OpenCloudOS-Kernel/drivers/net/wireless/b43/dma.c

1528 lines
38 KiB
C
Raw Normal View History

/*
Broadcom B43 wireless driver
DMA ringbuffer and descriptor allocation/management
Copyright (c) 2005, 2006 Michael Buesch <mb@bu3sch.de>
Some code in this file is derived from the b44.c driver
Copyright (C) 2002 David S. Miller
Copyright (C) Pekka Pietikainen
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "b43.h"
#include "dma.h"
#include "main.h"
#include "debugfs.h"
#include "xmit.h"
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
/* 32bit DMA ops. */
static
struct b43_dmadesc_generic *op32_idx2desc(struct b43_dmaring *ring,
int slot,
struct b43_dmadesc_meta **meta)
{
struct b43_dmadesc32 *desc;
*meta = &(ring->meta[slot]);
desc = ring->descbase;
desc = &(desc[slot]);
return (struct b43_dmadesc_generic *)desc;
}
static void op32_fill_descriptor(struct b43_dmaring *ring,
struct b43_dmadesc_generic *desc,
dma_addr_t dmaaddr, u16 bufsize,
int start, int end, int irq)
{
struct b43_dmadesc32 *descbase = ring->descbase;
int slot;
u32 ctl;
u32 addr;
u32 addrext;
slot = (int)(&(desc->dma32) - descbase);
B43_WARN_ON(!(slot >= 0 && slot < ring->nr_slots));
addr = (u32) (dmaaddr & ~SSB_DMA_TRANSLATION_MASK);
addrext = (u32) (dmaaddr & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
addr |= ssb_dma_translation(ring->dev->dev);
ctl = (bufsize - ring->frameoffset)
& B43_DMA32_DCTL_BYTECNT;
if (slot == ring->nr_slots - 1)
ctl |= B43_DMA32_DCTL_DTABLEEND;
if (start)
ctl |= B43_DMA32_DCTL_FRAMESTART;
if (end)
ctl |= B43_DMA32_DCTL_FRAMEEND;
if (irq)
ctl |= B43_DMA32_DCTL_IRQ;
ctl |= (addrext << B43_DMA32_DCTL_ADDREXT_SHIFT)
& B43_DMA32_DCTL_ADDREXT_MASK;
desc->dma32.control = cpu_to_le32(ctl);
desc->dma32.address = cpu_to_le32(addr);
}
static void op32_poke_tx(struct b43_dmaring *ring, int slot)
{
b43_dma_write(ring, B43_DMA32_TXINDEX,
(u32) (slot * sizeof(struct b43_dmadesc32)));
}
static void op32_tx_suspend(struct b43_dmaring *ring)
{
b43_dma_write(ring, B43_DMA32_TXCTL, b43_dma_read(ring, B43_DMA32_TXCTL)
| B43_DMA32_TXSUSPEND);
}
static void op32_tx_resume(struct b43_dmaring *ring)
{
b43_dma_write(ring, B43_DMA32_TXCTL, b43_dma_read(ring, B43_DMA32_TXCTL)
& ~B43_DMA32_TXSUSPEND);
}
static int op32_get_current_rxslot(struct b43_dmaring *ring)
{
u32 val;
val = b43_dma_read(ring, B43_DMA32_RXSTATUS);
val &= B43_DMA32_RXDPTR;
return (val / sizeof(struct b43_dmadesc32));
}
static void op32_set_current_rxslot(struct b43_dmaring *ring, int slot)
{
b43_dma_write(ring, B43_DMA32_RXINDEX,
(u32) (slot * sizeof(struct b43_dmadesc32)));
}
static const struct b43_dma_ops dma32_ops = {
.idx2desc = op32_idx2desc,
.fill_descriptor = op32_fill_descriptor,
.poke_tx = op32_poke_tx,
.tx_suspend = op32_tx_suspend,
.tx_resume = op32_tx_resume,
.get_current_rxslot = op32_get_current_rxslot,
