OpenCloudOS-Kernel/drivers/char/stallion.c

5116 lines
131 KiB
C
Raw Normal View History

/*****************************************************************************/
/*
* stallion.c -- stallion multiport serial driver.
*
* Copyright (C) 1996-1999 Stallion Technologies
* Copyright (C) 1994-1996 Greg Ungerer.
*
* This code is loosely based on the Linux serial driver, written by
* Linus Torvalds, Theodore T'so and others.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*****************************************************************************/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/cd1400.h>
#include <linux/sc26198.h>
#include <linux/comstats.h>
#include <linux/stallion.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/smp_lock.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#ifdef CONFIG_PCI
#include <linux/pci.h>
#endif
/*****************************************************************************/
/*
* Define different board types. Use the standard Stallion "assigned"
* board numbers. Boards supported in this driver are abbreviated as
* EIO = EasyIO and ECH = EasyConnection 8/32.
*/
#define BRD_EASYIO 20
#define BRD_ECH 21
#define BRD_ECHMC 22
#define BRD_ECHPCI 26
#define BRD_ECH64PCI 27
#define BRD_EASYIOPCI 28
/*
* Define a configuration structure to hold the board configuration.
* Need to set this up in the code (for now) with the boards that are
* to be configured into the system. This is what needs to be modified
* when adding/removing/modifying boards. Each line entry in the
* stl_brdconf[] array is a board. Each line contains io/irq/memory
* ranges for that board (as well as what type of board it is).
* Some examples:
* { BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },
* This line would configure an EasyIO board (4 or 8, no difference),
* at io address 2a0 and irq 10.
* Another example:
* { BRD_ECH, 0x2a8, 0x280, 0, 12, 0 },
* This line will configure an EasyConnection 8/32 board at primary io
* address 2a8, secondary io address 280 and irq 12.
* Enter as many lines into this array as you want (only the first 4
* will actually be used!). Any combination of EasyIO and EasyConnection
* boards can be specified. EasyConnection 8/32 boards can share their
* secondary io addresses between each other.
*
* NOTE: there is no need to put any entries in this table for PCI
* boards. They will be found automatically by the driver - provided
* PCI BIOS32 support is compiled into the kernel.
*/
typedef struct {
int brdtype;
int ioaddr1;
int ioaddr2;
unsigned long memaddr;
int irq;
int irqtype;
} stlconf_t;
static stlconf_t stl_brdconf[] = {
/*{ BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },*/
};
static int stl_nrbrds = ARRAY_SIZE(stl_brdconf);
/*****************************************************************************/
/*
* Define some important driver characteristics. Device major numbers
* allocated as per Linux Device Registry.
*/
#ifndef STL_SIOMEMMAJOR
#define STL_SIOMEMMAJOR 28
#endif
#ifndef STL_SERIALMAJOR
#define STL_SERIALMAJOR 24
#endif
#ifndef STL_CALLOUTMAJOR
#define STL_CALLOUTMAJOR 25
#endif
/*
* Set the TX buffer size. Bigger is better, but we don't want
* to chew too much memory with buffers!
*/
#define STL_TXBUFLOW 512
#define STL_TXBUFSIZE 4096
/*****************************************************************************/
/*
* Define our local driver identity first. Set up stuff to deal with
* all the local structures required by a serial tty driver.
*/
static char *stl_drvtitle = "Stallion Multiport Serial Driver";
static char *stl_drvname = "stallion";
static char *stl_drvversion = "5.6.0";
static struct tty_driver *stl_serial;
/*
* Define a local default termios struct. All ports will be created
* with this termios initially. Basically all it defines is a raw port
* at 9600, 8 data bits, 1 stop bit.
*/
static struct termios stl_deftermios = {
.c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
.c_cc = INIT_C_CC,
};
/*
* Define global stats structures. Not used often, and can be
* re-used for each stats call.
*/
static comstats_t stl_comstats;
static combrd_t stl_brdstats;
static stlbrd_t stl_dummybrd;
static stlport_t stl_dummyport;
/*
* Define global place to put buffer overflow characters.
*/
static char stl_unwanted[SC26198_RXFIFOSIZE];
/*****************************************************************************/
static stlbrd_t *stl_brds[STL_MAXBRDS];
/*
* Per board state flags. Used with the state field of the board struct.
* Not really much here!
*/
#define BRD_FOUND 0x1
/*
* Define the port structure istate flags. These set of flags are
* modified at interrupt time - so setting and reseting them needs
* to be atomic. Use the bit clear/setting routines for this.
*/
#define ASYI_TXBUSY 1
#define ASYI_TXLOW 2
#define ASYI_DCDCHANGE 3
#define ASYI_TXFLOWED 4
/*
* Define an array of board names as printable strings. Handy for
* referencing boards when printing trace and stuff.
*/
static char *stl_brdnames[] = {
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
"EasyIO",
"EC8/32-AT",
"EC8/32-MC",
(char *) NULL,
(char *) NULL,
(char *) NULL,
"EC8/32-PCI",
"EC8/64-PCI",
"EasyIO-PCI",
};
/*****************************************************************************/
/*
* Define some string labels for arguments passed from the module
* load line. These allow for easy board definitions, and easy
* modification of the io, memory and irq resoucres.
*/
static int stl_nargs = 0;
static char *board0[4];
static char *board1[4];
static char *board2[4];
static char *board3[4];
static char **stl_brdsp[] = {
(char **) &board0,
(char **) &board1,
(char **) &board2,
(char **) &board3
};
/*
* Define a set of common board names, and types. This is used to
* parse any module arguments.
*/
typedef struct stlbrdtype {
char *name;
int type;
} stlbrdtype_t;
static stlbrdtype_t stl_brdstr[] = {
{ "easyio", BRD_EASYIO },
{ "eio", BRD_EASYIO },
{ "20", BRD_EASYIO },
{ "ec8/32", BRD_ECH },
{ "ec8/32-at", BRD_ECH },
{ "ec8/32-isa", BRD_ECH },
{ "ech", BRD_ECH },
{ "echat", BRD_ECH },
{ "21", BRD_ECH },
{ "ec8/32-mc", BRD_ECHMC },
{ "ec8/32-mca", BRD_ECHMC },
{ "echmc", BRD_ECHMC },
{ "echmca", BRD_ECHMC },
{ "22", BRD_ECHMC },
{ "ec8/32-pc", BRD_ECHPCI },
{ "ec8/32-pci", BRD_ECHPCI },
{ "26", BRD_ECHPCI },
{ "ec8/64-pc", BRD_ECH64PCI },
{ "ec8/64-pci", BRD_ECH64PCI },
{ "ech-pci", BRD_ECH64PCI },
{ "echpci", BRD_ECH64PCI },
{ "echpc", BRD_ECH64PCI },
{ "27", BRD_ECH64PCI },
{ "easyio-pc", BRD_EASYIOPCI },
{ "easyio-pci", BRD_EASYIOPCI },
{ "eio-pci", BRD_EASYIOPCI },
{ "eiopci", BRD_EASYIOPCI },
{ "28", BRD_EASYIOPCI },
};
/*
* Define the module agruments.
*/
MODULE_AUTHOR("Greg Ungerer");
MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
MODULE_LICENSE("GPL");
module_param_array(board0, charp, &stl_nargs, 0);
MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
module_param_array(board1, charp, &stl_nargs, 0);
MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
module_param_array(board2, charp, &stl_nargs, 0);
MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
module_param_array(board3, charp, &stl_nargs, 0);
MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
/*****************************************************************************/
/*
* Hardware ID bits for the EasyIO and ECH boards. These defines apply
* to the directly accessible io ports of these boards (not the uarts -
* they are in cd1400.h and sc26198.h).
*/
#define EIO_8PORTRS 0x04
#define EIO_4PORTRS 0x05
#define EIO_8PORTDI 0x00
#define EIO_8PORTM 0x06
#define EIO_MK3 0x03
#define EIO_IDBITMASK 0x07
#define EIO_BRDMASK 0xf0
#define ID_BRD4 0x10
#define ID_BRD8 0x20
#define ID_BRD16 0x30
#define EIO_INTRPEND 0x08
#define EIO_INTEDGE 0x00
#define EIO_INTLEVEL 0x08
#define EIO_0WS 0x10
#define ECH_ID 0xa0
#define ECH_IDBITMASK 0xe0
#define ECH_BRDENABLE 0x08
#define ECH_BRDDISABLE 0x00
#define ECH_INTENABLE 0x01
#define ECH_INTDISABLE 0x00
#define ECH_INTLEVEL 0x02
#define ECH_INTEDGE 0x00
#define ECH_INTRPEND 0x01
#define ECH_BRDRESET 0x01
#define ECHMC_INTENABLE 0x01
#define ECHMC_BRDRESET 0x02
#define ECH_PNLSTATUS 2
#define ECH_PNL16PORT 0x20
#define ECH_PNLIDMASK 0x07
#define ECH_PNLXPID 0x40
#define ECH_PNLINTRPEND 0x80
#define ECH_ADDR2MASK 0x1e0
/*
* Define the vector mapping bits for the programmable interrupt board
* hardware. These bits encode the interrupt for the board to use - it
* is software selectable (except the EIO-8M).
*/
static unsigned char stl_vecmap[] = {
0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
};
/*
* Lock ordering is that you may not take stallion_lock holding
* brd_lock.
*/
static spinlock_t brd_lock; /* Guard the board mapping */
static spinlock_t stallion_lock; /* Guard the tty driver */
/*
* Set up enable and disable macros for the ECH boards. They require
* the secondary io address space to be activated and deactivated.
* This way all ECH boards can share their secondary io region.
* If this is an ECH-PCI board then also need to set the page pointer
* to point to the correct page.
*/
#define BRDENABLE(brdnr,pagenr) \
if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
stl_brds[(brdnr)]->ioctrl); \
else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
outb((pagenr), stl_brds[(brdnr)]->ioctrl);
#define BRDDISABLE(brdnr) \
if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
stl_brds[(brdnr)]->ioctrl);
#define STL_CD1400MAXBAUD 230400
#define STL_SC26198MAXBAUD 460800
#define STL_BAUDBASE 115200
#define STL_CLOSEDELAY (5 * HZ / 10)
/*****************************************************************************/
#ifdef CONFIG_PCI
/*
* Define the Stallion PCI vendor and device IDs.
*/
#ifndef PCI_VENDOR_ID_STALLION
#define PCI_VENDOR_ID_STALLION 0x124d
#endif
#ifndef PCI_DEVICE_ID_ECHPCI832
#define PCI_DEVICE_ID_ECHPCI832 0x0000
#endif
#ifndef PCI_DEVICE_ID_ECHPCI864
#define PCI_DEVICE_ID_ECHPCI864 0x0002
#endif
#ifndef PCI_DEVICE_ID_EIOPCI
#define PCI_DEVICE_ID_EIOPCI 0x0003
#endif
/*
* Define structure to hold all Stallion PCI boards.
*/
typedef struct stlpcibrd {
unsigned short vendid;
unsigned short devid;
int brdtype;
} stlpcibrd_t;
static stlpcibrd_t stl_pcibrds[] = {
{ PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864, BRD_ECH64PCI },
{ PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI, BRD_EASYIOPCI },
{ PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832, BRD_ECHPCI },
{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410, BRD_ECHPCI },
};
static int stl_nrpcibrds = ARRAY_SIZE(stl_pcibrds);
#endif
/*****************************************************************************/
/*
* Define macros to extract a brd/port number from a minor number.
*/
#define MINOR2BRD(min) (((min) & 0xc0) >> 6)
#define MINOR2PORT(min) ((min) & 0x3f)
/*
* Define a baud rate table that converts termios baud rate selector
* into the actual baud rate value. All baud rate calculations are
* based on the actual baud rate required.
*/
static unsigned int stl_baudrates[] = {
0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
};
/*
* Define some handy local macros...
*/
#undef MIN
#define MIN(a,b) (((a) <= (b)) ? (a) : (b))
#undef TOLOWER
#define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
/*****************************************************************************/
/*
* Declare all those functions in this driver!
*/
static void stl_argbrds(void);
static int stl_parsebrd(stlconf_t *confp, char **argp);
static unsigned long stl_atol(char *str);
static int stl_init(void);
static int stl_open(struct tty_struct *tty, struct file *filp);
static void stl_close(struct tty_struct *tty, struct file *filp);
static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count);
static void stl_putchar(struct tty_struct *tty, unsigned char ch);
static void stl_flushchars(struct tty_struct *tty);
static int stl_writeroom(struct tty_struct *tty);
static int stl_charsinbuffer(struct tty_struct *tty);
static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
static void stl_settermios(struct tty_struct *tty, struct termios *old);
static void stl_throttle(struct tty_struct *tty);
static void stl_unthrottle(struct tty_struct *tty);
static void stl_stop(struct tty_struct *tty);
static void stl_start(struct tty_struct *tty);
static void stl_flushbuffer(struct tty_struct *tty);
static void stl_breakctl(struct tty_struct *tty, int state);
static void stl_waituntilsent(struct tty_struct *tty, int timeout);
static void stl_sendxchar(struct tty_struct *tty, char ch);
static void stl_hangup(struct tty_struct *tty);
static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
static int stl_portinfo(stlport_t *portp, int portnr, char *pos);
static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data);
static int stl_brdinit(stlbrd_t *brdp);
static int stl_initports(stlbrd_t *brdp, stlpanel_t *panelp);
static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp);
static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp);
static int stl_getbrdstats(combrd_t __user *bp);
static int stl_getportstats(stlport_t *portp, comstats_t __user *cp);
static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp);
static int stl_getportstruct(stlport_t __user *arg);
static int stl_getbrdstruct(stlbrd_t __user *arg);
static int stl_waitcarrier(stlport_t *portp, struct file *filp);
static int stl_eiointr(stlbrd_t *brdp);
static int stl_echatintr(stlbrd_t *brdp);
static int stl_echmcaintr(stlbrd_t *brdp);
static int stl_echpciintr(stlbrd_t *brdp);
static int stl_echpci64intr(stlbrd_t *brdp);
static void stl_offintr(void *private);
static stlbrd_t *stl_allocbrd(void);
static stlport_t *stl_getport(int brdnr, int panelnr, int portnr);
static inline int stl_initbrds(void);
static inline int stl_initeio(stlbrd_t *brdp);
static inline int stl_initech(stlbrd_t *brdp);
static inline int stl_getbrdnr(void);
#ifdef CONFIG_PCI
static inline int stl_findpcibrds(void);
static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp);
#endif
/*
* CD1400 uart specific handling functions.
*/
static void stl_cd1400setreg(stlport_t *portp, int regnr, int value);
static int stl_cd1400getreg(stlport_t *portp, int regnr);
static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value);
static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp);
static int stl_cd1400getsignals(stlport_t *portp);
static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts);
static void stl_cd1400ccrwait(stlport_t *portp);
static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx);
static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx);
static void stl_cd1400disableintrs(stlport_t *portp);
static void stl_cd1400sendbreak(stlport_t *portp, int len);
static void stl_cd1400flowctrl(stlport_t *portp, int state);
static void stl_cd1400sendflow(stlport_t *portp, int state);
static void stl_cd1400flush(stlport_t *portp);
static int stl_cd1400datastate(stlport_t *portp);
static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase);
static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase);
static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr);
static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr);
static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr);
static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr);
/*
* SC26198 uart specific handling functions.
