OpenCloudOS-Kernel/fs/xfs/xfs_fsops.c

977 lines
25 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_error.h"
#include "xfs_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_alloc.h"
#include "xfs_rmap_btree.h"
#include "xfs_ialloc.h"
#include "xfs_fsops.h"
#include "xfs_itable.h"
#include "xfs_trans_space.h"
#include "xfs_rtalloc.h"
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-15 07:14:59 +08:00
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_filestream.h"
xfs: add owner field to extent allocation and freeing For the rmap btree to work, we have to feed the extent owner information to the the allocation and freeing functions. This information is what will end up in the rmap btree that tracks allocated extents. While we technically don't need the owner information when freeing extents, passing it allows us to validate that the extent we are removing from the rmap btree actually belonged to the owner we expected it to belong to. We also define a special set of owner values for internal metadata that would otherwise have no owner. This allows us to tell the difference between metadata owned by different per-ag btrees, as well as static fs metadata (e.g. AG headers) and internal journal blocks. There are also a couple of special cases we need to take care of - during EFI recovery, we don't actually know who the original owner was, so we need to pass a wildcard to indicate that we aren't checking the owner for validity. We also need special handling in growfs, as we "free" the space in the last AG when extending it, but because it's new space it has no actual owner... While touching the xfs_bmap_add_free() function, re-order the parameters to put the struct xfs_mount first. Extend the owner field to include both the owner type and some sort of index within the owner. The index field will be used to support reverse mappings when reflink is enabled. When we're freeing extents from an EFI, we don't have the owner information available (rmap updates have their own redo items). xfs_free_extent therefore doesn't need to do an rmap update. Make sure that the log replay code signals this correctly. This is based upon a patch originally from Dave Chinner. It has been extended to add more owner information with the intent of helping recovery operations when things go wrong (e.g. offset of user data block in a file). [dchinner: de-shout the xfs_rmap_*_owner helpers] [darrick: minor style fixes suggested by Christoph Hellwig] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:33:42 +08:00
#include "xfs_rmap.h"
#include "xfs_ag_resv.h"
/*
* File system operations
*/
static struct xfs_buf *
xfs_growfs_get_hdr_buf(
struct xfs_mount *mp,
xfs_daddr_t blkno,
size_t numblks,
int flags,
const struct xfs_buf_ops *ops)
{
struct xfs_buf *bp;
bp = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, flags);
if (!bp)
return NULL;
xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
bp->b_bn = blkno;
bp->b_maps[0].bm_bn = blkno;
bp->b_ops = ops;
return bp;
}
static int
xfs_growfs_data_private(
xfs_mount_t *mp, /* mount point for filesystem */
xfs_growfs_data_t *in) /* growfs data input struct */
{
xfs_agf_t *agf;
struct xfs_agfl *agfl;
xfs_agi_t *agi;
xfs_agnumber_t agno;
xfs_extlen_t agsize;
xfs_extlen_t tmpsize;
xfs_alloc_rec_t *arec;
xfs_buf_t *bp;
int bucket;
int dpct;
xfs: don't break from growfs ag update loop on error When xfs_growfs_data_private() is updating backup superblocks, it bails out on the first error encountered, whether reading or writing: * If we get an error writing out the alternate superblocks, * just issue a warning and continue. The real work is * already done and committed. This can cause a problem later during repair, because repair looks at all superblocks, and picks the most prevalent one as correct. If we bail out early in the backup superblock loop, we can end up with more "bad" matching superblocks than good, and a post-growfs repair may revert the filesystem to the old geometry. With the combination of superblock verifiers and old bugs, we're more likely to encounter read errors due to verification. And perhaps even worse, we don't even properly write any of the newly-added superblocks in the new AGs. Even with this change, growfs will still say: xfs_growfs: XFS_IOC_FSGROWFSDATA xfsctl failed: Structure needs cleaning data blocks changed from 319815680 to 335216640 which might be confusing to the user, but it at least communicates that something has gone wrong, and dmesg will probably highlight the need for an xfs_repair. And this is still best-effort; if verifiers fail on more than half the backup supers, they may still "win" - but that's probably best left to repair to more gracefully handle by doing its own strict verification as part of the backup super "voting." Signed-off-by: Eric Sandeen <sandeen@redhat.com> Acked-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-12 03:14:05 +08:00
int error, saved_error = 0;
xfs_agnumber_t nagcount;
xfs_agnumber_t nagimax = 0;
xfs_rfsblock_t nb, nb_mod;
xfs_rfsblock_t new;
xfs_rfsblock_t nfree;
xfs_agnumber_t oagcount;
int pct;
xfs_trans_t *tp;
nb = in->newblocks;
pct = in->imaxpct;
if (nb < mp->m_sb.sb_dblocks || pct < 0 || pct > 100)
return -EINVAL;
if ((error = xfs_sb_validate_fsb_count(&mp->m_sb, nb)))
return error;
dpct = pct - mp->m_sb.sb_imax_pct;
error = xfs_buf_read_uncached(mp->m_ddev_targp,
XFS_FSB_TO_BB(mp, nb) - XFS_FSS_TO_BB(mp, 1),
XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
if (error)
return error;
xfs_buf_relse(bp);
new = nb; /* use new as a temporary here */
nb_mod = do_div(new, mp->m_sb.sb_agblocks);
nagcount = new + (nb_mod != 0);
if (nb_mod && nb_mod < XFS_MIN_AG_BLOCKS) {
nagcount--;
nb = (xfs_rfsblock_t)nagcount * mp->m_sb.sb_agblocks;
if (nb < mp->m_sb.sb_dblocks)
return -EINVAL;
}
new = nb - mp->m_sb.sb_dblocks;
oagcount = mp->m_sb.sb_agcount;
xfs: Replace per-ag array with a radix tree The use of an array for the per-ag structures requires reallocation of the array when growing the filesystem. This requires locking access to the array to avoid use after free situations, and the locking is difficult to get right. To avoid needing to reallocate an array, change the per-ag structures to an allocated object per ag and index them using a tree structure. The AGs are always densely indexed (hence the use of an array), but the number supported is 2^32 and lookups tend to be random and hence indexing needs to scale. A simple choice is a radix tree - it works well with this sort of index. This change also removes another large contiguous allocation from the mount/growfs path in XFS. The growing process now needs to change to only initialise the new AGs required for the extra space, and as such only needs to exclusively lock the tree for inserts. The rest of the code only needs to lock the tree while doing lookups, and hence this will remove all the deadlocks that currently occur on the m_perag_lock as it is now an innermost lock. The lock is also changed to a spinlock from a read/write lock as the hold time is now extremely short. To complete the picture, the per-ag structures will need to be reference counted to ensure that we don't free/modify them while they are still in use. This will be done in subsequent patch. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-01-11 19:47:44 +08:00
/* allocate the new per-ag structures */
if (nagcount > oagcount) {
error = xfs_initialize_perag(mp, nagcount, &nagimax);
if (error)
return error;
}
xfs: Replace per-ag array with a radix tree The use of an array for the per-ag structures requires reallocation of the array when growing the filesystem. This requires locking access to the array to avoid use after free situations, and the locking is difficult to get right. To avoid needing to reallocate an array, change the per-ag structures to an allocated object per ag and index them using a tree structure. The AGs are always densely indexed (hence the use of an array), but the number supported is 2^32 and lookups tend to be random and hence indexing needs to scale. A simple choice is a radix tree - it works well with this sort of index. This change also removes another large contiguous allocation from the mount/growfs path in XFS. The growing process now needs to change to only initialise the new AGs required for the extra space, and as such only needs to exclusively lock the tree for inserts. The rest of the code only needs to lock the tree while doing lookups, and hence this will remove all the deadlocks that currently occur on the m_perag_lock as it is now an innermost lock. The lock is also changed to a spinlock from a read/write lock as the hold time is now extremely short. To complete the picture, the per-ag structures will need to be reference counted to ensure that we don't free/modify them while they are still in use. This will be done in subsequent patch. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-01-11 19:47:44 +08:00
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata,
XFS_GROWFS_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
if (error)
return error;
xfs: Replace per-ag array with a radix tree The use of an array for the per-ag structures requires reallocation of the array when growing the filesystem. This requires locking access to the array to avoid use after free situations, and the locking is difficult to get right. To avoid needing to reallocate an array, change the per-ag structures to an allocated object per ag and index them using a tree structure. The AGs are always densely indexed (hence the use of an array), but the number supported is 2^32 and lookups tend to be random and hence indexing needs to scale. A simple choice is a radix tree - it works well with this sort of index. This change also removes another large contiguous allocation from the mount/growfs path in XFS. The growing process now needs to change to only initialise the new AGs required for the extra space, and as such only needs to exclusively lock the tree for inserts. The rest of the code only needs to lock the tree while doing lookups, and hence this will remove all the deadlocks that currently occur on the m_perag_lock as it is now an innermost lock. The lock is also changed to a spinlock from a read/write lock as the hold time is now extremely short. To complete the picture, the per-ag structures will need to be reference counted to ensure that we don't free/modify them while they are still in use. This will be done in subsequent patch. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-01-11 19:47:44 +08:00
/*
* Write new AG headers to disk. Non-transactional, but written
* synchronously so they are completed prior to the growfs transaction
* being logged.
