License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* Implementation of the extensible bitmap type.
|
|
|
|
*
|
2017-08-18 01:32:36 +08:00
|
|
|
* Author : Stephen Smalley, <sds@tycho.nsa.gov>
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
2006-08-05 14:17:57 +08:00
|
|
|
/*
|
2011-08-01 19:10:33 +08:00
|
|
|
* Updated: Hewlett-Packard <paul@paul-moore.com>
|
2006-08-05 14:17:57 +08:00
|
|
|
*
|
2006-11-30 02:18:18 +08:00
|
|
|
* Added support to import/export the NetLabel category bitmap
|
2006-08-05 14:17:57 +08:00
|
|
|
*
|
|
|
|
* (c) Copyright Hewlett-Packard Development Company, L.P., 2006
|
|
|
|
*/
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
/*
|
|
|
|
* Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
|
|
|
|
* Applied standard bit operations to improve bitmap scanning.
|
|
|
|
*/
|
2006-08-05 14:17:57 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/errno.h>
|
2020-04-17 16:11:56 +08:00
|
|
|
#include <linux/jhash.h>
|
2006-11-30 02:18:18 +08:00
|
|
|
#include <net/netlabel.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include "ebitmap.h"
|
|
|
|
#include "policydb.h"
|
|
|
|
|
2010-10-14 05:50:25 +08:00
|
|
|
#define BITS_PER_U64 (sizeof(u64) * 8)
|
|
|
|
|
2021-01-06 21:26:21 +08:00
|
|
|
static struct kmem_cache *ebitmap_node_cachep __ro_after_init;
|
2017-06-08 12:18:09 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
int ebitmap_cmp(struct ebitmap *e1, struct ebitmap *e2)
|
|
|
|
{
|
|
|
|
struct ebitmap_node *n1, *n2;
|
|
|
|
|
|
|
|
if (e1->highbit != e2->highbit)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
n1 = e1->node;
|
|
|
|
n2 = e2->node;
|
|
|
|
while (n1 && n2 &&
|
|
|
|
(n1->startbit == n2->startbit) &&
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
!memcmp(n1->maps, n2->maps, EBITMAP_SIZE / 8)) {
|
2005-04-17 06:20:36 +08:00
|
|
|
n1 = n1->next;
|
|
|
|
n2 = n2->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (n1 || n2)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ebitmap_cpy(struct ebitmap *dst, struct ebitmap *src)
|
|
|
|
{
|
|
|
|
struct ebitmap_node *n, *new, *prev;
|
|
|
|
|
|
|
|
ebitmap_init(dst);
|
|
|
|
n = src->node;
|
|
|
|
prev = NULL;
|
|
|
|
while (n) {
|
2017-06-08 12:18:09 +08:00
|
|
|
new = kmem_cache_zalloc(ebitmap_node_cachep, GFP_ATOMIC);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (!new) {
|
|
|
|
ebitmap_destroy(dst);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
new->startbit = n->startbit;
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
memcpy(new->maps, n->maps, EBITMAP_SIZE / 8);
|
2005-04-17 06:20:36 +08:00
|
|
|
new->next = NULL;
|
|
|
|
if (prev)
|
|
|
|
prev->next = new;
|
|
|
|
else
|
|
|
|
dst->node = new;
|
|
|
|
prev = new;
|
|
|
|
n = n->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
dst->highbit = src->highbit;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-09-05 05:03:23 +08:00
|
|
|
int ebitmap_and(struct ebitmap *dst, struct ebitmap *e1, struct ebitmap *e2)
|
|
|
|
{
|
|
|
|
struct ebitmap_node *n;
|
|
|
|
int bit, rc;
|
|
|
|
|
|
|
|
ebitmap_init(dst);
|
|
|
|
|
|
|
|
ebitmap_for_each_positive_bit(e1, n, bit) {
|
|
|
|
if (ebitmap_get_bit(e2, bit)) {
|
|
|
|
rc = ebitmap_set_bit(dst, bit, 1);
|
|
|
|
if (rc < 0)
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-11-30 02:18:18 +08:00
|
|
|
#ifdef CONFIG_NETLABEL
|
2006-08-05 14:17:57 +08:00
|
|
|
/**
|
2006-11-30 02:18:18 +08:00
|
|
|
* ebitmap_netlbl_export - Export an ebitmap into a NetLabel category bitmap
|
|
|
|
* @ebmap: the ebitmap to export
|
|
|
|
* @catmap: the NetLabel category bitmap
|
2006-08-05 14:17:57 +08:00
|
|
|
*
|
|
|
|
* Description:
|
2006-11-30 02:18:18 +08:00
|
|
|
* Export a SELinux extensibile bitmap into a NetLabel category bitmap.
