OpenCloudOS-Kernel/net/sched/cls_flower.c

1965 lines
57 KiB
C
Raw Normal View History

/*
* net/sched/cls_flower.c Flower classifier
*
* Copyright (c) 2015 Jiri Pirko <jiri@resnulli.us>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/rhashtable.h>
net, sched: respect rcu grace period on cls destruction Roi reported a crash in flower where tp->root was NULL in ->classify() callbacks. Reason is that in ->destroy() tp->root is set to NULL via RCU_INIT_POINTER(). It's problematic for some of the classifiers, because this doesn't respect RCU grace period for them, and as a result, still outstanding readers from tc_classify() will try to blindly dereference a NULL tp->root. The tp->root object is strictly private to the classifier implementation and holds internal data the core such as tc_ctl_tfilter() doesn't know about. Within some classifiers, such as cls_bpf, cls_basic, etc, tp->root is only checked for NULL in ->get() callback, but nowhere else. This is misleading and seemed to be copied from old classifier code that was not cleaned up properly. For example, d3fa76ee6b4a ("[NET_SCHED]: cls_basic: fix NULL pointer dereference") moved tp->root initialization into ->init() routine, where before it was part of ->change(), so ->get() had to deal with tp->root being NULL back then, so that was indeed a valid case, after d3fa76ee6b4a, not really anymore. We used to set tp->root to NULL long ago in ->destroy(), see 47a1a1d4be29 ("pkt_sched: remove unnecessary xchg() in packet classifiers"); but the NULLifying was reintroduced with the RCUification, but it's not correct for every classifier implementation. In the cases that are fixed here with one exception of cls_cgroup, tp->root object is allocated and initialized inside ->init() callback, which is always performed at a point in time after we allocate a new tp, which means tp and thus tp->root was not globally visible in the tp chain yet (see tc_ctl_tfilter()). Also, on destruction tp->root is strictly kfree_rcu()'ed in ->destroy() handler, same for the tp which is kfree_rcu()'ed right when we return from ->destroy() in tcf_destroy(). This means, the head object's lifetime for such classifiers is always tied to the tp lifetime. The RCU callback invocation for the two kfree_rcu() could be out of order, but that's fine since both are independent. Dropping the RCU_INIT_POINTER(tp->root, NULL) for these classifiers here means that 1) we don't need a useless NULL check in fast-path and, 2) that outstanding readers of that tp in tc_classify() can still execute under respect with RCU grace period as it is actually expected. Things that haven't been touched here: cls_fw and cls_route. They each handle tp->root being NULL in ->classify() path for historic reasons, so their ->destroy() implementation can stay as is. If someone actually cares, they could get cleaned up at some point to avoid the test in fast path. cls_u32 doesn't set tp->root to NULL. For cls_rsvp, I just added a !head should anyone actually be using/testing it, so it at least aligns with cls_fw and cls_route. For cls_flower we additionally need to defer rhashtable destruction (to a sleepable context) after RCU grace period as concurrent readers might still access it. (Note that in this case we need to hold module reference to keep work callback address intact, since we only wait on module unload for all call_rcu()s to finish.) This fixes one race to bring RCU grace period guarantees back. Next step as worked on by Cong however is to fix 1e052be69d04 ("net_sched: destroy proto tp when all filters are gone") to get the order of unlinking the tp in tc_ctl_tfilter() for the RTM_DELTFILTER case right by moving RCU_INIT_POINTER() before tcf_destroy() and let the notification for removal be done through the prior ->delete() callback. Both are independant issues. Once we have that right, we can then clean tp->root up for a number of classifiers by not making them RCU pointers, which requires a new callback (->uninit) that is triggered from tp's RCU callback, where we just kfree() tp->root from there. Fixes: 1f947bf151e9 ("net: sched: rcu'ify cls_bpf") Fixes: 9888faefe132 ("net: sched: cls_basic use RCU") Fixes: 70da9f0bf999 ("net: sched: cls_flow use RCU") Fixes: 77b9900ef53a ("tc: introduce Flower classifier") Fixes: bf3994d2ed31 ("net/sched: introduce Match-all classifier") Fixes: 952313bd6258 ("net: sched: cls_cgroup use RCU") Reported-by: Roi Dayan <roid@mellanox.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: Roi Dayan <roid@mellanox.com> Cc: Jiri Pirko <jiri@mellanox.com> Acked-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-27 08:18:01 +08:00
#include <linux/workqueue.h>
#include <linux/if_ether.h>
#include <linux/in6.h>
#include <linux/ip.h>
#include <linux/mpls.h>
#include <net/sch_generic.h>
#include <net/pkt_cls.h>
#include <net/ip.h>
#include <net/flow_dissector.h>
net/sched: allow flower to match tunnel options Allow matching on options in Geneve tunnel headers. This makes use of existing tunnel metadata support. The options can be described in the form CLASS:TYPE:DATA/CLASS_MASK:TYPE_MASK:DATA_MASK, where CLASS is represented as a 16bit hexadecimal value, TYPE as an 8bit hexadecimal value and DATA as a variable length hexadecimal value. e.g. # ip link add name geneve0 type geneve dstport 0 external # tc qdisc add dev geneve0 ingress # tc filter add dev geneve0 protocol ip parent ffff: \ flower \ enc_src_ip 10.0.99.192 \ enc_dst_ip 10.0.99.193 \ enc_key_id 11 \ geneve_opts 0102:80:1122334421314151/ffff:ff:ffffffffffffffff \ ip_proto udp \ action mirred egress redirect dev eth1 This patch adds support for matching Geneve options in the order supplied by the user. This leads to an efficient implementation in the software datapath (and in our opinion hardware datapaths that offload this feature). It is also compatible with Geneve options matching provided by the Open vSwitch kernel datapath which is relevant here as the Flower classifier may be used as a mechanism to program flows into hardware as a form of Open vSwitch datapath offload (sometimes referred to as OVS-TC). The netlink Kernel/Userspace API may be extended, for example by adding a flag, if other matching options are desired, for example matching given options in any order. This would require an implementation in the TC software datapath. And be done in a way that drivers that facilitate offload of the Flower classifier can reject or accept such flows based on hardware datapath capabilities. This approach was discussed and agreed on at Netconf 2017 in Seoul. Signed-off-by: Simon Horman <simon.horman@netronome.com> Signed-off-by: Pieter Jansen van Vuuren <pieter.jansenvanvuuren@netronome.com> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-07 23:36:01 +08:00
#include <net/geneve.h>
#include <net/dst.h>
#include <net/dst_metadata.h>
struct fl_flow_key {
int indev_ifindex;
struct flow_dissector_key_control control;
struct flow_dissector_key_control enc_control;
struct flow_dissector_key_basic basic;
struct flow_dissector_key_eth_addrs eth;
struct flow_dissector_key_vlan vlan;
struct flow_dissector_key_vlan cvlan;
union {
struct flow_dissector_key_ipv4_addrs ipv4;
struct flow_dissector_key_ipv6_addrs ipv6;
};
struct flow_dissector_key_ports tp;
struct flow_dissector_key_icmp icmp;
struct flow_dissector_key_arp arp;
struct flow_dissector_key_keyid enc_key_id;
union {
struct flow_dissector_key_ipv4_addrs enc_ipv4;
struct flow_dissector_key_ipv6_addrs enc_ipv6;
};
struct flow_dissector_key_ports enc_tp;
struct flow_dissector_key_mpls mpls;
struct flow_dissector_key_tcp tcp;
struct flow_dissector_key_ip ip;
struct flow_dissector_key_ip enc_ip;
net/sched: allow flower to match tunnel options Allow matching on options in Geneve tunnel headers. This makes use of existing tunnel metadata support. The options can be described in the form CLASS:TYPE:DATA/CLASS_MASK:TYPE_MASK:DATA_MASK, where CLASS is represented as a 16bit hexadecimal value, TYPE as an 8bit hexadecimal value and DATA as a variable length hexadecimal value. e.g. # ip link add name geneve0 type geneve dstport 0 external # tc qdisc add dev geneve0 ingress # tc filter add dev geneve0 protocol ip parent ffff: \ flower \ enc_src_ip 10.0.99.192 \ enc_dst_ip 10.0.99.193 \ enc_key_id 11 \ geneve_opts 0102:80:1122334421314151/ffff:ff:ffffffffffffffff \ ip_proto udp \ action mirred egress redirect dev eth1 This patch adds support for matching Geneve options in the order supplied by the user. This leads to an efficient implementation in the software datapath (and in our opinion hardware datapaths that offload this feature). It is also compatible with Geneve options matching provided by the Open vSwitch kernel datapath which is relevant here as the Flower classifier may be used as a mechanism to program flows into hardware as a form of Open vSwitch datapath offload (sometimes referred to as OVS-TC). The netlink Kernel/Userspace API may be extended, for example by adding a flag, if other matching options are desired, for example matching given options in any order. This would require an implementation in the TC software datapath. And be done in a way that drivers that facilitate offload of the Flower classifier can reject or accept such flows based on hardware datapath capabilities. This approach was discussed and agreed on at Netconf 2017 in Seoul. Signed-off-by: Simon Horman <simon.horman@netronome.com> Signed-off-by: Pieter Jansen van Vuuren <pieter.jansenvanvuuren@netronome.com> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-07 23:36:01 +08:00
struct flow_dissector_key_enc_opts enc_opts;
} __aligned(BITS_PER_LONG / 8); /* Ensure that we can do comparisons as longs. */
struct fl_flow_mask_range {
unsigned short int start;
unsigned short int end;
};
struct fl_flow_mask {
struct fl_flow_key key;
struct fl_flow_mask_range range;
struct rhash_head ht_node;
struct rhashtable ht;
struct rhashtable_params filter_ht_params;
struct flow_dissector dissector;
struct list_head filters;
cls_flower: fix use after free in flower S/W path If flower filter is created without the skip_sw flag, fl_mask_put() can race with fl_classify() and we can destroy the mask rhashtable while a lookup operation is accessing it. BUG: unable to handle kernel paging request at 00000000000911d1 PGD 0 P4D 0 SMP PTI CPU: 3 PID: 5582 Comm: vhost-5541 Not tainted 4.18.0-rc1.vanilla+ #1950 Hardware name: Dell Inc. PowerEdge R730/072T6D, BIOS 2.1.7 06/16/2016 RIP: 0010:rht_bucket_nested+0x20/0x60 Code: 31 c8 c1 c1 18 29 c8 c3 66 90 8b 4f 04 ba 01 00 00 00 8b 07 48 8b bf 80 00 00 0 RSP: 0018:ffffafc5cfbb7a48 EFLAGS: 00010206 RAX: 0000000000001978 RBX: ffff9f12dff88a00 RCX: 00000000ffff9f12 RDX: 00000000000911d1 RSI: 0000000000000148 RDI: 0000000000000001 RBP: ffff9f12dff88a00 R08: 000000005f1cc119 R09: 00000000a715fae2 R10: ffffafc5cfbb7aa8 R11: ffff9f1cb4be804e R12: ffff9f1265e13000 R13: 0000000000000000 R14: ffffafc5cfbb7b48 R15: ffff9f12dff88b68 FS: 0000000000000000(0000) GS:ffff9f1d3f0c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000911d1 CR3: 0000001575a94006 CR4: 00000000001626e0 Call Trace: fl_lookup+0x134/0x140 [cls_flower] fl_classify+0xf3/0x180 [cls_flower] tcf_classify+0x78/0x150 __netif_receive_skb_core+0x69e/0xa50 netif_receive_skb_internal+0x42/0xf0 tun_get_user+0xdd5/0xfd0 [tun] tun_sendmsg+0x52/0x70 [tun] handle_tx+0x2b3/0x5f0 [vhost_net] vhost_worker+0xab/0x100 [vhost] kthread+0xf8/0x130 ret_from_fork+0x35/0x40 Modules linked in: act_mirred act_gact cls_flower vhost_net vhost tap sch_ingress CR2: 00000000000911d1 Fix the above waiting for a RCU grace period before destroying the rhashtable: we need to use tcf_queue_work(), as rhashtable_destroy() must run in process context, as pointed out by Cong Wang. v1 -> v2: use tcf_queue_work to run rhashtable_destroy(). Fixes: 05cd271fd61a ("cls_flower: Support multiple masks per priority") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-22 02:02:16 +08:00
struct rcu_work rwork;
struct list_head list;
};
struct fl_flow_tmplt {
struct fl_flow_key dummy_key;
struct fl_flow_key mask;
struct flow_dissector dissector;
struct tcf_chain *chain;
};
struct cls_fl_head {
struct rhashtable ht;
struct list_head masks;
struct rcu_work rwork;
struct idr handle_idr;
};
struct cls_fl_filter {
struct fl_flow_mask *mask;
struct rhash_head ht_node;
struct fl_flow_key mkey;
struct tcf_exts exts;
struct tcf_result res;
struct fl_flow_key key;
struct list_head list;
u32 handle;
u32 flags;
unsigned int in_hw_count;
struct rcu_work rwork;
struct net_device *hw_dev;
};
static const struct rhashtable_params mask_ht_params = {
.key_offset = offsetof(struct fl_flow_mask, key),
.key_len = sizeof(struct fl_flow_key),
.head_offset = offsetof(struct fl_flow_mask, ht_node),
.automatic_shrinking = true,
};
static unsigned short int fl_mask_range(const struct fl_flow_mask *mask)
{
return mask->range.end - mask->range.start;
}
static void fl_mask_update_range(struct fl_flow_mask *mask)
{
const u8 *bytes = (const u8 *) &mask->key;
size_t size = sizeof(mask->key);
size_t i, first = 0, last;
for (i = 0; i < size; i++) {
if (bytes[i]) {
first = i;
break;
}
}
last = first;
for (i = size - 1; i != first; i--) {
if (bytes[i]) {
last = i;
break;
}
}
mask->range.start = rounddown(first, sizeof(long));
mask->range.end = roundup(last + 1, sizeof(long));
}
static void *fl_key_get_start(struct fl_flow_key *key,
const struct fl_flow_mask *mask)
{
return (u8 *) key + mask->range.start;
}
static void fl_set_masked_key(struct fl_flow_key *mkey, struct fl_flow_key *key,
struct fl_flow_mask *mask)
{
const long *lkey = fl_key_get_start(key, mask);
const long *lmask = fl_key_get_start(&mask->key, mask);
long *lmkey = fl_key_get_start(mkey, mask);
int i;
for (i = 0; i < fl_mask_range(mask); i += sizeof(long))
*lmkey++ = *lkey++ & *lmask++;
}
static bool fl_mask_fits_tmplt(struct fl_flow_tmplt *tmplt,
struct fl_flow_mask *mask)
{
const long *lmask = fl_key_get_start(&mask->key, mask);
const long *ltmplt;
int i;
if (!tmplt)
return true;
ltmplt = fl_key_get_start(&tmplt->mask, mask);
for (i = 0; i < fl_mask_range(mask); i += sizeof(long)) {
if (~*ltmplt++ & *lmask++)
return false;
}
return true;
}
static void fl_clear_masked_range(struct fl_flow_key *key,
struct fl_flow_mask *mask)
{
memset(fl_key_get_start(key, mask), 0, fl_mask_range(mask));
}
static struct cls_fl_filter *fl_lookup(struct fl_flow_mask *mask,
struct fl_flow_key *mkey)
{
return rhashtable_lookup_fast(&mask->ht, fl_key_get_start(mkey, mask),
mask->filter_ht_params);
}
static int fl_classify(struct sk_buff *skb, const struct tcf_proto *tp,
struct tcf_result *res)
{
struct cls_fl_head *head = rcu_dereference_bh(tp->root);
struct cls_fl_filter *f;
struct fl_flow_mask *mask;
struct fl_flow_key skb_key;
struct fl_flow_key skb_mkey;
list_for_each_entry_rcu(mask, &head->masks, list) {
fl_clear_masked_range(&skb_key, mask);
skb_key.indev_ifindex = skb->skb_iif;
/* skb_flow_dissect() does not set n_proto in case an unknown
* protocol, so do it rather here.