*/
nfree = 0;
for (agno = nagcount - 1; agno >= oagcount; agno--, new -= agsize) {
__be32 *agfl_bno;
/*
* AG freespace header block
*/
bp = xfs_growfs_get_hdr_buf(mp,
XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0,
&xfs_agf_buf_ops);
if (!bp) {
error = -ENOMEM;
goto error0;
}
agf = XFS_BUF_TO_AGF(bp);
agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
agf->agf_seqno = cpu_to_be32(agno);
if (agno == nagcount - 1)
agsize =
nb -
(agno * (xfs_rfsblock_t)mp->m_sb.sb_agblocks);
else
agsize = mp->m_sb.sb_agblocks;
agf->agf_length = cpu_to_be32(agsize);
agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
agf->agf_roots[XFS_BTNUM_RMAPi] =
cpu_to_be32(XFS_RMAP_BLOCK(mp));
agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
agf->agf_rmap_blocks = cpu_to_be32(1);
}
agf->agf_flfirst = cpu_to_be32(1);
agf->agf_fllast = 0;
agf->agf_flcount = 0;
tmpsize = agsize - mp->m_ag_prealloc_blocks;
agf->agf_freeblks = cpu_to_be32(tmpsize);
agf->agf_longest = cpu_to_be32(tmpsize);
if (xfs_sb_version_hascrc(&mp->m_sb))
uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
if (xfs_sb_version_hasreflink(&mp->m_sb)) {
agf->agf_refcount_root = cpu_to_be32(
xfs_refc_block(mp));
agf->agf_refcount_level = cpu_to_be32(1);
agf->agf_refcount_blocks = cpu_to_be32(1);
}
error = xfs_bwrite(bp);
xfs_buf_relse(bp);
if (error)
goto error0;
/*
* AG freelist header block
*/
bp = xfs_growfs_get_hdr_buf(mp,
XFS_AG_DADDR(mp, agno, XFS_AGFL_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0,
&xfs_agfl_buf_ops);
if (!bp) {
error = -ENOMEM;
goto error0;
}
agfl = XFS_BUF_TO_AGFL(bp);
if (xfs_sb_version_hascrc(&mp->m_sb)) {
agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
agfl->agfl_seqno = cpu_to_be32(agno);
uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
}
agfl_bno = XFS_BUF_TO_AGFL_BNO(mp, bp);
for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
error = xfs_bwrite(bp);
xfs_buf_relse(bp);
if (error)
goto error0;
/*
* AG inode header block
*/
bp = xfs_growfs_get_hdr_buf(mp,
XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0,
&xfs_agi_buf_ops);
if (!bp) {
error = -ENOMEM;
goto error0;
}
agi = XFS_BUF_TO_AGI(bp);
agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
agi->agi_seqno = cpu_to_be32(agno);
agi->agi_length = cpu_to_be32(agsize);
agi->agi_count = 0;
agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
agi->agi_level = cpu_to_be32(1);
agi->agi_freecount = 0;
agi->agi_newino = cpu_to_be32(NULLAGINO);
agi->agi_dirino = cpu_to_be32(NULLAGINO);
if (xfs_sb_version_hascrc(&mp->m_sb))
uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
agi->agi_free_level = cpu_to_be32(1);
}
for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
error = xfs_bwrite(bp);
xfs_buf_relse(bp);
if (error)
goto error0;
/*
* BNO btree root block
*/
bp = xfs_growfs_get_hdr_buf(mp,
XFS_AGB_TO_DADDR(mp, agno, XFS_BNO_BLOCK(mp)),
BTOBB(mp->m_sb.sb_blocksize), 0,
&xfs_allocbt_buf_ops);
if (!bp) {
error = -ENOMEM;
goto error0;
}
xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, agno, 0);
arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
arec->ar_blockcount = cpu_to_be32(
agsize - be32_to_cpu(arec->ar_startblock));
error = xfs_bwrite(bp);
xfs_buf_relse(bp);
if (error)
goto error0;
/*
* CNT btree root block
*/
bp = xfs_growfs_get_hdr_buf(mp,
XFS_AGB_TO_DADDR(mp, agno, XFS_CNT_BLOCK(mp)),
BTOBB(mp->m_sb.sb_blocksize), 0,
&xfs_allocbt_buf_ops);
if (!bp) {
error = -ENOMEM;
goto error0;
}
xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, agno, 0);
arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
arec->ar_blockcount = cpu_to_be32(
agsize - be32_to_cpu(arec->ar_startblock));
nfree += be32_to_cpu(arec->ar_blockcount);
error = xfs_bwrite(bp);
xfs_buf_relse(bp);
if (error)
goto error0;
/* RMAP btree root block */
if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
struct xfs_rmap_rec *rrec;
struct xfs_btree_block *block;
bp = xfs_growfs_get_hdr_buf(mp,
XFS_AGB_TO_DADDR(mp, agno, XFS_RMAP_BLOCK(mp)),
BTOBB(mp->m_sb.sb_blocksize), 0,
&xfs_rmapbt_buf_ops);
if (!bp) {
error = -ENOMEM;
goto error0;
}
xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 0,
agno, 0);
block = XFS_BUF_TO_BLOCK(bp);
/*
* mark the AG header regions as static metadata The BNO
* btree block is the first block after the headers, so
* it's location defines the size of region the static
* metadata consumes.
*
* Note: unlike mkfs, we never have to account for log
* space when growing the data regions
*/
rrec = XFS_RMAP_REC_ADDR(block, 1);
rrec->rm_startblock = 0;
rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
rrec->rm_offset = 0;
be16_add_cpu(&block->bb_numrecs, 1);
/* account freespace btree root blocks */
rrec = XFS_RMAP_REC_ADDR(block, 2);
rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
rrec->rm_blockcount = cpu_to_be32(2);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
rrec->rm_offset = 0;
be16_add_cpu(&block->bb_numrecs, 1);
/* account inode btree root blocks */
rrec = XFS_RMAP_REC_ADDR(block, 3);
rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
XFS_IBT_BLOCK(mp));
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
rrec->rm_offset = 0;
be16_add_cpu(&block->bb_numrecs, 1);
/* account for rmap btree root */
rrec = XFS_RMAP_REC_ADDR(block, 4);
rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
rrec->rm_blockcount = cpu_to_be32(1);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
rrec->rm_offset = 0;
be16_add_cpu(&block->bb_numrecs, 1);
/* account for refc btree root */
if (xfs_sb_version_hasreflink(&mp->m_sb)) {
rrec = XFS_RMAP_REC_ADDR(block, 5);
rrec->rm_startblock = cpu_to_be32(
xfs_refc_block(mp));
rrec->rm_blockcount = cpu_to_be32(1);
rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
rrec->rm_offset = 0;
be16_add_cpu(&block->bb_numrecs, 1);
}
error = xfs_bwrite(bp);
xfs_buf_relse(bp);
if (error)
goto error0;
}
/*
* INO btree root block
*/
bp = xfs_growfs_get_hdr_buf(mp,
XFS_AGB_TO_DADDR(mp, agno, XFS_IBT_BLOCK(mp)),
BTOBB(mp->m_sb.sb_blocksize), 0,
&xfs_inobt_buf_ops);
if (!bp) {
error = -ENOMEM;
goto error0;
}
xfs_btree_init_block(mp, bp, XFS_BTNUM_INO , 0, 0, agno, 0);
error = xfs_bwrite(bp);
xfs_buf_relse(bp);
if (error)
goto error0;
/*
* FINO btree root block
*/
if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
bp = xfs_growfs_get_hdr_buf(mp,
XFS_AGB_TO_DADDR(mp, agno, XFS_FIBT_BLOCK(mp)),
BTOBB(mp->m_sb.sb_blocksize), 0,
&xfs_inobt_buf_ops);
if (!bp) {
error = -ENOMEM;
goto error0;
}
xfs_btree_init_block(mp, bp, XFS_BTNUM_FINO,
0, 0, agno, 0);
error = xfs_bwrite(bp);
xfs_buf_relse(bp);
if (error)
goto error0;
}
/*
* refcount btree root block
*/
if (xfs_sb_version_hasreflink(&mp->m_sb)) {
bp = xfs_growfs_get_hdr_buf(mp,
XFS_AGB_TO_DADDR(mp, agno, xfs_refc_block(mp)),
BTOBB(mp->m_sb.sb_blocksize), 0,
&xfs_refcountbt_buf_ops);
if (!bp) {
error = -ENOMEM;
goto error0;
}
xfs_btree_init_block(mp, bp, XFS_BTNUM_REFC,
0, 0, agno, 0);
error = xfs_bwrite(bp);
xfs_buf_relse(bp);
if (error)
goto error0;
}
}
xfs_trans_agblocks_delta(tp, nfree);
/*
* There are new blocks in the old last a.g.