|
|
|
|
* Returns zero on success, negative values on error.
|
2006-08-05 14:17:57 +08:00
|
|
|
*
|
|
|
|
*/
|
2006-11-30 02:18:18 +08:00
|
|
|
int ebitmap_netlbl_export(struct ebitmap *ebmap,
|
2014-08-01 23:17:37 +08:00
|
|
|
struct netlbl_lsm_catmap **catmap)
|
2006-08-05 14:17:57 +08:00
|
|
|
{
|
2006-11-30 02:18:18 +08:00
|
|
|
struct ebitmap_node *e_iter = ebmap->node;
|
2014-08-01 23:17:17 +08:00
|
|
|
unsigned long e_map;
|
|
|
|
u32 offset;
|
|
|
|
unsigned int iter;
|
|
|
|
int rc;
|
2006-11-30 02:18:18 +08:00
|
|
|
|
|
|
|
if (e_iter == NULL) {
|
|
|
|
*catmap = NULL;
|
2006-10-12 07:10:48 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-08-01 23:17:17 +08:00
|
|
|
if (*catmap != NULL)
|
2014-08-01 23:17:37 +08:00
|
|
|
netlbl_catmap_free(*catmap);
|
2014-08-01 23:17:17 +08:00
|
|
|
*catmap = NULL;
|
2006-11-30 02:18:18 +08:00
|
|
|
|
2008-08-07 08:18:20 +08:00
|
|
|
while (e_iter) {
|
2014-08-01 23:17:17 +08:00
|
|
|
offset = e_iter->startbit;
|
|
|
|
for (iter = 0; iter < EBITMAP_UNIT_NUMS; iter++) {
|
|
|
|
e_map = e_iter->maps[iter];
|
|
|
|
if (e_map != 0) {
|
2014-08-01 23:17:37 +08:00
|
|
|
rc = netlbl_catmap_setlong(catmap,
|
|
|
|
offset,
|
|
|
|
e_map,
|
|
|
|
GFP_ATOMIC);
|
2014-08-01 23:17:17 +08:00
|
|
|
if (rc != 0)
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
goto netlbl_export_failure;
|
|
|
|
}
|
2014-08-01 23:17:17 +08:00
|
|
|
offset += EBITMAP_UNIT_SIZE;
|
2006-11-30 02:18:18 +08:00
|
|
|
}
|
2007-11-07 00:17:16 +08:00
|
|
|
e_iter = e_iter->next;
|
2006-11-30 02:18:18 +08:00
|
|
|
}
|
2006-08-05 14:17:57 +08:00
|
|
|
|
|
|
|
return 0;
|
2006-11-30 02:18:18 +08:00
|
|
|
|
|
|
|
netlbl_export_failure:
|
2014-08-01 23:17:37 +08:00
|
|
|
netlbl_catmap_free(*catmap);
|
2006-11-30 02:18:18 +08:00
|
|
|
return -ENOMEM;
|
2006-08-05 14:17:57 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2006-11-30 02:18:18 +08:00
|
|
|
* ebitmap_netlbl_import - Import a NetLabel category bitmap into an ebitmap
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
* @ebmap: the ebitmap to import
|
2006-11-30 02:18:18 +08:00
|
|
|
* @catmap: the NetLabel category bitmap
|
2006-08-05 14:17:57 +08:00
|
|
|
*
|
|
|
|
* Description:
|
2006-11-30 02:18:18 +08:00
|
|
|
* Import a NetLabel category bitmap into a SELinux extensibile bitmap.
