OpenCloudOS-Kernel/drivers/net/ethernet/realtek/atp.h

267 lines
8.2 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/* Linux header file for the ATP pocket ethernet adapter. */
/* v1.09 8/9/2000 becker@scyld.com. */
#include <linux/if_ether.h>
#include <linux/types.h>
/* The header prepended to received packets. */
struct rx_header {
ushort pad; /* Pad. */
ushort rx_count;
ushort rx_status; /* Unknown bit assignments :-<. */
ushort cur_addr; /* Apparently the current buffer address(?) */
};
#define PAR_DATA 0
#define PAR_STATUS 1
#define PAR_CONTROL 2
#define Ctrl_LNibRead 0x08 /* LP_PSELECP */
#define Ctrl_HNibRead 0
#define Ctrl_LNibWrite 0x08 /* LP_PSELECP */
#define Ctrl_HNibWrite 0
#define Ctrl_SelData 0x04 /* LP_PINITP */
#define Ctrl_IRQEN 0x10 /* LP_PINTEN */
#define EOW 0xE0
#define EOC 0xE0
#define WrAddr 0x40 /* Set address of EPLC read, write register. */
#define RdAddr 0xC0
#define HNib 0x10
enum page0_regs {
/* The first six registers hold
* the ethernet physical station address.
*/
PAR0 = 0, PAR1 = 1, PAR2 = 2, PAR3 = 3, PAR4 = 4, PAR5 = 5,
TxCNT0 = 6, TxCNT1 = 7, /* The transmit byte count. */
TxSTAT = 8, RxSTAT = 9, /* Tx and Rx status. */
ISR = 10, IMR = 11, /* Interrupt status and mask. */
CMR1 = 12, /* Command register 1. */
CMR2 = 13, /* Command register 2. */
MODSEL = 14, /* Mode select register. */
MAR = 14, /* Memory address register (?). */
CMR2_h = 0x1d,
};
enum eepage_regs {
PROM_CMD = 6,
PROM_DATA = 7 /* Note that PROM_CMD is in the "high" bits. */
};
#define ISR_TxOK 0x01
#define ISR_RxOK 0x04
#define ISR_TxErr 0x02
#define ISRh_RxErr 0x11 /* ISR, high nibble */
#define CMR1h_MUX 0x08 /* Select printer multiplexor on 8012. */
#define CMR1h_RESET 0x04 /* Reset. */
#define CMR1h_RxENABLE 0x02 /* Rx unit enable. */
#define CMR1h_TxENABLE 0x01 /* Tx unit enable. */
#define CMR1h_TxRxOFF 0x00
#define CMR1_ReXmit 0x08 /* Trigger a retransmit. */
#define CMR1_Xmit 0x04 /* Trigger a transmit. */
#define CMR1_IRQ 0x02 /* Interrupt active. */
#define CMR1_BufEnb 0x01 /* Enable the buffer(?). */
#define CMR1_NextPkt 0x01 /* Enable the buffer(?). */
#define CMR2_NULL 8
#define CMR2_IRQOUT 9
#define CMR2_RAMTEST 10
#define CMR2_EEPROM 12 /* Set to page 1, for reading the EEPROM. */
#define CMR2h_OFF 0 /* No accept mode. */
#define CMR2h_Physical 1 /* Accept a physical address match only. */
#define CMR2h_Normal 2 /* Accept physical and broadcast address. */
#define CMR2h_PROMISC 3 /* Promiscuous mode. */
/* An inline function used below: it differs from inb() by explicitly
* return an unsigned char, saving a truncation.
*/
static inline unsigned char inbyte(unsigned short port)
{
unsigned char _v;
__asm__ __volatile__ ("inb %w1,%b0" : "=a" (_v) : "d" (port));
return _v;
}
/* Read register OFFSET.
* This command should always be terminated with read_end().
*/
static inline unsigned char read_nibble(short port, unsigned char offset)
{
unsigned char retval;
outb(EOC+offset, port + PAR_DATA);
outb(RdAddr+offset, port + PAR_DATA);
inbyte(port + PAR_STATUS); /* Settling time delay */
retval = inbyte(port + PAR_STATUS);
outb(EOC+offset, port + PAR_DATA);
return retval;
}
/* Functions for bulk data read. The interrupt line is always disabled. */
/* Get a byte using read mode 0, reading data from the control lines. */
static inline unsigned char read_byte_mode0(short ioaddr)
{
unsigned char low_nib;
outb(Ctrl_LNibRead, ioaddr + PAR_CONTROL);
inbyte(ioaddr + PAR_STATUS);
low_nib = (inbyte(ioaddr + PAR_STATUS) >> 3) & 0x0f;
outb(Ctrl_HNibRead, ioaddr + PAR_CONTROL);
inbyte(ioaddr + PAR_STATUS); /* Settling time delay -- needed! */
inbyte(ioaddr + PAR_STATUS); /* Settling time delay -- needed! */
return low_nib | ((inbyte(ioaddr + PAR_STATUS) << 1) & 0xf0);
}
/* The same as read_byte_mode0(), but does multiple inb()s for stability. */
static inline unsigned char read_byte_mode2(short ioaddr)
{
unsigned char low_nib;
outb(Ctrl_LNibRead, ioaddr + PAR_CONTROL);
inbyte(ioaddr + PAR_STATUS);
low_nib = (inbyte(ioaddr + PAR_STATUS) >> 3) & 0x0f;
outb(Ctrl_HNibRead, ioaddr + PAR_CONTROL);
inbyte(ioaddr + PAR_STATUS); /* Settling time delay -- needed! */
return low_nib | ((inbyte(ioaddr + PAR_STATUS) << 1) & 0xf0);