*/
static void stl_sc26198setreg(stlport_t *portp, int regnr, int value);
static int stl_sc26198getreg(stlport_t *portp, int regnr);
static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value);
static int stl_sc26198getglobreg(stlport_t *portp, int regnr);
static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp);
static int stl_sc26198getsignals(stlport_t *portp);
static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts);
static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx);
static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx);
static void stl_sc26198disableintrs(stlport_t *portp);
static void stl_sc26198sendbreak(stlport_t *portp, int len);
static void stl_sc26198flowctrl(stlport_t *portp, int state);
static void stl_sc26198sendflow(stlport_t *portp, int state);
static void stl_sc26198flush(stlport_t *portp);
static int stl_sc26198datastate(stlport_t *portp);
static void stl_sc26198wait(stlport_t *portp);
static void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty);
static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase);
static void stl_sc26198txisr(stlport_t *port);
static void stl_sc26198rxisr(stlport_t *port, unsigned int iack);
static void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch);
static void stl_sc26198rxbadchars(stlport_t *portp);
static void stl_sc26198otherisr(stlport_t *port, unsigned int iack);
/*****************************************************************************/
/*
* Generic UART support structure.
*/
typedef struct uart {
int (*panelinit)(stlbrd_t *brdp, stlpanel_t *panelp);
void (*portinit)(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
void (*setport)(stlport_t *portp, struct termios *tiosp);
int (*getsignals)(stlport_t *portp);
void (*setsignals)(stlport_t *portp, int dtr, int rts);
void (*enablerxtx)(stlport_t *portp, int rx, int tx);
void (*startrxtx)(stlport_t *portp, int rx, int tx);
void (*disableintrs)(stlport_t *portp);
void (*sendbreak)(stlport_t *portp, int len);
void (*flowctrl)(stlport_t *portp, int state);
void (*sendflow)(stlport_t *portp, int state);
void (*flush)(stlport_t *portp);
int (*datastate)(stlport_t *portp);
void (*intr)(stlpanel_t *panelp, unsigned int iobase);
} uart_t;
/*
* Define some macros to make calling these functions nice and clean.
*/
#define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
#define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
#define stl_setport (* ((uart_t *) portp->uartp)->setport)
#define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
#define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
#define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
#define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
#define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
#define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
#define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
#define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
#define stl_flush (* ((uart_t *) portp->uartp)->flush)
#define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
/*****************************************************************************/
/*
* CD1400 UART specific data initialization.
*/
static uart_t stl_cd1400uart = {
stl_cd1400panelinit,
stl_cd1400portinit,
stl_cd1400setport,
stl_cd1400getsignals,
stl_cd1400setsignals,
stl_cd1400enablerxtx,
stl_cd1400startrxtx,
stl_cd1400disableintrs,
stl_cd1400sendbreak,
stl_cd1400flowctrl,
stl_cd1400sendflow,
stl_cd1400flush,
stl_cd1400datastate,
stl_cd1400eiointr
};
/*
* Define the offsets within the register bank of a cd1400 based panel.
* These io address offsets are common to the EasyIO board as well.
*/
#define EREG_ADDR 0
#define EREG_DATA 4
#define EREG_RXACK 5
#define EREG_TXACK 6
#define EREG_MDACK 7
#define EREG_BANKSIZE 8
#define CD1400_CLK 25000000
#define CD1400_CLK8M 20000000
/*
* Define the cd1400 baud rate clocks. These are used when calculating
* what clock and divisor to use for the required baud rate. Also
* define the maximum baud rate allowed, and the default base baud.
*/
static int stl_cd1400clkdivs[] = {
CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
};
/*****************************************************************************/
/*
* SC26198 UART specific data initization.
*/
static uart_t stl_sc26198uart = {
stl_sc26198panelinit,
stl_sc26198portinit,
stl_sc26198setport,
stl_sc26198getsignals,
stl_sc26198setsignals,
stl_sc26198enablerxtx,
stl_sc26198startrxtx,
stl_sc26198disableintrs,
stl_sc26198sendbreak,
stl_sc26198flowctrl,
stl_sc26198sendflow,
stl_sc26198flush,
stl_sc26198datastate,
stl_sc26198intr
};
/*
* Define the offsets within the register bank of a sc26198 based panel.
*/
#define XP_DATA 0
#define XP_ADDR 1
#define XP_MODID 2
#define XP_STATUS 2
#define XP_IACK 3
#define XP_BANKSIZE 4
/*
* Define the sc26198 baud rate table. Offsets within the table
* represent the actual baud rate selector of sc26198 registers.
*/
static unsigned int sc26198_baudtable[] = {
50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
230400, 460800, 921600
};
#define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
/*****************************************************************************/
/*
* Define the driver info for a user level control device. Used mainly
* to get at port stats - only not using the port device itself.
*/
static const struct file_operations stl_fsiomem = {
.owner = THIS_MODULE,
.ioctl = stl_memioctl,
};
/*****************************************************************************/
static struct class *stallion_class;
/*
* Loadable module initialization stuff.
*/
static int __init stallion_module_init(void)
{
stl_init();
return 0;
}
/*****************************************************************************/
static void __exit stallion_module_exit(void)
{
stlbrd_t *brdp;
stlpanel_t *panelp;
stlport_t *portp;
int i, j, k;
#ifdef DEBUG
printk("cleanup_module()\n");
#endif
printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
stl_drvversion);
/*
* Free up all allocated resources used by the ports. This includes
* memory and interrupts. As part of this process we will also do
* a hangup on every open port - to try to flush out any processes
* hanging onto ports.
*/
i = tty_unregister_driver(stl_serial);
put_tty_driver(stl_serial);
if (i) {
printk("STALLION: failed to un-register tty driver, "
"errno=%d\n", -i);
return;
}
for (i = 0; i < 4; i++)
class_device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
printk("STALLION: failed to un-register serial memory device, "
"errno=%d\n", -i);
class_destroy(stallion_class);
for (i = 0; (i < stl_nrbrds); i++) {
if ((brdp = stl_brds[i]) == (stlbrd_t *) NULL)
continue;
free_irq(brdp->irq, brdp);
for (j = 0; (j < STL_MAXPANELS); j++) {
panelp = brdp->panels[j];
if (panelp == (stlpanel_t *) NULL)
continue;
for (k = 0; (k < STL_PORTSPERPANEL); k++) {
portp = panelp->ports[k];
if (portp == (stlport_t *) NULL)
continue;
if (portp->tty != (struct tty_struct *) NULL)
stl_hangup(portp->tty);
kfree(portp->tx.buf);
kfree(portp);
}
kfree(panelp);
}
release_region(brdp->ioaddr1, brdp->iosize1);
if (brdp->iosize2 > 0)
release_region(brdp->ioaddr2, brdp->iosize2);
kfree(brdp);
stl_brds[i] = (stlbrd_t *) NULL;
}
}
module_init(stallion_module_init);
module_exit(stallion_module_exit);
/*****************************************************************************/
/*
* Check for any arguments passed in on the module load command line.
*/
static void stl_argbrds(void)
{
stlconf_t conf;
stlbrd_t *brdp;
int i;
#ifdef DEBUG
printk("stl_argbrds()\n");
#endif
for (i = stl_nrbrds; (i < stl_nargs); i++) {
memset(&conf, 0, sizeof(conf));
if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
continue;
if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
continue;
stl_nrbrds = i + 1;
brdp->brdnr = i;
brdp->brdtype = conf.brdtype;
brdp->ioaddr1 = conf.ioaddr1;
brdp->ioaddr2 = conf.ioaddr2;
brdp->irq = conf.irq;
brdp->irqtype = conf.irqtype;
stl_brdinit(brdp);
}
}
/*****************************************************************************/
/*
* Convert an ascii string number into an unsigned long.
*/
static unsigned long stl_atol(char *str)
{
unsigned long val;
int base, c;
char *sp;
val = 0;
sp = str;
if ((*sp == '0') && (*(sp+1) == 'x')) {
base = 16;
sp += 2;
} else if (*sp == '0') {
base = 8;
sp++;
} else {
base = 10;
}
for (; (*sp != 0); sp++) {
c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
if ((c < 0) || (c >= base)) {
printk("STALLION: invalid argument %s\n", str);
val = 0;
break;
}
val = (val * base) + c;
}
return val;
}
/*****************************************************************************/
/*
* Parse the supplied argument string, into the board conf struct.
*/
static int stl_parsebrd(stlconf_t *confp, char **argp)
{
char *sp;
int i;
#ifdef DEBUG
printk("stl_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
#endif
if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
return 0;
for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
*sp = TOLOWER(*sp);
for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++) {
if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
break;
}
if (i == ARRAY_SIZE(stl_brdstr)) {
printk("STALLION: unknown board name, %s?\n", argp[0]);
return 0;
}
confp->brdtype = stl_brdstr[i].type;
i = 1;
if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
confp->ioaddr1 = stl_atol(argp[i]);
i++;
if (confp->brdtype == BRD_ECH) {
if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
confp->ioaddr2 = stl_atol(argp[i]);
i++;
}
if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
confp->irq = stl_atol(argp[i]);
return 1;
}
/*****************************************************************************/
/*
* Allocate a new board structure. Fill out the basic info in it.
*/
static stlbrd_t *stl_allocbrd(void)
{
stlbrd_t *brdp;
brdp = kzalloc(sizeof(stlbrd_t), GFP_KERNEL);
if (!brdp) {
printk("STALLION: failed to allocate memory (size=%Zd)\n",
sizeof(stlbrd_t));
return NULL;
}
brdp->magic = STL_BOARDMAGIC;
return brdp;
}
/*****************************************************************************/
static int stl_open(struct tty_struct *tty, struct file *filp)
{
stlport_t *portp;
stlbrd_t *brdp;
unsigned int minordev;
int brdnr, panelnr, portnr, rc;
#ifdef DEBUG
printk("stl_open(tty=%x,filp=%x): device=%s\n", (int) tty,
(int) filp, tty->name);
#endif
minordev = tty->index;
brdnr = MINOR2BRD(minordev);
if (brdnr >= stl_nrbrds)
return -ENODEV;
brdp = stl_brds[brdnr];
if (brdp == (stlbrd_t *) NULL)
return -ENODEV;
minordev = MINOR2PORT(minordev);
for (portnr = -1, panelnr = 0; (panelnr < STL_MAXPANELS); panelnr++) {
if (brdp->panels[panelnr] == (stlpanel_t *) NULL)
break;
if (minordev < brdp->panels[panelnr]->nrports) {
portnr = minordev;
break;
}
minordev -= brdp->panels[panelnr]->nrports;
}
if (portnr < 0)
return -ENODEV;
portp = brdp->panels[panelnr]->ports[portnr];
if (portp == (stlport_t *) NULL)
return -ENODEV;
/*
* On the first open of the device setup the port hardware, and
* initialize the per port data structure.
*/
portp->tty = tty;
tty->driver_data = portp;
portp->refcount++;
if ((portp->flags & ASYNC_INITIALIZED) == 0) {
if (!portp->tx.buf) {
portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
if (!portp->tx.buf)
return -ENOMEM;
portp->tx.head = portp->tx.buf;
portp->tx.tail = portp->tx.buf;
}
stl_setport(portp, tty->termios);
portp->sigs = stl_getsignals(portp);
stl_setsignals(portp, 1, 1);
stl_enablerxtx(portp, 1, 1);
stl_startrxtx(portp, 1, 0);
clear_bit(TTY_IO_ERROR, &tty->flags);
portp->flags |= ASYNC_INITIALIZED;
}
/*
* Check if this port is in the middle of closing. If so then wait
* until it is closed then return error status, based on flag settings.
* The sleep here does not need interrupt protection since the wakeup
* for it is done with the same context.
*/
if (portp->flags & ASYNC_CLOSING) {
interruptible_sleep_on(&portp->close_wait);
if (portp->flags & ASYNC_HUP_NOTIFY)
return -EAGAIN;
return -ERESTARTSYS;
}
/*
* Based on type of open being done check if it can overlap with any
* previous opens still in effect. If we are a normal serial device
* then also we might have to wait for carrier.
*/
if (!(filp->f_flags & O_NONBLOCK)) {
if ((rc = stl_waitcarrier(portp, filp)) != 0)
return rc;
}
portp->flags |= ASYNC_NORMAL_ACTIVE;
return 0;
}
/*****************************************************************************/
/*
* Possibly need to wait for carrier (DCD signal) to come high. Say
* maybe because if we are clocal then we don't need to wait...
*/
static int stl_waitcarrier(stlport_t *portp, struct file *filp)
{
unsigned long flags;
int rc, doclocal;
#ifdef DEBUG
printk("stl_waitcarrier(portp=%x,filp=%x)\n", (int) portp, (int) filp);
#endif
rc = 0;
doclocal = 0;
spin_lock_irqsave(&stallion_lock, flags);
if (portp->tty->termios->c_cflag & CLOCAL)
doclocal++;
portp->openwaitcnt++;
if (! tty_hung_up_p(filp))
portp->refcount--;
for (;;) {
/* Takes brd_lock internally */
stl_setsignals(portp, 1, 1);
if (tty_hung_up_p(filp) ||
((portp->flags & ASYNC_INITIALIZED) == 0)) {
if (portp->flags & ASYNC_HUP_NOTIFY)
rc = -EBUSY;
else
rc = -ERESTARTSYS;
break;
}
if (((portp->flags & ASYNC_CLOSING) == 0) &&
(doclocal || (portp->sigs & TIOCM_CD))) {
break;
}
if (signal_pending(current)) {
rc = -ERESTARTSYS;
break;
}
/* FIXME */
interruptible_sleep_on(&portp->open_wait);
}
if (! tty_hung_up_p(filp))
portp->refcount++;
portp->openwaitcnt--;
spin_unlock_irqrestore(&stallion_lock, flags);
return rc;
}
/*****************************************************************************/
static void stl_close(struct tty_struct *tty, struct file *filp)
{
stlport_t *portp;
unsigned long flags;
#ifdef DEBUG
printk("stl_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
#endif
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return;
spin_lock_irqsave(&stallion_lock, flags);
if (tty_hung_up_p(filp)) {
spin_unlock_irqrestore(&stallion_lock, flags);
return;
}
if ((tty->count == 1) && (portp->refcount != 1))
portp->refcount = 1;
if (portp->refcount-- > 1) {
spin_unlock_irqrestore(&stallion_lock, flags);
return;
}
portp->refcount = 0;
portp->flags |= ASYNC_CLOSING;
/*
* May want to wait for any data to drain before closing. The BUSY
* flag keeps track of whether we are still sending or not - it is
* very accurate for the cd1400, not quite so for the sc26198.
* (The sc26198 has no "end-of-data" interrupt only empty FIFO)
*/
tty->closing = 1;
spin_unlock_irqrestore(&stallion_lock, flags);
if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
tty_wait_until_sent(tty, portp->closing_wait);
stl_waituntilsent(tty, (HZ / 2));
spin_lock_irqsave(&stallion_lock, flags);
portp->flags &= ~ASYNC_INITIALIZED;
spin_unlock_irqrestore(&stallion_lock, flags);
stl_disableintrs(portp);
if (tty->termios->c_cflag & HUPCL)
stl_setsignals(portp, 0, 0);
stl_enablerxtx(portp, 0, 0);
stl_flushbuffer(tty);
portp->istate = 0;
if (portp->tx.buf != (char *) NULL) {
kfree(portp->tx.buf);
portp->tx.buf = (char *) NULL;
portp->tx.head = (char *) NULL;
portp->tx.tail = (char *) NULL;
}
set_bit(TTY_IO_ERROR, &tty->flags);
tty_ldisc_flush(tty);
tty->closing = 0;
portp->tty = (struct tty_struct *) NULL;
if (portp->openwaitcnt) {
if (portp->close_delay)
msleep_interruptible(jiffies_to_msecs(portp->close_delay));
wake_up_interruptible(&portp->open_wait);
}
portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
wake_up_interruptible(&portp->close_wait);
}
/*****************************************************************************/
/*
* Write routine. Take data and stuff it in to the TX ring queue.
* If transmit interrupts are not running then start them.
*/
static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
{
stlport_t *portp;
unsigned int len, stlen;
unsigned char *chbuf;
char *head, *tail;
#ifdef DEBUG
printk("stl_write(tty=%x,buf=%x,count=%d)\n",
(int) tty, (int) buf, count);
#endif
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return 0;
if (portp->tx.buf == (char *) NULL)
return 0;
/*
* If copying direct from user space we must cater for page faults,
* causing us to "sleep" here for a while. To handle this copy in all
* the data we need now, into a local buffer. Then when we got it all
* copy it into the TX buffer.