*/
skb_key.basic.n_proto = skb->protocol;
skb_flow_dissect_tunnel_info(skb, &mask->dissector, &skb_key);
skb_flow_dissect(skb, &mask->dissector, &skb_key, 0);
fl_set_masked_key(&skb_mkey, &skb_key, mask);
f = fl_lookup(mask, &skb_mkey);
if (f && !tc_skip_sw(f->flags)) {
*res = f->res;
return tcf_exts_exec(skb, &f->exts, res);
}
}
return -1;
}
static int fl_init(struct tcf_proto *tp)
{
struct cls_fl_head *head;
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (!head)
return -ENOBUFS;
INIT_LIST_HEAD_RCU(&head->masks);
rcu_assign_pointer(tp->root, head);
idr_init(&head->handle_idr);
return rhashtable_init(&head->ht, &mask_ht_params);
}
cls_flower: fix use after free in flower S/W path If flower filter is created without the skip_sw flag, fl_mask_put() can race with fl_classify() and we can destroy the mask rhashtable while a lookup operation is accessing it. BUG: unable to handle kernel paging request at 00000000000911d1 PGD 0 P4D 0 SMP PTI CPU: 3 PID: 5582 Comm: vhost-5541 Not tainted 4.18.0-rc1.vanilla+ #1950 Hardware name: Dell Inc. PowerEdge R730/072T6D, BIOS 2.1.7 06/16/2016 RIP: 0010:rht_bucket_nested+0x20/0x60 Code: 31 c8 c1 c1 18 29 c8 c3 66 90 8b 4f 04 ba 01 00 00 00 8b 07 48 8b bf 80 00 00 0 RSP: 0018:ffffafc5cfbb7a48 EFLAGS: 00010206 RAX: 0000000000001978 RBX: ffff9f12dff88a00 RCX: 00000000ffff9f12 RDX: 00000000000911d1 RSI: 0000000000000148 RDI: 0000000000000001 RBP: ffff9f12dff88a00 R08: 000000005f1cc119 R09: 00000000a715fae2 R10: ffffafc5cfbb7aa8 R11: ffff9f1cb4be804e R12: ffff9f1265e13000 R13: 0000000000000000 R14: ffffafc5cfbb7b48 R15: ffff9f12dff88b68 FS: 0000000000000000(0000) GS:ffff9f1d3f0c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000911d1 CR3: 0000001575a94006 CR4: 00000000001626e0 Call Trace: fl_lookup+0x134/0x140 [cls_flower] fl_classify+0xf3/0x180 [cls_flower] tcf_classify+0x78/0x150 __netif_receive_skb_core+0x69e/0xa50 netif_receive_skb_internal+0x42/0xf0 tun_get_user+0xdd5/0xfd0 [tun] tun_sendmsg+0x52/0x70 [tun] handle_tx+0x2b3/0x5f0 [vhost_net] vhost_worker+0xab/0x100 [vhost] kthread+0xf8/0x130 ret_from_fork+0x35/0x40 Modules linked in: act_mirred act_gact cls_flower vhost_net vhost tap sch_ingress CR2: 00000000000911d1 Fix the above waiting for a RCU grace period before destroying the rhashtable: we need to use tcf_queue_work(), as rhashtable_destroy() must run in process context, as pointed out by Cong Wang. v1 -> v2: use tcf_queue_work to run rhashtable_destroy(). Fixes: 05cd271fd61a ("cls_flower: Support multiple masks per priority") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-22 02:02:16 +08:00
static void fl_mask_free(struct fl_flow_mask *mask)
{
rhashtable_destroy(&mask->ht);
kfree(mask);
}
static void fl_mask_free_work(struct work_struct *work)
{
struct fl_flow_mask *mask = container_of(to_rcu_work(work),
struct fl_flow_mask, rwork);
fl_mask_free(mask);
}
static bool fl_mask_put(struct cls_fl_head *head, struct fl_flow_mask *mask,
bool async)
{
if (!list_empty(&mask->filters))
return false;
rhashtable_remove_fast(&head->ht, &mask->ht_node, mask_ht_params);
list_del_rcu(&mask->list);
if (async)
cls_flower: fix use after free in flower S/W path If flower filter is created without the skip_sw flag, fl_mask_put() can race with fl_classify() and we can destroy the mask rhashtable while a lookup operation is accessing it. BUG: unable to handle kernel paging request at 00000000000911d1 PGD 0 P4D 0 SMP PTI CPU: 3 PID: 5582 Comm: vhost-5541 Not tainted 4.18.0-rc1.vanilla+ #1950 Hardware name: Dell Inc. PowerEdge R730/072T6D, BIOS 2.1.7 06/16/2016 RIP: 0010:rht_bucket_nested+0x20/0x60 Code: 31 c8 c1 c1 18 29 c8 c3 66 90 8b 4f 04 ba 01 00 00 00 8b 07 48 8b bf 80 00 00 0 RSP: 0018:ffffafc5cfbb7a48 EFLAGS: 00010206 RAX: 0000000000001978 RBX: ffff9f12dff88a00 RCX: 00000000ffff9f12 RDX: 00000000000911d1 RSI: 0000000000000148 RDI: 0000000000000001 RBP: ffff9f12dff88a00 R08: 000000005f1cc119 R09: 00000000a715fae2 R10: ffffafc5cfbb7aa8 R11: ffff9f1cb4be804e R12: ffff9f1265e13000 R13: 0000000000000000 R14: ffffafc5cfbb7b48 R15: ffff9f12dff88b68 FS: 0000000000000000(0000) GS:ffff9f1d3f0c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000911d1 CR3: 0000001575a94006 CR4: 00000000001626e0 Call Trace: fl_lookup+0x134/0x140 [cls_flower] fl_classify+0xf3/0x180 [cls_flower] tcf_classify+0x78/0x150 __netif_receive_skb_core+0x69e/0xa50 netif_receive_skb_internal+0x42/0xf0 tun_get_user+0xdd5/0xfd0 [tun] tun_sendmsg+0x52/0x70 [tun] handle_tx+0x2b3/0x5f0 [vhost_net] vhost_worker+0xab/0x100 [vhost] kthread+0xf8/0x130 ret_from_fork+0x35/0x40 Modules linked in: act_mirred act_gact cls_flower vhost_net vhost tap sch_ingress CR2: 00000000000911d1 Fix the above waiting for a RCU grace period before destroying the rhashtable: we need to use tcf_queue_work(), as rhashtable_destroy() must run in process context, as pointed out by Cong Wang. v1 -> v2: use tcf_queue_work to run rhashtable_destroy(). Fixes: 05cd271fd61a ("cls_flower: Support multiple masks per priority") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-22 02:02:16 +08:00
tcf_queue_work(&mask->rwork, fl_mask_free_work);
else
cls_flower: fix use after free in flower S/W path If flower filter is created without the skip_sw flag, fl_mask_put() can race with fl_classify() and we can destroy the mask rhashtable while a lookup operation is accessing it. BUG: unable to handle kernel paging request at 00000000000911d1 PGD 0 P4D 0 SMP PTI CPU: 3 PID: 5582 Comm: vhost-5541 Not tainted 4.18.0-rc1.vanilla+ #1950 Hardware name: Dell Inc. PowerEdge R730/072T6D, BIOS 2.1.7 06/16/2016 RIP: 0010:rht_bucket_nested+0x20/0x60 Code: 31 c8 c1 c1 18 29 c8 c3 66 90 8b 4f 04 ba 01 00 00 00 8b 07 48 8b bf 80 00 00 0 RSP: 0018:ffffafc5cfbb7a48 EFLAGS: 00010206 RAX: 0000000000001978 RBX: ffff9f12dff88a00 RCX: 00000000ffff9f12 RDX: 00000000000911d1 RSI: 0000000000000148 RDI: 0000000000000001 RBP: ffff9f12dff88a00 R08: 000000005f1cc119 R09: 00000000a715fae2 R10: ffffafc5cfbb7aa8 R11: ffff9f1cb4be804e R12: ffff9f1265e13000 R13: 0000000000000000 R14: ffffafc5cfbb7b48 R15: ffff9f12dff88b68 FS: 0000000000000000(0000) GS:ffff9f1d3f0c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000911d1 CR3: 0000001575a94006 CR4: 00000000001626e0 Call Trace: fl_lookup+0x134/0x140 [cls_flower] fl_classify+0xf3/0x180 [cls_flower] tcf_classify+0x78/0x150 __netif_receive_skb_core+0x69e/0xa50 netif_receive_skb_internal+0x42/0xf0 tun_get_user+0xdd5/0xfd0 [tun] tun_sendmsg+0x52/0x70 [tun] handle_tx+0x2b3/0x5f0 [vhost_net] vhost_worker+0xab/0x100 [vhost] kthread+0xf8/0x130 ret_from_fork+0x35/0x40 Modules linked in: act_mirred act_gact cls_flower vhost_net vhost tap sch_ingress CR2: 00000000000911d1 Fix the above waiting for a RCU grace period before destroying the rhashtable: we need to use tcf_queue_work(), as rhashtable_destroy() must run in process context, as pointed out by Cong Wang. v1 -> v2: use tcf_queue_work to run rhashtable_destroy(). Fixes: 05cd271fd61a ("cls_flower: Support multiple masks per priority") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-22 02:02:16 +08:00
fl_mask_free(mask);
return true;
}
static void __fl_destroy_filter(struct cls_fl_filter *f)
{
tcf_exts_destroy(&f->exts);
tcf_exts_put_net(&f->exts);
kfree(f);
}
static void fl_destroy_filter_work(struct work_struct *work)
{
struct cls_fl_filter *f = container_of(to_rcu_work(work),
struct cls_fl_filter, rwork);
rtnl_lock();
__fl_destroy_filter(f);
rtnl_unlock();
}
static void fl_hw_destroy_filter(struct tcf_proto *tp, struct cls_fl_filter *f,
struct netlink_ext_ack *extack)
{
struct tc_cls_flower_offload cls_flower = {};
struct tcf_block *block = tp->chain->block;
tc_cls_common_offload_init(&cls_flower.common, tp, f->flags, extack);
cls_flower.command = TC_CLSFLOWER_DESTROY;
cls_flower.cookie = (unsigned long) f;
tc_setup_cb_call(block, &f->exts, TC_SETUP_CLSFLOWER,
&cls_flower, false);
tcf_block_offload_dec(block, &f->flags);
}
static int fl_hw_replace_filter(struct tcf_proto *tp,
struct cls_fl_filter *f,
struct netlink_ext_ack *extack)
{
struct tc_cls_flower_offload cls_flower = {};
struct tcf_block *block = tp->chain->block;
bool skip_sw = tc_skip_sw(f->flags);
int err;
tc_cls_common_offload_init(&cls_flower.common, tp, f->flags, extack);
cls_flower.command = TC_CLSFLOWER_REPLACE;
cls_flower.cookie = (unsigned long) f;
cls_flower.dissector = &f->mask->dissector;
cls_flower.mask = &f->mask->key;
cls_flower.key = &f->mkey;
cls_flower.exts = &f->exts;
cls_flower.classid = f->res.classid;
err = tc_setup_cb_call(block, &f->exts, TC_SETUP_CLSFLOWER,
&cls_flower, skip_sw);
if (err < 0) {
fl_hw_destroy_filter(tp, f, NULL);
return err;
} else if (err > 0) {
f->in_hw_count = err;
tcf_block_offload_inc(block, &f->flags);
}
if (skip_sw && !(f->flags & TCA_CLS_FLAGS_IN_HW))
return -EINVAL;
return 0;
}
static void fl_hw_update_stats(struct tcf_proto *tp, struct cls_fl_filter *f)
{
struct tc_cls_flower_offload cls_flower = {};
struct tcf_block *block = tp->chain->block;
tc_cls_common_offload_init(&cls_flower.common, tp, f->flags, NULL);
cls_flower.command = TC_CLSFLOWER_STATS;
cls_flower.cookie = (unsigned long) f;
cls_flower.exts = &f->exts;
cls_flower.classid = f->res.classid;
tc_setup_cb_call(block, &f->exts, TC_SETUP_CLSFLOWER,
&cls_flower, false);
}
static bool __fl_delete(struct tcf_proto *tp, struct cls_fl_filter *f,
struct netlink_ext_ack *extack)
{
struct cls_fl_head *head = rtnl_dereference(tp->root);
bool async = tcf_exts_get_net(&f->exts);
bool last;
idr_remove(&head->handle_idr, f->handle);
list_del_rcu(&f->list);
last = fl_mask_put(head, f->mask, async);
if (!tc_skip_hw(f->flags))
fl_hw_destroy_filter(tp, f, extack);
tcf_unbind_filter(tp, &f->res);
if (async)
tcf_queue_work(&f->rwork, fl_destroy_filter_work);
else
__fl_destroy_filter(f);
return last;
}
net, sched: respect rcu grace period on cls destruction Roi reported a crash in flower where tp->root was NULL in ->classify() callbacks. Reason is that in ->destroy() tp->root is set to NULL via RCU_INIT_POINTER(). It's problematic for some of the classifiers, because this doesn't respect RCU grace period for them, and as a result, still outstanding readers from tc_classify() will try to blindly dereference a NULL tp->root. The tp->root object is strictly private to the classifier implementation and holds internal data the core such as tc_ctl_tfilter() doesn't know about. Within some classifiers, such as cls_bpf, cls_basic, etc, tp->root is only checked for NULL in ->get() callback, but nowhere else. This is misleading and seemed to be copied from old classifier code that was not cleaned up properly. For example, d3fa76ee6b4a ("[NET_SCHED]: cls_basic: fix NULL pointer dereference") moved tp->root initialization into ->init() routine, where before it was part of ->change(), so ->get() had to deal with tp->root being NULL back then, so that was indeed a valid case, after d3fa76ee6b4a, not really anymore. We used to set tp->root to NULL long ago in ->destroy(), see 47a1a1d4be29 ("pkt_sched: remove unnecessary xchg() in packet classifiers"); but the NULLifying was reintroduced with the RCUification, but it's not correct for every classifier implementation. In the cases that are fixed here with one exception of cls_cgroup, tp->root object is allocated and initialized inside ->init() callback, which is always performed at a point in time after we allocate a new tp, which means tp and thus tp->root was not globally visible in the tp chain yet (see tc_ctl_tfilter()). Also, on destruction tp->root is strictly kfree_rcu()'ed in ->destroy() handler, same for the tp which is kfree_rcu()'ed right when we return from ->destroy() in tcf_destroy(). This means, the head object's lifetime for such classifiers is always tied to the tp lifetime. The RCU callback invocation for the two kfree_rcu() could be out of order, but that's fine since both are independent. Dropping the RCU_INIT_POINTER(tp->root, NULL) for these classifiers here means that 1) we don't need a useless NULL check in fast-path and, 2) that outstanding readers of that tp in tc_classify() can still execute under respect with RCU grace period as it is actually expected. Things that haven't been touched here: cls_fw and cls_route. They each handle tp->root being NULL in ->classify() path for historic reasons, so their ->destroy() implementation can stay as is. If someone actually cares, they could get cleaned up at some point to avoid the test in fast path. cls_u32 doesn't set tp->root to NULL. For cls_rsvp, I just added a !head should anyone actually be using/testing it, so it at least aligns with cls_fw and cls_route. For cls_flower we additionally need to defer rhashtable destruction (to a sleepable context) after RCU grace period as concurrent readers might still access it. (Note that in this case we need to hold module reference to keep work callback address intact, since we only wait on module unload for all call_rcu()s to finish.) This fixes one race to bring RCU grace period guarantees back. Next step as worked on by Cong however is to fix 1e052be69d04 ("net_sched: destroy proto tp when all filters are gone") to get the order of unlinking the tp in tc_ctl_tfilter() for the RTM_DELTFILTER case right by moving RCU_INIT_POINTER() before tcf_destroy() and let the notification for removal be done through the prior ->delete() callback. Both are independant issues. Once we have that right, we can then clean tp->root up for a number of classifiers by not making them RCU pointers, which requires a new callback (->uninit) that is triggered from tp's RCU callback, where we just kfree() tp->root from there. Fixes: 1f947bf151e9 ("net: sched: rcu'ify cls_bpf") Fixes: 9888faefe132 ("net: sched: cls_basic use RCU") Fixes: 70da9f0bf999 ("net: sched: cls_flow use RCU") Fixes: 77b9900ef53a ("tc: introduce Flower classifier") Fixes: bf3994d2ed31 ("net/sched: introduce Match-all classifier") Fixes: 952313bd6258 ("net: sched: cls_cgroup use RCU") Reported-by: Roi Dayan <roid@mellanox.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: Roi Dayan <roid@mellanox.com> Cc: Jiri Pirko <jiri@mellanox.com> Acked-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-27 08:18:01 +08:00