.set_current_rxslot = op32_set_current_rxslot,
};
/* 64bit DMA ops. */
static
struct b43_dmadesc_generic *op64_idx2desc(struct b43_dmaring *ring,
int slot,
struct b43_dmadesc_meta **meta)
{
struct b43_dmadesc64 *desc;
*meta = &(ring->meta[slot]);
desc = ring->descbase;
desc = &(desc[slot]);
return (struct b43_dmadesc_generic *)desc;
}
static void op64_fill_descriptor(struct b43_dmaring *ring,
struct b43_dmadesc_generic *desc,
dma_addr_t dmaaddr, u16 bufsize,
int start, int end, int irq)
{
struct b43_dmadesc64 *descbase = ring->descbase;
int slot;
u32 ctl0 = 0, ctl1 = 0;
u32 addrlo, addrhi;
u32 addrext;
slot = (int)(&(desc->dma64) - descbase);
B43_WARN_ON(!(slot >= 0 && slot < ring->nr_slots));
addrlo = (u32) (dmaaddr & 0xFFFFFFFF);
addrhi = (((u64) dmaaddr >> 32) & ~SSB_DMA_TRANSLATION_MASK);
addrext = (((u64) dmaaddr >> 32) & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
addrhi |= (ssb_dma_translation(ring->dev->dev) << 1);
if (slot == ring->nr_slots - 1)
ctl0 |= B43_DMA64_DCTL0_DTABLEEND;
if (start)
ctl0 |= B43_DMA64_DCTL0_FRAMESTART;
if (end)
ctl0 |= B43_DMA64_DCTL0_FRAMEEND;
if (irq)
ctl0 |= B43_DMA64_DCTL0_IRQ;
ctl1 |= (bufsize - ring->frameoffset)
& B43_DMA64_DCTL1_BYTECNT;
ctl1 |= (addrext << B43_DMA64_DCTL1_ADDREXT_SHIFT)
& B43_DMA64_DCTL1_ADDREXT_MASK;
desc->dma64.control0 = cpu_to_le32(ctl0);
desc->dma64.control1 = cpu_to_le32(ctl1);
desc->dma64.address_low = cpu_to_le32(addrlo);
desc->dma64.address_high = cpu_to_le32(addrhi);
}
static void op64_poke_tx(struct b43_dmaring *ring, int slot)
{
b43_dma_write(ring, B43_DMA64_TXINDEX,
(u32) (slot * sizeof(struct b43_dmadesc64)));
}
static void op64_tx_suspend(struct b43_dmaring *ring)
{
b43_dma_write(ring, B43_DMA64_TXCTL, b43_dma_read(ring, B43_DMA64_TXCTL)
| B43_DMA64_TXSUSPEND);
}
static void op64_tx_resume(struct b43_dmaring *ring)
{
b43_dma_write(ring, B43_DMA64_TXCTL, b43_dma_read(ring, B43_DMA64_TXCTL)
& ~B43_DMA64_TXSUSPEND);
}
static int op64_get_current_rxslot(struct b43_dmaring *ring)
{
u32 val;
val = b43_dma_read(ring, B43_DMA64_RXSTATUS);
val &= B43_DMA64_RXSTATDPTR;
return (val / sizeof(struct b43_dmadesc64));
}
static void op64_set_current_rxslot(struct b43_dmaring *ring, int slot)
{
b43_dma_write(ring, B43_DMA64_RXINDEX,
(u32) (slot * sizeof(struct b43_dmadesc64)));
}
static const struct b43_dma_ops dma64_ops = {
.idx2desc = op64_idx2desc,
.fill_descriptor = op64_fill_descriptor,
.poke_tx = op64_poke_tx,
.tx_suspend = op64_tx_suspend,
.tx_resume = op64_tx_resume,
.get_current_rxslot = op64_get_current_rxslot,
.set_current_rxslot = op64_set_current_rxslot,
};
static inline int free_slots(struct b43_dmaring *ring)
{
return (ring->nr_slots - ring->used_slots);
}
static inline int next_slot(struct b43_dmaring *ring, int slot)
{
B43_WARN_ON(!(slot >= -1 && slot <= ring->nr_slots - 1));