*/
chbuf = (unsigned char *) buf;
head = portp->tx.head;
tail = portp->tx.tail;
if (head >= tail) {
len = STL_TXBUFSIZE - (head - tail) - 1;
stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
} else {
len = tail - head - 1;
stlen = len;
}
len = MIN(len, count);
count = 0;
while (len > 0) {
stlen = MIN(len, stlen);
memcpy(head, chbuf, stlen);
len -= stlen;
chbuf += stlen;
count += stlen;
head += stlen;
if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
head = portp->tx.buf;
stlen = tail - head;
}
}
portp->tx.head = head;
clear_bit(ASYI_TXLOW, &portp->istate);
stl_startrxtx(portp, -1, 1);
return count;
}
/*****************************************************************************/
static void stl_putchar(struct tty_struct *tty, unsigned char ch)
{
stlport_t *portp;
unsigned int len;
char *head, *tail;
#ifdef DEBUG
printk("stl_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return;
if (portp->tx.buf == (char *) NULL)
return;
head = portp->tx.head;
tail = portp->tx.tail;
len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
len--;
if (len > 0) {
*head++ = ch;
if (head >= (portp->tx.buf + STL_TXBUFSIZE))
head = portp->tx.buf;
}
portp->tx.head = head;
}
/*****************************************************************************/
/*
* If there are any characters in the buffer then make sure that TX
* interrupts are on and get'em out. Normally used after the putchar
* routine has been called.
*/
static void stl_flushchars(struct tty_struct *tty)
{
stlport_t *portp;
#ifdef DEBUG
printk("stl_flushchars(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return;
if (portp->tx.buf == (char *) NULL)
return;
stl_startrxtx(portp, -1, 1);
}
/*****************************************************************************/
static int stl_writeroom(struct tty_struct *tty)
{
stlport_t *portp;
char *head, *tail;
#ifdef DEBUG
printk("stl_writeroom(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return 0;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return 0;
if (portp->tx.buf == (char *) NULL)
return 0;
head = portp->tx.head;
tail = portp->tx.tail;
return ((head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1));
}
/*****************************************************************************/
/*
* Return number of chars in the TX buffer. Normally we would just
* calculate the number of chars in the buffer and return that, but if
* the buffer is empty and TX interrupts are still on then we return
* that the buffer still has 1 char in it. This way whoever called us
* will not think that ALL chars have drained - since the UART still
* must have some chars in it (we are busy after all).
*/
static int stl_charsinbuffer(struct tty_struct *tty)
{
stlport_t *portp;
unsigned int size;
char *head, *tail;
#ifdef DEBUG
printk("stl_charsinbuffer(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return 0;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return 0;
if (portp->tx.buf == (char *) NULL)
return 0;
head = portp->tx.head;
tail = portp->tx.tail;
size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
size = 1;
return size;
}
/*****************************************************************************/
/*
* Generate the serial struct info.
*/
static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp)
{
struct serial_struct sio;
stlbrd_t *brdp;
#ifdef DEBUG
printk("stl_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
#endif
memset(&sio, 0, sizeof(struct serial_struct));
sio.line = portp->portnr;
sio.port = portp->ioaddr;
sio.flags = portp->flags;
sio.baud_base = portp->baud_base;
sio.close_delay = portp->close_delay;
sio.closing_wait = portp->closing_wait;
sio.custom_divisor = portp->custom_divisor;
sio.hub6 = 0;
if (portp->uartp == &stl_cd1400uart) {
sio.type = PORT_CIRRUS;
sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
} else {
sio.type = PORT_UNKNOWN;
sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
}
brdp = stl_brds[portp->brdnr];
if (brdp != (stlbrd_t *) NULL)
sio.irq = brdp->irq;
return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
}
/*****************************************************************************/
/*
* Set port according to the serial struct info.
* At this point we do not do any auto-configure stuff, so we will
* just quietly ignore any requests to change irq, etc.
*/
static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp)
{
struct serial_struct sio;
#ifdef DEBUG
printk("stl_setserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
#endif
if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
return -EFAULT;
if (!capable(CAP_SYS_ADMIN)) {
if ((sio.baud_base != portp->baud_base) ||
(sio.close_delay != portp->close_delay) ||
((sio.flags & ~ASYNC_USR_MASK) !=
(portp->flags & ~ASYNC_USR_MASK)))
return -EPERM;
}
portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
(sio.flags & ASYNC_USR_MASK);
portp->baud_base = sio.baud_base;
portp->close_delay = sio.close_delay;
portp->closing_wait = sio.closing_wait;
portp->custom_divisor = sio.custom_divisor;
stl_setport(portp, portp->tty->termios);
return 0;
}
/*****************************************************************************/
static int stl_tiocmget(struct tty_struct *tty, struct file *file)
{
stlport_t *portp;
if (tty == (struct tty_struct *) NULL)
return -ENODEV;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return -ENODEV;
if (tty->flags & (1 << TTY_IO_ERROR))
return -EIO;
return stl_getsignals(portp);
}
static int stl_tiocmset(struct tty_struct *tty, struct file *file,
unsigned int set, unsigned int clear)
{
stlport_t *portp;
int rts = -1, dtr = -1;
if (tty == (struct tty_struct *) NULL)
return -ENODEV;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return -ENODEV;
if (tty->flags & (1 << TTY_IO_ERROR))
return -EIO;
if (set & TIOCM_RTS)
rts = 1;
if (set & TIOCM_DTR)
dtr = 1;
if (clear & TIOCM_RTS)
rts = 0;
if (clear & TIOCM_DTR)
dtr = 0;
stl_setsignals(portp, dtr, rts);
return 0;
}
static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
{
stlport_t *portp;
unsigned int ival;
int rc;
void __user *argp = (void __user *)arg;
#ifdef DEBUG
printk("stl_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
(int) tty, (int) file, cmd, (int) arg);
#endif
if (tty == (struct tty_struct *) NULL)
return -ENODEV;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return -ENODEV;
if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
(cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
if (tty->flags & (1 << TTY_IO_ERROR))
return -EIO;
}
rc = 0;
switch (cmd) {
case TIOCGSOFTCAR:
rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
(unsigned __user *) argp);
break;
case TIOCSSOFTCAR:
if (get_user(ival, (unsigned int __user *) arg))
return -EFAULT;
tty->termios->c_cflag =
(tty->termios->c_cflag & ~CLOCAL) |
(ival ? CLOCAL : 0);
break;
case TIOCGSERIAL:
rc = stl_getserial(portp, argp);
break;
case TIOCSSERIAL:
rc = stl_setserial(portp, argp);
break;
case COM_GETPORTSTATS:
rc = stl_getportstats(portp, argp);
break;
case COM_CLRPORTSTATS:
rc = stl_clrportstats(portp, argp);
break;
case TIOCSERCONFIG:
case TIOCSERGWILD:
case TIOCSERSWILD:
case TIOCSERGETLSR:
case TIOCSERGSTRUCT:
case TIOCSERGETMULTI:
case TIOCSERSETMULTI:
default:
rc = -ENOIOCTLCMD;
break;
}
return rc;
}
/*****************************************************************************/
static void stl_settermios(struct tty_struct *tty, struct termios *old)
{
stlport_t *portp;
struct termios *tiosp;
#ifdef DEBUG
printk("stl_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return;
tiosp = tty->termios;
if ((tiosp->c_cflag == old->c_cflag) &&
(tiosp->c_iflag == old->c_iflag))
return;
stl_setport(portp, tiosp);
stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
-1);
if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
tty->hw_stopped = 0;
stl_start(tty);
}
if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
wake_up_interruptible(&portp->open_wait);
}
/*****************************************************************************/
/*
* Attempt to flow control who ever is sending us data. Based on termios
* settings use software or/and hardware flow control.
*/
static void stl_throttle(struct tty_struct *tty)
{
stlport_t *portp;
#ifdef DEBUG
printk("stl_throttle(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return;
stl_flowctrl(portp, 0);
}
/*****************************************************************************/
/*
* Unflow control the device sending us data...
*/
static void stl_unthrottle(struct tty_struct *tty)
{
stlport_t *portp;
#ifdef DEBUG
printk("stl_unthrottle(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return;
stl_flowctrl(portp, 1);
}
/*****************************************************************************/
/*
* Stop the transmitter. Basically to do this we will just turn TX
* interrupts off.
*/
static void stl_stop(struct tty_struct *tty)
{
stlport_t *portp;
#ifdef DEBUG
printk("stl_stop(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return;
stl_startrxtx(portp, -1, 0);
}
/*****************************************************************************/
/*
* Start the transmitter again. Just turn TX interrupts back on.
*/
static void stl_start(struct tty_struct *tty)
{
stlport_t *portp;
#ifdef DEBUG
printk("stl_start(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return;
stl_startrxtx(portp, -1, 1);
}
/*****************************************************************************/
/*
* Hangup this port. This is pretty much like closing the port, only
* a little more brutal. No waiting for data to drain. Shutdown the
* port and maybe drop signals.
*/
static void stl_hangup(struct tty_struct *tty)
{
stlport_t *portp;
#ifdef DEBUG
printk("stl_hangup(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return;
portp->flags &= ~ASYNC_INITIALIZED;
stl_disableintrs(portp);
if (tty->termios->c_cflag & HUPCL)
stl_setsignals(portp, 0, 0);
stl_enablerxtx(portp, 0, 0);
stl_flushbuffer(tty);
portp->istate = 0;
set_bit(TTY_IO_ERROR, &tty->flags);
if (portp->tx.buf != (char *) NULL) {
kfree(portp->tx.buf);
portp->tx.buf = (char *) NULL;
portp->tx.head = (char *) NULL;
portp->tx.tail = (char *) NULL;
}
portp->tty = (struct tty_struct *) NULL;
portp->flags &= ~ASYNC_NORMAL_ACTIVE;
portp->refcount = 0;
wake_up_interruptible(&portp->open_wait);
}
/*****************************************************************************/
static void stl_flushbuffer(struct tty_struct *tty)
{
stlport_t *portp;
#ifdef DEBUG
printk("stl_flushbuffer(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return;
stl_flush(portp);
tty_wakeup(tty);
}
/*****************************************************************************/
static void stl_breakctl(struct tty_struct *tty, int state)
{
stlport_t *portp;
#ifdef DEBUG
printk("stl_breakctl(tty=%x,state=%d)\n", (int) tty, state);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return;
stl_sendbreak(portp, ((state == -1) ? 1 : 2));
}
/*****************************************************************************/
static void stl_waituntilsent(struct tty_struct *tty, int timeout)
{
stlport_t *portp;
unsigned long tend;
#ifdef DEBUG
printk("stl_waituntilsent(tty=%x,timeout=%d)\n", (int) tty, timeout);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return;
if (timeout == 0)
timeout = HZ;
tend = jiffies + timeout;
while (stl_datastate(portp)) {
if (signal_pending(current))
break;
msleep_interruptible(20);
if (time_after_eq(jiffies, tend))
break;
}
}
/*****************************************************************************/
static void stl_sendxchar(struct tty_struct *tty, char ch)
{
stlport_t *portp;
#ifdef DEBUG
printk("stl_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stlport_t *) NULL)
return;
if (ch == STOP_CHAR(tty))
stl_sendflow(portp, 0);
else if (ch == START_CHAR(tty))
stl_sendflow(portp, 1);
else
stl_putchar(tty, ch);
}
/*****************************************************************************/
#define MAXLINE 80
/*
* Format info for a specified port. The line is deliberately limited
* to 80 characters. (If it is too long it will be truncated, if too
* short then padded with spaces).
*/
static int stl_portinfo(stlport_t *portp, int portnr, char *pos)
{
char *sp;
int sigs, cnt;
sp = pos;
sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
(int) portp->stats.txtotal, (int) portp->stats.rxtotal);
if (portp->stats.rxframing)
sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
if (portp->stats.rxparity)
sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
if (portp->stats.rxbreaks)
sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
if (portp->stats.rxoverrun)
sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
sigs = stl_getsignals(portp);
cnt = sprintf(sp, "%s%s%s%s%s ",
(sigs & TIOCM_RTS) ? "|RTS" : "",
(sigs & TIOCM_CTS) ? "|CTS" : "",
(sigs & TIOCM_DTR) ? "|DTR" : "",
(sigs & TIOCM_CD) ? "|DCD" : "",
(sigs & TIOCM_DSR) ? "|DSR" : "");
*sp = ' ';
sp += cnt;
for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
*sp++ = ' ';
if (cnt >= MAXLINE)
pos[(MAXLINE - 2)] = '+';
pos[(MAXLINE - 1)] = '\n';
return MAXLINE;
}
/*****************************************************************************/
/*
* Port info, read from the /proc file system.
*/
static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
{
stlbrd_t *brdp;
stlpanel_t *panelp;
stlport_t *portp;
int brdnr, panelnr, portnr, totalport;
int curoff, maxoff;
char *pos;
#ifdef DEBUG
printk("stl_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
"data=%x\n", (int) page, (int) start, (int) off, count,
(int) eof, (int) data);
#endif
pos = page;
totalport = 0;
curoff = 0;
if (off == 0) {
pos += sprintf(pos, "%s: version %s", stl_drvtitle,
stl_drvversion);
while (pos < (page + MAXLINE - 1))
*pos++ = ' ';
*pos++ = '\n';
}
curoff = MAXLINE;
/*
* We scan through for each board, panel and port. The offset is
* calculated on the fly, and irrelevant ports are skipped.
*/
for (brdnr = 0; (brdnr < stl_nrbrds); brdnr++) {
brdp = stl_brds[brdnr];
if (brdp == (stlbrd_t *) NULL)
continue;
if (brdp->state == 0)
continue;
maxoff = curoff + (brdp->nrports * MAXLINE);
if (off >= maxoff) {
curoff = maxoff;
continue;
}
totalport = brdnr * STL_MAXPORTS;
for (panelnr = 0; (panelnr < brdp->nrpanels); panelnr++) {
panelp = brdp->panels[panelnr];
if (panelp == (stlpanel_t *) NULL)
continue;
maxoff = curoff + (panelp->nrports * MAXLINE);
if (off >= maxoff) {
curoff = maxoff;
totalport += panelp->nrports;
continue;
}
for (portnr = 0; (portnr < panelp->nrports); portnr++,
totalport++) {
portp = panelp->ports[portnr];
if (portp == (stlport_t *) NULL)
continue;
if (off >= (curoff += MAXLINE))
continue;
if ((pos - page + MAXLINE) > count)
goto stl_readdone;
pos += stl_portinfo(portp, totalport, pos);
}
}
}
*eof = 1;
stl_readdone:
*start = page;
return (pos - page);
}
/*****************************************************************************/
/*
* All board interrupts are vectored through here first. This code then
* calls off to the approrpriate board interrupt handlers.
*/
static irqreturn_t stl_intr(int irq, void *dev_id, struct pt_regs *regs)
{
stlbrd_t *brdp = (stlbrd_t *) dev_id;
#ifdef DEBUG
printk("stl_intr(brdp=%x,irq=%d,regs=%x)\n", (int) brdp, irq,
(int) regs);
#endif
return IRQ_RETVAL((* brdp->isr)(brdp));
}
/*****************************************************************************/
/*
* Interrupt service routine for EasyIO board types.
*/
static int stl_eiointr(stlbrd_t *brdp)
{
stlpanel_t *panelp;
unsigned int iobase;
int handled = 0;
spin_lock(&brd_lock);
panelp = brdp->panels[0];
iobase = panelp->iobase;
while (inb(brdp->iostatus) & EIO_INTRPEND) {
handled = 1;
(* panelp->isr)(panelp, iobase);
}
spin_unlock(&brd_lock);
return handled;
}
/*****************************************************************************/
/*
* Interrupt service routine for ECH-AT board types.
