc/PCI: Clip bridge windows to fit in upstream windows") Fixes: 23b13bc76f35 ("PCI: Fail safely if we can't handle BARs larger than 4GB") Link: http://lkml.kernel.org/r/CAE9FiQU1gJY1LYrxs+ma5LCTEEe4xmtjRG0aXJ9K_Tsu+m9Wuw@mail.gmail.com Link: http://lkml.kernel.org/r/1427857069-6789-1-git-send-email-yinghai@kernel.org Link: https://bugzilla.kernel.org/show_bug.cgi?id=96231 Reported-by: David Ahern <david.ahern@oracle.com> Tested-by: David Ahern <david.ahern@oracle.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Acked-by: David S. Miller <davem@davemloft.net> CC: stable@vger.kernel.org # v3.19+
2015-05-28 08:23:51 +08:00
/*
* A dma_addr_t can hold any valid DMA address, i.e., any address returned
* by the DMA API.
*
* If the DMA API only uses 32-bit addresses, dma_addr_t need only be 32
* bits wide. Bus addresses, e.g., PCI BARs, may be wider than 32 bits,
* but drivers do memory-mapped I/O to ioremapped kernel virtual addresses,
* so they don't care about the size of the actual bus addresses.
*/
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
typedef u64 dma_addr_t;
#else
typedef u32 dma_addr_t;
PCI: Add pci_bus_addr_t David Ahern reported that d63e2e1f3df9 ("sparc/PCI: Clip bridge windows to fit in upstream windows") fails to boot on sparc/T5-8: pci 0000:06:00.0: reg 0x184: can't handle BAR above 4GB (bus address 0x110204000) The problem is that sparc64 assumed that dma_addr_t only needed to hold DMA addresses, i.e., bus addresses returned via the DMA API (dma_map_single(), etc.), while the PCI core assumed dma_addr_t could hold *any* bus address, including raw BAR values. On sparc64, all DMA addresses fit in 32 bits, so dma_addr_t is a 32-bit type. However, BAR values can be 64 bits wide, so they don't fit in a dma_addr_t. d63e2e1f3df9 added new checking that tripped over this mismatch. Add pci_bus_addr_t, which is wide enough to hold any PCI bus address, including both raw BAR values and DMA addresses. This will be 64 bits on 64-bit platforms and on platforms with a 64-bit dma_addr_t. Then dma_addr_t only needs to be wide enough to hold addresses from the DMA API. [bhelgaas: changelog, bugzilla, Kconfig to ensure pci_bus_addr_t is at least as wide as dma_addr_t, documentation] Fixes: d63e2e1f3df9 ("sparc/PCI: Clip bridge windows to fit in upstream windows") Fixes: 23b13bc76f35 ("PCI: Fail safely if we can't handle BARs larger than 4GB") Link: http://lkml.kernel.org/r/CAE9FiQU1gJY1LYrxs+ma5LCTEEe4xmtjRG0aXJ9K_Tsu+m9Wuw@mail.gmail.com Link: http://lkml.kernel.org/r/1427857069-6789-1-git-send-email-yinghai@kernel.org Link: https://bugzilla.kernel.org/show_bug.cgi?id=96231 Reported-by: David Ahern <david.ahern@oracle.com> Tested-by: David Ahern <david.ahern@oracle.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Acked-by: David S. Miller <davem@davemloft.net> CC: stable@vger.kernel.org # v3.19+
2015-05-28 08:23:51 +08:00
#endif
typedef unsigned __bitwise__ gfp_t;
typedef unsigned __bitwise__ fmode_t;
mm, oom: fix race when specifying a thread as the oom origin test_set_oom_score_adj() and compare_swap_oom_score_adj() are used to specify that current should be killed first if an oom condition occurs in between the two calls. The usage is short oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); ... compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); to store the thread's oom_score_adj, temporarily change it to the maximum score possible, and then restore the old value if it is still the same. This happens to still be racy, however, if the user writes OOM_SCORE_ADJ_MAX to /proc/pid/oom_score_adj in between the two calls. The compare_swap_oom_score_adj() will then incorrectly reset the old value prior to the write of OOM_SCORE_ADJ_MAX. To fix this, introduce a new oom_flags_t member in struct signal_struct that will be used for per-thread oom killer flags. KSM and swapoff can now use a bit in this member to specify that threads should be killed first in oom conditions without playing around with oom_score_adj. This also allows the correct oom_score_adj to always be shown when reading /proc/pid/oom_score. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Anton Vorontsov <anton.vorontsov@linaro.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 08:02:56 +08:00
typedef unsigned __bitwise__ oom_flags_t;
#ifdef CONFIG_PHYS_ADDR_T_64BIT
typedef u64 phys_addr_t;
#else
typedef u32 phys_addr_t;
#endif
typedef phys_addr_t resource_size_t;
/*
* This type is the placeholder for a hardware interrupt number. It has to be
* big enough to enclose whatever representation is used by a given platform.