if (slot == ring->nr_slots - 1)
return 0;
return slot + 1;
}
static inline int prev_slot(struct b43_dmaring *ring, int slot)
{
B43_WARN_ON(!(slot >= 0 && slot <= ring->nr_slots - 1));
if (slot == 0)
return ring->nr_slots - 1;
return slot - 1;
}
#ifdef CONFIG_B43_DEBUG
static void update_max_used_slots(struct b43_dmaring *ring,
int current_used_slots)
{
if (current_used_slots <= ring->max_used_slots)
return;
ring->max_used_slots = current_used_slots;
if (b43_debug(ring->dev, B43_DBG_DMAVERBOSE)) {
b43dbg(ring->dev->wl,
"max_used_slots increased to %d on %s ring %d\n",
ring->max_used_slots,
ring->tx ? "TX" : "RX", ring->index);
}
}
#else
static inline
void update_max_used_slots(struct b43_dmaring *ring, int current_used_slots)
{
}
#endif /* DEBUG */
/* Request a slot for usage. */
static inline int request_slot(struct b43_dmaring *ring)
{
int slot;
B43_WARN_ON(!ring->tx);
B43_WARN_ON(ring->stopped);
B43_WARN_ON(free_slots(ring) == 0);
slot = next_slot(ring, ring->current_slot);
ring->current_slot = slot;
ring->used_slots++;
update_max_used_slots(ring, ring->used_slots);
return slot;
}
/* Mac80211-queue to b43-ring mapping */
static struct b43_dmaring *priority_to_txring(struct b43_wldev *dev,
int queue_priority)
{
struct b43_dmaring *ring;
/*FIXME: For now we always run on TX-ring-1 */
return dev->dma.tx_ring1;
/* 0 = highest priority */
switch (queue_priority) {
default:
B43_WARN_ON(1);
/* fallthrough */
case 0:
ring = dev->dma.tx_ring3;
break;
case 1:
ring = dev->dma.tx_ring2;
break;
case 2:
ring = dev->dma.tx_ring1;
break;
case 3:
ring = dev->dma.tx_ring0;
break;
}
return ring;
}
/* b43-ring to mac80211-queue mapping */
static inline int txring_to_priority(struct b43_dmaring *ring)
{
static const u8 idx_to_prio[] = { 3, 2, 1, 0, };
unsigned int index;
/*FIXME: have only one queue, for now */
return 0;
index = ring->index;
if (B43_WARN_ON(index >= ARRAY_SIZE(idx_to_prio)))
index = 0;
return idx_to_prio[index];
}
u16 b43_dmacontroller_base(int dma64bit, int controller_idx)
{
static const u16 map64[] = {
B43_MMIO_DMA64_BASE0,
B43_MMIO_DMA64_BASE1,
B43_MMIO_DMA64_BASE2,
B43_MMIO_DMA64_BASE3,
B43_MMIO_DMA64_BASE4,
B43_MMIO_DMA64_BASE5,
};
static const u16 map32[] = {
B43_MMIO_DMA32_BASE0,
B43_MMIO_DMA32_BASE1,
B43_MMIO_DMA32_BASE2,
B43_MMIO_DMA32_BASE3,
B43_MMIO_DMA32_BASE4,
B43_MMIO_DMA32_BASE5,
};
if (dma64bit) {
B43_WARN_ON(!(controller_idx >= 0 &&
controller_idx < ARRAY_SIZE(map64)));
return map64[controller_idx];
}
B43_WARN_ON(!(controller_idx >= 0 &&
controller_idx < ARRAY_SIZE(map32)));
return map32[controller_idx];
}
static inline
dma_addr_t map_descbuffer(struct b43_dmaring *ring,
unsigned char *buf, size_t len, int tx)
{
dma_addr_t dmaaddr;
if (tx) {
dmaaddr = dma_map_single(ring->dev->dev->dev,
buf, len, DMA_TO_DEVICE);
} else {