|
|
|
|
* Returns zero on success, negative values on error.
|
2006-08-05 14:17:57 +08:00
|
|
|
*
|
|
|
|
*/
|
2006-11-30 02:18:18 +08:00
|
|
|
int ebitmap_netlbl_import(struct ebitmap *ebmap,
|
2014-08-01 23:17:37 +08:00
|
|
|
struct netlbl_lsm_catmap *catmap)
|
2006-08-05 14:17:57 +08:00
|
|
|
{
|
2014-08-01 23:17:17 +08:00
|
|
|
int rc;
|
2006-11-30 02:18:18 +08:00
|
|
|
struct ebitmap_node *e_iter = NULL;
|
2014-08-01 23:17:17 +08:00
|
|
|
struct ebitmap_node *e_prev = NULL;
|
|
|
|
u32 offset = 0, idx;
|
|
|
|
unsigned long bitmap;
|
|
|
|
|
|
|
|
for (;;) {
|
2014-08-01 23:17:37 +08:00
|
|
|
rc = netlbl_catmap_getlong(catmap, &offset, &bitmap);
|
2014-08-01 23:17:17 +08:00
|
|
|
if (rc < 0)
|
|
|
|
goto netlbl_import_failure;
|
|
|
|
if (offset == (u32)-1)
|
|
|
|
return 0;
|
|
|
|
|
2015-07-10 02:20:36 +08:00
|
|
|
/* don't waste ebitmap space if the netlabel bitmap is empty */
|
|
|
|
if (bitmap == 0) {
|
|
|
|
offset += EBITMAP_UNIT_SIZE;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2014-08-01 23:17:17 +08:00
|
|
|
if (e_iter == NULL ||
|
|
|
|
offset >= e_iter->startbit + EBITMAP_SIZE) {
|
|
|
|
e_prev = e_iter;
|
2017-06-08 12:18:09 +08:00
|
|
|
e_iter = kmem_cache_zalloc(ebitmap_node_cachep, GFP_ATOMIC);
|
2014-08-01 23:17:17 +08:00
|
|
|
if (e_iter == NULL)
|
|
|
|
goto netlbl_import_failure;
|
2016-06-09 22:40:37 +08:00
|
|
|
e_iter->startbit = offset - (offset % EBITMAP_SIZE);
|
2014-08-01 23:17:17 +08:00
|
|
|
if (e_prev == NULL)
|
|
|
|
ebmap->node = e_iter;
|
|
|
|
else
|
|
|
|
e_prev->next = e_iter;
|
|
|
|
ebmap->highbit = e_iter->startbit + EBITMAP_SIZE;
|
2006-11-30 02:18:18 +08:00
|
|
|
}
|
2006-08-05 14:17:57 +08:00
|
|
|
|
2014-08-01 23:17:17 +08:00
|
|
|
/* offset will always be aligned to an unsigned long */
|
|
|
|
idx = EBITMAP_NODE_INDEX(e_iter, offset);
|
|
|
|
e_iter->maps[idx] = bitmap;
|
|
|
|
|
|
|
|
/* next */
|
|
|
|
offset += EBITMAP_UNIT_SIZE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* NOTE: we should never reach this return */
|
2006-08-05 14:17:57 +08:00
|
|
|
return 0;
|
2006-11-30 02:18:18 +08:00
|
|
|
|
|
|
|
netlbl_import_failure:
|
|
|
|
ebitmap_destroy(ebmap);
|
|
|
|
return -ENOMEM;
|
2006-08-05 14:17:57 +08:00
|
|
|
}
|
2006-11-30 02:18:18 +08:00
|
|
|
#endif /* CONFIG_NETLABEL */
|
2006-08-05 14:17:57 +08:00
|
|
|
|
2013-07-24 05:38:41 +08:00
|
|
|
/*
|
|
|
|
* Check to see if all the bits set in e2 are also set in e1. Optionally,
|
|
|
|
* if last_e2bit is non-zero, the highest set bit in e2 cannot exceed
|
|
|
|
* last_e2bit.