*/
typedef unsigned long irq_hw_number_t;
typedef struct {
atomic_t: Remove volatile from atomic_t definition When looking at a performance problem on PowerPC, I noticed some awful code generation: c00000000051fc98: 3b 60 00 01 li r27,1 ... c00000000051fca0: 3b 80 00 00 li r28,0 ... c00000000051fcdc: 93 61 00 70 stw r27,112(r1) c00000000051fce0: 93 81 00 74 stw r28,116(r1) c00000000051fce4: 81 21 00 70 lwz r9,112(r1) c00000000051fce8: 80 01 00 74 lwz r0,116(r1) c00000000051fcec: 7d 29 07 b4 extsw r9,r9 c00000000051fcf0: 7c 00 07 b4 extsw r0,r0 c00000000051fcf4: 7c 20 04 ac lwsync c00000000051fcf8: 7d 60 f8 28 lwarx r11,0,r31 c00000000051fcfc: 7c 0b 48 00 cmpw r11,r9 c00000000051fd00: 40 c2 00 10 bne- c00000000051fd10 c00000000051fd04: 7c 00 f9 2d stwcx. r0,0,r31 c00000000051fd08: 40 c2 ff f0 bne+ c00000000051fcf8 c00000000051fd0c: 4c 00 01 2c isync We create two constants, write them out to the stack, read them straight back in and sign extend them. What a mess. It turns out this bad code is a result of us defining atomic_t as a volatile int. We removed the volatile attribute from the powerpc atomic_t definition years ago, but commit ea435467500612636f8f4fb639ff6e76b2496e4b (atomic_t: unify all arch definitions) added it back in. To dig up an old quote from Linus: > The fact is, volatile on data structures is a bug. It's a wart in the C > language. It shouldn't be used. > > Volatile accesses in *code* can be ok, and if we have "atomic_read()" > expand to a "*(volatile int *)&(x)->value", then I'd be ok with that. > > But marking data structures volatile just makes the compiler screw up > totally, and makes code for initialization sequences etc much worse. And screw up it does :) With the volatile removed, we see much more reasonable code generation: c00000000051f5b8: 3b 60 00 01 li r27,1 ... c00000000051f5c0: 3b 80 00 00 li r28,0 ... c00000000051fc7c: 7c 20 04 ac lwsync c00000000051fc80: 7c 00 f8 28 lwarx r0,0,r31 c00000000051fc84: 7c 00 d8 00 cmpw r0,r27 c00000000051fc88: 40 c2 00 10 bne- c00000000051fc98 c00000000051fc8c: 7f 80 f9 2d stwcx. r28,0,r31 c00000000051fc90: 40 c2 ff f0 bne+ c00000000051fc80 c00000000051fc94: 4c 00 01 2c isync Six instructions less. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-17 12:34:57 +08:00
int counter;
} atomic_t;
#ifdef CONFIG_64BIT
typedef struct {
atomic_t: Remove volatile from atomic_t definition When looking at a performance problem on PowerPC, I noticed some awful code generation: c00000000051fc98: 3b 60 00 01 li r27,1 ... c00000000051fca0: 3b 80 00 00 li r28,0 ... c00000000051fcdc: 93 61 00 70 stw r27,112(r1) c00000000051fce0: 93 81 00 74 stw r28,116(r1) c00000000051fce4: 81 21 00 70 lwz r9,112(r1) c00000000051fce8: 80 01 00 74 lwz r0,116(r1) c00000000051fcec: 7d 29 07 b4 extsw r9,r9 c00000000051fcf0: 7c 00 07 b4 extsw r0,r0 c00000000051fcf4: 7c 20 04 ac lwsync c00000000051fcf8: 7d 60 f8 28 lwarx r11,0,r31 c00000000051fcfc: 7c 0b 48 00 cmpw r11,r9 c00000000051fd00: 40 c2 00 10 bne- c00000000051fd10 c00000000051fd04: 7c 00 f9 2d stwcx. r0,0,r31 c00000000051fd08: 40 c2 