dmaaddr = dma_map_single(ring->dev->dev->dev,
buf, len, DMA_FROM_DEVICE);
}
return dmaaddr;
}
static inline
void unmap_descbuffer(struct b43_dmaring *ring,
dma_addr_t addr, size_t len, int tx)
{
if (tx) {
dma_unmap_single(ring->dev->dev->dev, addr, len, DMA_TO_DEVICE);
} else {
dma_unmap_single(ring->dev->dev->dev,
addr, len, DMA_FROM_DEVICE);
}
}
static inline
void sync_descbuffer_for_cpu(struct b43_dmaring *ring,
dma_addr_t addr, size_t len)
{
B43_WARN_ON(ring->tx);
dma_sync_single_for_cpu(ring->dev->dev->dev,
addr, len, DMA_FROM_DEVICE);
}
static inline
void sync_descbuffer_for_device(struct b43_dmaring *ring,
dma_addr_t addr, size_t len)
{
B43_WARN_ON(ring->tx);
dma_sync_single_for_device(ring->dev->dev->dev,
addr, len, DMA_FROM_DEVICE);
}
static inline
void free_descriptor_buffer(struct b43_dmaring *ring,
struct b43_dmadesc_meta *meta)
{
if (meta->skb) {
dev_kfree_skb_any(meta->skb);
meta->skb = NULL;
}
}
static int alloc_ringmemory(struct b43_dmaring *ring)
{
struct device *dev = ring->dev->dev->dev;
gfp_t flags = GFP_KERNEL;
/* The specs call for 4K buffers for 30- and 32-bit DMA with 4K
* alignment and 8K buffers for 64-bit DMA with 8K alignment. Testing
* has shown that 4K is sufficient for the latter as long as the buffer
* does not cross an 8K boundary.
*
* For unknown reasons - possibly a hardware error - the BCM4311 rev
* 02, which uses 64-bit DMA, needs the ring buffer in very low memory,
* which accounts for the GFP_DMA flag below.
*/
if (ring->dma64)
flags |= GFP_DMA;
ring->descbase = dma_alloc_coherent(dev, B43_DMA_RINGMEMSIZE,
&(ring->dmabase), flags);
if (!ring->descbase) {
b43err(ring->dev->wl, "DMA ringmemory allocation failed\n");
return -ENOMEM;
}
memset(ring->descbase, 0, B43_DMA_RINGMEMSIZE);
return 0;
}
static void free_ringmemory(struct b43_dmaring *ring)
{
struct device *dev = ring->dev->dev->dev;
dma_free_coherent(dev, B43_DMA_RINGMEMSIZE,
ring->descbase, ring->dmabase);
}
/* Reset the RX DMA channel */
int b43_dmacontroller_rx_reset(struct b43_wldev *dev, u16 mmio_base, int dma64)
{
int i;
u32 value;
u16 offset;
might_sleep();
offset = dma64 ? B43_DMA64_RXCTL : B43_DMA32_RXCTL;
b43_write32(dev, mmio_base + offset, 0);
for (i = 0; i < 10; i++) {
offset = dma64 ? B43_DMA64_RXSTATUS : B43_DMA32_RXSTATUS;
value = b43_read32(dev, mmio_base + offset);
if (dma64) {
value &= B43_DMA64_RXSTAT;
if (value == B43_DMA64_RXSTAT_DISABLED) {
i = -1;
break;
}
} else {
value &= B43_DMA32_RXSTATE;
if (value == B43_DMA32_RXSTAT_DISABLED) {
i = -1;
break;
}
}
msleep(1);
}
if (i != -1) {
b43err(dev->wl, "DMA RX reset timed out\n");
return -ENODEV;
}
return 0;
}
/* Reset the TX DMA channel */
int b43_dmacontroller_tx_reset(struct b43_wldev *dev, u16 mmio_base, int dma64)
{
int i;
u32 value;
u16 offset;
might_sleep();
for (i = 0; i < 10; i++) {