*/
if (new) {
xfs: add owner field to extent allocation and freeing For the rmap btree to work, we have to feed the extent owner information to the the allocation and freeing functions. This information is what will end up in the rmap btree that tracks allocated extents. While we technically don't need the owner information when freeing extents, passing it allows us to validate that the extent we are removing from the rmap btree actually belonged to the owner we expected it to belong to. We also define a special set of owner values for internal metadata that would otherwise have no owner. This allows us to tell the difference between metadata owned by different per-ag btrees, as well as static fs metadata (e.g. AG headers) and internal journal blocks. There are also a couple of special cases we need to take care of - during EFI recovery, we don't actually know who the original owner was, so we need to pass a wildcard to indicate that we aren't checking the owner for validity. We also need special handling in growfs, as we "free" the space in the last AG when extending it, but because it's new space it has no actual owner... While touching the xfs_bmap_add_free() function, re-order the parameters to put the struct xfs_mount first. Extend the owner field to include both the owner type and some sort of index within the owner. The index field will be used to support reverse mappings when reflink is enabled. When we're freeing extents from an EFI, we don't have the owner information available (rmap updates have their own redo items). xfs_free_extent therefore doesn't need to do an rmap update. Make sure that the log replay code signals this correctly. This is based upon a patch originally from Dave Chinner. It has been extended to add more owner information with the intent of helping recovery operations when things go wrong (e.g. offset of user data block in a file). [dchinner: de-shout the xfs_rmap_*_owner helpers] [darrick: minor style fixes suggested by Christoph Hellwig] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:33:42 +08:00
struct xfs_owner_info oinfo;
/*
* Change the agi length.
*/
error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
if (error) {
goto error0;
}
ASSERT(bp);
agi = XFS_BUF_TO_AGI(bp);
be32_add_cpu(&agi->agi_length, new);
ASSERT(nagcount == oagcount ||
be32_to_cpu(agi->agi_length) == mp->m_sb.sb_agblocks);
xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
/*
* Change agf length.
*/
error = xfs_alloc_read_agf(mp, tp, agno, 0, &bp);
if (error) {
goto error0;
}
ASSERT(bp);
agf = XFS_BUF_TO_AGF(bp);
be32_add_cpu(&agf->agf_length, new);
ASSERT(be32_to_cpu(agf->agf_length) ==
be32_to_cpu(agi->agi_length));
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-15 07:14:59 +08:00
xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
xfs: add owner field to extent allocation and freeing For the rmap btree to work, we have to feed the extent owner information to the the allocation and freeing functions. This information is what will end up in the rmap btree that tracks allocated extents. While we technically don't need the owner information when freeing extents, passing it allows us to validate that the extent we are removing from the rmap btree actually belonged to the owner we expected it to belong to. We also define a special set of owner values for internal metadata that would otherwise have no owner. This allows us to tell the difference between metadata owned by different per-ag btrees, as well as static fs metadata (e.g. AG headers) and internal journal blocks. There are also a couple of special cases we need to take care of - during EFI recovery, we don't actually know who the original owner was, so we need to pass a wildcard to indicate that we aren't checking the owner for validity. We also need special handling in growfs, as we "free" the space in the last AG when extending it, but because it's new space it has no actual owner... While touching the xfs_bmap_add_free() function, re-order the parameters to put the struct xfs_mount first. Extend the owner field to include both the owner type and some sort of index within the owner. The index field will be used to support reverse mappings when reflink is enabled. When we're freeing extents from an EFI, we don't have the owner information available (rmap updates have their own redo items). xfs_free_extent therefore doesn't need to do an rmap update. Make sure that the log replay code signals this correctly. This is based upon a patch originally from Dave Chinner. It has been extended to add more owner information with the intent of helping recovery operations when things go wrong (e.g. offset of user data block in a file). [dchinner: de-shout the xfs_rmap_*_owner helpers] [darrick: minor style fixes suggested by Christoph Hellwig] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:33:42 +08:00
/*
* Free the new space.
xfs: add owner field to extent allocation and freeing For the rmap btree to work, we have to feed the extent owner information to the the allocation and freeing functions. This information is what will end up in the rmap btree that tracks allocated extents. While we technically don't need the owner information when freeing extents, passing it allows us to validate that the extent we are removing from the rmap btree actually belonged to the owner we expected it to belong to. We also define a special set of owner values for internal metadata that would otherwise have no owner. This allows us to tell the difference between metadata owned by different per-ag btrees, as well as static fs metadata (e.g. AG headers) and internal journal blocks. There are also a couple of special cases we need to take care of - during EFI recovery, we don't actually know who the original owner was, so we need to pass a wildcard to indicate that we aren't checking the owner for validity. We also need special handling in growfs, as we "free" the space in the last AG when extending it, but because it's new space it has no actual owner... While touching the xfs_bmap_add_free() function, re-order the parameters to put the struct xfs_mount first. Extend the owner field to include both the owner type and some sort of index within the owner. The index field will be used to support reverse mappings when reflink is enabled. When we're freeing extents from an EFI, we don't have the owner information available (rmap updates have their own redo items). xfs_free_extent therefore doesn't need to do an rmap update. Make sure that the log replay code signals this correctly. This is based upon a patch originally from Dave Chinner. It has been extended to add more owner information with the intent of helping recovery operations when things go wrong (e.g. offset of user data block in a file). [dchinner: de-shout the xfs_rmap_*_owner helpers] [darrick: minor style fixes suggested by Christoph Hellwig] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:33:42 +08:00
*
* XFS_RMAP_OWN_NULL is used here to tell the rmap btree that
* this doesn't actually exist in the rmap btree.
*/
xfs: add owner field to extent allocation and freeing For the rmap btree to work, we have to feed the extent owner information to the the allocation and freeing functions. This information is what will end up in the rmap btree that tracks allocated extents. While we technically don't need the owner information when freeing extents, passing it allows us to validate that the extent we are removing from the rmap btree actually belonged to the owner we expected it to belong to. We also define a special set of owner values for internal metadata that would otherwise have no owner. This allows us to tell the difference between metadata owned by different per-ag btrees, as well as static fs metadata (e.g. AG headers) and internal journal blocks. There are also a couple of special cases we need to take care of - during EFI recovery, we don't actually know who the original owner was, so we need to pass a wildcard to indicate that we aren't checking the owner for validity. We also need special handling in growfs, as we "free" the space in the last AG when extending it, but because it's new space it has no actual owner... While touching the xfs_bmap_add_free() function, re-order the parameters to put the struct xfs_mount first. Extend the owner field to include both the owner type and some sort of index within the owner. The index field will be used to support reverse mappings when reflink is enabled. When we're freeing extents from an EFI, we don't have the owner information available (rmap updates have their own redo items). xfs_free_extent therefore doesn't need to do an rmap update. Make sure that the log replay code signals this correctly. This is based upon a patch originally from Dave Chinner. It has been extended to add more owner information with the intent of helping recovery operations when things go wrong (e.g. offset of user data block in a file). [dchinner: de-shout the xfs_rmap_*_owner helpers] [darrick: minor style fixes suggested by Christoph Hellwig] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:33:42 +08:00
xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_NULL);
error = xfs_rmap_free(tp, bp, agno,
be32_to_cpu(agf->agf_length) - new,
new, &oinfo);
if (error)
goto error0;
xfs: add owner field to extent allocation and freeing For the rmap btree to work, we have to feed the extent owner information to the the allocation and freeing functions. This information is what will end up in the rmap btree that tracks allocated extents. While we technically don't need the owner information when freeing extents, passing it allows us to validate that the extent we are removing from the rmap btree actually belonged to the owner we expected it to belong to. We also define a special set of owner values for internal metadata that would otherwise have no owner. This allows us to tell the difference between metadata owned by different per-ag btrees, as well as static fs metadata (e.g. AG headers) and internal journal blocks. There are also a couple of special cases we need to take care of - during EFI recovery, we don't actually know who the original owner was, so we need to pass a wildcard to indicate that we aren't checking the owner for validity. We also need special handling in growfs, as we "free" the space in the last AG when extending it, but because it's new space it has no actual owner... While touching the xfs_bmap_add_free() function, re-order the parameters to put the struct xfs_mount first. Extend the owner field to include both the owner type and some sort of index within the owner. The index field will be used to support reverse mappings when reflink is enabled. When we're freeing extents from an EFI, we don't have the owner information available (rmap updates have their own redo items). xfs_free_extent therefore doesn't need to do an rmap update. Make sure that the log replay code signals this correctly. This is based upon a patch originally from Dave Chinner. It has been extended to add more owner information with the intent of helping recovery operations when things go wrong (e.g. offset of user data block in a file). [dchinner: de-shout the xfs_rmap_*_owner helpers] [darrick: minor style fixes suggested by Christoph Hellwig] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:33:42 +08:00
error = xfs_free_extent(tp,
XFS_AGB_TO_FSB(mp, agno,
be32_to_cpu(agf->agf_length) - new),
xfs: set up per-AG free space reservations One unfortunate quirk of the reference count and reverse mapping btrees -- they can expand in size when blocks are written to *other* allocation groups if, say, one large extent becomes a lot of tiny extents. Since we don't want to start throwing errors in the middle of CoWing, we need to reserve some blocks to handle future expansion. The transaction block reservation counters aren't sufficient here because we have to have a reserve of blocks in every AG, not just somewhere in the filesystem. Therefore, create two per-AG block reservation pools. One feeds the AGFL so that rmapbt expansion always succeeds, and the other feeds all other metadata so that refcountbt expansion never fails. Use the count of how many reserved blocks we need to have on hand to create a virtual reservation in the AG. Through selective clamping of the maximum length of allocation requests and of the length of the longest free extent, we can make it look like there's less free space in the AG unless the reservation owner is asking for blocks. In other words, play some accounting tricks in-core to make sure that we always have blocks available. On the plus side, there's nothing to clean up if we crash, which is contrast to the strategy that the rough draft used (actually removing extents from the freespace btrees). Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-09-19 08:30:52 +08:00
