OpenCloudOS-Kernel/drivers/net/wan/hdlc_x25.c

404 lines
8.9 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Generic HDLC support routines for Linux
* X.25 support
*
* Copyright (C) 1999 - 2006 Krzysztof Halasa <khc@pm.waw.pl>
*/
#include <linux/errno.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include <linux/hdlc.h>
#include <linux/if_arp.h>
#include <linux/inetdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/lapb.h>
#include <linux/module.h>
#include <linux/pkt_sched.h>
#include <linux/poll.h>
#include <linux/rtnetlink.h>
#include <linux/skbuff.h>
#include <net/x25device.h>
struct x25_state {
x25_hdlc_proto settings;
bool up;
spinlock_t up_lock; /* Protects "up" */
struct sk_buff_head rx_queue;
struct tasklet_struct rx_tasklet;
};
static int x25_ioctl(struct net_device *dev, struct ifreq *ifr);
static struct x25_state *state(hdlc_device *hdlc)
{
return hdlc->state;
}
static void x25_rx_queue_kick(struct tasklet_struct *t)
{
struct x25_state *x25st = from_tasklet(x25st, t, rx_tasklet);
struct sk_buff *skb = skb_dequeue(&x25st->rx_queue);
while (skb) {
netif_receive_skb_core(skb);
skb = skb_dequeue(&x25st->rx_queue);
}
}
/* These functions are callbacks called by LAPB layer */
static void x25_connect_disconnect(struct net_device *dev, int reason, int code)
{
struct x25_state *x25st = state(dev_to_hdlc(dev));
struct sk_buff *skb;
unsigned char *ptr;
skb = __dev_alloc_skb(1, GFP_ATOMIC | __GFP_NOMEMALLOC);
if (!skb) {
netdev_err(dev, "out of memory\n");
return;
}
ptr = skb_put(skb, 1);
*ptr = code;
skb->protocol = x25_type_trans(skb, dev);
skb_queue_tail(&x25st->rx_queue, skb);
tasklet_schedule(&x25st->rx_tasklet);
}
static void x25_connected(struct net_device *dev, int reason)
{
x25_connect_disconnect(dev, reason, X25_IFACE_CONNECT);
}
static void x25_disconnected(struct net_device *dev, int reason)
{
x25_connect_disconnect(dev, reason, X25_IFACE_DISCONNECT);
}
static int x25_data_indication(struct net_device *dev, struct sk_buff *skb)
{
struct x25_state *x25st = state(dev_to_hdlc(dev));
unsigned char *ptr;
if (skb_cow(skb, 1)) {
kfree_skb(skb);
return NET_RX_DROP;
}
skb_push(skb, 1);
ptr = skb->data;
*ptr = X25_IFACE_DATA;
skb->protocol = x25_type_trans(skb, dev);
skb_queue_tail(&x25st->rx_queue, skb);
tasklet_schedule(&x25st->rx_tasklet);
return NET_RX_SUCCESS;
}
static void x25_data_transmit(struct net_device *dev, struct sk_buff *skb)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
skb_reset_network_header(skb);
skb->protocol = hdlc_type_trans(skb, dev);
if (dev_nit_active(dev))
dev_queue_xmit_nit(skb, dev);
hdlc->xmit(skb, dev); /* Ignore return value :-( */
}
static netdev_tx_t x25_xmit(struct sk_buff *skb, struct net_device *dev)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
struct x25_state *x25st = state(hdlc);
int result;
drivers/net/wan/hdlc_x25: Added needed_headroom and a skb->len check 1. Added a skb->len check This driver expects upper layers to include a pseudo header of 1 byte when passing down a skb for transmission. This driver will read this 1-byte header. This patch added a skb->len check before reading the header to make sure the header exists. 2. Added needed_headroom and set hard_header_len to 0 When this driver transmits data, first this driver will remove a pseudo header of 1 byte, then the lapb module will prepend the LAPB header of 2 or 3 bytes. So the value of needed_headroom in this driver should be 3 - 1. Because this driver has no header_ops, according to the logic of af_packet.c, the value of hard_header_len should be 0. Reason of setting needed_headroom and hard_header_len at this place: This driver is written using the API of the hdlc module, the hdlc module enables this driver (the protocol driver) to run on any hardware that has a driver (the hardware driver) written using the API of the hdlc module. Two other hdlc protocol drivers - hdlc_ppp and hdlc_raw_eth, also set things like hard_header_len at this place. In hdlc_ppp, it sets hard_header_len after attach_hdlc_protocol and before setting dev->type. In hdlc_raw_eth, it sets hard_header_len by calling ether_setup after attach_hdlc_protocol and after memcpy the settings. 3. Reset needed_headroom when detaching protocols (in hdlc.c) When detaching a protocol from a hardware device, the hdlc module will reset various parameters of the device (including hard_header_len) to the default values. We add needed_headroom here so that needed_headroom will also be reset. Cc: Willem de Bruijn <willemdebruijn.kernel@gmail.com> Cc: Martin Schiller <ms@dev.tdt.de> Cc: Andrew Hendry <andrew.hendry@gmail.com> Signed-off-by: Xie He <xie.he.0141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-14 02:17:04 +08:00
/* There should be a pseudo header of 1 byte added by upper layers.