offset = dma64 ? B43_DMA64_TXSTATUS : B43_DMA32_TXSTATUS;
value = b43_read32(dev, mmio_base + offset);
if (dma64) {
value &= B43_DMA64_TXSTAT;
if (value == B43_DMA64_TXSTAT_DISABLED ||
value == B43_DMA64_TXSTAT_IDLEWAIT ||
value == B43_DMA64_TXSTAT_STOPPED)
break;
} else {
value &= B43_DMA32_TXSTATE;
if (value == B43_DMA32_TXSTAT_DISABLED ||
value == B43_DMA32_TXSTAT_IDLEWAIT ||
value == B43_DMA32_TXSTAT_STOPPED)
break;
}
msleep(1);
}
offset = dma64 ? B43_DMA64_TXCTL : B43_DMA32_TXCTL;
b43_write32(dev, mmio_base + offset, 0);
for (i = 0; i < 10; i++) {
offset = dma64 ? B43_DMA64_TXSTATUS : B43_DMA32_TXSTATUS;
value = b43_read32(dev, mmio_base + offset);
if (dma64) {
value &= B43_DMA64_TXSTAT;
if (value == B43_DMA64_TXSTAT_DISABLED) {
i = -1;
break;
}
} else {
value &= B43_DMA32_TXSTATE;
if (value == B43_DMA32_TXSTAT_DISABLED) {
i = -1;
break;
}
}
msleep(1);
}
if (i != -1) {
b43err(dev->wl, "DMA TX reset timed out\n");
return -ENODEV;
}
/* ensure the reset is completed. */
msleep(1);
return 0;
}
static int setup_rx_descbuffer(struct b43_dmaring *ring,
struct b43_dmadesc_generic *desc,
struct b43_dmadesc_meta *meta, gfp_t gfp_flags)
{
struct b43_rxhdr_fw4 *rxhdr;
struct b43_hwtxstatus *txstat;
dma_addr_t dmaaddr;
struct sk_buff *skb;
B43_WARN_ON(ring->tx);
skb = __dev_alloc_skb(ring->rx_buffersize, gfp_flags);
if (unlikely(!skb))
return -ENOMEM;
dmaaddr = map_descbuffer(ring, skb->data, ring->rx_buffersize, 0);
if (dma_mapping_error(dmaaddr)) {
/* ugh. try to realloc in zone_dma */
gfp_flags |= GFP_DMA;
dev_kfree_skb_any(skb);
skb = __dev_alloc_skb(ring->rx_buffersize, gfp_flags);
if (unlikely(!skb))
return -ENOMEM;
dmaaddr = map_descbuffer(ring, skb->data,
ring->rx_buffersize, 0);
}
if (dma_mapping_error(dmaaddr)) {
dev_kfree_skb_any(skb);
return -EIO;
}
meta->skb = skb;
meta->dmaaddr = dmaaddr;
ring->ops->fill_descriptor(ring, desc, dmaaddr,
ring->rx_buffersize, 0, 0, 0);
rxhdr = (struct b43_rxhdr_fw4 *)(skb->data);
rxhdr->frame_len = 0;
txstat = (struct b43_hwtxstatus *)(skb->data);
txstat->cookie = 0;
return 0;
}
/* Allocate the initial descbuffers.
* This is used for an RX ring only.
*/
static int alloc_initial_descbuffers(struct b43_dmaring *ring)
{
int i, err = -ENOMEM;
struct b43_dmadesc_generic *desc;
struct b43_dmadesc_meta *meta;
for (i = 0; i < ring->nr_slots; i++) {
desc = ring->ops->idx2desc(ring, i, &meta);
err = setup_rx_descbuffer(ring, desc, meta, GFP_KERNEL);
if (err) {
b43err(ring->dev->wl,
"Failed to allocate initial descbuffers\n");
goto err_unwind;
}
}
mb();
ring->used_slots = ring->nr_slots;
err = 0;
out:
return err;
err_unwind:
for (i--; i >= 0; i--) {
desc = ring->ops->idx2desc(ring, i, &meta);
unmap_descbuffer(ring, meta->dmaaddr, ring->rx_buffersize, 0);
dev_kfree_skb(meta->skb);
}
goto out;
}
/* Do initial setup of the DMA controller.