static void fl_destroy_sleepable(struct work_struct *work)
{
struct cls_fl_head *head = container_of(to_rcu_work(work),
struct cls_fl_head,
rwork);
rhashtable_destroy(&head->ht);
net, sched: respect rcu grace period on cls destruction Roi reported a crash in flower where tp->root was NULL in ->classify() callbacks. Reason is that in ->destroy() tp->root is set to NULL via RCU_INIT_POINTER(). It's problematic for some of the classifiers, because this doesn't respect RCU grace period for them, and as a result, still outstanding readers from tc_classify() will try to blindly dereference a NULL tp->root. The tp->root object is strictly private to the classifier implementation and holds internal data the core such as tc_ctl_tfilter() doesn't know about. Within some classifiers, such as cls_bpf, cls_basic, etc, tp->root is only checked for NULL in ->get() callback, but nowhere else. This is misleading and seemed to be copied from old classifier code that was not cleaned up properly. For example, d3fa76ee6b4a ("[NET_SCHED]: cls_basic: fix NULL pointer dereference") moved tp->root initialization into ->init() routine, where before it was part of ->change(), so ->get() had to deal with tp->root being NULL back then, so that was indeed a valid case, after d3fa76ee6b4a, not really anymore. We used to set tp->root to NULL long ago in ->destroy(), see 47a1a1d4be29 ("pkt_sched: remove unnecessary xchg() in packet classifiers"); but the NULLifying was reintroduced with the RCUification, but it's not correct for every classifier implementation. In the cases that are fixed here with one exception of cls_cgroup, tp->root object is allocated and initialized inside ->init() callback, which is always performed at a point in time after we allocate a new tp, which means tp and thus tp->root was not globally visible in the tp chain yet (see tc_ctl_tfilter()). Also, on destruction tp->root is strictly kfree_rcu()'ed in ->destroy() handler, same for the tp which is kfree_rcu()'ed right when we return from ->destroy() in tcf_destroy(). This means, the head object's lifetime for such classifiers is always tied to the tp lifetime. The RCU callback invocation for the two kfree_rcu() could be out of order, but that's fine since both are independent. Dropping the RCU_INIT_POINTER(tp->root, NULL) for these classifiers here means that 1) we don't need a useless NULL check in fast-path and, 2) that outstanding readers of that tp in tc_classify() can still execute under respect with RCU grace period as it is actually expected. Things that haven't been touched here: cls_fw and cls_route. They each handle tp->root being NULL in ->classify() path for historic reasons, so their ->destroy() implementation can stay as is. If someone actually cares, they could get cleaned up at some point to avoid the test in fast path. cls_u32 doesn't set tp->root to NULL. For cls_rsvp, I just added a !head should anyone actually be using/testing it, so it at least aligns with cls_fw and cls_route. For cls_flower we additionally need to defer rhashtable destruction (to a sleepable context) after RCU grace period as concurrent readers might still access it. (Note that in this case we need to hold module reference to keep work callback address intact, since we only wait on module unload for all call_rcu()s to finish.) This fixes one race to bring RCU grace period guarantees back. Next step as worked on by Cong however is to fix 1e052be69d04 ("net_sched: destroy proto tp when all filters are gone") to get the order of unlinking the tp in tc_ctl_tfilter() for the RTM_DELTFILTER case right by moving RCU_INIT_POINTER() before tcf_destroy() and let the notification for removal be done through the prior ->delete() callback. Both are independant issues. Once we have that right, we can then clean tp->root up for a number of classifiers by not making them RCU pointers, which requires a new callback (->uninit) that is triggered from tp's RCU callback, where we just kfree() tp->root from there. Fixes: 1f947bf151e9 ("net: sched: rcu'ify cls_bpf") Fixes: 9888faefe132 ("net: sched: cls_basic use RCU") Fixes: 70da9f0bf999 ("net: sched: cls_flow use RCU") Fixes: 77b9900ef53a ("tc: introduce Flower classifier") Fixes: bf3994d2ed31 ("net/sched: introduce Match-all classifier") Fixes: 952313bd6258 ("net: sched: cls_cgroup use RCU") Reported-by: Roi Dayan <roid@mellanox.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: Roi Dayan <roid@mellanox.com> Cc: Jiri Pirko <jiri@mellanox.com> Acked-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-27 08:18:01 +08:00
kfree(head);
module_put(THIS_MODULE);
}
static void fl_destroy(struct tcf_proto *tp, struct netlink_ext_ack *extack)
{
struct cls_fl_head *head = rtnl_dereference(tp->root);
struct fl_flow_mask *mask, *next_mask;
struct cls_fl_filter *f, *next;
list_for_each_entry_safe(mask, next_mask, &head->masks, list) {
list_for_each_entry_safe(f, next, &mask->filters, list) {
if (__fl_delete(tp, f, extack))
break;
}
}
idr_destroy(&head->handle_idr);
net, sched: respect rcu grace period on cls destruction Roi reported a crash in flower where tp->root was NULL in ->classify() callbacks. Reason is that in ->destroy() tp->root is set to NULL via RCU_INIT_POINTER(). It's problematic for some of the classifiers, because this doesn't respect RCU grace period for them, and as a result, still outstanding readers from tc_classify() will try to blindly dereference a NULL tp->root. The tp->root object is strictly private to the classifier implementation and holds internal data the core such as tc_ctl_tfilter() doesn't know about. Within some classifiers, such as cls_bpf, cls_basic, etc, tp->root is only checked for NULL in ->get() callback, but nowhere else. This is misleading and seemed to be copied from old classifier code that was not cleaned up properly. For example, d3fa76ee6b4a ("[NET_SCHED]: cls_basic: fix NULL pointer dereference") moved tp->root initialization into ->init() routine, where before it was part of ->change(), so ->get() had to deal with tp->root being NULL back then, so that was indeed a valid case, after d3fa76ee6b4a, not really anymore. We used to set tp->root to NULL long ago in ->destroy(), see 47a1a1d4be29 ("pkt_sched: remove unnecessary xchg() in packet classifiers"); but the NULLifying was reintroduced with the RCUification, but it's not correct for every classifier implementation. In the cases that are fixed here with one exception of cls_cgroup, tp->root object is allocated and initialized inside ->init() callback, which is always performed at a point in time after we allocate a new tp, which means tp and thus tp->root was not globally visible in the tp chain yet (see tc_ctl_tfilter()). Also, on destruction tp->root is strictly kfree_rcu()'ed in ->destroy() handler, same for the tp which is kfree_rcu()'ed right when we return from ->destroy() in tcf_destroy(). This means, the head object's lifetime for such classifiers is always tied to the tp lifetime. The RCU callback invocation for the two kfree_rcu() could be out of order, but that's fine since both are independent. Dropping the RCU_INIT_POINTER(tp->root, NULL) for these classifiers here means that 1) we don't need a useless NULL check in fast-path and, 2) that outstanding readers of that tp in tc_classify() can still execute under respect with RCU grace period as it is actually expected. Things that haven't been touched here: cls_fw and cls_route. They each handle tp->root being NULL in ->classify() path for historic reasons, so their ->destroy() implementation can stay as is. If someone actually cares, they could get cleaned up at some point to avoid the test in fast path. cls_u32 doesn't set tp->root to NULL. For cls_rsvp, I just added a !head should anyone actually be using/testing it, so it at least aligns with cls_fw and cls_route. For cls_flower we additionally need to defer rhashtable destruction (to a sleepable context) after RCU grace period as concurrent readers might still access it. (Note that in this case we need to hold module reference to keep work callback address intact, since we only wait on module unload for all call_rcu()s to finish.) This fixes one race to bring RCU grace period guarantees back. Next step as worked on by Cong however is to fix 1e052be69d04 ("net_sched: destroy proto tp when all filters are gone") to get the order of unlinking the tp in tc_ctl_tfilter() for the RTM_DELTFILTER case right by moving RCU_INIT_POINTER() before tcf_destroy() and let the notification for removal be done through the prior ->delete() callback. Both are independant issues. Once we have that right, we can then clean tp->root up for a number of classifiers by not making them RCU pointers, which requires a new callback (->uninit) that is triggered from tp's RCU callback, where we just kfree() tp->root from there. Fixes: 1f947bf151e9 ("net: sched: rcu'ify cls_bpf") Fixes: 9888faefe132 ("net: sched: cls_basic use RCU") Fixes: 70da9f0bf999 ("net: sched: cls_flow use RCU") Fixes: 77b9900ef53a ("tc: introduce Flower classifier") Fixes: bf3994d2ed31 ("net/sched: introduce Match-all classifier") Fixes: 952313bd6258 ("net: sched: cls_cgroup use RCU") Reported-by: Roi Dayan <roid@mellanox.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: Roi Dayan <roid@mellanox.com> Cc: Jiri Pirko <jiri@mellanox.com> Acked-by: John Fastabend <john.r.fastabend@intel.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-27 08:18:01 +08:00
__module_get(THIS_MODULE);
tcf_queue_work(&head->rwork, fl_destroy_sleepable);
}
static void *fl_get(struct tcf_proto *tp, u32 handle)
{
struct cls_fl_head *head = rtnl_dereference(tp->root);
return idr_find(&head->handle_idr, handle);
}
static const struct nla_policy fl_policy[TCA_FLOWER_MAX + 1] = {
[TCA_FLOWER_UNSPEC] = { .type = NLA_UNSPEC },
[TCA_FLOWER_CLASSID] = { .type = NLA_U32 },
[TCA_FLOWER_INDEV] = { .type = NLA_STRING,
.len = IFNAMSIZ },