|
|
|
|
*/
|
|
|
|
int ebitmap_contains(struct ebitmap *e1, struct ebitmap *e2, u32 last_e2bit)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
struct ebitmap_node *n1, *n2;
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
int i;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
if (e1->highbit < e2->highbit)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
n1 = e1->node;
|
|
|
|
n2 = e2->node;
|
2013-07-24 05:38:41 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
while (n1 && n2 && (n1->startbit <= n2->startbit)) {
|
|
|
|
if (n1->startbit < n2->startbit) {
|
|
|
|
n1 = n1->next;
|
|
|
|
continue;
|
|
|
|
}
|
2013-07-24 05:38:41 +08:00
|
|
|
for (i = EBITMAP_UNIT_NUMS - 1; (i >= 0) && !n2->maps[i]; )
|
|
|
|
i--; /* Skip trailing NULL map entries */
|
|
|
|
if (last_e2bit && (i >= 0)) {
|
|
|
|
u32 lastsetbit = n2->startbit + i * EBITMAP_UNIT_SIZE +
|
|
|
|
__fls(n2->maps[i]);
|
|
|
|
if (lastsetbit > last_e2bit)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (i >= 0) {
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
if ((n1->maps[i] & n2->maps[i]) != n2->maps[i])
|
|
|
|
return 0;
|
2013-07-24 05:38:41 +08:00
|
|
|
i--;
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
n1 = n1->next;
|
|
|
|
n2 = n2->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (n2)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ebitmap_get_bit(struct ebitmap *e, unsigned long bit)
|
|
|
|
{
|
|
|
|
struct ebitmap_node *n;
|
|
|
|
|
|
|
|
if (e->highbit < bit)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
n = e->node;
|
|
|
|
while (n && (n->startbit <= bit)) {
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
if ((n->startbit + EBITMAP_SIZE) > bit)
|
|
|
|
return ebitmap_node_get_bit(n, bit);
|
2005-04-17 06:20:36 +08:00
|
|
|
n = n->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ebitmap_set_bit(struct ebitmap *e, unsigned long bit, int value)
|
|
|
|
{
|
|
|
|
struct ebitmap_node *n, *prev, *new;
|
|
|
|
|
|
|
|
prev = NULL;
|
|
|
|
n = e->node;
|
|
|
|
while (n && n->startbit <= bit) {
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
if ((n->startbit + EBITMAP_SIZE) > bit) {
|
2005-04-17 06:20:36 +08:00
|
|
|
if (value) {
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
ebitmap_node_set_bit(n, bit);
|
2005-04-17 06:20:36 +08:00
|
|
|
} else {
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
unsigned int s;
|
|
|
|
|
|
|
|
ebitmap_node_clr_bit(n, bit);
|
|
|
|
|
|
|
|
s = find_first_bit(n->maps, EBITMAP_SIZE);
|
|
|
|
if (s < EBITMAP_SIZE)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* drop this node from the bitmap */
|
|
|
|
if (!n->next) {
|
|
|
|
/*
|
|
|
|
* this was the highest map
|
|
|
|
* within the bitmap
|
|
|
|
*/
|
2005-04-17 06:20:36 +08:00
|
|
|
if (prev)
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
e->highbit = prev->startbit
|
|
|
|
+ EBITMAP_SIZE;
|
2005-04-17 06:20:36 +08:00
|
|
|
else
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
e->highbit = 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