* Reset the controller, write the ring busaddress
* and switch the "enable" bit on.
*/
static int dmacontroller_setup(struct b43_dmaring *ring)
{
int err = 0;
u32 value;
u32 addrext;
u32 trans = ssb_dma_translation(ring->dev->dev);
if (ring->tx) {
if (ring->dma64) {
u64 ringbase = (u64) (ring->dmabase);
addrext = ((ringbase >> 32) & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
value = B43_DMA64_TXENABLE;
value |= (addrext << B43_DMA64_TXADDREXT_SHIFT)
& B43_DMA64_TXADDREXT_MASK;
b43_dma_write(ring, B43_DMA64_TXCTL, value);
b43_dma_write(ring, B43_DMA64_TXRINGLO,
(ringbase & 0xFFFFFFFF));
b43_dma_write(ring, B43_DMA64_TXRINGHI,
((ringbase >> 32) &
~SSB_DMA_TRANSLATION_MASK)
| (trans << 1));
} else {
u32 ringbase = (u32) (ring->dmabase);
addrext = (ringbase & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
value = B43_DMA32_TXENABLE;
value |= (addrext << B43_DMA32_TXADDREXT_SHIFT)
& B43_DMA32_TXADDREXT_MASK;
b43_dma_write(ring, B43_DMA32_TXCTL, value);
b43_dma_write(ring, B43_DMA32_TXRING,
(ringbase & ~SSB_DMA_TRANSLATION_MASK)
| trans);
}
} else {
err = alloc_initial_descbuffers(ring);
if (err)
goto out;
if (ring->dma64) {
u64 ringbase = (u64) (ring->dmabase);
addrext = ((ringbase >> 32) & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
value = (ring->frameoffset << B43_DMA64_RXFROFF_SHIFT);
value |= B43_DMA64_RXENABLE;
value |= (addrext << B43_DMA64_RXADDREXT_SHIFT)
& B43_DMA64_RXADDREXT_MASK;
b43_dma_write(ring, B43_DMA64_RXCTL, value);
b43_dma_write(ring, B43_DMA64_RXRINGLO,
(ringbase & 0xFFFFFFFF));
b43_dma_write(ring, B43_DMA64_RXRINGHI,
((ringbase >> 32) &
~SSB_DMA_TRANSLATION_MASK)
| (trans << 1));
b43_dma_write(ring, B43_DMA64_RXINDEX, ring->nr_slots *
sizeof(struct b43_dmadesc64));
} else {
u32 ringbase = (u32) (ring->dmabase);
addrext = (ringbase & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
value = (ring->frameoffset << B43_DMA32_RXFROFF_SHIFT);
value |= B43_DMA32_RXENABLE;
value |= (addrext << B43_DMA32_RXADDREXT_SHIFT)
& B43_DMA32_RXADDREXT_MASK;
b43_dma_write(ring, B43_DMA32_RXCTL, value);
b43_dma_write(ring, B43_DMA32_RXRING,
(ringbase & ~SSB_DMA_TRANSLATION_MASK)
| trans);
b43_dma_write(ring, B43_DMA32_RXINDEX, ring->nr_slots *
sizeof(struct b43_dmadesc32));
}
}
out:
return err;
}
/* Shutdown the DMA controller. */
static void dmacontroller_cleanup(struct b43_dmaring *ring)
{
if (ring->tx) {
b43_dmacontroller_tx_reset(ring->dev, ring->mmio_base,
ring->dma64);
if (ring->dma64) {
b43_dma_write(ring, B43_DMA64_TXRINGLO, 0);
b43_dma_write(ring, B43_DMA64_TXRINGHI, 0);
} else
b43_dma_write(ring, B43_DMA32_TXRING, 0);
} else {
b43_dmacontroller_rx_reset(ring->dev, ring->mmio_base,
ring->dma64);
if (ring->dma64) {
b43_dma_write(ring, B43_DMA64_RXRINGLO, 0);