*/
static int stl_echatintr(stlbrd_t *brdp)
{
stlpanel_t *panelp;
unsigned int ioaddr;
int bnknr;
int handled = 0;
outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
while (inb(brdp->iostatus) & ECH_INTRPEND) {
handled = 1;
for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
ioaddr = brdp->bnkstataddr[bnknr];
if (inb(ioaddr) & ECH_PNLINTRPEND) {
panelp = brdp->bnk2panel[bnknr];
(* panelp->isr)(panelp, (ioaddr & 0xfffc));
}
}
}
outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
return handled;
}
/*****************************************************************************/
/*
* Interrupt service routine for ECH-MCA board types.
*/
static int stl_echmcaintr(stlbrd_t *brdp)
{
stlpanel_t *panelp;
unsigned int ioaddr;
int bnknr;
int handled = 0;
while (inb(brdp->iostatus) & ECH_INTRPEND) {
handled = 1;
for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
ioaddr = brdp->bnkstataddr[bnknr];
if (inb(ioaddr) & ECH_PNLINTRPEND) {
panelp = brdp->bnk2panel[bnknr];
(* panelp->isr)(panelp, (ioaddr & 0xfffc));
}
}
}
return handled;
}
/*****************************************************************************/
/*
* Interrupt service routine for ECH-PCI board types.
*/
static int stl_echpciintr(stlbrd_t *brdp)
{
stlpanel_t *panelp;
unsigned int ioaddr;
int bnknr, recheck;
int handled = 0;
while (1) {
recheck = 0;
for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
ioaddr = brdp->bnkstataddr[bnknr];
if (inb(ioaddr) & ECH_PNLINTRPEND) {
panelp = brdp->bnk2panel[bnknr];
(* panelp->isr)(panelp, (ioaddr & 0xfffc));
recheck++;
handled = 1;
}
}
if (! recheck)
break;
}
return handled;
}
/*****************************************************************************/
/*
* Interrupt service routine for ECH-8/64-PCI board types.
*/
static int stl_echpci64intr(stlbrd_t *brdp)
{
stlpanel_t *panelp;
unsigned int ioaddr;
int bnknr;
int handled = 0;
while (inb(brdp->ioctrl) & 0x1) {
handled = 1;
for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
ioaddr = brdp->bnkstataddr[bnknr];
if (inb(ioaddr) & ECH_PNLINTRPEND) {
panelp = brdp->bnk2panel[bnknr];
(* panelp->isr)(panelp, (ioaddr & 0xfffc));
}
}
}
return handled;
}
/*****************************************************************************/
/*
* Service an off-level request for some channel.
*/
static void stl_offintr(void *private)
{
stlport_t *portp;
struct tty_struct *tty;
unsigned int oldsigs;
portp = private;
#ifdef DEBUG
printk("stl_offintr(portp=%x)\n", (int) portp);
#endif
if (portp == (stlport_t *) NULL)
return;
tty = portp->tty;
if (tty == (struct tty_struct *) NULL)
return;
lock_kernel();
if (test_bit(ASYI_TXLOW, &portp->istate)) {
tty_wakeup(tty);
}
if (test_bit(ASYI_DCDCHANGE, &portp->istate)) {
clear_bit(ASYI_DCDCHANGE, &portp->istate);
oldsigs = portp->sigs;
portp->sigs = stl_getsignals(portp);
if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
wake_up_interruptible(&portp->open_wait);
if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0)) {
if (portp->flags & ASYNC_CHECK_CD)
tty_hangup(tty); /* FIXME: module removal race here - AKPM */
}
}
unlock_kernel();
}
/*****************************************************************************/
/*
* Initialize all the ports on a panel.
*/
static int __init stl_initports(stlbrd_t *brdp, stlpanel_t *panelp)
{
stlport_t *portp;
int chipmask, i;
#ifdef DEBUG
printk("stl_initports(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
#endif
chipmask = stl_panelinit(brdp, panelp);
/*
* All UART's are initialized (if found!). Now go through and setup
* each ports data structures.
*/
for (i = 0; (i < panelp->nrports); i++) {
portp = kzalloc(sizeof(stlport_t), GFP_KERNEL);
if (!portp) {
printk("STALLION: failed to allocate memory "
"(size=%Zd)\n", sizeof(stlport_t));
break;
}
portp->magic = STL_PORTMAGIC;
portp->portnr = i;
portp->brdnr = panelp->brdnr;
portp->panelnr = panelp->panelnr;
portp->uartp = panelp->uartp;
portp->clk = brdp->clk;
portp->baud_base = STL_BAUDBASE;
portp->close_delay = STL_CLOSEDELAY;
portp->closing_wait = 30 * HZ;
INIT_WORK(&portp->tqueue, stl_offintr, portp);
init_waitqueue_head(&portp->open_wait);
init_waitqueue_head(&portp->close_wait);
portp->stats.brd = portp->brdnr;
portp->stats.panel = portp->panelnr;
portp->stats.port = portp->portnr;
panelp->ports[i] = portp;
stl_portinit(brdp, panelp, portp);
}
return(0);
}
/*****************************************************************************/
/*
* Try to find and initialize an EasyIO board.
*/
static inline int stl_initeio(stlbrd_t *brdp)
{
stlpanel_t *panelp;
unsigned int status;
char *name;
int rc;
#ifdef DEBUG
printk("stl_initeio(brdp=%x)\n", (int) brdp);
#endif
brdp->ioctrl = brdp->ioaddr1 + 1;
brdp->iostatus = brdp->ioaddr1 + 2;
status = inb(brdp->iostatus);
if ((status & EIO_IDBITMASK) == EIO_MK3)
brdp->ioctrl++;
/*
* Handle board specific stuff now. The real difference is PCI
* or not PCI.
*/
if (brdp->brdtype == BRD_EASYIOPCI) {
brdp->iosize1 = 0x80;
brdp->iosize2 = 0x80;
name = "serial(EIO-PCI)";
outb(0x41, (brdp->ioaddr2 + 0x4c));
} else {
brdp->iosize1 = 8;
name = "serial(EIO)";
if ((brdp->irq < 0) || (brdp->irq > 15) ||
(stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
printk("STALLION: invalid irq=%d for brd=%d\n",
brdp->irq, brdp->brdnr);
return(-EINVAL);
}
outb((stl_vecmap[brdp->irq] | EIO_0WS |
((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
brdp->ioctrl);
}
if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
"%x conflicts with another device\n", brdp->brdnr,
brdp->ioaddr1);
return(-EBUSY);
}
if (brdp->iosize2 > 0)
if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
printk(KERN_WARNING "STALLION: Warning, board %d I/O "
"address %x conflicts with another device\n",
brdp->brdnr, brdp->ioaddr2);
printk(KERN_WARNING "STALLION: Warning, also "
"releasing board %d I/O address %x \n",
brdp->brdnr, brdp->ioaddr1);
release_region(brdp->ioaddr1, brdp->iosize1);
return(-EBUSY);
}
/*
* Everything looks OK, so let's go ahead and probe for the hardware.
*/
brdp->clk = CD1400_CLK;
brdp->isr = stl_eiointr;
switch (status & EIO_IDBITMASK) {
case EIO_8PORTM:
brdp->clk = CD1400_CLK8M;
/* fall thru */
case EIO_8PORTRS:
case EIO_8PORTDI:
brdp->nrports = 8;
break;
case EIO_4PORTRS:
brdp->nrports = 4;
break;
case EIO_MK3:
switch (status & EIO_BRDMASK) {
case ID_BRD4:
brdp->nrports = 4;
break;
case ID_BRD8:
brdp->nrports = 8;
break;
case ID_BRD16:
brdp->nrports = 16;
break;
default:
return(-ENODEV);
}
break;
default:
return(-ENODEV);
}
/*
* We have verified that the board is actually present, so now we
* can complete the setup.
*/
panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
if (!panelp) {
printk(KERN_WARNING "STALLION: failed to allocate memory "
"(size=%Zd)\n", sizeof(stlpanel_t));
return -ENOMEM;
}
panelp->magic = STL_PANELMAGIC;
panelp->brdnr = brdp->brdnr;
panelp->panelnr = 0;
panelp->nrports = brdp->nrports;
panelp->iobase = brdp->ioaddr1;
panelp->hwid = status;
if ((status & EIO_IDBITMASK) == EIO_MK3) {
panelp->uartp = (void *) &stl_sc26198uart;
panelp->isr = stl_sc26198intr;
} else {
panelp->uartp = (void *) &stl_cd1400uart;
panelp->isr = stl_cd1400eiointr;
}
brdp->panels[0] = panelp;
brdp->nrpanels = 1;
brdp->state |= BRD_FOUND;
brdp->hwid = status;
if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
printk("STALLION: failed to register interrupt "
"routine for %s irq=%d\n", name, brdp->irq);
rc = -ENODEV;
} else {
rc = 0;
}
return rc;
}
/*****************************************************************************/
/*
* Try to find an ECH board and initialize it. This code is capable of
* dealing with all types of ECH board.
*/
static inline int stl_initech(stlbrd_t *brdp)
{
stlpanel_t *panelp;
unsigned int status, nxtid, ioaddr, conflict;
int panelnr, banknr, i;
char *name;
#ifdef DEBUG
printk("stl_initech(brdp=%x)\n", (int) brdp);
#endif
status = 0;
conflict = 0;
/*
* Set up the initial board register contents for boards. This varies a
* bit between the different board types. So we need to handle each
* separately. Also do a check that the supplied IRQ is good.
*/
switch (brdp->brdtype) {
case BRD_ECH:
brdp->isr = stl_echatintr;
brdp->ioctrl = brdp->ioaddr1 + 1;
brdp->iostatus = brdp->ioaddr1 + 1;
status = inb(brdp->iostatus);
if ((status & ECH_IDBITMASK) != ECH_ID)
return(-ENODEV);
if ((brdp->irq < 0) || (brdp->irq > 15) ||
(stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
printk("STALLION: invalid irq=%d for brd=%d\n",
brdp->irq, brdp->brdnr);
return(-EINVAL);
}
status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
status |= (stl_vecmap[brdp->irq] << 1);
outb((status | ECH_BRDRESET), brdp->ioaddr1);
brdp->ioctrlval = ECH_INTENABLE |
((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
for (i = 0; (i < 10); i++)
outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
brdp->iosize1 = 2;
brdp->iosize2 = 32;
name = "serial(EC8/32)";
outb(status, brdp->ioaddr1);
break;
case BRD_ECHMC:
brdp->isr = stl_echmcaintr;
brdp->ioctrl = brdp->ioaddr1 + 0x20;
brdp->iostatus = brdp->ioctrl;
status = inb(brdp->iostatus);
if ((status & ECH_IDBITMASK) != ECH_ID)
return(-ENODEV);
if ((brdp->irq < 0) || (brdp->irq > 15) ||
(stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
printk("STALLION: invalid irq=%d for brd=%d\n",
brdp->irq, brdp->brdnr);
return(-EINVAL);
}
outb(ECHMC_BRDRESET, brdp->ioctrl);
outb(ECHMC_INTENABLE, brdp->ioctrl);
brdp->iosize1 = 64;
name = "serial(EC8/32-MC)";
break;
case BRD_ECHPCI:
brdp->isr = stl_echpciintr;
brdp->ioctrl = brdp->ioaddr1 + 2;
brdp->iosize1 = 4;
brdp->iosize2 = 8;
name = "serial(EC8/32-PCI)";
break;
case BRD_ECH64PCI:
brdp->isr = stl_echpci64intr;
brdp->ioctrl = brdp->ioaddr2 + 0x40;
outb(0x43, (brdp->ioaddr1 + 0x4c));
brdp->iosize1 = 0x80;
brdp->iosize2 = 0x80;
name = "serial(EC8/64-PCI)";
break;
default:
printk("STALLION: unknown board type=%d\n", brdp->brdtype);
return(-EINVAL);
break;
}
/*
* Check boards for possible IO address conflicts and return fail status
* if an IO conflict found.
*/
if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
"%x conflicts with another device\n", brdp->brdnr,
brdp->ioaddr1);
return(-EBUSY);
}
if (brdp->iosize2 > 0)
if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
printk(KERN_WARNING "STALLION: Warning, board %d I/O "
"address %x conflicts with another device\n",
brdp->brdnr, brdp->ioaddr2);
printk(KERN_WARNING "STALLION: Warning, also "
"releasing board %d I/O address %x \n",
brdp->brdnr, brdp->ioaddr1);
release_region(brdp->ioaddr1, brdp->iosize1);
return(-EBUSY);
}
/*
* Scan through the secondary io address space looking for panels.
* As we find'em allocate and initialize panel structures for each.
*/
brdp->clk = CD1400_CLK;
brdp->hwid = status;
ioaddr = brdp->ioaddr2;
banknr = 0;
panelnr = 0;
nxtid = 0;
for (i = 0; (i < STL_MAXPANELS); i++) {
if (brdp->brdtype == BRD_ECHPCI) {
outb(nxtid, brdp->ioctrl);
ioaddr = brdp->ioaddr2;
}
status = inb(ioaddr + ECH_PNLSTATUS);
if ((status & ECH_PNLIDMASK) != nxtid)
break;
panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
if (!panelp) {
printk("STALLION: failed to allocate memory "
"(size=%Zd)\n", sizeof(stlpanel_t));
break;
}
panelp->magic = STL_PANELMAGIC;
panelp->brdnr = brdp->brdnr;
panelp->panelnr = panelnr;
panelp->iobase = ioaddr;
panelp->pagenr = nxtid;
panelp->hwid = status;
brdp->bnk2panel[banknr] = panelp;
brdp->bnkpageaddr[banknr] = nxtid;
brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
if (status & ECH_PNLXPID) {
panelp->uartp = (void *) &stl_sc26198uart;
panelp->isr = stl_sc26198intr;
if (status & ECH_PNL16PORT) {
panelp->nrports = 16;
brdp->bnk2panel[banknr] = panelp;
brdp->bnkpageaddr[banknr] = nxtid;
brdp->bnkstataddr[banknr++] = ioaddr + 4 +
ECH_PNLSTATUS;
} else {
panelp->nrports = 8;
}
} else {
panelp->uartp = (void *) &stl_cd1400uart;
panelp->isr = stl_cd1400echintr;
if (status & ECH_PNL16PORT) {
panelp->nrports = 16;
panelp->ackmask = 0x80;
if (brdp->brdtype != BRD_ECHPCI)
ioaddr += EREG_BANKSIZE;
brdp->bnk2panel[banknr] = panelp;
brdp->bnkpageaddr[banknr] = ++nxtid;
brdp->bnkstataddr[banknr++] = ioaddr +
ECH_PNLSTATUS;
} else {
panelp->nrports = 8;
panelp->ackmask = 0xc0;
}
}
nxtid++;
ioaddr += EREG_BANKSIZE;
brdp->nrports += panelp->nrports;
brdp->panels[panelnr++] = panelp;
if ((brdp->brdtype != BRD_ECHPCI) &&
(ioaddr >= (brdp->ioaddr2 + brdp->iosize2)))
break;
}
brdp->nrpanels = panelnr;
brdp->nrbnks = banknr;
if (brdp->brdtype == BRD_ECH)
outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
brdp->state |= BRD_FOUND;
if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
printk("STALLION: failed to register interrupt "
"routine for %s irq=%d\n", name, brdp->irq);
i = -ENODEV;
} else {
i = 0;
}
return(i);
}
/*****************************************************************************/
/*
* Initialize and configure the specified board.
* Scan through all the boards in the configuration and see what we
* can find. Handle EIO and the ECH boards a little differently here
* since the initial search and setup is very different.