[TCA_FLOWER_KEY_ETH_DST] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ETH_DST_MASK] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ETH_SRC] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ETH_SRC_MASK] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ETH_TYPE] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_IP_PROTO] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_IPV4_SRC] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_IPV4_SRC_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_IPV4_DST] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_IPV4_DST_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_IPV6_DST] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_TCP_SRC] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_TCP_DST] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_UDP_SRC] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_UDP_DST] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_VLAN_ID] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_VLAN_PRIO] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_VLAN_ETH_TYPE] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_KEY_ID] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ENC_IPV4_SRC] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ENC_IPV4_DST] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ENC_IPV4_DST_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ENC_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_ENC_IPV6_DST] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_ENC_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_TCP_SRC_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_TCP_DST_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_UDP_SRC_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_UDP_DST_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_SCTP_SRC_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_SCTP_DST_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_SCTP_SRC] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_SCTP_DST] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_UDP_SRC_PORT] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_UDP_DST_PORT] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_FLAGS] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_FLAGS_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ICMPV4_TYPE] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV4_TYPE_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV4_CODE] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV4_CODE_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV6_TYPE] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV6_TYPE_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV6_CODE] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV6_CODE_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ARP_SIP] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ARP_SIP_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ARP_TIP] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ARP_TIP_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ARP_OP] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ARP_OP_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ARP_SHA] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ARP_SHA_MASK] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ARP_THA] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ARP_THA_MASK] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_MPLS_TTL] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_MPLS_BOS] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_MPLS_TC] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_MPLS_LABEL] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_TCP_FLAGS] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_TCP_FLAGS_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_IP_TOS] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_IP_TOS_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_IP_TTL] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_IP_TTL_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_CVLAN_ID] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_CVLAN_PRIO] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_CVLAN_ETH_TYPE] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_IP_TOS] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ENC_IP_TOS_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ENC_IP_TTL] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ENC_IP_TTL_MASK] = { .type = NLA_U8 },
net/sched: allow flower to match tunnel options Allow matching on options in Geneve tunnel headers. This makes use of existing tunnel metadata support. The options can be described in the form CLASS:TYPE:DATA/CLASS_MASK:TYPE_MASK:DATA_MASK, where CLASS is represented as a 16bit hexadecimal value, TYPE as an 8bit hexadecimal value and DATA as a variable length hexadecimal value. e.g. # ip link add name geneve0 type geneve dstport 0 external # tc qdisc add dev geneve0 ingress # tc filter add dev geneve0 protocol ip parent ffff: \ flower \ enc_src_ip 10.0.99.192 \ enc_dst_ip 10.0.99.193 \ enc_key_id 11 \ geneve_opts 0102:80:1122334421314151/ffff:ff:ffffffffffffffff \ ip_proto udp \ action mirred egress redirect dev eth1 This patch adds support for matching Geneve options in the order supplied by the user. This leads to an efficient implementation in the software datapath (and in our opinion hardware datapaths that offload this feature). It is also compatible with Geneve options matching provided by the Open vSwitch kernel datapath which is relevant here as the Flower classifier may be used as a mechanism to program flows into hardware as a form of Open vSwitch datapath offload (sometimes referred to as OVS-TC). The netlink Kernel/Userspace API may be extended, for example by adding a flag, if other matching options are desired, for example matching given options in any order. This would require an implementation in the TC software datapath. And be done in a way that drivers that facilitate offload of the Flower classifier can reject or accept such flows based on hardware datapath capabilities. This approach was discussed and agreed on at Netconf 2017 in Seoul. Signed-off-by: Simon Horman <simon.horman@netronome.com> Signed-off-by: Pieter Jansen van Vuuren <pieter.jansenvanvuuren@netronome.com> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-07 23:36:01 +08:00
[TCA_FLOWER_KEY_ENC_OPTS] = { .type = NLA_NESTED },
[TCA_FLOWER_KEY_ENC_OPTS_MASK] = { .type = NLA_NESTED },
};
static const struct nla_policy
enc_opts_policy[TCA_FLOWER_KEY_ENC_OPTS_MAX + 1] = {
[TCA_FLOWER_KEY_ENC_OPTS_GENEVE] = { .type = NLA_NESTED },
};
static const struct nla_policy
geneve_opt_policy[TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX + 1] = {
[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA] = { .type = NLA_BINARY,
.len = 128 },
};
static void fl_set_key_val(struct nlattr **tb,
void *val, int val_type,
void *mask, int mask_type, int len)
{
if (!tb[val_type])
return;
memcpy(val, nla_data(tb[val_type]), len);
if (mask_type == TCA_FLOWER_UNSPEC || !tb[mask_type])
memset(mask, 0xff, len);
else
memcpy(mask, nla_data(tb[mask_type]), len);
}
static int fl_set_key_mpls(struct nlattr **tb,
struct flow_dissector_key_mpls *key_val,
struct flow_dissector_key_mpls *key_mask)
{
if (tb[TCA_FLOWER_KEY_MPLS_TTL]) {
key_val->mpls_ttl = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TTL]);
key_mask->mpls_ttl = MPLS_TTL_MASK;
}
if (tb[TCA_FLOWER_KEY_MPLS_BOS]) {
u8 bos = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_BOS]);
if (bos & ~MPLS_BOS_MASK)
return -EINVAL;
key_val->mpls_bos = bos;
key_mask->mpls_bos = MPLS_BOS_MASK;
}
if (tb[TCA_FLOWER_KEY_MPLS_TC]) {
u8 tc = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TC]);
if (tc & ~MPLS_TC_MASK)
return -EINVAL;
key_val->mpls_tc = tc;
key_mask->mpls_tc = MPLS_TC_MASK;
}
if (tb[TCA_FLOWER_KEY_MPLS_LABEL]) {
u32 label = nla_get_u32(tb[TCA_FLOWER_KEY_MPLS_LABEL]);
if (label & ~MPLS_LABEL_MASK)
return -EINVAL;
key_val->mpls_label = label;
key_mask->mpls_label = MPLS_LABEL_MASK;
}
return 0;
}
static void fl_set_key_vlan(struct nlattr **tb,
__be16 ethertype,
int vlan_id_key, int vlan_prio_key,
struct flow_dissector_key_vlan *key_val,
struct flow_dissector_key_vlan *key_mask)
{
#define VLAN_PRIORITY_MASK 0x7
if (tb[vlan_id_key]) {
key_val->vlan_id =
nla_get_u16(tb[vlan_id_key]) & VLAN_VID_MASK;
key_mask->vlan_id = VLAN_VID_MASK;
}
if (tb[vlan_prio_key]) {
key_val->vlan_priority =
nla_get_u8(tb[vlan_prio_key]) &
VLAN_PRIORITY_MASK;
key_mask->vlan_priority = VLAN_PRIORITY_MASK;
}
key_val->vlan_tpid = ethertype;
key_mask->vlan_tpid = cpu_to_be16(~0);
}
static void fl_set_key_flag(u32 flower_key, u32 flower_mask,
u32 *dissector_key, u32 *dissector_mask,
u32 flower_flag_bit, u32 dissector_flag_bit)
{
if (flower_mask & flower_flag_bit) {
*dissector_mask |= dissector_flag_bit;
if (flower_key & flower_flag_bit)
*dissector_key |= dissector_flag_bit;
}
}
static int fl_set_key_flags(struct nlattr **tb,
u32 *flags_key, u32 *flags_mask)
{
u32 key, mask;
/* mask is mandatory for flags */
if (!tb[TCA_FLOWER_KEY_FLAGS_MASK])
return -EINVAL;
key = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS]));
mask = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS_MASK]));
*flags_key = 0;
*flags_mask = 0;
fl_set_key_flag(key, mask, flags_key, flags_mask,
TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
fl_set_key_flag(key, mask, flags_key, flags_mask,
TCA_FLOWER_KEY_FLAGS_FRAG_IS_FIRST,
FLOW_DIS_FIRST_FRAG);
return 0;
}
static void fl_set_key_ip(struct nlattr **tb, bool encap,
struct flow_dissector_key_ip *key,
struct flow_dissector_key_ip *mask)
{
int tos_key = encap ? TCA_FLOWER_KEY_ENC_IP_TOS : TCA_FLOWER_KEY_IP_TOS;
int ttl_key = encap ? TCA_FLOWER_KEY_ENC_IP_TTL : TCA_FLOWER_KEY_IP_TTL;
int tos_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TOS_MASK : TCA_FLOWER_KEY_IP_TOS_MASK;
int ttl_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TTL_MASK : TCA_FLOWER_KEY_IP_TTL_MASK;
fl_set_key_val(tb, &key->tos, tos_key, &mask->tos, tos_mask, sizeof(key->tos));
fl_set_key_val(tb, &key->ttl, ttl_key, &mask->ttl, ttl_mask, sizeof(key->ttl));
}
net/sched: allow flower to match tunnel options Allow matching on options in Geneve tunnel headers. This makes use of existing tunnel metadata support. The options can be described in the form CLASS:TYPE:DATA/CLASS_MASK:TYPE_MASK:DATA_MASK, where CLASS is represented as a 16bit hexadecimal value, TYPE as an 8bit hexadecimal value and DATA as a variable length hexadecimal value. e.g. # ip link add name geneve0 type geneve dstport 0 external # tc qdisc add dev geneve0 ingress # tc filter add dev geneve0 protocol ip parent ffff: \ flower \ enc_src_ip 10.0.99.192 \ enc_dst_ip 10.0.99.193 \ enc_key_id 11 \ geneve_opts 0102:80:1122334421314151/ffff:ff:ffffffffffffffff \ ip_proto udp \ action mirred egress redirect dev eth1 This patch adds support for matching Geneve options in the order supplied by the user. This leads to an efficient implementation in the software datapath (and in our opinion hardware datapaths that offload this feature). It is also compatible with Geneve options matching provided by the Open vSwitch kernel datapath which is relevant here as the Flower classifier may be used as a mechanism to program flows into hardware as a form of Open vSwitch datapath offload (sometimes referred to as OVS-TC). The netlink Kernel/Userspace API may be extended, for example by adding a flag, if other matching options are desired, for example matching given options in any order. This would require an implementation in the TC software datapath. And be done in a way that drivers that facilitate offload of the Flower classifier can reject or accept such flows based on hardware datapath capabilities. This approach was discussed and agreed on at Netconf 2017 in Seoul. Signed-off-by: Simon Horman <simon.horman@netronome.com> Signed-off-by: Pieter Jansen van Vuuren <pieter.jansenvanvuuren@netronome.com> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-07 23:36:01 +08:00
static int fl_set_geneve_opt(const struct nlattr *nla, struct fl_flow_key *key,
int depth, int option_len,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX + 1];
struct nlattr *class = NULL, *type = NULL, *data = NULL;
struct geneve_opt *opt;
int err, data_len = 0;
if (option_len > sizeof(struct geneve_opt))
data_len = option_len - sizeof(struct geneve_opt);
opt = (struct geneve_opt *)&key->enc_opts.data[key->enc_opts.len];
memset(opt, 0xff, option_len);
opt->length = data_len / 4;
opt->r1 = 0;
opt->r2 = 0;
opt->r3 = 0;
/* If no mask has been prodived we assume an exact match. */
if (!depth)
return sizeof(struct geneve_opt) + data_len;
if (nla_type(nla) != TCA_FLOWER_KEY_ENC_OPTS_GENEVE) {
NL_SET_ERR_MSG(extack, "Non-geneve option type for mask");
return -EINVAL;
}
err = nla_parse_nested(tb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX,
nla, geneve_opt_policy, extack);
if (err < 0)
return err;
/* We are not allowed to omit any of CLASS, TYPE or DATA
* fields from the key.
