OpenCloudOS-Kernel/tools/perf/util/util.h

71 lines
1.8 KiB
C
Raw Normal View History

#ifndef GIT_COMPAT_UTIL_H
#define GIT_COMPAT_UTIL_H
#define _BSD_SOURCE 1
/* glibc 2.20 deprecates _BSD_SOURCE in favour of _DEFAULT_SOURCE */
#define _DEFAULT_SOURCE 1
#include <stdbool.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdarg.h>
#include <linux/compiler.h>
#include <linux/types.h>
#include "namespaces.h"
/* General helper functions */
void usage(const char *err) __noreturn;
void die(const char *err, ...) __noreturn __printf(1, 2);
static inline void *zalloc(size_t size)
{
return calloc(1, size);
}
#define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
struct dirent;
struct strlist;
perf record: Introduce a symtab cache Now a cache will be created in a ~/.debug debuginfo like hierarchy, so that at the end of a 'perf record' session all the binaries (with build-ids) involved get collected and indexed by their build-ids, so that perf report can find them. This is interesting when developing software where you want to do a 'perf diff' with the previous build and opens avenues for lots more interesting tools, like a 'perf diff --graph' that takes more than two binaries into account. Tunables for collecting just the symtabs can be added if one doesn't want to have the full binary, but having the full binary allows things like 'perf rerecord' or other tools that can re-run the tests by having access to the exact binary in some perf.data file, so it may well be interesting to keep the full binary there. Space consumption is minimised by trying to use hard links, a 'perf cache' tool to manage the space used, a la ccache is required to purge older entries. With this in place it will be possible also to introduce new commands, 'perf archive' and 'perf restore' (or some more suitable and future proof names) to create a cpio/tar file with the perf data and the files in the cache that _had_ perf hits of interest. There are more aspects to polish, like finding the right vmlinux file to cache, etc, but this is enough for a first step. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> LKML-Reference: <1261957026-15580-10-git-send-email-acme@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-28 07:37:06 +08:00
int mkdir_p(char *path, mode_t mode);
int rm_rf(const char *path);
struct strlist *lsdir(const char *name, bool (*filter)(const char *, struct dirent *));
bool lsdir_no_dot_filter(const char *name, struct dirent *d);
perf record: Introduce a symtab cache Now a cache will be created in a ~/.debug debuginfo like hierarchy, so that at the end of a 'perf record' session all the binaries (with build-ids) involved get collected and indexed by their build-ids, so that perf report can find them. This is interesting when developing software where you want to do a 'perf diff' with the previous build and opens avenues for lots more interesting tools, like a 'perf diff --graph' that takes more than two binaries into account. Tunables for collecting just the symtabs can be added if one doesn't want to have the full binary, but having the full binary allows things like 'perf rerecord' or other tools that can re-run the tests by having access to the exact binary in some perf.data file, so it may well be interesting to keep the full binary there. Space consumption is minimised by trying to use hard links, a 'perf cache' tool to manage the space used, a la ccache is required to purge older entries. With this in place it will be possible also to introduce new commands, 'perf archive' and 'perf restore' (or some more suitable and future proof names) to create a cpio/tar file with the perf data and the files in the cache that _had_ perf hits of interest. There are more aspects to polish, like finding the right vmlinux file to cache, etc, but this is enough for a first step. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> LKML-Reference: <1261957026-15580-10-git-send-email-acme@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-28 07:37:06 +08:00
int copyfile(const char *from, const char *to);
int copyfile_mode(const char *from, const char *to, mode_t mode);
int copyfile_ns(const char *from, const char *to, struct nsinfo *nsi);
perf record: Introduce a symtab cache Now a cache will be created in a ~/.debug debuginfo like hierarchy, so that at the end of a 'perf record' session all the binaries (with build-ids) involved get collected and indexed by their build-ids, so that perf report can find them. This is interesting when developing software where you want to do a 'perf diff' with the previous build and opens avenues for lots more interesting tools, like a 'perf diff --graph' that takes more than two binaries into account. Tunables for collecting just the symtabs can be added if one doesn't want to have the full binary, but having the full binary allows things like 'perf rerecord' or other tools that can re-run the tests by having access to the exact binary in some perf.data file, so it may well be interesting to keep the full binary there. Space consumption is minimised by trying to use hard links, a 'perf cache' tool to manage the space used, a la ccache is required to purge older entries. With this in place it will be possible also to introduce new commands, 'perf archive' and 'perf restore' (or some more suitable and future proof names) to create a cpio/tar file with the perf data and the files in the cache that _had_ perf hits of interest. There are more aspects to polish, like finding the right vmlinux file to cache, etc, but this is enough for a first step. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> LKML-Reference: <1261957026-15580-10-git-send-email-acme@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-28 07:37:06 +08:00
ssize_t readn(int fd, void *buf, size_t n);
ssize_t writen(int fd, const void *buf, size_t n);
size_t hex_width(u64 v);
int hex2u64(const char *ptr, u64 *val);
extern unsigned int page_size;
extern int cacheline_size;
int fetch_kernel_version(unsigned int *puint,
char *str, size_t str_sz);
perf bpf: Improve BPF related error messages A series of bpf loader related error codes were introduced to help error reporting. Functions were improved to return these new error codes. Functions which return pointers were adjusted to encode error codes into return value using the ERR_PTR() interface. bpf_loader_strerror() was improved to convert these error messages to strings. It checks the error codes and calls libbpf_strerror() and strerror_r() accordingly, so caller don't need to consider checking the range of the error code. In bpf__strerror_load(), print kernel version of running kernel and the object's 'version' section to notify user how to fix his/her program. v1 -> v2: Use macro for error code. Fetch error message based on array index, eliminate for-loop. Print version strings. Before: # perf record -e ./test_kversion_nomatch_program.o sleep 1 event syntax error: './test_kversion_nomatch_program.o' \___ Failed to load program: Validate your program and check 'license'/'version' sections in your object SKIP After: # perf record -e ./test_kversion_nomatch_program.o ls event syntax error: './test_kversion_nomatch_program.o' \___ 'version' (4.4.0) doesn't match running kernel (4.3.0) SKIP Signed-off-by: Wang Nan <wangnan0@huawei.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1446818289-87444-1-git-send-email-wangnan0@huawei.com [ Add 'static inline' to bpf__strerror_prepare_load() when LIBBPF is disabled ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-06 21:58:09 +08:00
#define KVER_VERSION(x) (((x) >> 16) & 0xff)
#define KVER_PATCHLEVEL(x) (((x) >> 8) & 0xff)
#define KVER_SUBLEVEL(x) ((x) & 0xff)
#define KVER_FMT "%d.%d.%d"
#define KVER_PARAM(x) KVER_VERSION(x), KVER_PATCHLEVEL(x), KVER_SUBLEVEL(x)
const char *perf_tip(const char *dirpath);
#ifndef HAVE_SCHED_GETCPU_SUPPORT
int sched_getcpu(void);
#endif
#ifndef HAVE_SETNS_SUPPORT
int setns(int fd, int nstype);
#endif
extern bool perf_singlethreaded;
void perf_set_singlethreaded(void);
void perf_set_multithreaded(void);
#endif /* GIT_COMPAT_UTIL_H */