*/
static int __init stl_brdinit(stlbrd_t *brdp)
{
int i;
#ifdef DEBUG
printk("stl_brdinit(brdp=%x)\n", (int) brdp);
#endif
switch (brdp->brdtype) {
case BRD_EASYIO:
case BRD_EASYIOPCI:
stl_initeio(brdp);
break;
case BRD_ECH:
case BRD_ECHMC:
case BRD_ECHPCI:
case BRD_ECH64PCI:
stl_initech(brdp);
break;
default:
printk("STALLION: board=%d is unknown board type=%d\n",
brdp->brdnr, brdp->brdtype);
return(ENODEV);
}
stl_brds[brdp->brdnr] = brdp;
if ((brdp->state & BRD_FOUND) == 0) {
printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
stl_brdnames[brdp->brdtype], brdp->brdnr,
brdp->ioaddr1, brdp->irq);
return(ENODEV);
}
for (i = 0; (i < STL_MAXPANELS); i++)
if (brdp->panels[i] != (stlpanel_t *) NULL)
stl_initports(brdp, brdp->panels[i]);
printk("STALLION: %s found, board=%d io=%x irq=%d "
"nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
brdp->nrports);
return(0);
}
/*****************************************************************************/
/*
* Find the next available board number that is free.
*/
static inline int stl_getbrdnr(void)
{
int i;
for (i = 0; (i < STL_MAXBRDS); i++) {
if (stl_brds[i] == (stlbrd_t *) NULL) {
if (i >= stl_nrbrds)
stl_nrbrds = i + 1;
return(i);
}
}
return(-1);
}
/*****************************************************************************/
#ifdef CONFIG_PCI
/*
* We have a Stallion board. Allocate a board structure and
* initialize it. Read its IO and IRQ resources from PCI
* configuration space.
*/
static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp)
{
stlbrd_t *brdp;
#ifdef DEBUG
printk("stl_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n", brdtype,
devp->bus->number, devp->devfn);
#endif
if (pci_enable_device(devp))
return(-EIO);
if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
return(-ENOMEM);
if ((brdp->brdnr = stl_getbrdnr()) < 0) {
printk("STALLION: too many boards found, "
"maximum supported %d\n", STL_MAXBRDS);
return(0);
}
brdp->brdtype = brdtype;
/*
* Different Stallion boards use the BAR registers in different ways,
* so set up io addresses based on board type.
*/
#ifdef DEBUG
printk("%s(%d): BAR[]=%x,%x,%x,%x IRQ=%x\n", __FILE__, __LINE__,
pci_resource_start(devp, 0), pci_resource_start(devp, 1),
pci_resource_start(devp, 2), pci_resource_start(devp, 3), devp->irq);
#endif
/*
* We have all resources from the board, so let's setup the actual
* board structure now.
*/
switch (brdtype) {
case BRD_ECHPCI:
brdp->ioaddr2 = pci_resource_start(devp, 0);
brdp->ioaddr1 = pci_resource_start(devp, 1);
break;
case BRD_ECH64PCI:
brdp->ioaddr2 = pci_resource_start(devp, 2);
brdp->ioaddr1 = pci_resource_start(devp, 1);
break;
case BRD_EASYIOPCI:
brdp->ioaddr1 = pci_resource_start(devp, 2);
brdp->ioaddr2 = pci_resource_start(devp, 1);
break;
default:
printk("STALLION: unknown PCI board type=%d\n", brdtype);
break;
}
brdp->irq = devp->irq;
stl_brdinit(brdp);
return(0);
}
/*****************************************************************************/
/*
* Find all Stallion PCI boards that might be installed. Initialize each
* one as it is found.
*/
static inline int stl_findpcibrds(void)
{
struct pci_dev *dev = NULL;
int i, rc;
#ifdef DEBUG
printk("stl_findpcibrds()\n");
#endif
for (i = 0; (i < stl_nrpcibrds); i++)
while ((dev = pci_find_device(stl_pcibrds[i].vendid,
stl_pcibrds[i].devid, dev))) {
/*
* Found a device on the PCI bus that has our vendor and
* device ID. Need to check now that it is really us.
*/
if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
continue;
rc = stl_initpcibrd(stl_pcibrds[i].brdtype, dev);
if (rc)
return(rc);
}
return(0);
}
#endif
/*****************************************************************************/
/*
* Scan through all the boards in the configuration and see what we
* can find. Handle EIO and the ECH boards a little differently here
* since the initial search and setup is too different.
*/
static inline int stl_initbrds(void)
{
stlbrd_t *brdp;
stlconf_t *confp;
int i;
#ifdef DEBUG
printk("stl_initbrds()\n");
#endif
if (stl_nrbrds > STL_MAXBRDS) {
printk("STALLION: too many boards in configuration table, "
"truncating to %d\n", STL_MAXBRDS);
stl_nrbrds = STL_MAXBRDS;
}
/*
* Firstly scan the list of static boards configured. Allocate
* resources and initialize the boards as found.
*/
for (i = 0; (i < stl_nrbrds); i++) {
confp = &stl_brdconf[i];
stl_parsebrd(confp, stl_brdsp[i]);
if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
return(-ENOMEM);
brdp->brdnr = i;
brdp->brdtype = confp->brdtype;
brdp->ioaddr1 = confp->ioaddr1;
brdp->ioaddr2 = confp->ioaddr2;
brdp->irq = confp->irq;
brdp->irqtype = confp->irqtype;
stl_brdinit(brdp);
}
/*
* Find any dynamically supported boards. That is via module load
* line options or auto-detected on the PCI bus.
*/
stl_argbrds();
#ifdef CONFIG_PCI
stl_findpcibrds();
#endif
return(0);
}
/*****************************************************************************/
/*
* Return the board stats structure to user app.
*/
static int stl_getbrdstats(combrd_t __user *bp)
{
stlbrd_t *brdp;
stlpanel_t *panelp;
int i;
if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
return -EFAULT;
if (stl_brdstats.brd >= STL_MAXBRDS)
return(-ENODEV);
brdp = stl_brds[stl_brdstats.brd];
if (brdp == (stlbrd_t *) NULL)
return(-ENODEV);
memset(&stl_brdstats, 0, sizeof(combrd_t));
stl_brdstats.brd = brdp->brdnr;
stl_brdstats.type = brdp->brdtype;
stl_brdstats.hwid = brdp->hwid;
stl_brdstats.state = brdp->state;
stl_brdstats.ioaddr = brdp->ioaddr1;
stl_brdstats.ioaddr2 = brdp->ioaddr2;
stl_brdstats.irq = brdp->irq;
stl_brdstats.nrpanels = brdp->nrpanels;
stl_brdstats.nrports = brdp->nrports;
for (i = 0; (i < brdp->nrpanels); i++) {
panelp = brdp->panels[i];
stl_brdstats.panels[i].panel = i;
stl_brdstats.panels[i].hwid = panelp->hwid;
stl_brdstats.panels[i].nrports = panelp->nrports;
}
return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
}
/*****************************************************************************/
/*
* Resolve the referenced port number into a port struct pointer.
*/
static stlport_t *stl_getport(int brdnr, int panelnr, int portnr)
{
stlbrd_t *brdp;
stlpanel_t *panelp;
if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
return((stlport_t *) NULL);
brdp = stl_brds[brdnr];
if (brdp == (stlbrd_t *) NULL)
return((stlport_t *) NULL);
if ((panelnr < 0) || (panelnr >= brdp->nrpanels))
return((stlport_t *) NULL);
panelp = brdp->panels[panelnr];
if (panelp == (stlpanel_t *) NULL)
return((stlport_t *) NULL);
if ((portnr < 0) || (portnr >= panelp->nrports))
return((stlport_t *) NULL);
return(panelp->ports[portnr]);
}
/*****************************************************************************/
/*
* Return the port stats structure to user app. A NULL port struct
* pointer passed in means that we need to find out from the app
* what port to get stats for (used through board control device).
*/
static int stl_getportstats(stlport_t *portp, comstats_t __user *cp)
{
unsigned char *head, *tail;
unsigned long flags;
if (!portp) {
if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
return -EFAULT;
portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
stl_comstats.port);
if (portp == (stlport_t *) NULL)
return(-ENODEV);
}
portp->stats.state = portp->istate;
portp->stats.flags = portp->flags;
portp->stats.hwid = portp->hwid;
portp->stats.ttystate = 0;
portp->stats.cflags = 0;
portp->stats.iflags = 0;
portp->stats.oflags = 0;
portp->stats.lflags = 0;
portp->stats.rxbuffered = 0;
spin_lock_irqsave(&stallion_lock, flags);
if (portp->tty != (struct tty_struct *) NULL) {
if (portp->tty->driver_data == portp) {
portp->stats.ttystate = portp->tty->flags;
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
/* No longer available as a statistic */
portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
if (portp->tty->termios != (struct termios *) NULL) {
portp->stats.cflags = portp->tty->termios->c_cflag;
portp->stats.iflags = portp->tty->termios->c_iflag;
portp->stats.oflags = portp->tty->termios->c_oflag;
portp->stats.lflags = portp->tty->termios->c_lflag;
}
}
}
spin_unlock_irqrestore(&stallion_lock, flags);
head = portp->tx.head;
tail = portp->tx.tail;
portp->stats.txbuffered = ((head >= tail) ? (head - tail) :
(STL_TXBUFSIZE - (tail - head)));
portp->stats.signals = (unsigned long) stl_getsignals(portp);
return copy_to_user(cp, &portp->stats,
sizeof(comstats_t)) ? -EFAULT : 0;
}
/*****************************************************************************/
/*
* Clear the port stats structure. We also return it zeroed out...
*/
static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp)
{
if (!portp) {
if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
return -EFAULT;
portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
stl_comstats.port);
if (portp == (stlport_t *) NULL)
return(-ENODEV);
}
memset(&portp->stats, 0, sizeof(comstats_t));
portp->stats.brd = portp->brdnr;
portp->stats.panel = portp->panelnr;
portp->stats.port = portp->portnr;
return copy_to_user(cp, &portp->stats,
sizeof(comstats_t)) ? -EFAULT : 0;
}
/*****************************************************************************/
/*
* Return the entire driver ports structure to a user app.
*/
static int stl_getportstruct(stlport_t __user *arg)
{
stlport_t *portp;
if (copy_from_user(&stl_dummyport, arg, sizeof(stlport_t)))
return -EFAULT;
portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
stl_dummyport.portnr);
if (!portp)
return -ENODEV;
return copy_to_user(arg, portp, sizeof(stlport_t)) ? -EFAULT : 0;
}
/*****************************************************************************/
/*
* Return the entire driver board structure to a user app.
*/
static int stl_getbrdstruct(stlbrd_t __user *arg)
{
stlbrd_t *brdp;
if (copy_from_user(&stl_dummybrd, arg, sizeof(stlbrd_t)))
return -EFAULT;
if ((stl_dummybrd.brdnr < 0) || (stl_dummybrd.brdnr >= STL_MAXBRDS))
return -ENODEV;
brdp = stl_brds[stl_dummybrd.brdnr];
if (!brdp)
return(-ENODEV);
return copy_to_user(arg, brdp, sizeof(stlbrd_t)) ? -EFAULT : 0;
}
/*****************************************************************************/
/*
* The "staliomem" device is also required to do some special operations
* on the board and/or ports. In this driver it is mostly used for stats
* collection.
*/
static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
{
int brdnr, rc;
void __user *argp = (void __user *)arg;
#ifdef DEBUG
printk("stl_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n", (int) ip,
(int) fp, cmd, (int) arg);
#endif
brdnr = iminor(ip);
if (brdnr >= STL_MAXBRDS)
return(-ENODEV);
rc = 0;
switch (cmd) {
case COM_GETPORTSTATS:
rc = stl_getportstats(NULL, argp);
break;
case COM_CLRPORTSTATS:
rc = stl_clrportstats(NULL, argp);
break;
case COM_GETBRDSTATS:
rc = stl_getbrdstats(argp);
break;
case COM_READPORT:
rc = stl_getportstruct(argp);
break;
case COM_READBOARD:
rc = stl_getbrdstruct(argp);
break;
default:
rc = -ENOIOCTLCMD;
break;
}
return(rc);
}
static struct tty_operations stl_ops = {
.open = stl_open,
.close = stl_close,
.write = stl_write,
.put_char = stl_putchar,
.flush_chars = stl_flushchars,
.write_room = stl_writeroom,
.chars_in_buffer = stl_charsinbuffer,
.ioctl = stl_ioctl,
.set_termios = stl_settermios,
.throttle = stl_throttle,
.unthrottle = stl_unthrottle,
.stop = stl_stop,
.start = stl_start,
.hangup = stl_hangup,
.flush_buffer = stl_flushbuffer,
.break_ctl = stl_breakctl,
.wait_until_sent = stl_waituntilsent,
.send_xchar = stl_sendxchar,
.read_proc = stl_readproc,
.tiocmget = stl_tiocmget,
.tiocmset = stl_tiocmset,
};
/*****************************************************************************/
static int __init stl_init(void)
{
int i;
printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
spin_lock_init(&stallion_lock);
spin_lock_init(&brd_lock);
stl_initbrds();
stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
if (!stl_serial)
return -1;
/*
* Set up a character driver for per board stuff. This is mainly used
* to do stats ioctls on the ports.
*/
if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
printk("STALLION: failed to register serial board device\n");
stallion_class = class_create(THIS_MODULE, "staliomem");
for (i = 0; i < 4; i++)
class_device_create(stallion_class, NULL,
MKDEV(STL_SIOMEMMAJOR, i), NULL,
"staliomem%d", i);
stl_serial->owner = THIS_MODULE;
stl_serial->driver_name = stl_drvname;
stl_serial->name = "ttyE";
stl_serial->major = STL_SERIALMAJOR;
stl_serial->minor_start = 0;
stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
stl_serial->subtype = SERIAL_TYPE_NORMAL;
stl_serial->init_termios = stl_deftermios;
stl_serial->flags = TTY_DRIVER_REAL_RAW;
tty_set_operations(stl_serial, &stl_ops);
if (tty_register_driver(stl_serial)) {
put_tty_driver(stl_serial);
printk("STALLION: failed to register serial driver\n");
return -1;
}
return 0;
}
/*****************************************************************************/
/* CD1400 HARDWARE FUNCTIONS */
/*****************************************************************************/
/*
* These functions get/set/update the registers of the cd1400 UARTs.
* Access to the cd1400 registers is via an address/data io port pair.
* (Maybe should make this inline...)
*/
static int stl_cd1400getreg(stlport_t *portp, int regnr)
{
outb((regnr + portp->uartaddr), portp->ioaddr);
return inb(portp->ioaddr + EREG_DATA);
}
static void stl_cd1400setreg(stlport_t *portp, int regnr, int value)
{
outb((regnr + portp->uartaddr), portp->ioaddr);
outb(value, portp->ioaddr + EREG_DATA);
}
static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value)
{
outb((regnr + portp->uartaddr), portp->ioaddr);
if (inb(portp->ioaddr + EREG_DATA) != value) {
outb(value, portp->ioaddr + EREG_DATA);
return 1;
}
return 0;
}
/*****************************************************************************/
/*
* Inbitialize the UARTs in a panel. We don't care what sort of board
* these ports are on - since the port io registers are almost
* identical when dealing with ports.
*/
static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
{
unsigned int gfrcr;
int chipmask, i, j;
int nrchips, uartaddr, ioaddr;
unsigned long flags;
#ifdef DEBUG
printk("stl_panelinit(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
#endif
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(panelp->brdnr, panelp->pagenr);
/*
* Check that each chip is present and started up OK.