* Check to make sure it is there before reading it.
*/
if (skb->len < 1) {
kfree_skb(skb);
return NETDEV_TX_OK;
}
spin_lock_bh(&x25st->up_lock);
if (!x25st->up) {
spin_unlock_bh(&x25st->up_lock);
kfree_skb(skb);
return NETDEV_TX_OK;
}
switch (skb->data[0]) {
case X25_IFACE_DATA: /* Data to be transmitted */
skb_pull(skb, 1);
if ((result = lapb_data_request(dev, skb)) != LAPB_OK)
dev_kfree_skb(skb);
spin_unlock_bh(&x25st->up_lock);
return NETDEV_TX_OK;
case X25_IFACE_CONNECT:
if ((result = lapb_connect_request(dev))!= LAPB_OK) {
if (result == LAPB_CONNECTED)
/* Send connect confirm. msg to level 3 */
x25_connected(dev, 0);
else
netdev_err(dev, "LAPB connect request failed, error code = %i\n",
result);
}
break;
case X25_IFACE_DISCONNECT:
if ((result = lapb_disconnect_request(dev)) != LAPB_OK) {
if (result == LAPB_NOTCONNECTED)
/* Send disconnect confirm. msg to level 3 */
x25_disconnected(dev, 0);
else
netdev_err(dev, "LAPB disconnect request failed, error code = %i\n",
result);
}
break;
default: /* to be defined */
break;
}
spin_unlock_bh(&x25st->up_lock);
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static int x25_open(struct net_device *dev)
{
static const struct lapb_register_struct cb = {
.connect_confirmation = x25_connected,
.connect_indication = x25_connected,
.disconnect_confirmation = x25_disconnected,
.disconnect_indication = x25_disconnected,
.data_indication = x25_data_indication,
.data_transmit = x25_data_transmit,
};
hdlc_device *hdlc = dev_to_hdlc(dev);
struct x25_state *x25st = state(hdlc);
struct lapb_parms_struct params;
int result;
result = lapb_register(dev, &cb);
if (result != LAPB_OK)
return -ENOMEM;
result = lapb_getparms(dev, &params);
if (result != LAPB_OK)
return -EINVAL;
if (state(hdlc)->settings.dce)
params.mode = params.mode | LAPB_DCE;
if (state(hdlc)->settings.modulo == 128)
params.mode = params.mode | LAPB_EXTENDED;
params.window = state(hdlc)->settings.window;
params.t1 = state(hdlc)->settings.t1;
params.t2 = state(hdlc)->settings.t2;
params.n2 = state(hdlc)->settings.n2;
result = lapb_setparms(dev, &params);
if (result != LAPB_OK)
return -EINVAL;
spin_lock_bh(&x25st->up_lock);
x25st->up = true;
spin_unlock_bh(&x25st->up_lock);
return 0;
}
static void x25_close(struct net_device *dev)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
struct x25_state *x25st = state(hdlc);
spin_lock_bh(&x25st->up_lock);
x25st->up = false;
spin_unlock_bh(&x25st->up_lock);
lapb_unregister(dev);
tasklet_kill(&x25st->rx_tasklet);
}
static int x25_rx(struct sk_buff *skb)
{
struct net_device *dev = skb->dev;
hdlc_device *hdlc = dev_to_hdlc(dev);
struct x25_state *x25st = state(hdlc);
if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) {
dev->stats.rx_dropped++;
return NET_RX_DROP;
}
spin_lock_bh(&x25st->up_lock);
if (!x25st->up) {
spin_unlock_bh(&x25st->up_lock);
kfree_skb(skb);
dev->stats.rx_dropped++;
return NET_RX_DROP;
}
if (lapb_data_received(dev, skb) == LAPB_OK) {
spin_unlock_bh(&x25st->up_lock);
return NET_RX_SUCCESS;
}
spin_unlock_bh(&x25st->up_lock);
dev->stats.rx_errors++;
dev_kfree_skb_any(skb);
return NET_RX_DROP;
}
static struct hdlc_proto proto = {
.open = x25_open,
.close = x25_close,
.ioctl = x25_ioctl,
.netif_rx = x25_rx,
.xmit = x25_xmit,
.module = THIS_MODULE,
};
static int x25_ioctl(struct net_device *dev, struct ifreq *ifr)
{
x25_hdlc_proto __user *x25_s = ifr->ifr_settings.ifs_ifsu.x25;
const size_t size = sizeof(x25_hdlc_proto);
hdlc_device *hdlc = dev_to_hdlc(dev);
x25_hdlc_proto new_settings;
int result;
switch (ifr->ifr_settings.type) {
case IF_GET_PROTO:
if (dev_to_hdlc(dev)->proto != &proto)
return -EINVAL;
ifr->ifr_settings.type = IF_PROTO_X25;
if (ifr->ifr_settings.size < size) {
ifr->ifr_settings.size = size; /* data size wanted */
return -ENOBUFS;
}
if (copy_to_user(x25_s, &state(hdlc)->settings, size))
return -EFAULT;