new, &oinfo, XFS_AG_RESV_NONE);
xfs: add owner field to extent allocation and freeing For the rmap btree to work, we have to feed the extent owner information to the the allocation and freeing functions. This information is what will end up in the rmap btree that tracks allocated extents. While we technically don't need the owner information when freeing extents, passing it allows us to validate that the extent we are removing from the rmap btree actually belonged to the owner we expected it to belong to. We also define a special set of owner values for internal metadata that would otherwise have no owner. This allows us to tell the difference between metadata owned by different per-ag btrees, as well as static fs metadata (e.g. AG headers) and internal journal blocks. There are also a couple of special cases we need to take care of - during EFI recovery, we don't actually know who the original owner was, so we need to pass a wildcard to indicate that we aren't checking the owner for validity. We also need special handling in growfs, as we "free" the space in the last AG when extending it, but because it's new space it has no actual owner... While touching the xfs_bmap_add_free() function, re-order the parameters to put the struct xfs_mount first. Extend the owner field to include both the owner type and some sort of index within the owner. The index field will be used to support reverse mappings when reflink is enabled. When we're freeing extents from an EFI, we don't have the owner information available (rmap updates have their own redo items). xfs_free_extent therefore doesn't need to do an rmap update. Make sure that the log replay code signals this correctly. This is based upon a patch originally from Dave Chinner. It has been extended to add more owner information with the intent of helping recovery operations when things go wrong (e.g. offset of user data block in a file). [dchinner: de-shout the xfs_rmap_*_owner helpers] [darrick: minor style fixes suggested by Christoph Hellwig] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:33:42 +08:00
if (error)
goto error0;
}
xfs: Replace per-ag array with a radix tree The use of an array for the per-ag structures requires reallocation of the array when growing the filesystem. This requires locking access to the array to avoid use after free situations, and the locking is difficult to get right. To avoid needing to reallocate an array, change the per-ag structures to an allocated object per ag and index them using a tree structure. The AGs are always densely indexed (hence the use of an array), but the number supported is 2^32 and lookups tend to be random and hence indexing needs to scale. A simple choice is a radix tree - it works well with this sort of index. This change also removes another large contiguous allocation from the mount/growfs path in XFS. The growing process now needs to change to only initialise the new AGs required for the extra space, and as such only needs to exclusively lock the tree for inserts. The rest of the code only needs to lock the tree while doing lookups, and hence this will remove all the deadlocks that currently occur on the m_perag_lock as it is now an innermost lock. The lock is also changed to a spinlock from a read/write lock as the hold time is now extremely short. To complete the picture, the per-ag structures will need to be reference counted to ensure that we don't free/modify them while they are still in use. This will be done in subsequent patch. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-01-11 19:47:44 +08:00
/*
* Update changed superblock fields transactionally. These are not
* seen by the rest of the world until the transaction commit applies
* them atomically to the superblock.
*/
if (nagcount > oagcount)
xfs_trans_mod_sb(tp, XFS_TRANS_SB_AGCOUNT, nagcount - oagcount);
if (nb > mp->m_sb.sb_dblocks)
xfs_trans_mod_sb(tp, XFS_TRANS_SB_DBLOCKS,
nb - mp->m_sb.sb_dblocks);
if (nfree)
xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, nfree);
if (dpct)
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IMAXPCT, dpct);
xfs_trans_set_sync(tp);
error = xfs_trans_commit(tp);
xfs: Replace per-ag array with a radix tree The use of an array for the per-ag structures requires reallocation of the array when growing the filesystem. This requires locking access to the array to avoid use after free situations, and the locking is difficult to get right. To avoid needing to reallocate an array, change the per-ag structures to an allocated object per ag and index them using a tree structure. The AGs are always densely indexed (hence the use of an array), but the number supported is 2^32 and lookups tend to be random and hence indexing needs to scale. A simple choice is a radix tree - it works well with this sort of index. This change also removes another large contiguous allocation from the mount/growfs path in XFS. The growing process now needs to change to only initialise the new AGs required for the extra space, and as such only needs to exclusively lock the tree for inserts. The rest of the code only needs to lock the tree while doing lookups, and hence this will remove all the deadlocks that currently occur on the m_perag_lock as it is now an innermost lock. The lock is also changed to a spinlock from a read/write lock as the hold time is now extremely short. To complete the picture, the per-ag structures will need to be reference counted to ensure that we don't free/modify them while they are still in use. This will be done in subsequent patch. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-01-11 19:47:44 +08:00
if (error)
return error;
xfs: Replace per-ag array with a radix tree The use of an array for the per-ag structures requires reallocation of the array when growing the filesystem. This requires locking access to the array to avoid use after free situations, and the locking is difficult to get right. To avoid needing to reallocate an array, change the per-ag structures to an allocated object per ag and index them using a tree structure. The AGs are always densely indexed (hence the use of an array), but the number supported is 2^32 and lookups tend to be random and hence indexing needs to scale. A simple choice is a radix tree - it works well with this sort of index. This change also removes another large contiguous allocation from the mount/growfs path in XFS. The growing process now needs to change to only initialise the new AGs required for the extra space, and as such only needs to exclusively lock the tree for inserts. The rest of the code only needs to lock the tree while doing lookups, and hence this will remove all the deadlocks that currently occur on the m_perag_lock as it is now an innermost lock. The lock is also changed to a spinlock from a read/write lock as the hold time is now extremely short. To complete the picture, the per-ag structures will need to be reference counted to ensure that we don't free/modify them while they are still in use. This will be done in subsequent patch. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-01-11 19:47:44 +08:00
/* New allocation groups fully initialized, so update mount struct */
if (nagimax)
mp->m_maxagi = nagimax;
if (mp->m_sb.sb_imax_pct) {
uint64_t icount = mp->m_sb.sb_dblocks * mp->m_sb.sb_imax_pct;
do_div(icount, 100);
mp->m_maxicount = icount << mp->m_sb.sb_inopblog;
} else
mp->m_maxicount = 0;
xfs: dynamic speculative EOF preallocation Currently the size of the speculative preallocation during delayed allocation is fixed by either the allocsize mount option of a default size. We are seeing a lot of cases where we need to recommend using the allocsize mount option to prevent fragmentation when buffered writes land in the same AG. Rather than using a fixed preallocation size by default (up to 64k), make it dynamic by basing it on the current inode size. That way the EOF preallocation will increase as the file size increases. Hence for streaming writes we are much more likely to get large preallocations exactly when we need it to reduce fragementation. For default settings, the size of the initial extents is determined by the number of parallel writers and the amount of memory in the machine. For 4GB RAM and 4 concurrent 32GB file writes: EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL 0: [0..1048575]: 1048672..2097247 0 (1048672..2097247) 1048576 1: [1048576..2097151]: 5242976..6291551 0 (5242976..6291551) 1048576 2: [2097152..4194303]: 12583008..14680159 0 (12583008..14680159) 2097152 3: [4194304..8388607]: 25165920..29360223 0 (25165920..29360223) 4194304 4: [8388608..16777215]: 58720352..67108959 0 (58720352..67108959) 8388608 5: [16777216..33554423]: 117440584..134217791 0 (117440584..134217791) 16777208 6: [33554424..50331511]: 184549056..201326143 0 (184549056..201326143) 16777088 7: [50331512..67108599]: 251657408..268434495 0 (251657408..268434495) 16777088 and for 16 concurrent 16GB file writes: EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL 0: [0..262143]: 2490472..2752615 0 (2490472..2752615) 262144 1: [262144..524287]: 6291560..6553703 0 (6291560..6553703) 262144 2: [524288..1048575]: 13631592..14155879 0 (13631592..14155879) 524288 3: [1048576..2097151]: 30408808..31457383 0 (30408808..31457383) 1048576 4: [2097152..4194303]: 52428904..54526055 0 (52428904..54526055) 2097152 5: [4194304..8388607]: 104857704..109052007 0 (104857704..109052007) 4194304 6: [8388608..16777215]: 209715304..218103911 0 (209715304..218103911) 8388608 7: [16777216..33554423]: 452984848..469762055 0 (452984848..469762055) 16777208 Because it is hard to take back specualtive preallocation, cases where there are large slow growing log files on a nearly full filesystem may cause premature ENOSPC. Hence as the filesystem nears full, the maximum dynamic prealloc size іs reduced according to this table (based on 4k block size): freespace max prealloc size >5% full extent (8GB) 4-5% 2GB (8GB >> 2) 3-4% 1GB (8GB >> 3) 2-3% 512MB (8GB >> 4) 1-2% 256MB (8GB >> 5) <1% 128MB (8GB >> 6) This should reduce the amount of space held in speculative preallocation for such cases. The allocsize mount option turns off the dynamic behaviour and fixes the prealloc size to whatever the mount option specifies. i.e. the behaviour is unchanged. Signed-off-by: Dave Chinner <dchinner@redhat.com>
2011-01-04 08:35:03 +08:00
xfs_set_low_space_thresholds(mp);
mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
xfs: Replace per-ag array with a radix tree The use of an array for the per-ag structures requires reallocation of the array when growing the filesystem. This requires locking access to the array to avoid use after free situations, and the locking is difficult to get right. To avoid needing to reallocate an array, change the per-ag structures to an allocated object per ag and index them using a tree structure. The AGs are always densely indexed (hence the use of an array), but the number supported is 2^32 and lookups tend to be random and hence indexing needs to scale. A simple choice is a radix tree - it works well with this sort of index. This change also removes another large contiguous allocation from the mount/growfs path in XFS. The growing process now needs to change to only initialise the new AGs required for the extra space, and as such only needs to exclusively lock the tree for inserts. The rest of the code only needs to lock the tree while doing lookups, and hence this will remove all the deadlocks that currently occur on the m_perag_lock as it is now an innermost lock. The lock is also changed to a spinlock from a read/write lock as the hold time is now extremely short. To complete the picture, the per-ag structures will need to be reference counted to ensure that we don't free/modify them while they are still in use. This will be done in subsequent patch. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-01-11 19:47:44 +08:00
/*
* If we expanded the last AG, free the per-AG reservation
* so we can reinitialize it with the new size.