*/
chipmask = 0;
nrchips = panelp->nrports / CD1400_PORTS;
for (i = 0; (i < nrchips); i++) {
if (brdp->brdtype == BRD_ECHPCI) {
outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
ioaddr = panelp->iobase;
} else {
ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
}
uartaddr = (i & 0x01) ? 0x080 : 0;
outb((GFRCR + uartaddr), ioaddr);
outb(0, (ioaddr + EREG_DATA));
outb((CCR + uartaddr), ioaddr);
outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
outb((GFRCR + uartaddr), ioaddr);
for (j = 0; (j < CCR_MAXWAIT); j++) {
if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
break;
}
if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
printk("STALLION: cd1400 not responding, "
"brd=%d panel=%d chip=%d\n",
panelp->brdnr, panelp->panelnr, i);
continue;
}
chipmask |= (0x1 << i);
outb((PPR + uartaddr), ioaddr);
outb(PPR_SCALAR, (ioaddr + EREG_DATA));
}
BRDDISABLE(panelp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
return chipmask;
}
/*****************************************************************************/
/*
* Initialize hardware specific port registers.
*/
static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
{
unsigned long flags;
#ifdef DEBUG
printk("stl_cd1400portinit(brdp=%x,panelp=%x,portp=%x)\n",
(int) brdp, (int) panelp, (int) portp);
#endif
if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
(portp == (stlport_t *) NULL))
return;
spin_lock_irqsave(&brd_lock, flags);
portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
(portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
portp->uartaddr = (portp->portnr & 0x04) << 5;
portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
portp->hwid = stl_cd1400getreg(portp, GFRCR);
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Wait for the command register to be ready. We will poll this,
* since it won't usually take too long to be ready.
*/
static void stl_cd1400ccrwait(stlport_t *portp)
{
int i;
for (i = 0; (i < CCR_MAXWAIT); i++) {
if (stl_cd1400getreg(portp, CCR) == 0) {
return;
}
}
printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
portp->portnr, portp->panelnr, portp->brdnr);
}
/*****************************************************************************/
/*
* Set up the cd1400 registers for a port based on the termios port
* settings.
*/
static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp)
{
stlbrd_t *brdp;
unsigned long flags;
unsigned int clkdiv, baudrate;
unsigned char cor1, cor2, cor3;
unsigned char cor4, cor5, ccr;
unsigned char srer, sreron, sreroff;
unsigned char mcor1, mcor2, rtpr;
unsigned char clk, div;
cor1 = 0;
cor2 = 0;
cor3 = 0;
cor4 = 0;
cor5 = 0;
ccr = 0;
rtpr = 0;
clk = 0;
div = 0;
mcor1 = 0;
mcor2 = 0;
sreron = 0;
sreroff = 0;
brdp = stl_brds[portp->brdnr];
if (brdp == (stlbrd_t *) NULL)
return;
/*
* Set up the RX char ignore mask with those RX error types we
* can ignore. We can get the cd1400 to help us out a little here,
* it will ignore parity errors and breaks for us.
*/
portp->rxignoremsk = 0;
if (tiosp->c_iflag & IGNPAR) {
portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
cor1 |= COR1_PARIGNORE;
}
if (tiosp->c_iflag & IGNBRK) {
portp->rxignoremsk |= ST_BREAK;
cor4 |= COR4_IGNBRK;
}
portp->rxmarkmsk = ST_OVERRUN;
if (tiosp->c_iflag & (INPCK | PARMRK))
portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
if (tiosp->c_iflag & BRKINT)
portp->rxmarkmsk |= ST_BREAK;
/*
* Go through the char size, parity and stop bits and set all the
* option register appropriately.
*/
switch (tiosp->c_cflag & CSIZE) {
case CS5:
cor1 |= COR1_CHL5;
break;
case CS6:
cor1 |= COR1_CHL6;
break;
case CS7:
cor1 |= COR1_CHL7;
break;
default:
cor1 |= COR1_CHL8;
break;
}
if (tiosp->c_cflag & CSTOPB)
cor1 |= COR1_STOP2;
else
cor1 |= COR1_STOP1;
if (tiosp->c_cflag & PARENB) {
if (tiosp->c_cflag & PARODD)
cor1 |= (COR1_PARENB | COR1_PARODD);
else
cor1 |= (COR1_PARENB | COR1_PAREVEN);
} else {
cor1 |= COR1_PARNONE;
}
/*
* Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
* space for hardware flow control and the like. This should be set to
* VMIN. Also here we will set the RX data timeout to 10ms - this should
* really be based on VTIME.
*/
cor3 |= FIFO_RXTHRESHOLD;
rtpr = 2;
/*
* Calculate the baud rate timers. For now we will just assume that
* the input and output baud are the same. Could have used a baud
* table here, but this way we can generate virtually any baud rate
* we like!
*/
baudrate = tiosp->c_cflag & CBAUD;
if (baudrate & CBAUDEX) {
baudrate &= ~CBAUDEX;
if ((baudrate < 1) || (baudrate > 4))
tiosp->c_cflag &= ~CBAUDEX;
else
baudrate += 15;
}
baudrate = stl_baudrates[baudrate];
if ((tiosp->c_cflag & CBAUD) == B38400) {
if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
baudrate = 57600;
else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
baudrate = 115200;
else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
baudrate = 230400;
else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
baudrate = 460800;
else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
baudrate = (portp->baud_base / portp->custom_divisor);
}
if (baudrate > STL_CD1400MAXBAUD)
baudrate = STL_CD1400MAXBAUD;
if (baudrate > 0) {
for (clk = 0; (clk < CD1400_NUMCLKS); clk++) {
clkdiv = ((portp->clk / stl_cd1400clkdivs[clk]) / baudrate);
if (clkdiv < 0x100)
break;
}
div = (unsigned char) clkdiv;
}
/*
* Check what form of modem signaling is required and set it up.
*/
if ((tiosp->c_cflag & CLOCAL) == 0) {
mcor1 |= MCOR1_DCD;
mcor2 |= MCOR2_DCD;
sreron |= SRER_MODEM;
portp->flags |= ASYNC_CHECK_CD;
} else {
portp->flags &= ~ASYNC_CHECK_CD;
}
/*
* Setup cd1400 enhanced modes if we can. In particular we want to
* handle as much of the flow control as possible automatically. As
* well as saving a few CPU cycles it will also greatly improve flow
* control reliability.
*/
if (tiosp->c_iflag & IXON) {
cor2 |= COR2_TXIBE;
cor3 |= COR3_SCD12;
if (tiosp->c_iflag & IXANY)
cor2 |= COR2_IXM;
}
if (tiosp->c_cflag & CRTSCTS) {
cor2 |= COR2_CTSAE;
mcor1 |= FIFO_RTSTHRESHOLD;
}
/*
* All cd1400 register values calculated so go through and set
* them all up.
*/
#ifdef DEBUG
printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
portp->portnr, portp->panelnr, portp->brdnr);
printk(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
cor1, cor2, cor3, cor4, cor5);
printk(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
mcor1, mcor2, rtpr, sreron, sreroff);
printk(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
#endif
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
srer = stl_cd1400getreg(portp, SRER);
stl_cd1400setreg(portp, SRER, 0);
if (stl_cd1400updatereg(portp, COR1, cor1))
ccr = 1;
if (stl_cd1400updatereg(portp, COR2, cor2))
ccr = 1;
if (stl_cd1400updatereg(portp, COR3, cor3))
ccr = 1;
if (ccr) {
stl_cd1400ccrwait(portp);
stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
}
stl_cd1400setreg(portp, COR4, cor4);
stl_cd1400setreg(portp, COR5, cor5);
stl_cd1400setreg(portp, MCOR1, mcor1);
stl_cd1400setreg(portp, MCOR2, mcor2);
if (baudrate > 0) {
stl_cd1400setreg(portp, TCOR, clk);
stl_cd1400setreg(portp, TBPR, div);
stl_cd1400setreg(portp, RCOR, clk);
stl_cd1400setreg(portp, RBPR, div);
}
stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
stl_cd1400setreg(portp, RTPR, rtpr);
mcor1 = stl_cd1400getreg(portp, MSVR1);
if (mcor1 & MSVR1_DCD)
portp->sigs |= TIOCM_CD;
else
portp->sigs &= ~TIOCM_CD;
stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Set the state of the DTR and RTS signals.
*/
static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts)
{
unsigned char msvr1, msvr2;
unsigned long flags;
#ifdef DEBUG
printk("stl_cd1400setsignals(portp=%x,dtr=%d,rts=%d)\n",
(int) portp, dtr, rts);
#endif
msvr1 = 0;
msvr2 = 0;
if (dtr > 0)
msvr1 = MSVR1_DTR;
if (rts > 0)
msvr2 = MSVR2_RTS;
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
if (rts >= 0)
stl_cd1400setreg(portp, MSVR2, msvr2);
if (dtr >= 0)
stl_cd1400setreg(portp, MSVR1, msvr1);
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Return the state of the signals.
*/
static int stl_cd1400getsignals(stlport_t *portp)
{
unsigned char msvr1, msvr2;
unsigned long flags;
int sigs;
#ifdef DEBUG
printk("stl_cd1400getsignals(portp=%x)\n", (int) portp);
#endif
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
msvr1 = stl_cd1400getreg(portp, MSVR1);
msvr2 = stl_cd1400getreg(portp, MSVR2);
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
sigs = 0;
sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
#if 0
sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
#else
sigs |= TIOCM_DSR;
#endif
return sigs;
}
/*****************************************************************************/
/*
* Enable/Disable the Transmitter and/or Receiver.
*/
static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx)
{
unsigned char ccr;
unsigned long flags;
#ifdef DEBUG
printk("stl_cd1400enablerxtx(portp=%x,rx=%d,tx=%d)\n",
(int) portp, rx, tx);
#endif
ccr = 0;
if (tx == 0)
ccr |= CCR_TXDISABLE;
else if (tx > 0)
ccr |= CCR_TXENABLE;
if (rx == 0)
ccr |= CCR_RXDISABLE;
else if (rx > 0)
ccr |= CCR_RXENABLE;
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
stl_cd1400ccrwait(portp);
stl_cd1400setreg(portp, CCR, ccr);
stl_cd1400ccrwait(portp);
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Start/stop the Transmitter and/or Receiver.
*/
static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx)
{
unsigned char sreron, sreroff;
unsigned long flags;
#ifdef DEBUG
printk("stl_cd1400startrxtx(portp=%x,rx=%d,tx=%d)\n",
(int) portp, rx, tx);
#endif
sreron = 0;
sreroff = 0;
if (tx == 0)
sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
else if (tx == 1)
sreron |= SRER_TXDATA;
else if (tx >= 2)
sreron |= SRER_TXEMPTY;
if (rx == 0)
sreroff |= SRER_RXDATA;
else if (rx > 0)
sreron |= SRER_RXDATA;
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
stl_cd1400setreg(portp, SRER,
((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
BRDDISABLE(portp->brdnr);
if (tx > 0)
set_bit(ASYI_TXBUSY, &portp->istate);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Disable all interrupts from this port.
*/
static void stl_cd1400disableintrs(stlport_t *portp)
{
unsigned long flags;
#ifdef DEBUG
printk("stl_cd1400disableintrs(portp=%x)\n", (int) portp);
#endif
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
stl_cd1400setreg(portp, SRER, 0);
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
static void stl_cd1400sendbreak(stlport_t *portp, int len)
{
unsigned long flags;
#ifdef DEBUG
printk("stl_cd1400sendbreak(portp=%x,len=%d)\n", (int) portp, len);
#endif
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
stl_cd1400setreg(portp, SRER,
((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
SRER_TXEMPTY));
BRDDISABLE(portp->brdnr);
portp->brklen = len;
if (len == 1)
portp->stats.txbreaks++;
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Take flow control actions...
*/
static void stl_cd1400flowctrl(stlport_t *portp, int state)
{
struct tty_struct *tty;
unsigned long flags;
#ifdef DEBUG
printk("stl_cd1400flowctrl(portp=%x,state=%x)\n", (int) portp, state);
#endif
if (portp == (stlport_t *) NULL)
return;
tty = portp->tty;
if (tty == (struct tty_struct *) NULL)
return;
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
if (state) {
if (tty->termios->c_iflag & IXOFF) {
stl_cd1400ccrwait(portp);
stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
portp->stats.rxxon++;
stl_cd1400ccrwait(portp);
}
/*
* Question: should we return RTS to what it was before? It may
* have been set by an ioctl... Suppose not, since if you have
* hardware flow control set then it is pretty silly to go and
* set the RTS line by hand.
*/
if (tty->termios->c_cflag & CRTSCTS) {
stl_cd1400setreg(portp, MCOR1,
(stl_cd1400getreg(portp, MCOR1) |
FIFO_RTSTHRESHOLD));
stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
portp->stats.rxrtson++;
}
} else {
if (tty->termios->c_iflag & IXOFF) {
stl_cd1400ccrwait(portp);
stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
portp->stats.rxxoff++;
stl_cd1400ccrwait(portp);
}
if (tty->termios->c_cflag & CRTSCTS) {
stl_cd1400setreg(portp, MCOR1,
(stl_cd1400getreg(portp, MCOR1) & 0xf0));
stl_cd1400setreg(portp, MSVR2, 0);
portp->stats.rxrtsoff++;
}
}
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Send a flow control character...
*/
static void stl_cd1400sendflow(stlport_t *portp, int state)
{
struct tty_struct *tty;
unsigned long flags;
#ifdef DEBUG
printk("stl_cd1400sendflow(portp=%x,state=%x)\n", (int) portp, state);
#endif
if (portp == (stlport_t *) NULL)
return;
tty = portp->tty;
if (tty == (struct tty_struct *) NULL)
return;
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
if (state) {
stl_cd1400ccrwait(portp);
stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
portp->stats.rxxon++;
stl_cd1400ccrwait(portp);
} else {
stl_cd1400ccrwait(portp);
stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
portp->stats.rxxoff++;
stl_cd1400ccrwait(portp);
}
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
static void stl_cd1400flush(stlport_t *portp)
{
unsigned long flags;
#ifdef DEBUG
printk("stl_cd1400flush(portp=%x)\n", (int) portp);
#endif
if (portp == (stlport_t *) NULL)
return;
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
stl_cd1400ccrwait(portp);
stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
stl_cd1400ccrwait(portp);
portp->tx.tail = portp->tx.head;
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Return the current state of data flow on this port. This is only
* really interresting when determining if data has fully completed
* transmission or not... This is easy for the cd1400, it accurately
* maintains the busy port flag.
*/
static int stl_cd1400datastate(stlport_t *portp)
{
#ifdef DEBUG
printk("stl_cd1400datastate(portp=%x)\n", (int) portp);
#endif
if (portp == (stlport_t *) NULL)
return 0;
return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
}
/*****************************************************************************/
/*
* Interrupt service routine for cd1400 EasyIO boards.
*/
static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase)
{
unsigned char svrtype;
#ifdef DEBUG
printk("stl_cd1400eiointr(panelp=%x,iobase=%x)\n",
(int) panelp, iobase);
#endif
spin_lock(&brd_lock);
outb(SVRR, iobase);
svrtype = inb(iobase + EREG_DATA);
if (panelp->nrports > 4) {
outb((SVRR + 0x80), iobase);
svrtype |= inb(iobase + EREG_DATA);
}
if (svrtype & SVRR_RX)
stl_cd1400rxisr(panelp, iobase);
else if (svrtype & SVRR_TX)
stl_cd1400txisr(panelp, iobase);
else if (svrtype & SVRR_MDM)
stl_cd1400mdmisr(panelp, iobase);
spin_unlock(&brd_lock);
}
/*****************************************************************************/
/*
* Interrupt service routine for cd1400 panels.
*/
static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase)
{
unsigned char svrtype;
#ifdef DEBUG
printk("stl_cd1400echintr(panelp=%x,iobase=%x)\n", (int) panelp,
iobase);
#endif
outb(SVRR, iobase);
svrtype = inb(iobase + EREG_DATA);
outb((SVRR + 0x80), iobase);
svrtype |= inb(iobase + EREG_DATA);
if (svrtype & SVRR_RX)
stl_cd1400rxisr(panelp, iobase);
else if (svrtype & SVRR_TX)
stl_cd1400txisr(panelp, iobase);
else if (svrtype & SVRR_MDM)
stl_cd1400mdmisr(panelp, iobase);
}
/*****************************************************************************/
/*
* Unfortunately we need to handle breaks in the TX data stream, since
* this is the only way to generate them on the cd1400.