if (prev)
|
|
|
|
prev->next = n->next;
|
|
|
|
else
|
|
|
|
e->node = n->next;
|
2017-06-08 12:18:09 +08:00
|
|
|
kmem_cache_free(ebitmap_node_cachep, n);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
prev = n;
|
|
|
|
n = n->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!value)
|
|
|
|
return 0;
|
|
|
|
|
2017-06-08 12:18:09 +08:00
|
|
|
new = kmem_cache_zalloc(ebitmap_node_cachep, GFP_ATOMIC);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (!new)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
new->startbit = bit - (bit % EBITMAP_SIZE);
|
|
|
|
ebitmap_node_set_bit(new, bit);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
if (!n)
|
|
|
|
/* this node will be the highest map within the bitmap */
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
e->highbit = new->startbit + EBITMAP_SIZE;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
if (prev) {
|
|
|
|
new->next = prev->next;
|
|
|
|
prev->next = new;
|
|
|
|
} else {
|
|
|
|
new->next = e->node;
|
|
|
|
e->node = new;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ebitmap_destroy(struct ebitmap *e)
|
|
|
|
{
|
|
|
|
struct ebitmap_node *n, *temp;
|
|
|
|
|
|
|
|
if (!e)
|
|
|
|
return;
|
|
|
|
|
|
|
|
n = e->node;
|
|
|
|
while (n) {
|
|
|
|
temp = n;
|
|
|
|
n = n->next;
|
2017-06-08 12:18:09 +08:00
|
|
|
kmem_cache_free(ebitmap_node_cachep, temp);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
e->highbit = 0;
|
|
|
|
e->node = NULL;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ebitmap_read(struct ebitmap *e, void *fp)
|
|
|
|
{
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
struct ebitmap_node *n = NULL;
|
|
|
|
u32 mapunit, count, startbit, index;
|
2019-05-08 14:21:17 +08:00
|
|
|
__le32 ebitmap_start;
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
u64 map;
|
2019-05-08 14:21:17 +08:00
|
|
|
__le64 mapbits;
|
2005-09-04 06:55:17 +08:00
|
|
|
__le32 buf[3];
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
int rc, i;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
ebitmap_init(e);
|
|
|
|
|
|
|
|
rc = next_entry(buf, fp, sizeof buf);
|
|
|
|
if (rc < 0)
|
|
|
|
goto out;
|
|
|
|
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
mapunit = le32_to_cpu(buf[0]);
|
2005-04-17 06:20:36 +08:00
|
|
|
e->highbit = le32_to_cpu(buf[1]);
|
|
|
|
count = le32_to_cpu(buf[2]);
|
|
|
|
|
2010-10-14 05:50:25 +08:00
|
|
|
if (mapunit != BITS_PER_U64) {
|
2018-06-12 16:09:01 +08:00
|
|
|
pr_err("SELinux: ebitmap: map size %u does not "
|
2017-02-28 06:30:02 +08:00
|
|
|
"match my size %zd (high bit was %d)\n",
|
2010-10-14 05:50:25 +08:00
|
|
|
mapunit, BITS_PER_U64, e->highbit);
|
2005-04-17 06:20:36 +08:00
|
|
|
goto bad;
|
|
|
|
}
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
|
|
|
|
/* round up e->highbit */
|
|
|
|
e->highbit += EBITMAP_SIZE - 1;
|
|
|
|
e->highbit -= (e->highbit % EBITMAP_SIZE);
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
if (!e->highbit) {
|
|
|
|
e->node = NULL;
|
|