*/
if (new) {
struct xfs_perag *pag;
pag = xfs_perag_get(mp, agno);
error = xfs_ag_resv_free(pag);
xfs_perag_put(pag);
if (error)
goto out;
}
/* Reserve AG metadata blocks. */
error = xfs_fs_reserve_ag_blocks(mp);
if (error && error != -ENOSPC)
goto out;
xfs: Replace per-ag array with a radix tree The use of an array for the per-ag structures requires reallocation of the array when growing the filesystem. This requires locking access to the array to avoid use after free situations, and the locking is difficult to get right. To avoid needing to reallocate an array, change the per-ag structures to an allocated object per ag and index them using a tree structure. The AGs are always densely indexed (hence the use of an array), but the number supported is 2^32 and lookups tend to be random and hence indexing needs to scale. A simple choice is a radix tree - it works well with this sort of index. This change also removes another large contiguous allocation from the mount/growfs path in XFS. The growing process now needs to change to only initialise the new AGs required for the extra space, and as such only needs to exclusively lock the tree for inserts. The rest of the code only needs to lock the tree while doing lookups, and hence this will remove all the deadlocks that currently occur on the m_perag_lock as it is now an innermost lock. The lock is also changed to a spinlock from a read/write lock as the hold time is now extremely short. To complete the picture, the per-ag structures will need to be reference counted to ensure that we don't free/modify them while they are still in use. This will be done in subsequent patch. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-01-11 19:47:44 +08:00
/* update secondary superblocks. */
for (agno = 1; agno < nagcount; agno++) {
error = 0;
/*
* new secondary superblocks need to be zeroed, not read from
* disk as the contents of the new area we are growing into is
* completely unknown.
*/
if (agno < oagcount) {
error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp,
XFS_AGB_TO_DADDR(mp, agno, XFS_SB_BLOCK(mp)),
XFS_FSS_TO_BB(mp, 1), 0, &bp,
&xfs_sb_buf_ops);
} else {
bp = xfs_trans_get_buf(NULL, mp->m_ddev_targp,
XFS_AGB_TO_DADDR(mp, agno, XFS_SB_BLOCK(mp)),
XFS_FSS_TO_BB(mp, 1), 0);
if (bp) {
bp->b_ops = &xfs_sb_buf_ops;
xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
} else
error = -ENOMEM;
}
xfs: don't break from growfs ag update loop on error When xfs_growfs_data_private() is updating backup superblocks, it bails out on the first error encountered, whether reading or writing: * If we get an error writing out the alternate superblocks, * just issue a warning and continue. The real work is * already done and committed. This can cause a problem later during repair, because repair looks at all superblocks, and picks the most prevalent one as correct. If we bail out early in the backup superblock loop, we can end up with more "bad" matching superblocks than good, and a post-growfs repair may revert the filesystem to the old geometry. With the combination of superblock verifiers and old bugs, we're more likely to encounter read errors due to verification. And perhaps even worse, we don't even properly write any of the newly-added superblocks in the new AGs. Even with this change, growfs will still say: xfs_growfs: XFS_IOC_FSGROWFSDATA xfsctl failed: Structure needs cleaning data blocks changed from 319815680 to 335216640 which might be confusing to the user, but it at least communicates that something has gone wrong, and dmesg will probably highlight the need for an xfs_repair. And this is still best-effort; if verifiers fail on more than half the backup supers, they may still "win" - but that's probably best left to repair to more gracefully handle by doing its own strict verification as part of the backup super "voting." Signed-off-by: Eric Sandeen <sandeen@redhat.com> Acked-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-12 03:14:05 +08:00
/*
* If we get an error reading or writing alternate superblocks,
* continue. xfs_repair chooses the "best" superblock based
* on most matches; if we break early, we'll leave more
* superblocks un-updated than updated, and xfs_repair may
* pick them over the properly-updated primary.
*/
if (error) {
xfs_warn(mp,
"error %d reading secondary superblock for ag %d",
error, agno);
xfs: don't break from growfs ag update loop on error When xfs_growfs_data_private() is updating backup superblocks, it bails out on the first error encountered, whether reading or writing: * If we get an error writing out the alternate superblocks, * just issue a warning and continue. The real work is * already done and committed. This can cause a problem later during repair, because repair looks at all superblocks, and picks the most prevalent one as correct. If we bail out early in the backup superblock loop, we can end up with more "bad" matching superblocks than good, and a post-growfs repair may revert the filesystem to the old geometry. With the combination of superblock verifiers and old bugs, we're more likely to encounter read errors due to verification. And perhaps even worse, we don't even properly write any of the newly-added superblocks in the new AGs. Even with this change, growfs will still say: xfs_growfs: XFS_IOC_FSGROWFSDATA xfsctl failed: Structure needs cleaning data blocks changed from 319815680 to 335216640 which might be confusing to the user, but it at least communicates that something has gone wrong, and dmesg will probably highlight the need for an xfs_repair. And this is still best-effort; if verifiers fail on more than half the backup supers, they may still "win" - but that's probably best left to repair to more gracefully handle by doing its own strict verification as part of the backup super "voting." Signed-off-by: Eric Sandeen <sandeen@redhat.com> Acked-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-12 03:14:05 +08:00
saved_error = error;
continue;
}
xfs: remove bitfield based superblock updates When we log changes to the superblock, we first have to write them to the on-disk buffer, and then log that. Right now we have a complex bitfield based arrangement to only write the modified field to the buffer before we log it. This used to be necessary as a performance optimisation because we logged the superblock buffer in every extent or inode allocation or freeing, and so performance was extremely important. We haven't done this for years, however, ever since the lazy superblock counters pulled the superblock logging out of the transaction commit fast path. Hence we have a bunch of complexity that is not necessary that makes writing the in-core superblock to disk much more complex than it needs to be. We only need to log the superblock now during management operations (e.g. during mount, unmount or quota control operations) so it is not a performance critical path anymore. As such, remove the complex field based logging mechanism and replace it with a simple conversion function similar to what we use for all other on-disk structures. This means we always log the entirity of the superblock, but again because we rarely modify the superblock this is not an issue for log bandwidth or CPU time. Indeed, if we do log the superblock frequently, delayed logging will minimise the impact of this overhead. [Fixed gquota/pquota inode sharing regression noticed by bfoster.] Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-01-22 06:10:26 +08:00
xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb);
error = xfs_bwrite(bp);
xfs_buf_relse(bp);
if (error) {
xfs_warn(mp,
"write error %d updating secondary superblock for ag %d",
error, agno);
xfs: don't break from growfs ag update loop on error When xfs_growfs_data_private() is updating backup superblocks, it bails out on the first error encountered, whether reading or writing: * If we get an error writing out the alternate superblocks, * just issue a warning and continue. The real work is * already done and committed. This can cause a problem later during repair, because repair looks at all superblocks, and picks the most prevalent one as correct. If we bail out early in the backup superblock loop, we can end up with more "bad" matching superblocks than good, and a post-growfs repair may revert the filesystem to the old geometry. With the combination of superblock verifiers and old bugs, we're more likely to encounter read errors due to verification. And perhaps even worse, we don't even properly write any of the newly-added superblocks in the new AGs. Even with this change, growfs will still say: xfs_growfs: XFS_IOC_FSGROWFSDATA xfsctl failed: Structure needs cleaning data blocks changed from 319815680 to 335216640 which might be confusing to the user, but it at least communicates that something has gone wrong, and dmesg will probably highlight the need for an xfs_repair. And this is still best-effort; if verifiers fail on more than half the backup supers, they may still "win" - but that's probably best left to repair to more gracefully handle by doing its own strict verification as part of the backup super "voting." Signed-off-by: Eric Sandeen <sandeen@redhat.com> Acked-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-12 03:14:05 +08:00
saved_error = error;
continue;
}
}
out:
xfs: don't break from growfs ag update loop on error When xfs_growfs_data_private() is updating backup superblocks, it bails out on the first error encountered, whether reading or writing: * If we get an error writing out the alternate superblocks, * just issue a warning and continue. The real work is * already done and committed. This can cause a problem later during repair, because repair looks at all superblocks, and picks the most prevalent one as correct. If we bail out early in the backup superblock loop, we can end up with more "bad" matching superblocks than good, and a post-growfs repair may revert the filesystem to the old geometry. With the combination of superblock verifiers and old bugs, we're more likely to encounter read errors due to verification. And perhaps even worse, we don't even properly write any of the newly-added superblocks in the new AGs. Even with this change, growfs will still say: xfs_growfs: XFS_IOC_FSGROWFSDATA xfsctl failed: Structure needs cleaning data blocks changed from 319815680 to 335216640 which might be confusing to the user, but it at least communicates that something has gone wrong, and dmesg will probably highlight the need for an xfs_repair. And this is still best-effort; if verifiers fail on more than half the backup supers, they may still "win" - but that's probably best left to repair to more gracefully handle by doing its own strict verification as part of the backup super "voting." Signed-off-by: Eric Sandeen <sandeen@redhat.com> Acked-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-12 03:14:05 +08:00
return saved_error ? saved_error : error;
error0:
xfs_trans_cancel(tp);
return error;
}
static int
xfs_growfs_log_private(
xfs_mount_t *mp, /* mount point for filesystem */
xfs_growfs_log_t *in) /* growfs log input struct */
{
xfs_extlen_t nb;
nb = in->newblocks;
if (nb < XFS_MIN_LOG_BLOCKS || nb < XFS_B_TO_FSB(mp, XFS_MIN_LOG_BYTES))
return -EINVAL;
if (nb == mp->m_sb.sb_logblocks &&
in->isint == (mp->m_sb.sb_logstart != 0))
return -EINVAL;
/*
* Moving the log is hard, need new interfaces to sync
* the log first, hold off all activity while moving it.