*/
static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr)
{
if (portp->brklen == 1) {
outb((COR2 + portp->uartaddr), ioaddr);
outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
(ioaddr + EREG_DATA));
outb((TDR + portp->uartaddr), ioaddr);
outb(ETC_CMD, (ioaddr + EREG_DATA));
outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
outb((SRER + portp->uartaddr), ioaddr);
outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
(ioaddr + EREG_DATA));
return 1;
} else if (portp->brklen > 1) {
outb((TDR + portp->uartaddr), ioaddr);
outb(ETC_CMD, (ioaddr + EREG_DATA));
outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
portp->brklen = -1;
return 1;
} else {
outb((COR2 + portp->uartaddr), ioaddr);
outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
(ioaddr + EREG_DATA));
portp->brklen = 0;
}
return 0;
}
/*****************************************************************************/
/*
* Transmit interrupt handler. This has gotta be fast! Handling TX
* chars is pretty simple, stuff as many as possible from the TX buffer
* into the cd1400 FIFO. Must also handle TX breaks here, since they
* are embedded as commands in the data stream. Oh no, had to use a goto!
* This could be optimized more, will do when I get time...
* In practice it is possible that interrupts are enabled but that the
* port has been hung up. Need to handle not having any TX buffer here,
* this is done by using the side effect that head and tail will also
* be NULL if the buffer has been freed.
*/
static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr)
{
stlport_t *portp;
int len, stlen;
char *head, *tail;
unsigned char ioack, srer;
#ifdef DEBUG
printk("stl_cd1400txisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
#endif
ioack = inb(ioaddr + EREG_TXACK);
if (((ioack & panelp->ackmask) != 0) ||
((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
return;
}
portp = panelp->ports[(ioack >> 3)];
/*
* Unfortunately we need to handle breaks in the data stream, since
* this is the only way to generate them on the cd1400. Do it now if
* a break is to be sent.
*/
if (portp->brklen != 0)
if (stl_cd1400breakisr(portp, ioaddr))
goto stl_txalldone;
head = portp->tx.head;
tail = portp->tx.tail;
len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
if ((len == 0) || ((len < STL_TXBUFLOW) &&
(test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
set_bit(ASYI_TXLOW, &portp->istate);
schedule_work(&portp->tqueue);
}
if (len == 0) {
outb((SRER + portp->uartaddr), ioaddr);
srer = inb(ioaddr + EREG_DATA);
if (srer & SRER_TXDATA) {
srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
} else {
srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
clear_bit(ASYI_TXBUSY, &portp->istate);
}
outb(srer, (ioaddr + EREG_DATA));
} else {
len = MIN(len, CD1400_TXFIFOSIZE);
portp->stats.txtotal += len;
stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
outb((TDR + portp->uartaddr), ioaddr);
outsb((ioaddr + EREG_DATA), tail, stlen);
len -= stlen;
tail += stlen;
if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
tail = portp->tx.buf;
if (len > 0) {
outsb((ioaddr + EREG_DATA), tail, len);
tail += len;
}
portp->tx.tail = tail;
}
stl_txalldone:
outb((EOSRR + portp->uartaddr), ioaddr);
outb(0, (ioaddr + EREG_DATA));
}
/*****************************************************************************/
/*
* Receive character interrupt handler. Determine if we have good chars
* or bad chars and then process appropriately. Good chars are easy
* just shove the lot into the RX buffer and set all status byte to 0.
* If a bad RX char then process as required. This routine needs to be
* fast! In practice it is possible that we get an interrupt on a port
* that is closed. This can happen on hangups - since they completely
* shutdown a port not in user context. Need to handle this case.
*/
static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr)
{
stlport_t *portp;
struct tty_struct *tty;
unsigned int ioack, len, buflen;
unsigned char status;
char ch;
#ifdef DEBUG
printk("stl_cd1400rxisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
#endif
ioack = inb(ioaddr + EREG_RXACK);
if ((ioack & panelp->ackmask) != 0) {
printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
return;
}
portp = panelp->ports[(ioack >> 3)];
tty = portp->tty;
if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
outb((RDCR + portp->uartaddr), ioaddr);
len = inb(ioaddr + EREG_DATA);
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
len = MIN(len, sizeof(stl_unwanted));
outb((RDSR + portp->uartaddr), ioaddr);
insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
portp->stats.rxlost += len;
portp->stats.rxtotal += len;
} else {
len = MIN(len, buflen);
if (len > 0) {
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
unsigned char *ptr;
outb((RDSR + portp->uartaddr), ioaddr);
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
tty_prepare_flip_string(tty, &ptr, len);
insb((ioaddr + EREG_DATA), ptr, len);
tty_schedule_flip(tty);
portp->stats.rxtotal += len;
}
}
} else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
outb((RDSR + portp->uartaddr), ioaddr);
status = inb(ioaddr + EREG_DATA);
ch = inb(ioaddr + EREG_DATA);
if (status & ST_PARITY)
portp->stats.rxparity++;
if (status & ST_FRAMING)
portp->stats.rxframing++;
if (status & ST_OVERRUN)
portp->stats.rxoverrun++;
if (status & ST_BREAK)
portp->stats.rxbreaks++;
if (status & ST_SCHARMASK) {
if ((status & ST_SCHARMASK) == ST_SCHAR1)
portp->stats.txxon++;
if ((status & ST_SCHARMASK) == ST_SCHAR2)
portp->stats.txxoff++;
goto stl_rxalldone;
}
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
if (tty != NULL && (portp->rxignoremsk & status) == 0) {
if (portp->rxmarkmsk & status) {
if (status & ST_BREAK) {
status = TTY_BREAK;
if (portp->flags & ASYNC_SAK) {
do_SAK(tty);
BRDENABLE(portp->brdnr, portp->pagenr);
}
} else if (status & ST_PARITY) {
status = TTY_PARITY;
} else if (status & ST_FRAMING) {
status = TTY_FRAME;
} else if(status & ST_OVERRUN) {
status = TTY_OVERRUN;
} else {
status = 0;
}
} else {
status = 0;
}
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
tty_insert_flip_char(tty, ch, status);
tty_schedule_flip(tty);
}
} else {
printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
return;
}
stl_rxalldone:
outb((EOSRR + portp->uartaddr), ioaddr);
outb(0, (ioaddr + EREG_DATA));
}
/*****************************************************************************/
/*
* Modem interrupt handler. The is called when the modem signal line
* (DCD) has changed state. Leave most of the work to the off-level
* processing routine.
*/
static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr)
{
stlport_t *portp;
unsigned int ioack;
unsigned char misr;
#ifdef DEBUG
printk("stl_cd1400mdmisr(panelp=%x)\n", (int) panelp);
#endif
ioack = inb(ioaddr + EREG_MDACK);
if (((ioack & panelp->ackmask) != 0) ||
((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
return;
}
portp = panelp->ports[(ioack >> 3)];
outb((MISR + portp->uartaddr), ioaddr);
misr = inb(ioaddr + EREG_DATA);
if (misr & MISR_DCD) {
set_bit(ASYI_DCDCHANGE, &portp->istate);
schedule_work(&portp->tqueue);
portp->stats.modem++;
}
outb((EOSRR + portp->uartaddr), ioaddr);
outb(0, (ioaddr + EREG_DATA));
}
/*****************************************************************************/
/* SC26198 HARDWARE FUNCTIONS */
/*****************************************************************************/
/*
* These functions get/set/update the registers of the sc26198 UARTs.
* Access to the sc26198 registers is via an address/data io port pair.
* (Maybe should make this inline...)
*/
static int stl_sc26198getreg(stlport_t *portp, int regnr)
{
outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
return inb(portp->ioaddr + XP_DATA);
}
static void stl_sc26198setreg(stlport_t *portp, int regnr, int value)
{
outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
outb(value, (portp->ioaddr + XP_DATA));
}
static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value)
{
outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
if (inb(portp->ioaddr + XP_DATA) != value) {
outb(value, (portp->ioaddr + XP_DATA));
return 1;
}
return 0;
}
/*****************************************************************************/
/*
* Functions to get and set the sc26198 global registers.
*/
static int stl_sc26198getglobreg(stlport_t *portp, int regnr)
{
outb(regnr, (portp->ioaddr + XP_ADDR));
return inb(portp->ioaddr + XP_DATA);
}
#if 0
static void stl_sc26198setglobreg(stlport_t *portp, int regnr, int value)
{
outb(regnr, (portp->ioaddr + XP_ADDR));
outb(value, (portp->ioaddr + XP_DATA));
}
#endif
/*****************************************************************************/
/*
* Inbitialize the UARTs in a panel. We don't care what sort of board
* these ports are on - since the port io registers are almost
* identical when dealing with ports.
*/
static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
{
int chipmask, i;
int nrchips, ioaddr;
#ifdef DEBUG
printk("stl_sc26198panelinit(brdp=%x,panelp=%x)\n",
(int) brdp, (int) panelp);
#endif
BRDENABLE(panelp->brdnr, panelp->pagenr);
/*
* Check that each chip is present and started up OK.
*/
chipmask = 0;
nrchips = (panelp->nrports + 4) / SC26198_PORTS;
if (brdp->brdtype == BRD_ECHPCI)
outb(panelp->pagenr, brdp->ioctrl);
for (i = 0; (i < nrchips); i++) {
ioaddr = panelp->iobase + (i * 4);
outb(SCCR, (ioaddr + XP_ADDR));
outb(CR_RESETALL, (ioaddr + XP_DATA));
outb(TSTR, (ioaddr + XP_ADDR));
if (inb(ioaddr + XP_DATA) != 0) {
printk("STALLION: sc26198 not responding, "
"brd=%d panel=%d chip=%d\n",
panelp->brdnr, panelp->panelnr, i);
continue;
}
chipmask |= (0x1 << i);
outb(GCCR, (ioaddr + XP_ADDR));
outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
outb(WDTRCR, (ioaddr + XP_ADDR));
outb(0xff, (ioaddr + XP_DATA));
}
BRDDISABLE(panelp->brdnr);
return chipmask;
}
/*****************************************************************************/
/*
* Initialize hardware specific port registers.
*/
static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
{
#ifdef DEBUG
printk("stl_sc26198portinit(brdp=%x,panelp=%x,portp=%x)\n",
(int) brdp, (int) panelp, (int) portp);
#endif
if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
(portp == (stlport_t *) NULL))
return;
portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
portp->uartaddr = (portp->portnr & 0x07) << 4;
portp->pagenr = panelp->pagenr;
portp->hwid = 0x1;
BRDENABLE(portp->brdnr, portp->pagenr);
stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
BRDDISABLE(portp->brdnr);
}
/*****************************************************************************/
/*
* Set up the sc26198 registers for a port based on the termios port
* settings.
*/
static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp)
{
stlbrd_t *brdp;
unsigned long flags;
unsigned int baudrate;
unsigned char mr0, mr1, mr2, clk;
unsigned char imron, imroff, iopr, ipr;
mr0 = 0;
mr1 = 0;
mr2 = 0;
clk = 0;
iopr = 0;
imron = 0;
imroff = 0;
brdp = stl_brds[portp->brdnr];
if (brdp == (stlbrd_t *) NULL)
return;
/*
* Set up the RX char ignore mask with those RX error types we
* can ignore.
*/
portp->rxignoremsk = 0;
if (tiosp->c_iflag & IGNPAR)
portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
SR_RXOVERRUN);
if (tiosp->c_iflag & IGNBRK)
portp->rxignoremsk |= SR_RXBREAK;
portp->rxmarkmsk = SR_RXOVERRUN;
if (tiosp->c_iflag & (INPCK | PARMRK))
portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
if (tiosp->c_iflag & BRKINT)
portp->rxmarkmsk |= SR_RXBREAK;
/*
* Go through the char size, parity and stop bits and set all the
* option register appropriately.
*/
switch (tiosp->c_cflag & CSIZE) {
case CS5:
mr1 |= MR1_CS5;
break;
case CS6:
mr1 |= MR1_CS6;
break;
case CS7:
mr1 |= MR1_CS7;
break;
default:
mr1 |= MR1_CS8;
break;
}
if (tiosp->c_cflag & CSTOPB)
mr2 |= MR2_STOP2;
else
mr2 |= MR2_STOP1;
if (tiosp->c_cflag & PARENB) {
if (tiosp->c_cflag & PARODD)
mr1 |= (MR1_PARENB | MR1_PARODD);
else
mr1 |= (MR1_PARENB | MR1_PAREVEN);
} else {
mr1 |= MR1_PARNONE;
}
mr1 |= MR1_ERRBLOCK;
/*
* Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
* space for hardware flow control and the like. This should be set to
* VMIN.
*/
mr2 |= MR2_RXFIFOHALF;
/*
* Calculate the baud rate timers. For now we will just assume that
* the input and output baud are the same. The sc26198 has a fixed
* baud rate table, so only discrete baud rates possible.
*/
baudrate = tiosp->c_cflag & CBAUD;
if (baudrate & CBAUDEX) {
baudrate &= ~CBAUDEX;
if ((baudrate < 1) || (baudrate > 4))
tiosp->c_cflag &= ~CBAUDEX;
else
baudrate += 15;
}
baudrate = stl_baudrates[baudrate];
if ((tiosp->c_cflag & CBAUD) == B38400) {
if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
baudrate = 57600;
else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
baudrate = 115200;
else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
baudrate = 230400;
else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
baudrate = 460800;
else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
baudrate = (portp->baud_base / portp->custom_divisor);
}
if (baudrate > STL_SC26198MAXBAUD)
baudrate = STL_SC26198MAXBAUD;
if (baudrate > 0) {
for (clk = 0; (clk < SC26198_NRBAUDS); clk++) {
if (baudrate <= sc26198_baudtable[clk])
break;
}
}
/*
* Check what form of modem signaling is required and set it up.
*/
if (tiosp->c_cflag & CLOCAL) {
portp->flags &= ~ASYNC_CHECK_CD;
} else {
iopr |= IOPR_DCDCOS;
imron |= IR_IOPORT;
portp->flags |= ASYNC_CHECK_CD;
}
/*
* Setup sc26198 enhanced modes if we can. In particular we want to
* handle as much of the flow control as possible automatically. As
* well as saving a few CPU cycles it will also greatly improve flow
* control reliability.
*/
if (tiosp->c_iflag & IXON) {
mr0 |= MR0_SWFTX | MR0_SWFT;
imron |= IR_XONXOFF;
} else {
imroff |= IR_XONXOFF;
}
if (tiosp->c_iflag & IXOFF)
mr0 |= MR0_SWFRX;
if (tiosp->c_cflag & CRTSCTS) {
mr2 |= MR2_AUTOCTS;
mr1 |= MR1_AUTORTS;
}
/*
* All sc26198 register values calculated so go through and set
* them all up.
*/
#ifdef DEBUG
printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
portp->portnr, portp->panelnr, portp->brdnr);
printk(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
printk(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
#endif
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_sc26198setreg(portp, IMR, 0);
stl_sc26198updatereg(portp, MR0, mr0);
stl_sc26198updatereg(portp, MR1, mr1);
stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
stl_sc26198updatereg(portp, MR2, mr2);
stl_sc26198updatereg(portp, IOPIOR,
((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
if (baudrate > 0) {
stl_sc26198setreg(portp, TXCSR, clk);
stl_sc26198setreg(portp, RXCSR, clk);
}
stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
ipr = stl_sc26198getreg(portp, IPR);
if (ipr & IPR_DCD)
portp->sigs &= ~TIOCM_CD;
else
portp->sigs |= TIOCM_CD;
portp->imr = (portp->imr & ~imroff) | imron;
stl_sc26198setreg(portp, IMR, portp->imr);
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Set the state of the DTR and RTS signals.