ff f0 bne+ c00000000051fcf8 c00000000051fd0c: 4c 00 01 2c isync We create two constants, write them out to the stack, read them straight back in and sign extend them. What a mess. It turns out this bad code is a result of us defining atomic_t as a volatile int. We removed the volatile attribute from the powerpc atomic_t definition years ago, but commit ea435467500612636f8f4fb639ff6e76b2496e4b (atomic_t: unify all arch definitions) added it back in. To dig up an old quote from Linus: > The fact is, volatile on data structures is a bug. It's a wart in the C > language. It shouldn't be used. > > Volatile accesses in *code* can be ok, and if we have "atomic_read()" > expand to a "*(volatile int *)&(x)->value", then I'd be ok with that. > > But marking data structures volatile just makes the compiler screw up > totally, and makes code for initialization sequences etc much worse. And screw up it does :) With the volatile removed, we see much more reasonable code generation: c00000000051f5b8: 3b 60 00 01 li r27,1 ... c00000000051f5c0: 3b 80 00 00 li r28,0 ... c00000000051fc7c: 7c 20 04 ac lwsync c00000000051fc80: 7c 00 f8 28 lwarx r0,0,r31 c00000000051fc84: 7c 00 d8 00 cmpw r0,r27 c00000000051fc88: 40 c2 00 10 bne- c00000000051fc98 c00000000051fc8c: 7f 80 f9 2d stwcx. r28,0,r31 c00000000051fc90: 40 c2 ff f0 bne+ c00000000051fc80 c00000000051fc94: 4c 00 01 2c isync Six instructions less. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-17 12:34:57 +08:00
long counter;
} atomic64_t;
#endif
struct list_head {
struct list_head *next, *prev;
};
struct hlist_head {
struct hlist_node *first;
};
struct hlist_node {
struct hlist_node *next, **pprev;
};
struct ustat {
__kernel_daddr_t f_tfree;
__kernel_ino_t f_tinode;
char f_fname[6];
char f_fpack[6];
};
/**
* struct callback_head - callback structure for use with RCU and task_work
* @next: next update requests in a list
* @func: actual update function to call after the grace period.
*
* The struct is aligned to size of pointer. On most architectures it happens
* naturally due ABI requirements, but some architectures (like CRIS) have
* weird ABI and we need to ask it explicitly.
*
* The alignment is required to guarantee that bits 0 and 1 of @next will be
* clear under normal conditions -- as long as we use call_rcu(),
* call_rcu_bh(), call_rcu_sched(), or call_srcu() to queue callback.
*
* This guarantee is important for few reasons:
* - future call_rcu_lazy() will make use of lower bits in the pointer;
* - the structure shares storage spacer in struct page with @compound_head,
* which encode PageTail() in bit 0. The guarantee is needed to avoid
* false-positive PageTail().
*/
struct callback_head {
struct callback_head *next;
void (*func)(struct callback_head *head);
} __attribute__((aligned(sizeof(void *))));
#define rcu_head callback_head
typedef void (*rcu_callback_t)(struct rcu_head *head);
typedef void (*call_rcu_func_t)(struct rcu_head *head, rcu_callback_t func);
/* clocksource cycle base type */
typedef u64 cycle_t;
#endif /* __ASSEMBLY__ */
#endif /* _LINUX_TYPES_H */