*/
if (!option_len &&
(!tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS] ||
!tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE] ||
!tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA])) {
NL_SET_ERR_MSG(extack, "Missing tunnel key geneve option class, type or data");
return -EINVAL;
}
/* Omitting any of CLASS, TYPE or DATA fields is allowed
* for the mask.
*/
if (tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA]) {
int new_len = key->enc_opts.len;
data = tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA];
data_len = nla_len(data);
if (data_len < 4) {
NL_SET_ERR_MSG(extack, "Tunnel key geneve option data is less than 4 bytes long");
return -ERANGE;
}
if (data_len % 4) {
NL_SET_ERR_MSG(extack, "Tunnel key geneve option data is not a multiple of 4 bytes long");
return -ERANGE;
}
new_len += sizeof(struct geneve_opt) + data_len;
BUILD_BUG_ON(FLOW_DIS_TUN_OPTS_MAX != IP_TUNNEL_OPTS_MAX);
if (new_len > FLOW_DIS_TUN_OPTS_MAX) {
NL_SET_ERR_MSG(extack, "Tunnel options exceeds max size");
return -ERANGE;
}
opt->length = data_len / 4;
memcpy(opt->opt_data, nla_data(data), data_len);
}
if (tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS]) {
class = tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS];
opt->opt_class = nla_get_be16(class);
}
if (tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE]) {
type = tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE];
opt->type = nla_get_u8(type);
}
return sizeof(struct geneve_opt) + data_len;
}
static int fl_set_enc_opt(struct nlattr **tb, struct fl_flow_key *key,
struct fl_flow_key *mask,
struct netlink_ext_ack *extack)
{
const struct nlattr *nla_enc_key, *nla_opt_key, *nla_opt_msk = NULL;
int option_len, key_depth, msk_depth = 0;
nla_enc_key = nla_data(tb[TCA_FLOWER_KEY_ENC_OPTS]);
if (tb[TCA_FLOWER_KEY_ENC_OPTS_MASK]) {
nla_opt_msk = nla_data(tb[TCA_FLOWER_KEY_ENC_OPTS_MASK]);
msk_depth = nla_len(tb[TCA_FLOWER_KEY_ENC_OPTS_MASK]);
}
nla_for_each_attr(nla_opt_key, nla_enc_key,
nla_len(tb[TCA_FLOWER_KEY_ENC_OPTS]), key_depth) {
switch (nla_type(nla_opt_key)) {
case TCA_FLOWER_KEY_ENC_OPTS_GENEVE:
option_len = 0;
key->enc_opts.dst_opt_type = TUNNEL_GENEVE_OPT;
option_len = fl_set_geneve_opt(nla_opt_key, key,
key_depth, option_len,
extack);
if (option_len < 0)
return option_len;
key->enc_opts.len += option_len;
/* At the same time we need to parse through the mask
* in order to verify exact and mask attribute lengths.
*/
mask->enc_opts.dst_opt_type = TUNNEL_GENEVE_OPT;
option_len = fl_set_geneve_opt(nla_opt_msk, mask,
msk_depth, option_len,
extack);
if (option_len < 0)
return option_len;
mask->enc_opts.len += option_len;
if (key->enc_opts.len != mask->enc_opts.len) {
NL_SET_ERR_MSG(extack, "Key and mask miss aligned");
return -EINVAL;
}
if (msk_depth)
nla_opt_msk = nla_next(nla_opt_msk, &msk_depth);
break;
default:
NL_SET_ERR_MSG(extack, "Unknown tunnel option type");
return -EINVAL;
}
}
return 0;
}
static int fl_set_key(struct net *net, struct nlattr **tb,
struct fl_flow_key *key, struct fl_flow_key *mask,
struct netlink_ext_ack *extack)
{
__be16 ethertype;
int ret = 0;
#ifdef CONFIG_NET_CLS_IND
if (tb[TCA_FLOWER_INDEV]) {
int err = tcf_change_indev(net, tb[TCA_FLOWER_INDEV], extack);
if (err < 0)
return err;
key->indev_ifindex = err;
mask->indev_ifindex = 0xffffffff;
}
#endif
fl_set_key_val(tb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
sizeof(key->eth.dst));
fl_set_key_val(tb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
sizeof(key->eth.src));
if (tb[TCA_FLOWER_KEY_ETH_TYPE]) {
ethertype = nla_get_be16(tb[TCA_FLOWER_KEY_ETH_TYPE]);
if (eth_type_vlan(ethertype)) {
fl_set_key_vlan(tb, ethertype, TCA_FLOWER_KEY_VLAN_ID,
TCA_FLOWER_KEY_VLAN_PRIO, &key->vlan,
&mask->vlan);
if (tb[TCA_FLOWER_KEY_VLAN_ETH_TYPE]) {
ethertype = nla_get_be16(tb[TCA_FLOWER_KEY_VLAN_ETH_TYPE]);
if (eth_type_vlan(ethertype)) {
fl_set_key_vlan(tb, ethertype,
TCA_FLOWER_KEY_CVLAN_ID,
TCA_FLOWER_KEY_CVLAN_PRIO,
&key->cvlan, &mask->cvlan);
fl_set_key_val(tb, &key->basic.n_proto,
TCA_FLOWER_KEY_CVLAN_ETH_TYPE,
&mask->basic.n_proto,
TCA_FLOWER_UNSPEC,
sizeof(key->basic.n_proto));
} else {
key->basic.n_proto = ethertype;
mask->basic.n_proto = cpu_to_be16(~0);
}
}
} else {
key->basic.n_proto = ethertype;
mask->basic.n_proto = cpu_to_be16(~0);
}
}
if (key->basic.n_proto == htons(ETH_P_IP) ||
key->basic.n_proto == htons(ETH_P_IPV6)) {
fl_set_key_val(tb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
&mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
sizeof(key->basic.ip_proto));
fl_set_key_ip(tb, false, &key->ip, &mask->ip);
}
if (tb[TCA_FLOWER_KEY_IPV4_SRC] || tb[TCA_FLOWER_KEY_IPV4_DST]) {
key->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
mask->control.addr_type = ~0;
fl_set_key_val(tb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
&mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
sizeof(key->ipv4.src));
fl_set_key_val(tb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
&mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
sizeof(key->ipv4.dst));
} else if (tb[TCA_FLOWER_KEY_IPV6_SRC] || tb[TCA_FLOWER_KEY_IPV6_DST]) {
key->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
mask->control.addr_type = ~0;
fl_set_key_val(tb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
&mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
sizeof(key->ipv6.src));
fl_set_key_val(tb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
&mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
sizeof(key->ipv6.dst));
}
if (key->basic.ip_proto == IPPROTO_TCP) {
fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
&mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
sizeof(key->tp.src));
fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
&mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
sizeof(key->tp.dst));
fl_set_key_val(tb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
&mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
sizeof(key->tcp.flags));
} else if (key->basic.ip_proto == IPPROTO_UDP) {
fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
&mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
sizeof(key->tp.src));
fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
&mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
sizeof(key->tp.dst));
} else if (key->basic.ip_proto == IPPROTO_SCTP) {
fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
&mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
sizeof(key->tp.src));
fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
&mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
sizeof(key->tp.dst));
} else if (key->basic.n_proto == htons(ETH_P_IP) &&
key->basic.ip_proto == IPPROTO_ICMP) {
fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV4_TYPE,
&mask->icmp.type,
TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
sizeof(key->icmp.type));
fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV4_CODE,
&mask->icmp.code,
TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
sizeof(key->icmp.code));
} else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
key->basic.ip_proto == IPPROTO_ICMPV6) {
fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV6_TYPE,
&mask->icmp.type,
TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
sizeof(key->icmp.type));
fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV6_CODE,
&mask->icmp.code,
TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
sizeof(key->icmp.code));
} else if (key->basic.n_proto == htons(ETH_P_MPLS_UC) ||
key->basic.n_proto == htons(ETH_P_MPLS_MC)) {
ret = fl_set_key_mpls(tb, &key->mpls, &mask->mpls);
if (ret)
return ret;
} else if (key->basic.n_proto == htons(ETH_P_ARP) ||
key->basic.n_proto == htons(ETH_P_RARP)) {
fl_set_key_val(tb, &key->arp.sip, TCA_FLOWER_KEY_ARP_SIP,
&mask->arp.sip, TCA_FLOWER_KEY_ARP_SIP_MASK,
sizeof(key->arp.sip));
fl_set_key_val(tb, &key->arp.tip, TCA_FLOWER_KEY_ARP_TIP,
&mask->arp.tip, TCA_FLOWER_KEY_ARP_TIP_MASK,
sizeof(key->arp.tip));
fl_set_key_val(tb, &key->arp.op, TCA_FLOWER_KEY_ARP_OP,
&mask->arp.op, TCA_FLOWER_KEY_ARP_OP_MASK,
sizeof(key->arp.op));
fl_set_key_val(tb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
sizeof(key->arp.sha));
fl_set_key_val(tb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
sizeof(key->arp.tha));
}
if (tb[TCA_FLOWER_KEY_ENC_IPV4_SRC] ||
tb[TCA_FLOWER_KEY_ENC_IPV4_DST]) {
key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
mask->enc_control.addr_type = ~0;
fl_set_key_val(tb, &key->enc_ipv4.src,
TCA_FLOWER_KEY_ENC_IPV4_SRC,
&mask->enc_ipv4.src,
TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
sizeof(key->enc_ipv4.src));
fl_set_key_val(tb, &key->enc_ipv4.dst,
TCA_FLOWER_KEY_ENC_IPV4_DST,
&mask->enc_ipv4.dst,
TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
sizeof(key->enc_ipv4.dst));
}
if (tb[TCA_FLOWER_KEY_ENC_IPV6_SRC] ||
tb[TCA_FLOWER_KEY_ENC_IPV6_DST]) {
key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
mask->enc_control.addr_type = ~0;
fl_set_key_val(tb, &key->enc_ipv6.src,
TCA_FLOWER_KEY_ENC_IPV6_SRC,
&mask->enc_ipv6.src,
TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
sizeof(key->enc_ipv6.src));
fl_set_key_val(tb, &key->enc_ipv6.dst,
TCA_FLOWER_KEY_ENC_IPV6_DST,
&mask->enc_ipv6.dst,
TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
sizeof(key->enc_ipv6.dst));
}
fl_set_key_val(tb, &key->enc_key_id.keyid, TCA_FLOWER_KEY_ENC_KEY_ID,
&mask->enc_key_id.keyid, TCA_FLOWER_UNSPEC,
sizeof(key->enc_key_id.keyid));
fl_set_key_val(tb, &key->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
&mask->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
sizeof(key->enc_tp.src));
fl_set_key_val(tb, &key->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
&mask->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
sizeof(key->enc_tp.dst));
fl_set_key_ip(tb, true, &key->enc_ip, &mask->enc_ip);
net/sched: allow flower to match tunnel options Allow matching on options in Geneve tunnel headers. This makes use of existing tunnel metadata support. The options can be described in the form CLASS:TYPE:DATA/CLASS_MASK:TYPE_MASK:DATA_MASK, where CLASS is represented as a 16bit hexadecimal value, TYPE as an 8bit hexadecimal value and DATA as a variable length hexadecimal value. e.g. # ip link add name geneve0 type geneve dstport 0 external # tc qdisc add dev geneve0 ingress # tc filter add dev geneve0 protocol ip parent ffff: \ flower \ enc_src_ip 10.0.99.192 \ enc_dst_ip 10.0.99.193 \ enc_key_id 11 \ geneve_opts 0102:80:1122334421314151/ffff:ff:ffffffffffffffff \ ip_proto udp \ action mirred egress redirect dev eth1 This patch adds support for matching Geneve options in the order supplied by the user. This leads to an efficient implementation in the software datapath (and in our opinion hardware datapaths that offload this feature). It is also compatible with Geneve options matching provided by the Open vSwitch kernel datapath which is relevant here as the Flower classifier may be used as a mechanism to program flows into hardware as a form of Open vSwitch datapath offload (sometimes referred to as OVS-TC). The netlink Kernel/Userspace API may be extended, for example by adding a flag, if other matching options are desired, for example matching given options in any order. This would require an implementation in the TC software datapath. And be done in a way that drivers that facilitate offload of the Flower classifier can reject or accept such flows based on hardware datapath capabilities. This approach was discussed and agreed on at Netconf 2017 in Seoul. Signed-off-by: Simon Horman <simon.horman@netronome.com> Signed-off-by: Pieter Jansen van Vuuren <pieter.jansenvanvuuren@netronome.com> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-07 23:36:01 +08:00