* Can have shorter or longer log in the same space,
* or transform internal to external log or vice versa.
*/
return -ENOSYS;
}
/*
* protected versions of growfs function acquire and release locks on the mount
* point - exported through ioctls: XFS_IOC_FSGROWFSDATA, XFS_IOC_FSGROWFSLOG,
* XFS_IOC_FSGROWFSRT
*/
int
xfs_growfs_data(
xfs_mount_t *mp,
xfs_growfs_data_t *in)
{
int error;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!mutex_trylock(&mp->m_growlock))
return -EWOULDBLOCK;
error = xfs_growfs_data_private(mp, in);
/*
* Increment the generation unconditionally, the error could be from
* updating the secondary superblocks, in which case the new size
* is live already.
*/
mp->m_generation++;
mutex_unlock(&mp->m_growlock);
return error;
}
int
xfs_growfs_log(
xfs_mount_t *mp,
xfs_growfs_log_t *in)
{
int error;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!mutex_trylock(&mp->m_growlock))
return -EWOULDBLOCK;
error = xfs_growfs_log_private(mp, in);
mutex_unlock(&mp->m_growlock);
return error;
}
/*
* exported through ioctl XFS_IOC_FSCOUNTS
*/
int
xfs_fs_counts(
xfs_mount_t *mp,
xfs_fsop_counts_t *cnt)
{
cnt->allocino = percpu_counter_read_positive(&mp->m_icount);
cnt->freeino = percpu_counter_read_positive(&mp->m_ifree);
cnt->freedata = percpu_counter_read_positive(&mp->m_fdblocks) -
mp->m_alloc_set_aside;
spin_lock(&mp->m_sb_lock);
cnt->freertx = mp->m_sb.sb_frextents;
spin_unlock(&mp->m_sb_lock);
return 0;
}
/*
* exported through ioctl XFS_IOC_SET_RESBLKS & XFS_IOC_GET_RESBLKS
*
* xfs_reserve_blocks is called to set m_resblks
* in the in-core mount table. The number of unused reserved blocks
* is kept in m_resblks_avail.
*
* Reserve the requested number of blocks if available. Otherwise return
* as many as possible to satisfy the request. The actual number
* reserved are returned in outval
*
* A null inval pointer indicates that only the current reserved blocks
* available should be returned no settings are changed.
*/
int
xfs_reserve_blocks(
xfs_mount_t *mp,
uint64_t *inval,
xfs_fsop_resblks_t *outval)
{
int64_t lcounter, delta;
int64_t fdblks_delta = 0;
uint64_t request;
int64_t free;
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly xfs_reserve_blocks() is responsible to update the XFS reserved block pool count at mount time or based on user request. When the caller requests to increase the reserve pool, blocks must be allocated from the global counters such that they are no longer available for general purpose use. If the requested reserve pool size is too large, XFS reserves what blocks are available. The implementation requires looking at the percpu counters and making an educated guess as to how many blocks to try and allocate from xfs_mod_fdblocks(), which can return -ENOSPC if the guess was not accurate due to counters being modified in parallel. xfs_reserve_blocks() retries the guess in this scenario until the allocation succeeds or it is determined that there is no space available in the fs. While not easily reproducible in the current form, the retry code doesn't actually work correctly if xfs_mod_fdblocks() actually fails. The problem is that the percpu calculations use the m_resblks counter to determine how many blocks to allocate, but unconditionally update m_resblks before the block allocation has actually succeeded. Therefore, if xfs_mod_fdblocks() fails, the code jumps to the retry label and uses the already updated m_resblks value to determine how many blocks to try and allocate. If the percpu counters previously suggested that the entire request was available, fdblocks_delta could end up set to 0. In that case, m_resblks is updated to the requested value, yet no blocks have been reserved at all. Refactor xfs_reserve_blocks() to use an explicit loop and make the code easier to follow. Since we have to drop the spinlock across the xfs_mod_fdblocks() call, use a delta value for m_resblks as well and only apply the delta once allocation succeeds. [dchinner: convert to do {} while() loop] Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
int error = 0;
/* If inval is null, report current values and return */
if (inval == (uint64_t *)NULL) {
if (!outval)
return -EINVAL;
outval->resblks = mp->m_resblks;
outval->resblks_avail = mp->m_resblks_avail;
return 0;
}
request = *inval;
/*
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly xfs_reserve_blocks() is responsible to update the XFS reserved block pool count at mount time or based on user request. When the caller requests to increase the reserve pool, blocks must be allocated from the global counters such that they are no longer available for general purpose use. If the requested reserve pool size is too large, XFS reserves what blocks are available. The implementation requires looking at the percpu counters and making an educated guess as to how many blocks to try and allocate from xfs_mod_fdblocks(), which can return -ENOSPC if the guess was not accurate due to counters being modified in parallel. xfs_reserve_blocks() retries the guess in this scenario until the allocation succeeds or it is determined that there is no space available in the fs. While not easily reproducible in the current form, the retry code doesn't actually work correctly if xfs_mod_fdblocks() actually fails. The problem is that the percpu calculations use the m_resblks counter to determine how many blocks to allocate, but unconditionally update m_resblks before the block allocation has actually succeeded. Therefore, if xfs_mod_fdblocks() fails, the code jumps to the retry label and uses the already updated m_resblks value to determine how many blocks to try and allocate. If the percpu counters previously suggested that the entire request was available, fdblocks_delta could end up set to 0. In that case, m_resblks is updated to the requested value, yet no blocks have been reserved at all. Refactor xfs_reserve_blocks() to use an explicit loop and make the code easier to follow. Since we have to drop the spinlock across the xfs_mod_fdblocks() call, use a delta value for m_resblks as well and only apply the delta once allocation succeeds. [dchinner: convert to do {} while() loop] Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
* With per-cpu counters, this becomes an interesting problem. we need
* to work out if we are freeing or allocation blocks first, then we can
* do the modification as necessary.
*
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly xfs_reserve_blocks() is responsible to update the XFS reserved block pool count at mount time or based on user request. When the caller requests to increase the reserve pool, blocks must be allocated from the global counters such that they are no longer available for general purpose use. If the requested reserve pool size is too large, XFS reserves what blocks are available. The implementation requires looking at the percpu counters and making an educated guess as to how many blocks to try and allocate from xfs_mod_fdblocks(), which can return -ENOSPC if the guess was not accurate due to counters being modified in parallel. xfs_reserve_blocks() retries the guess in this scenario until the allocation succeeds or it is determined that there is no space available in the fs. While not easily reproducible in the current form, the retry code doesn't actually work correctly if xfs_mod_fdblocks() actually fails. The problem is that the percpu calculations use the m_resblks counter to determine how many blocks to allocate, but unconditionally update m_resblks before the block allocation has actually succeeded. Therefore, if xfs_mod_fdblocks() fails, the code jumps to the retry label and uses the already updated m_resblks value to determine how many blocks to try and allocate. If the percpu counters previously suggested that the entire request was available, fdblocks_delta could end up set to 0. In that case, m_resblks is updated to the requested value, yet no blocks have been reserved at all. Refactor xfs_reserve_blocks() to use an explicit loop and make the code easier to follow. Since we have to drop the spinlock across the xfs_mod_fdblocks() call, use a delta value for m_resblks as well and only apply the delta once allocation succeeds. [dchinner: convert to do {} while() loop] Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
* We do this under the m_sb_lock so that if we are near ENOSPC, we will
* hold out any changes while we work out what to do. This means that
* the amount of free space can change while we do this, so we need to
* retry if we end up trying to reserve more space than is available.