*/
static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts)
{
unsigned char iopioron, iopioroff;
unsigned long flags;
#ifdef DEBUG
printk("stl_sc26198setsignals(portp=%x,dtr=%d,rts=%d)\n",
(int) portp, dtr, rts);
#endif
iopioron = 0;
iopioroff = 0;
if (dtr == 0)
iopioroff |= IPR_DTR;
else if (dtr > 0)
iopioron |= IPR_DTR;
if (rts == 0)
iopioroff |= IPR_RTS;
else if (rts > 0)
iopioron |= IPR_RTS;
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_sc26198setreg(portp, IOPIOR,
((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Return the state of the signals.
*/
static int stl_sc26198getsignals(stlport_t *portp)
{
unsigned char ipr;
unsigned long flags;
int sigs;
#ifdef DEBUG
printk("stl_sc26198getsignals(portp=%x)\n", (int) portp);
#endif
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
ipr = stl_sc26198getreg(portp, IPR);
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
sigs = 0;
sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
sigs |= TIOCM_DSR;
return sigs;
}
/*****************************************************************************/
/*
* Enable/Disable the Transmitter and/or Receiver.
*/
static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx)
{
unsigned char ccr;
unsigned long flags;
#ifdef DEBUG
printk("stl_sc26198enablerxtx(portp=%x,rx=%d,tx=%d)\n",
(int) portp, rx, tx);
#endif
ccr = portp->crenable;
if (tx == 0)
ccr &= ~CR_TXENABLE;
else if (tx > 0)
ccr |= CR_TXENABLE;
if (rx == 0)
ccr &= ~CR_RXENABLE;
else if (rx > 0)
ccr |= CR_RXENABLE;
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_sc26198setreg(portp, SCCR, ccr);
BRDDISABLE(portp->brdnr);
portp->crenable = ccr;
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Start/stop the Transmitter and/or Receiver.
*/
static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx)
{
unsigned char imr;
unsigned long flags;
#ifdef DEBUG
printk("stl_sc26198startrxtx(portp=%x,rx=%d,tx=%d)\n",
(int) portp, rx, tx);
#endif
imr = portp->imr;
if (tx == 0)
imr &= ~IR_TXRDY;
else if (tx == 1)
imr |= IR_TXRDY;
if (rx == 0)
imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
else if (rx > 0)
imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_sc26198setreg(portp, IMR, imr);
BRDDISABLE(portp->brdnr);
portp->imr = imr;
if (tx > 0)
set_bit(ASYI_TXBUSY, &portp->istate);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Disable all interrupts from this port.
*/
static void stl_sc26198disableintrs(stlport_t *portp)
{
unsigned long flags;
#ifdef DEBUG
printk("stl_sc26198disableintrs(portp=%x)\n", (int) portp);
#endif
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
portp->imr = 0;
stl_sc26198setreg(portp, IMR, 0);
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
static void stl_sc26198sendbreak(stlport_t *portp, int len)
{
unsigned long flags;
#ifdef DEBUG
printk("stl_sc26198sendbreak(portp=%x,len=%d)\n", (int) portp, len);
#endif
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
if (len == 1) {
stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
portp->stats.txbreaks++;
} else {
stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
}
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Take flow control actions...
*/
static void stl_sc26198flowctrl(stlport_t *portp, int state)
{
struct tty_struct *tty;
unsigned long flags;
unsigned char mr0;
#ifdef DEBUG
printk("stl_sc26198flowctrl(portp=%x,state=%x)\n", (int) portp, state);
#endif
if (portp == (stlport_t *) NULL)
return;
tty = portp->tty;
if (tty == (struct tty_struct *) NULL)
return;
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
if (state) {
if (tty->termios->c_iflag & IXOFF) {
mr0 = stl_sc26198getreg(portp, MR0);
stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
mr0 |= MR0_SWFRX;
portp->stats.rxxon++;
stl_sc26198wait(portp);
stl_sc26198setreg(portp, MR0, mr0);
}
/*
* Question: should we return RTS to what it was before? It may
* have been set by an ioctl... Suppose not, since if you have
* hardware flow control set then it is pretty silly to go and
* set the RTS line by hand.
*/
if (tty->termios->c_cflag & CRTSCTS) {
stl_sc26198setreg(portp, MR1,
(stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
stl_sc26198setreg(portp, IOPIOR,
(stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
portp->stats.rxrtson++;
}
} else {
if (tty->termios->c_iflag & IXOFF) {
mr0 = stl_sc26198getreg(portp, MR0);
stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
mr0 &= ~MR0_SWFRX;
portp->stats.rxxoff++;
stl_sc26198wait(portp);
stl_sc26198setreg(portp, MR0, mr0);
}
if (tty->termios->c_cflag & CRTSCTS) {
stl_sc26198setreg(portp, MR1,
(stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
stl_sc26198setreg(portp, IOPIOR,
(stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
portp->stats.rxrtsoff++;
}
}
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Send a flow control character.
*/
static void stl_sc26198sendflow(stlport_t *portp, int state)
{
struct tty_struct *tty;
unsigned long flags;
unsigned char mr0;
#ifdef DEBUG
printk("stl_sc26198sendflow(portp=%x,state=%x)\n", (int) portp, state);
#endif
if (portp == (stlport_t *) NULL)
return;
tty = portp->tty;
if (tty == (struct tty_struct *) NULL)
return;
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
if (state) {
mr0 = stl_sc26198getreg(portp, MR0);
stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
mr0 |= MR0_SWFRX;
portp->stats.rxxon++;
stl_sc26198wait(portp);
stl_sc26198setreg(portp, MR0, mr0);
} else {
mr0 = stl_sc26198getreg(portp, MR0);
stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
mr0 &= ~MR0_SWFRX;
portp->stats.rxxoff++;
stl_sc26198wait(portp);
stl_sc26198setreg(portp, MR0, mr0);
}
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
static void stl_sc26198flush(stlport_t *portp)
{
unsigned long flags;
#ifdef DEBUG
printk("stl_sc26198flush(portp=%x)\n", (int) portp);
#endif
if (portp == (stlport_t *) NULL)
return;
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
stl_sc26198setreg(portp, SCCR, CR_TXRESET);
stl_sc26198setreg(portp, SCCR, portp->crenable);
BRDDISABLE(portp->brdnr);
portp->tx.tail = portp->tx.head;
spin_unlock_irqrestore(&brd_lock, flags);
}
/*****************************************************************************/
/*
* Return the current state of data flow on this port. This is only
* really interresting when determining if data has fully completed
* transmission or not... The sc26198 interrupt scheme cannot
* determine when all data has actually drained, so we need to
* check the port statusy register to be sure.
*/
static int stl_sc26198datastate(stlport_t *portp)
{
unsigned long flags;
unsigned char sr;
#ifdef DEBUG
printk("stl_sc26198datastate(portp=%x)\n", (int) portp);
#endif
if (portp == (stlport_t *) NULL)
return 0;
if (test_bit(ASYI_TXBUSY, &portp->istate))
return 1;
spin_lock_irqsave(&brd_lock, flags);
BRDENABLE(portp->brdnr, portp->pagenr);
sr = stl_sc26198getreg(portp, SR);
BRDDISABLE(portp->brdnr);
spin_unlock_irqrestore(&brd_lock, flags);
return (sr & SR_TXEMPTY) ? 0 : 1;
}
/*****************************************************************************/
/*
* Delay for a small amount of time, to give the sc26198 a chance
* to process a command...
*/
static void stl_sc26198wait(stlport_t *portp)
{
int i;
#ifdef DEBUG
printk("stl_sc26198wait(portp=%x)\n", (int) portp);
#endif
if (portp == (stlport_t *) NULL)
return;
for (i = 0; (i < 20); i++)
stl_sc26198getglobreg(portp, TSTR);
}
/*****************************************************************************/
/*
* If we are TX flow controlled and in IXANY mode then we may
* need to unflow control here. We gotta do this because of the
* automatic flow control modes of the sc26198.
*/
static inline void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty)
{
unsigned char mr0;
mr0 = stl_sc26198getreg(portp, MR0);
stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
stl_sc26198wait(portp);
stl_sc26198setreg(portp, MR0, mr0);
clear_bit(ASYI_TXFLOWED, &portp->istate);
}
/*****************************************************************************/
/*
* Interrupt service routine for sc26198 panels.
*/
static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase)
{
stlport_t *portp;
unsigned int iack;
spin_lock(&brd_lock);
/*
* Work around bug in sc26198 chip... Cannot have A6 address
* line of UART high, else iack will be returned as 0.
*/
outb(0, (iobase + 1));
iack = inb(iobase + XP_IACK);
portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
if (iack & IVR_RXDATA)
stl_sc26198rxisr(portp, iack);
else if (iack & IVR_TXDATA)
stl_sc26198txisr(portp);
else
stl_sc26198otherisr(portp, iack);
spin_unlock(&brd_lock);
}
/*****************************************************************************/
/*
* Transmit interrupt handler. This has gotta be fast! Handling TX
* chars is pretty simple, stuff as many as possible from the TX buffer
* into the sc26198 FIFO.
* In practice it is possible that interrupts are enabled but that the
* port has been hung up. Need to handle not having any TX buffer here,
* this is done by using the side effect that head and tail will also
* be NULL if the buffer has been freed.
*/
static void stl_sc26198txisr(stlport_t *portp)
{
unsigned int ioaddr;
unsigned char mr0;
int len, stlen;
char *head, *tail;
#ifdef DEBUG
printk("stl_sc26198txisr(portp=%x)\n", (int) portp);
#endif
ioaddr = portp->ioaddr;
head = portp->tx.head;
tail = portp->tx.tail;
len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
if ((len == 0) || ((len < STL_TXBUFLOW) &&
(test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
set_bit(ASYI_TXLOW, &portp->istate);
schedule_work(&portp->tqueue);
}
if (len == 0) {
outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
mr0 = inb(ioaddr + XP_DATA);
if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
portp->imr &= ~IR_TXRDY;
outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
outb(portp->imr, (ioaddr + XP_DATA));
clear_bit(ASYI_TXBUSY, &portp->istate);
} else {
mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
outb(mr0, (ioaddr + XP_DATA));
}
} else {
len = MIN(len, SC26198_TXFIFOSIZE);
portp->stats.txtotal += len;
stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
outb(GTXFIFO, (ioaddr + XP_ADDR));
outsb((ioaddr + XP_DATA), tail, stlen);
len -= stlen;
tail += stlen;
if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
tail = portp->tx.buf;
if (len > 0) {
outsb((ioaddr + XP_DATA), tail, len);
tail += len;
}
portp->tx.tail = tail;
}
}
/*****************************************************************************/
/*
* Receive character interrupt handler. Determine if we have good chars
* or bad chars and then process appropriately. Good chars are easy
* just shove the lot into the RX buffer and set all status byte to 0.
* If a bad RX char then process as required. This routine needs to be
* fast! In practice it is possible that we get an interrupt on a port
* that is closed. This can happen on hangups - since they completely
* shutdown a port not in user context. Need to handle this case.
*/
static void stl_sc26198rxisr(stlport_t *portp, unsigned int iack)
{
struct tty_struct *tty;
unsigned int len, buflen, ioaddr;
#ifdef DEBUG
printk("stl_sc26198rxisr(portp=%x,iack=%x)\n", (int) portp, iack);
#endif
tty = portp->tty;
ioaddr = portp->ioaddr;
outb(GIBCR, (ioaddr + XP_ADDR));
len = inb(ioaddr + XP_DATA) + 1;
if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
len = MIN(len, sizeof(stl_unwanted));
outb(GRXFIFO, (ioaddr + XP_ADDR));
insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
portp->stats.rxlost += len;
portp->stats.rxtotal += len;
} else {
len = MIN(len, buflen);
if (len > 0) {
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
unsigned char *ptr;
outb(GRXFIFO, (ioaddr + XP_ADDR));
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
tty_prepare_flip_string(tty, &ptr, len);
insb((ioaddr + XP_DATA), ptr, len);
tty_schedule_flip(tty);
portp->stats.rxtotal += len;
}
}
} else {
stl_sc26198rxbadchars(portp);
}
/*
* If we are TX flow controlled and in IXANY mode then we may need
* to unflow control here. We gotta do this because of the automatic
* flow control modes of the sc26198.
*/
if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
if ((tty != (struct tty_struct *) NULL) &&
(tty->termios != (struct termios *) NULL) &&
(tty->termios->c_iflag & IXANY)) {
stl_sc26198txunflow(portp, tty);
}
}
}
/*****************************************************************************/
/*
* Process an RX bad character.
*/
static inline void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch)
{
struct tty_struct *tty;
unsigned int ioaddr;
tty = portp->tty;
ioaddr = portp->ioaddr;
if (status & SR_RXPARITY)
portp->stats.rxparity++;
if (status & SR_RXFRAMING)
portp->stats.rxframing++;
if (status & SR_RXOVERRUN)
portp->stats.rxoverrun++;
if (status & SR_RXBREAK)
portp->stats.rxbreaks++;
if ((tty != (struct tty_struct *) NULL) &&
((portp->rxignoremsk & status) == 0)) {
if (portp->rxmarkmsk & status) {
if (status & SR_RXBREAK) {
status = TTY_BREAK;
if (portp->flags & ASYNC_SAK) {
do_SAK(tty);
BRDENABLE(portp->brdnr, portp->pagenr);
}
} else if (status & SR_RXPARITY) {
status = TTY_PARITY;
} else if (status & SR_RXFRAMING) {
status = TTY_FRAME;
} else if(status & SR_RXOVERRUN) {
status = TTY_OVERRUN;
} else {
status = 0;
}
} else {
status = 0;
}
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
tty_insert_flip_char(tty, ch, status);
tty_schedule_flip(tty);
if (status == 0)
portp->stats.rxtotal++;
}
}
/*****************************************************************************/
/*
* Process all characters in the RX FIFO of the UART. Check all char
* status bytes as well, and process as required. We need to check
* all bytes in the FIFO, in case some more enter the FIFO while we
* are here. To get the exact character error type we need to switch
* into CHAR error mode (that is why we need to make sure we empty
* the FIFO).
*/
static void stl_sc26198rxbadchars(stlport_t *portp)
{
unsigned char status, mr1;
char ch;
/*
* To get the precise error type for each character we must switch
* back into CHAR error mode.
*/
mr1 = stl_sc26198getreg(portp, MR1);
stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
ch = stl_sc26198getreg(portp, RXFIFO);
stl_sc26198rxbadch(portp, status, ch);
}
/*
* To get correct interrupt class we must switch back into BLOCK
* error mode.
*/
stl_sc26198setreg(portp, MR1, mr1);
}
/*****************************************************************************/
/*
* Other interrupt handler. This includes modem signals, flow
* control actions, etc. Most stuff is left to off-level interrupt
* processing time.
*/
static void stl_sc26198otherisr(stlport_t *portp, unsigned int iack)
{
unsigned char cir, ipr, xisr;
#ifdef DEBUG
printk("stl_sc26198otherisr(portp=%x,iack=%x)\n", (int) portp, iack);
#endif
cir = stl_sc26198getglobreg(portp, CIR);
switch (cir & CIR_SUBTYPEMASK) {
case CIR_SUBCOS:
ipr = stl_sc26198getreg(portp, IPR);
if (ipr & IPR_DCDCHANGE) {
set_bit(ASYI_DCDCHANGE, &portp->istate);
schedule_work(&portp->tqueue);
portp->stats.modem++;
}
break;
case CIR_SUBXONXOFF:
xisr = stl_sc26198getreg(portp, XISR);
if (xisr & XISR_RXXONGOT) {
set_bit(ASYI_TXFLOWED, &portp->istate);
portp->stats.txxoff++;
}
if (xisr & XISR_RXXOFFGOT) {
clear_bit(ASYI_TXFLOWED, &portp->istate);
portp->stats.txxon++;
}
break;
case CIR_SUBBREAK:
stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
stl_sc26198rxbadchars(portp);
break;
default:
break;
}
}
/*****************************************************************************/