if (tb[TCA_FLOWER_KEY_ENC_OPTS]) {
ret = fl_set_enc_opt(tb, key, mask, extack);
if (ret)
return ret;
}
if (tb[TCA_FLOWER_KEY_FLAGS])
ret = fl_set_key_flags(tb, &key->control.flags, &mask->control.flags);
return ret;
}
static void fl_mask_copy(struct fl_flow_mask *dst,
struct fl_flow_mask *src)
{
const void *psrc = fl_key_get_start(&src->key, src);
void *pdst = fl_key_get_start(&dst->key, src);
memcpy(pdst, psrc, fl_mask_range(src));
dst->range = src->range;
}
static const struct rhashtable_params fl_ht_params = {
.key_offset = offsetof(struct cls_fl_filter, mkey), /* base offset */
.head_offset = offsetof(struct cls_fl_filter, ht_node),
.automatic_shrinking = true,
};
static int fl_init_mask_hashtable(struct fl_flow_mask *mask)
{
mask->filter_ht_params = fl_ht_params;
mask->filter_ht_params.key_len = fl_mask_range(mask);
mask->filter_ht_params.key_offset += mask->range.start;
return rhashtable_init(&mask->ht, &mask->filter_ht_params);
}
#define FL_KEY_MEMBER_OFFSET(member) offsetof(struct fl_flow_key, member)
#define FL_KEY_MEMBER_SIZE(member) (sizeof(((struct fl_flow_key *) 0)->member))
#define FL_KEY_IS_MASKED(mask, member) \
memchr_inv(((char *)mask) + FL_KEY_MEMBER_OFFSET(member), \
0, FL_KEY_MEMBER_SIZE(member)) \
#define FL_KEY_SET(keys, cnt, id, member) \
do { \
keys[cnt].key_id = id; \
keys[cnt].offset = FL_KEY_MEMBER_OFFSET(member); \
cnt++; \
} while(0);
#define FL_KEY_SET_IF_MASKED(mask, keys, cnt, id, member) \
do { \
if (FL_KEY_IS_MASKED(mask, member)) \
FL_KEY_SET(keys, cnt, id, member); \
} while(0);
static void fl_init_dissector(struct flow_dissector *dissector,
struct fl_flow_key *mask)
{
struct flow_dissector_key keys[FLOW_DISSECTOR_KEY_MAX];
size_t cnt = 0;
FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_CONTROL, control);
FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_BASIC, basic);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ETH_ADDRS, eth);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_IPV4_ADDRS, ipv4);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_IPV6_ADDRS, ipv6);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_PORTS, tp);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_IP, ip);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_TCP, tcp);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ICMP, icmp);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ARP, arp);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_MPLS, mpls);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_VLAN, vlan);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_CVLAN, cvlan);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ENC_KEYID, enc_key_id);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, enc_ipv4);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, enc_ipv6);
if (FL_KEY_IS_MASKED(mask, enc_ipv4) ||
FL_KEY_IS_MASKED(mask, enc_ipv6))
FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_ENC_CONTROL,
enc_control);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ENC_PORTS, enc_tp);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ENC_IP, enc_ip);
net/sched: allow flower to match tunnel options Allow matching on options in Geneve tunnel headers. This makes use of existing tunnel metadata support. The options can be described in the form CLASS:TYPE:DATA/CLASS_MASK:TYPE_MASK:DATA_MASK, where CLASS is represented as a 16bit hexadecimal value, TYPE as an 8bit hexadecimal value and DATA as a variable length hexadecimal value. e.g. # ip link add name geneve0 type geneve dstport 0 external # tc qdisc add dev geneve0 ingress # tc filter add dev geneve0 protocol ip parent ffff: \ flower \ enc_src_ip 10.0.99.192 \ enc_dst_ip 10.0.99.193 \ enc_key_id 11 \ geneve_opts 0102:80:1122334421314151/ffff:ff:ffffffffffffffff \ ip_proto udp \ action mirred egress redirect dev eth1 This patch adds support for matching Geneve options in the order supplied by the user. This leads to an efficient implementation in the software datapath (and in our opinion hardware datapaths that offload this feature). It is also compatible with Geneve options matching provided by the Open vSwitch kernel datapath which is relevant here as the Flower classifier may be used as a mechanism to program flows into hardware as a form of Open vSwitch datapath offload (sometimes referred to as OVS-TC). The netlink Kernel/Userspace API may be extended, for example by adding a flag, if other matching options are desired, for example matching given options in any order. This would require an implementation in the TC software datapath. And be done in a way that drivers that facilitate offload of the Flower classifier can reject or accept such flows based on hardware datapath capabilities. This approach was discussed and agreed on at Netconf 2017 in Seoul. Signed-off-by: Simon Horman <simon.horman@netronome.com> Signed-off-by: Pieter Jansen van Vuuren <pieter.jansenvanvuuren@netronome.com> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-07 23:36:01 +08:00
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ENC_OPTS, enc_opts);
skb_flow_dissector_init(dissector, keys, cnt);
}
static struct fl_flow_mask *fl_create_new_mask(struct cls_fl_head *head,
struct fl_flow_mask *mask)
{
struct fl_flow_mask *newmask;
int err;
newmask = kzalloc(sizeof(*newmask), GFP_KERNEL);
if (!newmask)
return ERR_PTR(-ENOMEM);
fl_mask_copy(newmask, mask);
err = fl_init_mask_hashtable(newmask);
if (err)
goto errout_free;
fl_init_dissector(&newmask->dissector, &newmask->key);
INIT_LIST_HEAD_RCU(&newmask->filters);
err = rhashtable_insert_fast(&head->ht, &newmask->ht_node,
mask_ht_params);
if (err)
goto errout_destroy;
list_add_tail_rcu(&newmask->list, &head->masks);
return newmask;
errout_destroy:
rhashtable_destroy(&newmask->ht);
errout_free:
kfree(newmask);
return ERR_PTR(err);
}
static int fl_check_assign_mask(struct cls_fl_head *head,
struct cls_fl_filter *fnew,
struct cls_fl_filter *fold,
struct fl_flow_mask *mask)
{
struct fl_flow_mask *newmask;
fnew->mask = rhashtable_lookup_fast(&head->ht, mask, mask_ht_params);
if (!fnew->mask) {
if (fold)
return -EINVAL;
newmask = fl_create_new_mask(head, mask);
if (IS_ERR(newmask))
return PTR_ERR(newmask);
fnew->mask = newmask;
} else if (fold && fold->mask != fnew->mask) {
return -EINVAL;
}
return 0;
}
static int fl_set_parms(struct net *net, struct tcf_proto *tp,
struct cls_fl_filter *f, struct fl_flow_mask *mask,
unsigned long base, struct nlattr **tb,
struct nlattr *est, bool ovr,
struct fl_flow_tmplt *tmplt,
struct netlink_ext_ack *extack)
{
int err;
err = tcf_exts_validate(net, tp, tb, est, &f->exts, ovr, extack);
if (err < 0)
return err;
if (tb[TCA_FLOWER_CLASSID]) {
f->res.classid = nla_get_u32(tb[TCA_FLOWER_CLASSID]);
tcf_bind_filter(tp, &f->res, base);
}
err = fl_set_key(net, tb, &f->key, &mask->key, extack);
if (err)
return err;
fl_mask_update_range(mask);
fl_set_masked_key(&f->mkey, &f->key, mask);
if (!fl_mask_fits_tmplt(tmplt, mask)) {
NL_SET_ERR_MSG_MOD(extack, "Mask does not fit the template");
return -EINVAL;
}
return 0;
}
static int fl_change(struct net *net, struct sk_buff *in_skb,
struct tcf_proto *tp, unsigned long base,
u32 handle, struct nlattr **tca,
void **arg, bool ovr, struct netlink_ext_ack *extack)
{
struct cls_fl_head *head = rtnl_dereference(tp->root);
struct cls_fl_filter *fold = *arg;
struct cls_fl_filter *fnew;
struct nlattr **tb;
struct fl_flow_mask mask = {};
int err;
if (!tca[TCA_OPTIONS])
return -EINVAL;
tb = kcalloc(TCA_FLOWER_MAX + 1, sizeof(struct nlattr *), GFP_KERNEL);
if (!tb)
return -ENOBUFS;
err = nla_parse_nested(tb, TCA_FLOWER_MAX, tca[TCA_OPTIONS],
fl_policy, NULL);
if (err < 0)
goto errout_tb;
if (fold && handle && fold->handle != handle) {
err = -EINVAL;
goto errout_tb;
}
fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
if (!fnew) {
err = -ENOBUFS;
goto errout_tb;
}
err = tcf_exts_init(&fnew->exts, TCA_FLOWER_ACT, 0);
if (err < 0)
goto errout;
if (!handle) {
handle = 1;
err = idr_alloc_u32(&head->handle_idr, fnew, &handle,
INT_MAX, GFP_KERNEL);
} else if (!fold) {
/* user specifies a handle and it doesn't exist */
err = idr_alloc_u32(&head->handle_idr, fnew, &handle,
handle, GFP_KERNEL);
}
if (err)
goto errout;
fnew->handle = handle;
if (tb[TCA_FLOWER_FLAGS]) {
fnew->flags = nla_get_u32(tb[TCA_FLOWER_FLAGS]);
if (!tc_flags_valid(fnew->flags)) {
err = -EINVAL;
goto errout_idr;
}
}
err = fl_set_parms(net, tp, fnew, &mask, base, tb, tca[TCA_RATE], ovr,
tp->chain->tmplt_priv, extack);
if (err)
goto errout_idr;
err = fl_check_assign_mask(head, fnew, fold, &mask);
if (err)
goto errout_idr;
if (!tc_skip_sw(fnew->flags)) {
if (!fold && fl_lookup(fnew->mask, &fnew->mkey)) {
err = -EEXIST;
goto errout_mask;
}
err = rhashtable_insert_fast(&fnew->mask->ht, &fnew->ht_node,
fnew->mask->filter_ht_params);
if (err)
goto errout_mask;
}
if (!tc_skip_hw(fnew->flags)) {
err = fl_hw_replace_filter(tp, fnew, extack);
if (err)
goto errout_mask;
}
if (!tc_in_hw(fnew->flags))
fnew->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
if (fold) {
if (!tc_skip_sw(fold->flags))
rhashtable_remove_fast(&fold->mask->ht,
&fold->ht_node,
fold->mask->filter_ht_params);
if (!tc_skip_hw(fold->flags))
fl_hw_destroy_filter(tp, fold, NULL);
}
*arg = fnew;
if (fold) {
idr_replace(&head->handle_idr, fnew, fnew->handle);
list_replace_rcu(&fold->list, &fnew->list);
tcf_unbind_filter(tp, &fold->res);
tcf_exts_get_net(&fold->exts);
tcf_queue_work(&fold->rwork, fl_destroy_filter_work);
} else {
list_add_tail_rcu(&fnew->list, &fnew->mask->filters);
}
kfree(tb);
return 0;
errout_mask:
fl_mask_put(head, fnew->mask, false);
errout_idr:
if (!fold)
idr_remove(&head->handle_idr, fnew->handle);
errout:
tcf_exts_destroy(&fnew->exts);
kfree(fnew);
errout_tb:
kfree(tb);
return err;
}
static int fl_delete(struct tcf_proto *tp, void *arg, bool *last,
struct netlink_ext_ack *extack)
{
struct cls_fl_head *head = rtnl_dereference(tp->root);
struct cls_fl_filter *f = arg;
if (!tc_skip_sw(f->flags))
rhashtable_remove_fast(&f->mask->ht, &f->ht_node,
f->mask->filter_ht_params);
__fl_delete(tp, f, extack);
*last = list_empty(&head->masks);
return 0;
}
static void fl_walk(struct tcf_proto *tp, struct tcf_walker *arg)
{
struct cls_fl_head *head = rtnl_dereference(tp->root);
struct cls_fl_filter *f;
arg->count = arg->skip;
while ((f = idr_get_next_ul(&head->handle_idr,
&arg->cookie)) != NULL) {
if (arg->fn(tp, f, arg) < 0) {
arg->stop = 1;
break;
}
arg->cookie = f->handle + 1;
arg->count++;
}
}
static int fl_reoffload(struct tcf_proto *tp, bool add, tc_setup_cb_t *cb,
void *cb_priv, struct netlink_ext_ack *extack)
{
struct cls_fl_head *head = rtnl_dereference(tp->root);
struct tc_cls_flower_offload cls_flower = {};
struct tcf_block *block = tp->chain->block;
struct fl_flow_mask *mask;
struct cls_fl_filter *f;
int err;
list_for_each_entry(mask, &head->masks, list) {
list_for_each_entry(f, &mask->filters, list) {
if (tc_skip_hw(f->flags))
continue;
tc_cls_common_offload_init(&cls_flower.common, tp,
f->flags, extack);
cls_flower.command = add ?