*/
spin_lock(&mp->m_sb_lock);
/*
* If our previous reservation was larger than the current value,
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly xfs_reserve_blocks() is responsible to update the XFS reserved block pool count at mount time or based on user request. When the caller requests to increase the reserve pool, blocks must be allocated from the global counters such that they are no longer available for general purpose use. If the requested reserve pool size is too large, XFS reserves what blocks are available. The implementation requires looking at the percpu counters and making an educated guess as to how many blocks to try and allocate from xfs_mod_fdblocks(), which can return -ENOSPC if the guess was not accurate due to counters being modified in parallel. xfs_reserve_blocks() retries the guess in this scenario until the allocation succeeds or it is determined that there is no space available in the fs. While not easily reproducible in the current form, the retry code doesn't actually work correctly if xfs_mod_fdblocks() actually fails. The problem is that the percpu calculations use the m_resblks counter to determine how many blocks to allocate, but unconditionally update m_resblks before the block allocation has actually succeeded. Therefore, if xfs_mod_fdblocks() fails, the code jumps to the retry label and uses the already updated m_resblks value to determine how many blocks to try and allocate. If the percpu counters previously suggested that the entire request was available, fdblocks_delta could end up set to 0. In that case, m_resblks is updated to the requested value, yet no blocks have been reserved at all. Refactor xfs_reserve_blocks() to use an explicit loop and make the code easier to follow. Since we have to drop the spinlock across the xfs_mod_fdblocks() call, use a delta value for m_resblks as well and only apply the delta once allocation succeeds. [dchinner: convert to do {} while() loop] Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
* then move any unused blocks back to the free pool. Modify the resblks
* counters directly since we shouldn't have any problems unreserving
* space.
*/
if (mp->m_resblks > request) {
lcounter = mp->m_resblks_avail - request;
if (lcounter > 0) { /* release unused blocks */
fdblks_delta = lcounter;
mp->m_resblks_avail -= lcounter;
}
mp->m_resblks = request;
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly xfs_reserve_blocks() is responsible to update the XFS reserved block pool count at mount time or based on user request. When the caller requests to increase the reserve pool, blocks must be allocated from the global counters such that they are no longer available for general purpose use. If the requested reserve pool size is too large, XFS reserves what blocks are available. The implementation requires looking at the percpu counters and making an educated guess as to how many blocks to try and allocate from xfs_mod_fdblocks(), which can return -ENOSPC if the guess was not accurate due to counters being modified in parallel. xfs_reserve_blocks() retries the guess in this scenario until the allocation succeeds or it is determined that there is no space available in the fs. While not easily reproducible in the current form, the retry code doesn't actually work correctly if xfs_mod_fdblocks() actually fails. The problem is that the percpu calculations use the m_resblks counter to determine how many blocks to allocate, but unconditionally update m_resblks before the block allocation has actually succeeded. Therefore, if xfs_mod_fdblocks() fails, the code jumps to the retry label and uses the already updated m_resblks value to determine how many blocks to try and allocate. If the percpu counters previously suggested that the entire request was available, fdblocks_delta could end up set to 0. In that case, m_resblks is updated to the requested value, yet no blocks have been reserved at all. Refactor xfs_reserve_blocks() to use an explicit loop and make the code easier to follow. Since we have to drop the spinlock across the xfs_mod_fdblocks() call, use a delta value for m_resblks as well and only apply the delta once allocation succeeds. [dchinner: convert to do {} while() loop] Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
if (fdblks_delta) {
spin_unlock(&mp->m_sb_lock);
error = xfs_mod_fdblocks(mp, fdblks_delta, 0);
spin_lock(&mp->m_sb_lock);
}
goto out;
}
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly xfs_reserve_blocks() is responsible to update the XFS reserved block pool count at mount time or based on user request. When the caller requests to increase the reserve pool, blocks must be allocated from the global counters such that they are no longer available for general purpose use. If the requested reserve pool size is too large, XFS reserves what blocks are available. The implementation requires looking at the percpu counters and making an educated guess as to how many blocks to try and allocate from xfs_mod_fdblocks(), which can return -ENOSPC if the guess was not accurate due to counters being modified in parallel. xfs_reserve_blocks() retries the guess in this scenario until the allocation succeeds or it is determined that there is no space available in the fs. While not easily reproducible in the current form, the retry code doesn't actually work correctly if xfs_mod_fdblocks() actually fails. The problem is that the percpu calculations use the m_resblks counter to determine how many blocks to allocate, but unconditionally update m_resblks before the block allocation has actually succeeded. Therefore, if xfs_mod_fdblocks() fails, the code jumps to the retry label and uses the already updated m_resblks value to determine how many blocks to try and allocate. If the percpu counters previously suggested that the entire request was available, fdblocks_delta could end up set to 0. In that case, m_resblks is updated to the requested value, yet no blocks have been reserved at all. Refactor xfs_reserve_blocks() to use an explicit loop and make the code easier to follow. Since we have to drop the spinlock across the xfs_mod_fdblocks() call, use a delta value for m_resblks as well and only apply the delta once allocation succeeds. [dchinner: convert to do {} while() loop] Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
/*
* If the request is larger than the current reservation, reserve the
* blocks before we update the reserve counters. Sample m_fdblocks and
* perform a partial reservation if the request exceeds free space.
*/
error = -ENOSPC;
do {
free = percpu_counter_sum(&mp->m_fdblocks) -
mp->m_alloc_set_aside;
if (!free)
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly xfs_reserve_blocks() is responsible to update the XFS reserved block pool count at mount time or based on user request. When the caller requests to increase the reserve pool, blocks must be allocated from the global counters such that they are no longer available for general purpose use. If the requested reserve pool size is too large, XFS reserves what blocks are available. The implementation requires looking at the percpu counters and making an educated guess as to how many blocks to try and allocate from xfs_mod_fdblocks(), which can return -ENOSPC if the guess was not accurate due to counters being modified in parallel. xfs_reserve_blocks() retries the guess in this scenario until the allocation succeeds or it is determined that there is no space available in the fs. While not easily reproducible in the current form, the retry code doesn't actually work correctly if xfs_mod_fdblocks() actually fails. The problem is that the percpu calculations use the m_resblks counter to determine how many blocks to allocate, but unconditionally update m_resblks before the block allocation has actually succeeded. Therefore, if xfs_mod_fdblocks() fails, the code jumps to the retry label and uses the already updated m_resblks value to determine how many blocks to try and allocate. If the percpu counters previously suggested that the entire request was available, fdblocks_delta could end up set to 0. In that case, m_resblks is updated to the requested value, yet no blocks have been reserved at all. Refactor xfs_reserve_blocks() to use an explicit loop and make the code easier to follow. Since we have to drop the spinlock across the xfs_mod_fdblocks() call, use a delta value for m_resblks as well and only apply the delta once allocation succeeds. [dchinner: convert to do {} while() loop] Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
break;
delta = request - mp->m_resblks;
lcounter = free - delta;
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly xfs_reserve_blocks() is responsible to update the XFS reserved block pool count at mount time or based on user request. When the caller requests to increase the reserve pool, blocks must be allocated from the global counters such that they are no longer available for general purpose use. If the requested reserve pool size is too large, XFS reserves what blocks are available. The implementation requires looking at the percpu counters and making an educated guess as to how many blocks to try and allocate from xfs_mod_fdblocks(), which can return -ENOSPC if the guess was not accurate due to counters being modified in parallel. xfs_reserve_blocks() retries the guess in this scenario until the allocation succeeds or it is determined that there is no space available in the fs. While not easily reproducible in the current form, the retry code doesn't actually work correctly if xfs_mod_fdblocks() actually fails. The problem is that the percpu calculations use the m_resblks counter to determine how many blocks to allocate, but unconditionally update m_resblks before the block allocation has actually succeeded. Therefore, if xfs_mod_fdblocks() fails, the code jumps to the retry label and uses the already updated m_resblks value to determine how many blocks to try and allocate. If the percpu counters previously suggested that the entire request was available, fdblocks_delta could end up set to 0. In that case, m_resblks is updated to the requested value, yet no blocks have been reserved at all. Refactor xfs_reserve_blocks() to use an explicit loop and make the code easier to follow. Since we have to drop the spinlock across the xfs_mod_fdblocks() call, use a delta value for m_resblks as well and only apply the delta once allocation succeeds. [dchinner: convert to do {} while() loop] Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
if (lcounter < 0)
/* We can't satisfy the request, just get what we can */
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly xfs_reserve_blocks() is responsible to update the XFS reserved block pool count at mount time or based on user request. When the caller requests to increase the reserve pool, blocks must be allocated from the global counters such that they are no longer available for general purpose use. If the requested reserve pool size is too large, XFS reserves what blocks are available. The implementation requires looking at the percpu counters and making an educated guess as to how many blocks to try and allocate from xfs_mod_fdblocks(), which can return -ENOSPC if the guess was not accurate due to counters being modified in parallel. xfs_reserve_blocks() retries the guess in this scenario until the allocation succeeds or it is determined that there is no space available in the fs. While not easily reproducible in the current form, the retry code doesn't actually work correctly if xfs_mod_fdblocks() actually fails. The problem is that the percpu calculations use the m_resblks counter to determine how many blocks to allocate, but unconditionally update m_resblks before the block allocation has actually succeeded. Therefore, if xfs_mod_fdblocks() fails, the code jumps to the retry label and uses the already updated m_resblks value to determine how many blocks to try and allocate. If the percpu counters previously suggested that the entire request was available, fdblocks_delta could end up set to 0. In that case, m_resblks is updated to the requested value, yet no blocks have been reserved at all. Refactor xfs_reserve_blocks() to use an explicit loop and make the code easier to follow. Since we have to drop the spinlock across the xfs_mod_fdblocks() call, use a delta value for m_resblks as well and only apply the delta once allocation succeeds. [dchinner: convert to do {} while() loop] Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
fdblks_delta = free;
else
fdblks_delta = delta;
/*
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly xfs_reserve_blocks() is responsible to update the XFS reserved block pool count at mount time or based on user request. When the caller requests to increase the reserve pool, blocks must be allocated from the global counters such that they are no longer available for general purpose use. If the requested reserve pool size is too large, XFS reserves what blocks are available. The implementation requires looking at the percpu counters and making an educated guess as to how many blocks to try and allocate from xfs_mod_fdblocks(), which can return -ENOSPC if the guess was not accurate due to counters being modified in parallel. xfs_reserve_blocks() retries the guess in this scenario until the allocation succeeds or it is determined that there is no space available in the fs. While not easily reproducible in the current form, the retry code doesn't actually work correctly if xfs_mod_fdblocks() actually fails. The problem is that the percpu calculations use the m_resblks counter to determine how many blocks to allocate, but unconditionally update m_resblks before the block allocation has actually succeeded. Therefore, if xfs_mod_fdblocks() fails, the code jumps to the retry label and uses the already updated m_resblks value to determine how many blocks to try and allocate. If the percpu counters previously suggested that the entire request was available, fdblocks_delta could end up set to 0. In that case, m_resblks is updated to the requested value, yet no blocks have been reserved at all. Refactor xfs_reserve_blocks() to use an explicit loop and make the code easier to follow. Since we have to drop the spinlock across the xfs_mod_fdblocks() call, use a delta value for m_resblks as well and only apply the delta once allocation succeeds. [dchinner: convert to do {} while() loop] Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
* We'll either succeed in getting space from the free block
* count or we'll get an ENOSPC. If we get a ENOSPC, it means
* things changed while we were calculating fdblks_delta and so
* we should try again to see if there is anything left to
* reserve.