|
|
goto ok;
|
|
|
|
}
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
|
2016-08-24 04:49:23 +08:00
|
|
|
if (e->highbit && !count)
|
|
|
|
goto bad;
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
for (i = 0; i < count; i++) {
|
2019-05-08 14:21:17 +08:00
|
|
|
rc = next_entry(&ebitmap_start, fp, sizeof(u32));
|
2005-04-17 06:20:36 +08:00
|
|
|
if (rc < 0) {
|
2018-06-12 16:09:01 +08:00
|
|
|
pr_err("SELinux: ebitmap: truncated map\n");
|
2005-04-17 06:20:36 +08:00
|
|
|
goto bad;
|
|
|
|
}
|
2019-05-08 14:21:17 +08:00
|
|
|
startbit = le32_to_cpu(ebitmap_start);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
if (startbit & (mapunit - 1)) {
|
2018-06-12 16:09:01 +08:00
|
|
|
pr_err("SELinux: ebitmap start bit (%d) is "
|
2007-10-03 22:42:56 +08:00
|
|
|
"not a multiple of the map unit size (%u)\n",
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
startbit, mapunit);
|
|
|
|
goto bad;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
if (startbit > e->highbit - mapunit) {
|
2018-06-12 16:09:01 +08:00
|
|
|
pr_err("SELinux: ebitmap start bit (%d) is "
|
2007-10-03 22:42:56 +08:00
|
|
|
"beyond the end of the bitmap (%u)\n",
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
startbit, (e->highbit - mapunit));
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!n || startbit >= n->startbit + EBITMAP_SIZE) {
|
|
|
|
struct ebitmap_node *tmp;
|
2017-06-08 12:18:09 +08:00
|
|
|
tmp = kmem_cache_zalloc(ebitmap_node_cachep, GFP_KERNEL);
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
if (!tmp) {
|
2018-06-12 16:09:01 +08:00
|
|
|
pr_err("SELinux: ebitmap: out of memory\n");
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
rc = -ENOMEM;
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
/* round down */
|
|
|
|
tmp->startbit = startbit - (startbit % EBITMAP_SIZE);
|
2008-04-19 05:38:30 +08:00
|
|
|
if (n)
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
n->next = tmp;
|
2008-04-19 05:38:30 +08:00
|
|
|
else
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
e->node = tmp;
|
|
|
|
n = tmp;
|
|
|
|
} else if (startbit <= n->startbit) {
|
2018-06-12 16:09:01 +08:00
|
|
|
pr_err("SELinux: ebitmap: start bit %d"
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
" comes after start bit %d\n",
|
|
|
|
startbit, n->startbit);
|
|
|
|
goto bad;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
|
2019-05-08 14:21:17 +08:00
|
|
|
rc = next_entry(&mapbits, fp, sizeof(u64));
|
2005-04-17 06:20:36 +08:00
|
|
|
if (rc < 0) {
|
2018-06-12 16:09:01 +08:00
|
|
|
pr_err("SELinux: ebitmap: truncated map\n");
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
goto bad;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2019-05-08 14:21:17 +08:00
|
|
|
map = le64_to_cpu(mapbits);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
2007-09-29 01:20:55 +08:00
|
|
|
index = (startbit - n->startbit) / EBITMAP_UNIT_SIZE;
|
|
|
|
while (map) {
|
2007-10-03 22:42:56 +08:00
|
|
|
n->maps[index++] = map & (-1UL);
|
|
|
|