return 0;
case IF_PROTO_X25:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (dev->flags & IFF_UP)
return -EBUSY;
/* backward compatibility */
if (ifr->ifr_settings.size == 0) {
new_settings.dce = 0;
new_settings.modulo = 8;
new_settings.window = 7;
new_settings.t1 = 3;
new_settings.t2 = 1;
new_settings.n2 = 10;
}
else {
if (copy_from_user(&new_settings, x25_s, size))
return -EFAULT;
if ((new_settings.dce != 0 &&
new_settings.dce != 1) ||
(new_settings.modulo != 8 &&
new_settings.modulo != 128) ||
new_settings.window < 1 ||
(new_settings.modulo == 8 &&
new_settings.window > 7) ||
(new_settings.modulo == 128 &&
new_settings.window > 127) ||
new_settings.t1 < 1 ||
new_settings.t1 > 255 ||
new_settings.t2 < 1 ||
new_settings.t2 > 255 ||
new_settings.n2 < 1 ||
new_settings.n2 > 255)
return -EINVAL;
}
result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT);
if (result)
return result;
if ((result = attach_hdlc_protocol(dev, &proto,
sizeof(struct x25_state))))
return result;
memcpy(&state(hdlc)->settings, &new_settings, size);
state(hdlc)->up = false;
spin_lock_init(&state(hdlc)->up_lock);
skb_queue_head_init(&state(hdlc)->rx_queue);
tasklet_setup(&state(hdlc)->rx_tasklet, x25_rx_queue_kick);
drivers/net/wan/hdlc_x25: Added needed_headroom and a skb->len check 1. Added a skb->len check This driver expects upper layers to include a pseudo header of 1 byte when passing down a skb for transmission. This driver will read this 1-byte header. This patch added a skb->len check before reading the header to make sure the header exists. 2. Added needed_headroom and set hard_header_len to 0 When this driver transmits data, first this driver will remove a pseudo header of 1 byte, then the lapb module will prepend the LAPB header of 2 or 3 bytes. So the value of needed_headroom in this driver should be 3 - 1. Because this driver has no header_ops, according to the logic of af_packet.c, the value of hard_header_len should be 0. Reason of setting needed_headroom and hard_header_len at this place: This driver is written using the API of the hdlc module, the hdlc module enables this driver (the protocol driver) to run on any hardware that has a driver (the hardware driver) written using the API of the hdlc module. Two other hdlc protocol drivers - hdlc_ppp and hdlc_raw_eth, also set things like hard_header_len at this place. In hdlc_ppp, it sets hard_header_len after attach_hdlc_protocol and before setting dev->type. In hdlc_raw_eth, it sets hard_header_len by calling ether_setup after attach_hdlc_protocol and after memcpy the settings. 3. Reset needed_headroom when detaching protocols (in hdlc.c) When detaching a protocol from a hardware device, the hdlc module will reset various parameters of the device (including hard_header_len) to the default values. We add needed_headroom here so that needed_headroom will also be reset. Cc: Willem de Bruijn <willemdebruijn.kernel@gmail.com> Cc: Martin Schiller <ms@dev.tdt.de> Cc: Andrew Hendry <andrew.hendry@gmail.com> Signed-off-by: Xie He <xie.he.0141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-14 02:17:04 +08:00
/* There's no header_ops so hard_header_len should be 0. */
dev->hard_header_len = 0;
/* When transmitting data:
* first we'll remove a pseudo header of 1 byte,
* then we'll prepend an LAPB header of at most 3 bytes.
*/
dev->needed_headroom = 3 - 1;
dev->type = ARPHRD_X25;
call_netdevice_notifiers(NETDEV_POST_TYPE_CHANGE, dev);
netif_dormant_off(dev);
return 0;
}
return -EINVAL;
}
static int __init mod_init(void)
{
register_hdlc_protocol(&proto);
return 0;
}
static void __exit mod_exit(void)
{
unregister_hdlc_protocol(&proto);
}
module_init(mod_init);
module_exit(mod_exit);
MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>");
MODULE_DESCRIPTION("X.25 protocol support for generic HDLC");
MODULE_LICENSE("GPL v2");