TC_CLSFLOWER_REPLACE : TC_CLSFLOWER_DESTROY;
cls_flower.cookie = (unsigned long)f;
cls_flower.dissector = &mask->dissector;
cls_flower.mask = &mask->key;
cls_flower.key = &f->mkey;
cls_flower.exts = &f->exts;
cls_flower.classid = f->res.classid;
err = cb(TC_SETUP_CLSFLOWER, &cls_flower, cb_priv);
if (err) {
if (add && tc_skip_sw(f->flags))
return err;
continue;
}
tc_cls_offload_cnt_update(block, &f->in_hw_count,
&f->flags, add);
}
}
return 0;
}
static void fl_hw_create_tmplt(struct tcf_chain *chain,
struct fl_flow_tmplt *tmplt)
{
struct tc_cls_flower_offload cls_flower = {};
struct tcf_block *block = chain->block;
struct tcf_exts dummy_exts = { 0, };
cls_flower.common.chain_index = chain->index;
cls_flower.command = TC_CLSFLOWER_TMPLT_CREATE;
cls_flower.cookie = (unsigned long) tmplt;
cls_flower.dissector = &tmplt->dissector;
cls_flower.mask = &tmplt->mask;
cls_flower.key = &tmplt->dummy_key;
cls_flower.exts = &dummy_exts;
/* We don't care if driver (any of them) fails to handle this
* call. It serves just as a hint for it.
*/
tc_setup_cb_call(block, NULL, TC_SETUP_CLSFLOWER,
&cls_flower, false);
}
static void fl_hw_destroy_tmplt(struct tcf_chain *chain,
struct fl_flow_tmplt *tmplt)
{
struct tc_cls_flower_offload cls_flower = {};
struct tcf_block *block = chain->block;
cls_flower.common.chain_index = chain->index;
cls_flower.command = TC_CLSFLOWER_TMPLT_DESTROY;
cls_flower.cookie = (unsigned long) tmplt;
tc_setup_cb_call(block, NULL, TC_SETUP_CLSFLOWER,
&cls_flower, false);
}
static void *fl_tmplt_create(struct net *net, struct tcf_chain *chain,
struct nlattr **tca,
struct netlink_ext_ack *extack)
{
struct fl_flow_tmplt *tmplt;
struct nlattr **tb;
int err;
if (!tca[TCA_OPTIONS])
return ERR_PTR(-EINVAL);
tb = kcalloc(TCA_FLOWER_MAX + 1, sizeof(struct nlattr *), GFP_KERNEL);
if (!tb)
return ERR_PTR(-ENOBUFS);
err = nla_parse_nested(tb, TCA_FLOWER_MAX, tca[TCA_OPTIONS],
fl_policy, NULL);
if (err)
goto errout_tb;
tmplt = kzalloc(sizeof(*tmplt), GFP_KERNEL);
if (!tmplt) {
err = -ENOMEM;
goto errout_tb;
}
tmplt->chain = chain;
err = fl_set_key(net, tb, &tmplt->dummy_key, &tmplt->mask, extack);
if (err)
goto errout_tmplt;
kfree(tb);
fl_init_dissector(&tmplt->dissector, &tmplt->mask);
fl_hw_create_tmplt(chain, tmplt);
return tmplt;
errout_tmplt:
kfree(tmplt);
errout_tb:
kfree(tb);
return ERR_PTR(err);
}
static void fl_tmplt_destroy(void *tmplt_priv)
{
struct fl_flow_tmplt *tmplt = tmplt_priv;
fl_hw_destroy_tmplt(tmplt->chain, tmplt);
kfree(tmplt);
}
static int fl_dump_key_val(struct sk_buff *skb,
void *val, int val_type,
void *mask, int mask_type, int len)
{
int err;
if (!memchr_inv(mask, 0, len))
return 0;
err = nla_put(skb, val_type, len, val);
if (err)
return err;
if (mask_type != TCA_FLOWER_UNSPEC) {
err = nla_put(skb, mask_type, len, mask);
if (err)
return err;
}
return 0;
}
static int fl_dump_key_mpls(struct sk_buff *skb,
struct flow_dissector_key_mpls *mpls_key,
struct flow_dissector_key_mpls *mpls_mask)
{
int err;
if (!memchr_inv(mpls_mask, 0, sizeof(*mpls_mask)))
return 0;
if (mpls_mask->mpls_ttl) {
err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TTL,
mpls_key->mpls_ttl);
if (err)
return err;
}
if (mpls_mask->mpls_tc) {
err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TC,
mpls_key->mpls_tc);
if (err)
return err;
}
if (mpls_mask->mpls_label) {
err = nla_put_u32(skb, TCA_FLOWER_KEY_MPLS_LABEL,
mpls_key->mpls_label);
if (err)
return err;
}
if (mpls_mask->mpls_bos) {
err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_BOS,
mpls_key->mpls_bos);
if (err)
return err;
}
return 0;
}
static int fl_dump_key_ip(struct sk_buff *skb, bool encap,
struct flow_dissector_key_ip *key,
struct flow_dissector_key_ip *mask)
{
int tos_key = encap ? TCA_FLOWER_KEY_ENC_IP_TOS : TCA_FLOWER_KEY_IP_TOS;
int ttl_key = encap ? TCA_FLOWER_KEY_ENC_IP_TTL : TCA_FLOWER_KEY_IP_TTL;
int tos_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TOS_MASK : TCA_FLOWER_KEY_IP_TOS_MASK;
int ttl_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TTL_MASK : TCA_FLOWER_KEY_IP_TTL_MASK;
if (fl_dump_key_val(skb, &key->tos, tos_key, &mask->tos, tos_mask, sizeof(key->tos)) ||
fl_dump_key_val(skb, &key->ttl, ttl_key, &mask->ttl, ttl_mask, sizeof(key->ttl)))
return -1;
return 0;
}
static int fl_dump_key_vlan(struct sk_buff *skb,
int vlan_id_key, int vlan_prio_key,
struct flow_dissector_key_vlan *vlan_key,
struct flow_dissector_key_vlan *vlan_mask)
{
int err;
if (!memchr_inv(vlan_mask, 0, sizeof(*vlan_mask)))
return 0;
if (vlan_mask->vlan_id) {
err = nla_put_u16(skb, vlan_id_key,
vlan_key->vlan_id);
if (err)
return err;
}
if (vlan_mask->vlan_priority) {
err = nla_put_u8(skb, vlan_prio_key,
vlan_key->vlan_priority);
if (err)
return err;
}
return 0;
}
static void fl_get_key_flag(u32 dissector_key, u32 dissector_mask,
u32 *flower_key, u32 *flower_mask,
u32 flower_flag_bit, u32 dissector_flag_bit)
{
if (dissector_mask & dissector_flag_bit) {
*flower_mask |= flower_flag_bit;
if (dissector_key & dissector_flag_bit)
*flower_key |= flower_flag_bit;
}
}
static int fl_dump_key_flags(struct sk_buff *skb, u32 flags_key, u32 flags_mask)
{
u32 key, mask;
__be32 _key, _mask;
int err;
if (!memchr_inv(&flags_mask, 0, sizeof(flags_mask)))
return 0;
key = 0;
mask = 0;
fl_get_key_flag(flags_key, flags_mask, &key, &mask,
TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
fl_get_key_flag(flags_key, flags_mask, &key, &mask,
TCA_FLOWER_KEY_FLAGS_FRAG_IS_FIRST,
FLOW_DIS_FIRST_FRAG);
_key = cpu_to_be32(key);
_mask = cpu_to_be32(mask);
err = nla_put(skb, TCA_FLOWER_KEY_FLAGS, 4, &_key);
if (err)
return err;
return nla_put(skb, TCA_FLOWER_KEY_FLAGS_MASK, 4, &_mask);
}
net/sched: allow flower to match tunnel options Allow matching on options in Geneve tunnel headers. This makes use of existing tunnel metadata support. The options can be described in the form CLASS:TYPE:DATA/CLASS_MASK:TYPE_MASK:DATA_MASK, where CLASS is represented as a 16bit hexadecimal value, TYPE as an 8bit hexadecimal value and DATA as a variable length hexadecimal value. e.g. # ip link add name geneve0 type geneve dstport 0 external # tc qdisc add dev geneve0 ingress # tc filter add dev geneve0 protocol ip parent ffff: \ flower \ enc_src_ip 10.0.99.192 \ enc_dst_ip 10.0.99.193 \ enc_key_id 11 \ geneve_opts 0102:80:1122334421314151/ffff:ff:ffffffffffffffff \ ip_proto udp \ action mirred egress redirect dev eth1 This patch adds support for matching Geneve options in the order supplied by the user. This leads to an efficient implementation in the software datapath (and in our opinion hardware datapaths that offload this feature). It is also compatible with Geneve options matching provided by the Open vSwitch kernel datapath which is relevant here as the Flower classifier may be used as a mechanism to program flows into hardware as a form of Open vSwitch datapath offload (sometimes referred to as OVS-TC). The netlink Kernel/Userspace API may be extended, for example by adding a flag, if other matching options are desired, for example matching given options in any order. This would require an implementation in the TC software datapath. And be done in a way that drivers that facilitate offload of the Flower classifier can reject or accept such flows based on hardware datapath capabilities. This approach was discussed and agreed on at Netconf 2017 in Seoul. Signed-off-by: Simon Horman <simon.horman@netronome.com> Signed-off-by: Pieter Jansen van Vuuren <pieter.jansenvanvuuren@netronome.com> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-07 23:36:01 +08:00
static int fl_dump_key_geneve_opt(struct sk_buff *skb,
struct flow_dissector_key_enc_opts *enc_opts)
{
struct geneve_opt *opt;
struct nlattr *nest;
int opt_off = 0;
nest = nla_nest_start(skb, TCA_FLOWER_KEY_ENC_OPTS_GENEVE);
if (!nest)
goto nla_put_failure;
while (enc_opts->len > opt_off) {
opt = (struct geneve_opt *)&enc_opts->data[opt_off];
if (nla_put_be16(skb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS,
opt->opt_class))
goto nla_put_failure;
if (nla_put_u8(skb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE,
opt->type))
goto nla_put_failure;
if (nla_put(skb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA,
opt->length * 4, opt->opt_data))
goto nla_put_failure;
opt_off += sizeof(struct geneve_opt) + opt->length * 4;
}
nla_nest_end(skb, nest);
return 0;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -EMSGSIZE;
}
static int fl_dump_key_options(struct sk_buff *skb, int enc_opt_type,
struct flow_dissector_key_enc_opts *enc_opts)
{
struct nlattr *nest;
int err;
if (!enc_opts->len)
return 0;
nest = nla_nest_start(skb, enc_opt_type);
if (!nest)
goto nla_put_failure;
switch (enc_opts->dst_opt_type) {
case TUNNEL_GENEVE_OPT:
err = fl_dump_key_geneve_opt(skb, enc_opts);
if (err)
goto nla_put_failure;
break;
default:
goto nla_put_failure;
}
nla_nest_end(skb, nest);
return 0;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -EMSGSIZE;
}
static int fl_dump_key_enc_opt(struct sk_buff *skb,
struct flow_dissector_key_enc_opts *key_opts,
struct flow_dissector_key_enc_opts *msk_opts)
{
int err;
err = fl_dump_key_options(skb, TCA_FLOWER_KEY_ENC_OPTS, key_opts);
if (err)
return err;
return fl_dump_key_options(skb, TCA_FLOWER_KEY_ENC_OPTS_MASK, msk_opts);
}
static int fl_dump_key(struct sk_buff *skb, struct net *net,
struct fl_flow_key *key, struct fl_flow_key *mask)
{
if (mask->indev_ifindex) {
struct net_device *dev;
dev = __dev_get_by_index(net, key->indev_ifindex);
if (dev && nla_put_string(skb, TCA_FLOWER_INDEV, dev->name))
goto nla_put_failure;
}
if (fl_dump_key_val(skb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
sizeof(key->eth.dst)) ||
fl_dump_key_val(skb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
sizeof(key->eth.src)) ||
fl_dump_key_val(skb, &key->basic.n_proto, TCA_FLOWER_KEY_ETH_TYPE,
&mask->basic.n_proto, TCA_FLOWER_UNSPEC,
sizeof(key->basic.n_proto)))
goto nla_put_failure;
if (fl_dump_key_mpls(skb, &key->mpls, &mask->mpls))
goto nla_put_failure;
if (fl_dump_key_vlan(skb, TCA_FLOWER_KEY_VLAN_ID,
TCA_FLOWER_KEY_VLAN_PRIO, &key->vlan, &mask->vlan))
goto nla_put_failure;