map = EBITMAP_SHIFT_UNIT_SIZE(map);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
ok:
|
|
|
|
rc = 0;
|
|
|
|
out:
|
|
|
|
return rc;
|
|
|
|
bad:
|
|
|
|
if (!rc)
|
|
|
|
rc = -EINVAL;
|
|
|
|
ebitmap_destroy(e);
|
|
|
|
goto out;
|
|
|
|
}
|
2010-10-14 05:50:25 +08:00
|
|
|
|
|
|
|
int ebitmap_write(struct ebitmap *e, void *fp)
|
|
|
|
{
|
|
|
|
struct ebitmap_node *n;
|
|
|
|
u32 count;
|
|
|
|
__le32 buf[3];
|
|
|
|
u64 map;
|
|
|
|
int bit, last_bit, last_startbit, rc;
|
|
|
|
|
|
|
|
buf[0] = cpu_to_le32(BITS_PER_U64);
|
|
|
|
|
|
|
|
count = 0;
|
|
|
|
last_bit = 0;
|
|
|
|
last_startbit = -1;
|
|
|
|
ebitmap_for_each_positive_bit(e, n, bit) {
|
|
|
|
if (rounddown(bit, (int)BITS_PER_U64) > last_startbit) {
|
|
|
|
count++;
|
|
|
|
last_startbit = rounddown(bit, BITS_PER_U64);
|
|
|
|
}
|
|
|
|
last_bit = roundup(bit + 1, BITS_PER_U64);
|
|
|
|
}
|
|
|
|
buf[1] = cpu_to_le32(last_bit);
|
|
|
|
buf[2] = cpu_to_le32(count);
|
|
|
|
|
|
|
|
rc = put_entry(buf, sizeof(u32), 3, fp);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
|
|
|
|
map = 0;
|
|
|
|
last_startbit = INT_MIN;
|
|
|
|
ebitmap_for_each_positive_bit(e, n, bit) {
|
|
|
|
if (rounddown(bit, (int)BITS_PER_U64) > last_startbit) {
|
|
|
|
__le64 buf64[1];
|
|
|
|
|
|
|
|
/* this is the very first bit */
|
|
|
|
if (!map) {
|
|
|
|
last_startbit = rounddown(bit, BITS_PER_U64);
|
|
|
|
map = (u64)1 << (bit - last_startbit);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* write the last node */
|
|
|
|
buf[0] = cpu_to_le32(last_startbit);
|
|
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
|
|
|
|
buf64[0] = cpu_to_le64(map);
|
|
|
|
rc = put_entry(buf64, sizeof(u64), 1, fp);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
|
|
|
|
/* set up for the next node */
|
|
|
|
map = 0;
|
|
|
|
last_startbit = rounddown(bit, BITS_PER_U64);
|
|
|
|
}
|
|
|
|
map |= (u64)1 << (bit - last_startbit);
|
|
|
|
}
|
|
|
|
/* write the last node */
|
|
|
|
if (map) {
|
|
|
|
__le64 buf64[1];
|
|
|
|
|
|
|
|
/* write the last node */
|
|
|
|
buf[0] = cpu_to_le32(last_startbit);
|
|
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
|
|
|
|
buf64[0] = cpu_to_le64(map);
|
|
|
|
rc = put_entry(buf64, sizeof(u64), 1, fp);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
2017-06-08 12:18:09 +08:00
|
|
|
|
2020-04-17 16:11:56 +08:00
|
|
|
u32 ebitmap_hash(const struct ebitmap *e, u32 hash)
|
|
|
|
{
|
|
|
|
struct ebitmap_node *node;
|
|
|
|
|
|
|
|
/* need to change hash even if ebitmap is empty */
|
|
|
|
hash = jhash_1word(e->highbit, hash);
|
|
|
|
for (node = e->node; node; node = node->next) {
|
|
|
|
hash = jhash_1word(node->startbit, hash);
|
|
|
|
hash = jhash(node->maps, sizeof(node->maps), hash);
|
|
|
|
}
|
|
|
|
return hash;
|
|
|
|
}
|
|
|
|
|
2018-03-02 07:48:02 +08:00
|
|
|
void __init ebitmap_cache_init(void)
|
2017-06-08 12:18:09 +08:00
|
|
|
{
|
|
|
|
ebitmap_node_cachep = kmem_cache_create("ebitmap_node",
|
|
|
|
sizeof(struct ebitmap_node),
|
|
|
|
0, SLAB_PANIC, NULL);
|
|
|
|
}
|