*
* Don't set the reserved flag here - we don't want to reserve
* the extra reserve blocks from the reserve.....
*/
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly xfs_reserve_blocks() is responsible to update the XFS reserved block pool count at mount time or based on user request. When the caller requests to increase the reserve pool, blocks must be allocated from the global counters such that they are no longer available for general purpose use. If the requested reserve pool size is too large, XFS reserves what blocks are available. The implementation requires looking at the percpu counters and making an educated guess as to how many blocks to try and allocate from xfs_mod_fdblocks(), which can return -ENOSPC if the guess was not accurate due to counters being modified in parallel. xfs_reserve_blocks() retries the guess in this scenario until the allocation succeeds or it is determined that there is no space available in the fs. While not easily reproducible in the current form, the retry code doesn't actually work correctly if xfs_mod_fdblocks() actually fails. The problem is that the percpu calculations use the m_resblks counter to determine how many blocks to allocate, but unconditionally update m_resblks before the block allocation has actually succeeded. Therefore, if xfs_mod_fdblocks() fails, the code jumps to the retry label and uses the already updated m_resblks value to determine how many blocks to try and allocate. If the percpu counters previously suggested that the entire request was available, fdblocks_delta could end up set to 0. In that case, m_resblks is updated to the requested value, yet no blocks have been reserved at all. Refactor xfs_reserve_blocks() to use an explicit loop and make the code easier to follow. Since we have to drop the spinlock across the xfs_mod_fdblocks() call, use a delta value for m_resblks as well and only apply the delta once allocation succeeds. [dchinner: convert to do {} while() loop] Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
spin_unlock(&mp->m_sb_lock);
error = xfs_mod_fdblocks(mp, -fdblks_delta, 0);
spin_lock(&mp->m_sb_lock);
} while (error == -ENOSPC);
/*
* Update the reserve counters if blocks have been successfully
* allocated.
*/
if (!error && fdblks_delta) {
mp->m_resblks += fdblks_delta;
mp->m_resblks_avail += fdblks_delta;
}
xfs: refactor xfs_reserve_blocks() to handle ENOSPC correctly xfs_reserve_blocks() is responsible to update the XFS reserved block pool count at mount time or based on user request. When the caller requests to increase the reserve pool, blocks must be allocated from the global counters such that they are no longer available for general purpose use. If the requested reserve pool size is too large, XFS reserves what blocks are available. The implementation requires looking at the percpu counters and making an educated guess as to how many blocks to try and allocate from xfs_mod_fdblocks(), which can return -ENOSPC if the guess was not accurate due to counters being modified in parallel. xfs_reserve_blocks() retries the guess in this scenario until the allocation succeeds or it is determined that there is no space available in the fs. While not easily reproducible in the current form, the retry code doesn't actually work correctly if xfs_mod_fdblocks() actually fails. The problem is that the percpu calculations use the m_resblks counter to determine how many blocks to allocate, but unconditionally update m_resblks before the block allocation has actually succeeded. Therefore, if xfs_mod_fdblocks() fails, the code jumps to the retry label and uses the already updated m_resblks value to determine how many blocks to try and allocate. If the percpu counters previously suggested that the entire request was available, fdblocks_delta could end up set to 0. In that case, m_resblks is updated to the requested value, yet no blocks have been reserved at all. Refactor xfs_reserve_blocks() to use an explicit loop and make the code easier to follow. Since we have to drop the spinlock across the xfs_mod_fdblocks() call, use a delta value for m_resblks as well and only apply the delta once allocation succeeds. [dchinner: convert to do {} while() loop] Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21 09:53:28 +08:00
out:
if (outval) {
outval->resblks = mp->m_resblks;
outval->resblks_avail = mp->m_resblks_avail;
}
spin_unlock(&mp->m_sb_lock);
return error;
}
int
xfs_fs_goingdown(
xfs_mount_t *mp,
uint32_t inflags)
{
switch (inflags) {
case XFS_FSOP_GOING_FLAGS_DEFAULT: {
struct super_block *sb = freeze_bdev(mp->m_super->s_bdev);
if (sb && !IS_ERR(sb)) {
xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT);
thaw_bdev(sb->s_bdev, sb);
}
break;
}
case XFS_FSOP_GOING_FLAGS_LOGFLUSH:
xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT);
break;
case XFS_FSOP_GOING_FLAGS_NOLOGFLUSH:
xfs_force_shutdown(mp,
SHUTDOWN_FORCE_UMOUNT | SHUTDOWN_LOG_IO_ERROR);
break;
default:
return -EINVAL;
}
return 0;
}
/*
* Force a shutdown of the filesystem instantly while keeping the filesystem
* consistent. We don't do an unmount here; just shutdown the shop, make sure
* that absolutely nothing persistent happens to this filesystem after this
* point.
*/
void
xfs_do_force_shutdown(
xfs_mount_t *mp,
int flags,
char *fname,
int lnnum)
{
int logerror;
logerror = flags & SHUTDOWN_LOG_IO_ERROR;
if (!(flags & SHUTDOWN_FORCE_UMOUNT)) {
xfs_notice(mp,
"%s(0x%x) called from line %d of file %s. Return address = "PTR_FMT,
__func__, flags, lnnum, fname, __return_address);
}
/*
* No need to duplicate efforts.
*/
if (XFS_FORCED_SHUTDOWN(mp) && !logerror)
return;
/*
* This flags XFS_MOUNT_FS_SHUTDOWN, makes sure that we don't
* queue up anybody new on the log reservations, and wakes up
* everybody who's sleeping on log reservations to tell them
* the bad news.
*/
if (xfs_log_force_umount(mp, logerror))
return;
if (flags & SHUTDOWN_CORRUPT_INCORE) {
xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_CORRUPT,
"Corruption of in-memory data detected. Shutting down filesystem");
if (XFS_ERRLEVEL_HIGH <= xfs_error_level)
xfs_stack_trace();
} else if (!(flags & SHUTDOWN_FORCE_UMOUNT)) {
if (logerror) {
xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_LOGERROR,
"Log I/O Error Detected. Shutting down filesystem");
} else if (flags & SHUTDOWN_DEVICE_REQ) {
xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_IOERROR,
"All device paths lost. Shutting down filesystem");
} else if (!(flags & SHUTDOWN_REMOTE_REQ)) {
xfs_alert_tag(mp, XFS_PTAG_SHUTDOWN_IOERROR,
"I/O Error Detected. Shutting down filesystem");
}
}
if (!(flags & SHUTDOWN_FORCE_UMOUNT)) {
xfs_alert(mp,
"Please umount the filesystem and rectify the problem(s)");
}
}
/*
* Reserve free space for per-AG metadata.
*/
int
xfs_fs_reserve_ag_blocks(
struct xfs_mount *mp)
{
xfs_agnumber_t agno;
struct xfs_perag *pag;
int error = 0;
int err2;
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
pag = xfs_perag_get(mp, agno);
err2 = xfs_ag_resv_init(pag);
xfs_perag_put(pag);
if (err2 && !error)
error = err2;
}
if (error && error != -ENOSPC) {
xfs_warn(mp,
"Error %d reserving per-AG metadata reserve pool.", error);
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
}
return error;
}
/*
* Free space reserved for per-AG metadata.
*/
int
xfs_fs_unreserve_ag_blocks(
struct xfs_mount *mp)
{
xfs_agnumber_t agno;
struct xfs_perag *pag;
int error = 0;
int err2;
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
pag = xfs_perag_get(mp, agno);
err2 = xfs_ag_resv_free(pag);
xfs_perag_put(pag);
if (err2 && !error)
error = err2;
}
if (error)
xfs_warn(mp,
"Error %d freeing per-AG metadata reserve pool.", error);
return error;
}