if (fl_dump_key_vlan(skb, TCA_FLOWER_KEY_CVLAN_ID,
TCA_FLOWER_KEY_CVLAN_PRIO,
&key->cvlan, &mask->cvlan) ||
(mask->cvlan.vlan_tpid &&
nla_put_be16(skb, TCA_FLOWER_KEY_VLAN_ETH_TYPE,
key->cvlan.vlan_tpid)))
goto nla_put_failure;
if (mask->basic.n_proto) {
if (mask->cvlan.vlan_tpid) {
if (nla_put_be16(skb, TCA_FLOWER_KEY_CVLAN_ETH_TYPE,
key->basic.n_proto))
goto nla_put_failure;
} else if (mask->vlan.vlan_tpid) {
if (nla_put_be16(skb, TCA_FLOWER_KEY_VLAN_ETH_TYPE,
key->basic.n_proto))
goto nla_put_failure;
}
}
if ((key->basic.n_proto == htons(ETH_P_IP) ||
key->basic.n_proto == htons(ETH_P_IPV6)) &&
(fl_dump_key_val(skb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
&mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
sizeof(key->basic.ip_proto)) ||
fl_dump_key_ip(skb, false, &key->ip, &mask->ip)))
goto nla_put_failure;
if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
(fl_dump_key_val(skb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
&mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
sizeof(key->ipv4.src)) ||
fl_dump_key_val(skb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
&mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
sizeof(key->ipv4.dst))))
goto nla_put_failure;
else if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
(fl_dump_key_val(skb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
&mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
sizeof(key->ipv6.src)) ||
fl_dump_key_val(skb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
&mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
sizeof(key->ipv6.dst))))
goto nla_put_failure;
if (key->basic.ip_proto == IPPROTO_TCP &&
(fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
&mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
sizeof(key->tp.src)) ||
fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
&mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
sizeof(key->tp.dst)) ||
fl_dump_key_val(skb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
&mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
sizeof(key->tcp.flags))))
goto nla_put_failure;
else if (key->basic.ip_proto == IPPROTO_UDP &&
(fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
&mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
sizeof(key->tp.src)) ||
fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
&mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
sizeof(key->tp.dst))))
goto nla_put_failure;
else if (key->basic.ip_proto == IPPROTO_SCTP &&
(fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
&mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
sizeof(key->tp.src)) ||
fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
&mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
sizeof(key->tp.dst))))
goto nla_put_failure;
else if (key->basic.n_proto == htons(ETH_P_IP) &&
key->basic.ip_proto == IPPROTO_ICMP &&
(fl_dump_key_val(skb, &key->icmp.type,
TCA_FLOWER_KEY_ICMPV4_TYPE, &mask->icmp.type,
TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
sizeof(key->icmp.type)) ||
fl_dump_key_val(skb, &key->icmp.code,
TCA_FLOWER_KEY_ICMPV4_CODE, &mask->icmp.code,
TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
sizeof(key->icmp.code))))
goto nla_put_failure;
else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
key->basic.ip_proto == IPPROTO_ICMPV6 &&
(fl_dump_key_val(skb, &key->icmp.type,
TCA_FLOWER_KEY_ICMPV6_TYPE, &mask->icmp.type,
TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
sizeof(key->icmp.type)) ||
fl_dump_key_val(skb, &key->icmp.code,
TCA_FLOWER_KEY_ICMPV6_CODE, &mask->icmp.code,
TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
sizeof(key->icmp.code))))
goto nla_put_failure;
else if ((key->basic.n_proto == htons(ETH_P_ARP) ||
key->basic.n_proto == htons(ETH_P_RARP)) &&
(fl_dump_key_val(skb, &key->arp.sip,
TCA_FLOWER_KEY_ARP_SIP, &mask->arp.sip,
TCA_FLOWER_KEY_ARP_SIP_MASK,
sizeof(key->arp.sip)) ||
fl_dump_key_val(skb, &key->arp.tip,
TCA_FLOWER_KEY_ARP_TIP, &mask->arp.tip,
TCA_FLOWER_KEY_ARP_TIP_MASK,
sizeof(key->arp.tip)) ||
fl_dump_key_val(skb, &key->arp.op,
TCA_FLOWER_KEY_ARP_OP, &mask->arp.op,
TCA_FLOWER_KEY_ARP_OP_MASK,
sizeof(key->arp.op)) ||
fl_dump_key_val(skb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
sizeof(key->arp.sha)) ||
fl_dump_key_val(skb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
sizeof(key->arp.tha))))
goto nla_put_failure;
if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
(fl_dump_key_val(skb, &key->enc_ipv4.src,
TCA_FLOWER_KEY_ENC_IPV4_SRC, &mask->enc_ipv4.src,
TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
sizeof(key->enc_ipv4.src)) ||
fl_dump_key_val(skb, &key->enc_ipv4.dst,
TCA_FLOWER_KEY_ENC_IPV4_DST, &mask->enc_ipv4.dst,
TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
sizeof(key->enc_ipv4.dst))))
goto nla_put_failure;
else if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
(fl_dump_key_val(skb, &key->enc_ipv6.src,
TCA_FLOWER_KEY_ENC_IPV6_SRC, &mask->enc_ipv6.src,
TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
sizeof(key->enc_ipv6.src)) ||
fl_dump_key_val(skb, &key->enc_ipv6.dst,
TCA_FLOWER_KEY_ENC_IPV6_DST,
&mask->enc_ipv6.dst,
TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
sizeof(key->enc_ipv6.dst))))
goto nla_put_failure;
if (fl_dump_key_val(skb, &key->enc_key_id, TCA_FLOWER_KEY_ENC_KEY_ID,
&mask->enc_key_id, TCA_FLOWER_UNSPEC,
sizeof(key->enc_key_id)) ||
fl_dump_key_val(skb, &key->enc_tp.src,
TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
&mask->enc_tp.src,
TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
sizeof(key->enc_tp.src)) ||
fl_dump_key_val(skb, &key->enc_tp.dst,
TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
&mask->enc_tp.dst,
TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
sizeof(key->enc_tp.dst)) ||
net/sched: allow flower to match tunnel options Allow matching on options in Geneve tunnel headers. This makes use of existing tunnel metadata support. The options can be described in the form CLASS:TYPE:DATA/CLASS_MASK:TYPE_MASK:DATA_MASK, where CLASS is represented as a 16bit hexadecimal value, TYPE as an 8bit hexadecimal value and DATA as a variable length hexadecimal value. e.g. # ip link add name geneve0 type geneve dstport 0 external # tc qdisc add dev geneve0 ingress # tc filter add dev geneve0 protocol ip parent ffff: \ flower \ enc_src_ip 10.0.99.192 \ enc_dst_ip 10.0.99.193 \ enc_key_id 11 \ geneve_opts 0102:80:1122334421314151/ffff:ff:ffffffffffffffff \ ip_proto udp \ action mirred egress redirect dev eth1 This patch adds support for matching Geneve options in the order supplied by the user. This leads to an efficient implementation in the software datapath (and in our opinion hardware datapaths that offload this feature). It is also compatible with Geneve options matching provided by the Open vSwitch kernel datapath which is relevant here as the Flower classifier may be used as a mechanism to program flows into hardware as a form of Open vSwitch datapath offload (sometimes referred to as OVS-TC). The netlink Kernel/Userspace API may be extended, for example by adding a flag, if other matching options are desired, for example matching given options in any order. This would require an implementation in the TC software datapath. And be done in a way that drivers that facilitate offload of the Flower classifier can reject or accept such flows based on hardware datapath capabilities. This approach was discussed and agreed on at Netconf 2017 in Seoul. Signed-off-by: Simon Horman <simon.horman@netronome.com> Signed-off-by: Pieter Jansen van Vuuren <pieter.jansenvanvuuren@netronome.com> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-07 23:36:01 +08:00
fl_dump_key_ip(skb, true, &key->enc_ip, &mask->enc_ip) ||
fl_dump_key_enc_opt(skb, &key->enc_opts, &mask->enc_opts))
goto nla_put_failure;
if (fl_dump_key_flags(skb, key->control.flags, mask->control.flags))
goto nla_put_failure;
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static int fl_dump(struct net *net, struct tcf_proto *tp, void *fh,
struct sk_buff *skb, struct tcmsg *t)
{
struct cls_fl_filter *f = fh;
struct nlattr *nest;
struct fl_flow_key *key, *mask;
if (!f)
return skb->len;
t->tcm_handle = f->handle;
nest = nla_nest_start(skb, TCA_OPTIONS);
if (!nest)
goto nla_put_failure;
if (f->res.classid &&
nla_put_u32(skb, TCA_FLOWER_CLASSID, f->res.classid))
goto nla_put_failure;
key = &f->key;
mask = &f->mask->key;
if (fl_dump_key(skb, net, key, mask))
goto nla_put_failure;
if (!tc_skip_hw(f->flags))
fl_hw_update_stats(tp, f);
if (f->flags && nla_put_u32(skb, TCA_FLOWER_FLAGS, f->flags))
goto nla_put_failure;
if (tcf_exts_dump(skb, &f->exts))
goto nla_put_failure;
nla_nest_end(skb, nest);
if (tcf_exts_dump_stats(skb, &f->exts) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static int fl_tmplt_dump(struct sk_buff *skb, struct net *net, void *tmplt_priv)
{
struct fl_flow_tmplt *tmplt = tmplt_priv;
struct fl_flow_key *key, *mask;
struct nlattr *nest;
nest = nla_nest_start(skb, TCA_OPTIONS);
if (!nest)
goto nla_put_failure;
key = &tmplt->dummy_key;
mask = &tmplt->mask;
if (fl_dump_key(skb, net, key, mask))
goto nla_put_failure;
nla_nest_end(skb, nest);
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -EMSGSIZE;
}
static void fl_bind_class(void *fh, u32 classid, unsigned long cl)
{
struct cls_fl_filter *f = fh;
if (f && f->res.classid == classid)
f->res.class = cl;
}
static struct tcf_proto_ops cls_fl_ops __read_mostly = {
.kind = "flower",
.classify = fl_classify,
.init = fl_init,
.destroy = fl_destroy,
.get = fl_get,
.change = fl_change,
.delete = fl_delete,
.walk = fl_walk,
.reoffload = fl_reoffload,
.dump = fl_dump,
.bind_class = fl_bind_class,
.tmplt_create = fl_tmplt_create,
.tmplt_destroy = fl_tmplt_destroy,
.tmplt_dump = fl_tmplt_dump,
.owner = THIS_MODULE,
};
static int __init cls_fl_init(void)
{
return register_tcf_proto_ops(&cls_fl_ops);
}
static void __exit cls_fl_exit(void)
{
unregister_tcf_proto_ops(&cls_fl_ops);
}
module_init(cls_fl_init);
module_exit(cls_fl_exit);
MODULE_AUTHOR("Jiri Pirko <jiri@resnulli.us>");
MODULE_DESCRIPTION("Flower classifier");
MODULE_LICENSE("GPL v2");