}
/* Read a byte through the data register. */
static inline unsigned char read_byte_mode4(short ioaddr)
{
unsigned char low_nib;
outb(RdAddr | MAR, ioaddr + PAR_DATA);
low_nib = (inbyte(ioaddr + PAR_STATUS) >> 3) & 0x0f;
outb(RdAddr | HNib | MAR, ioaddr + PAR_DATA);
return low_nib | ((inbyte(ioaddr + PAR_STATUS) << 1) & 0xf0);
}
/* Read a byte through the data register, double reading to allow settling. */
static inline unsigned char read_byte_mode6(short ioaddr)
{
unsigned char low_nib;
outb(RdAddr | MAR, ioaddr + PAR_DATA);
inbyte(ioaddr + PAR_STATUS);
low_nib = (inbyte(ioaddr + PAR_STATUS) >> 3) & 0x0f;
outb(RdAddr | HNib | MAR, ioaddr + PAR_DATA);
inbyte(ioaddr + PAR_STATUS);
return low_nib | ((inbyte(ioaddr + PAR_STATUS) << 1) & 0xf0);
}
static inline void
write_reg(short port, unsigned char reg, unsigned char value)
{
unsigned char outval;
outb(EOC | reg, port + PAR_DATA);
outval = WrAddr | reg;
outb(outval, port + PAR_DATA);
outb(outval, port + PAR_DATA); /* Double write for PS/2. */
outval &= 0xf0;
outval |= value;
outb(outval, port + PAR_DATA);
outval &= 0x1f;
outb(outval, port + PAR_DATA);
outb(outval, port + PAR_DATA);
outb(EOC | outval, port + PAR_DATA);
}
static inline void
write_reg_high(short port, unsigned char reg, unsigned char value)
{
unsigned char outval = EOC | HNib | reg;
outb(outval, port + PAR_DATA);
outval &= WrAddr | HNib | 0x0f;
outb(outval, port + PAR_DATA);
outb(outval, port + PAR_DATA); /* Double write for PS/2. */
outval = WrAddr | HNib | value;
outb(outval, port + PAR_DATA);
outval &= HNib | 0x0f; /* HNib | value */
outb(outval, port + PAR_DATA);
outb(outval, port + PAR_DATA);
outb(EOC | HNib | outval, port + PAR_DATA);
}
/* Write a byte out using nibble mode. The low nibble is written first. */
static inline void
write_reg_byte(short port, unsigned char reg, unsigned char value)
{
unsigned char outval;
outb(EOC | reg, port + PAR_DATA); /* Reset the address register. */
outval = WrAddr | reg;
outb(outval, port + PAR_DATA);
outb(outval, port + PAR_DATA); /* Double write for PS/2. */
outb((outval & 0xf0) | (value & 0x0f), port + PAR_DATA);
outb(value & 0x0f, port + PAR_DATA);
value >>= 4;
outb(value, port + PAR_DATA);
outb(0x10 | value, port + PAR_DATA);
outb(0x10 | value, port + PAR_DATA);
outb(EOC | value, port + PAR_DATA); /* Reset the address register. */
}
/* Bulk data writes to the packet buffer. The interrupt line remains enabled.
* The first, faster method uses only the dataport (data modes 0, 2 & 4).
* The second (backup) method uses data and control regs (modes 1, 3 & 5).
* It should only be needed when there is skew between the individual data
* lines.
*/
static inline void write_byte_mode0(short ioaddr, unsigned char value)
{
outb(value & 0x0f, ioaddr + PAR_DATA);
outb((value>>4) | 0x10, ioaddr + PAR_DATA);
}
static inline void write_byte_mode1(short ioaddr, unsigned char value)
{
outb(value & 0x0f, ioaddr + PAR_DATA);
outb(Ctrl_IRQEN | Ctrl_LNibWrite, ioaddr + PAR_CONTROL);
outb((value>>4) | 0x10, ioaddr + PAR_DATA);
outb(Ctrl_IRQEN | Ctrl_HNibWrite, ioaddr + PAR_CONTROL);
}
/* Write 16bit VALUE to the packet buffer: the same as above just doubled. */
static inline void write_word_mode0(short ioaddr, unsigned short value)
{
outb(value & 0x0f, ioaddr + PAR_DATA);
value >>= 4;
outb((value & 0x0f) | 0x10, ioaddr + PAR_DATA);
value >>= 4;
outb(value & 0x0f, ioaddr + PAR_DATA);
value >>= 4;
outb((value & 0x0f) | 0x10, ioaddr + PAR_DATA);
}
/* EEPROM_Ctrl bits. */
#define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
#define EE_CS 0x02 /* EEPROM chip select. */
#define EE_CLK_HIGH 0x12
#define EE_CLK_LOW 0x16
#define EE_DATA_WRITE 0x01 /* EEPROM chip data in. */
#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
/* Delay between EEPROM clock transitions. */
#define eeprom_delay(ticks) \
do { int _i = 40; while (--_i > 0) { __SLOW_DOWN_IO; } } while (0)
/* The EEPROM commands include the alway-set leading bit. */
#define EE_WRITE_CMD(offset) (((5 << 6) + (offset)) << 17)
#define EE_READ(offset) (((6 << 6) + (offset)) << 17)
#define EE_ERASE(offset) (((7 << 6) + (offset)) << 17)
#define EE_CMD_SIZE 27 /* The command+address+data size. */