b43_dma_write(ring, B43_DMA64_RXRINGHI, 0);
} else
b43_dma_write(ring, B43_DMA32_RXRING, 0);
}
}
static void free_all_descbuffers(struct b43_dmaring *ring)
{
struct b43_dmadesc_generic *desc;
struct b43_dmadesc_meta *meta;
int i;
if (!ring->used_slots)
return;
for (i = 0; i < ring->nr_slots; i++) {
desc = ring->ops->idx2desc(ring, i, &meta);
if (!meta->skb) {
B43_WARN_ON(!ring->tx);
continue;
}
if (ring->tx) {
unmap_descbuffer(ring, meta->dmaaddr,
meta->skb->len, 1);
} else {
unmap_descbuffer(ring, meta->dmaaddr,
ring->rx_buffersize, 0);
}
free_descriptor_buffer(ring, meta);
}
}
static u64 supported_dma_mask(struct b43_wldev *dev)
{
u32 tmp;
u16 mmio_base;
tmp = b43_read32(dev, SSB_TMSHIGH);
if (tmp & SSB_TMSHIGH_DMA64)
return DMA_64BIT_MASK;
mmio_base = b43_dmacontroller_base(0, 0);
b43_write32(dev, mmio_base + B43_DMA32_TXCTL, B43_DMA32_TXADDREXT_MASK);
tmp = b43_read32(dev, mmio_base + B43_DMA32_TXCTL);
if (tmp & B43_DMA32_TXADDREXT_MASK)
return DMA_32BIT_MASK;
return DMA_30BIT_MASK;
}
/* Main initialization function. */
static
struct b43_dmaring *b43_setup_dmaring(struct b43_wldev *dev,
int controller_index,
int for_tx, int dma64)
{
struct b43_dmaring *ring;
int err;
int nr_slots;
dma_addr_t dma_test;
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto out;
nr_slots = B43_RXRING_SLOTS;
if (for_tx)
nr_slots = B43_TXRING_SLOTS;
ring->meta = kcalloc(nr_slots, sizeof(struct b43_dmadesc_meta),
GFP_KERNEL);
if (!ring->meta)
goto err_kfree_ring;
if (for_tx) {
ring->txhdr_cache = kcalloc(nr_slots,
sizeof(struct b43_txhdr_fw4),
GFP_KERNEL);
if (!ring->txhdr_cache)
goto err_kfree_meta;
/* test for ability to dma to txhdr_cache */
dma_test = dma_map_single(dev->dev->dev,
ring->txhdr_cache,
sizeof(struct b43_txhdr_fw4),
DMA_TO_DEVICE);
if (dma_mapping_error(dma_test)) {
/* ugh realloc */
kfree(ring->txhdr_cache);
ring->txhdr_cache = kcalloc(nr_slots,
sizeof(struct
b43_txhdr_fw4),
GFP_KERNEL | GFP_DMA);
if (!ring->txhdr_cache)
goto err_kfree_meta;
dma_test = dma_map_single(dev->dev->dev,
ring->txhdr_cache,
sizeof(struct b43_txhdr_fw4),
DMA_TO_DEVICE);
if (dma_mapping_error(dma_test))
goto err_kfree_txhdr_cache;
}
dma_unmap_single(dev->dev->dev,
dma_test, sizeof(struct b43_txhdr_fw4),
DMA_TO_DEVICE);
}
ring->dev = dev;
ring->nr_slots = nr_slots;
ring->mmio_base = b43_dmacontroller_base(dma64, controller_index);
ring->index = controller_index;
ring->dma64 = !!dma64;
if (dma64)
ring->ops = &dma64_ops;
else
ring->ops = &dma32_ops;
if (for_tx) {
ring->tx = 1;
ring->current_slot = -1;
} else {
if (ring->index == 0) {
ring->rx_buffersize = B43_DMA0_RX_BUFFERSIZE;
ring->frameoffset = B43_DMA0_RX_FRAMEOFFSET;
} else if (ring->index == 3) {
ring->rx_buffersize = B43_DMA3_RX_BUFFERSIZE;
ring->frameoffset = B43_DMA3_RX_FRAMEOFFSET;
} else
B43_WARN_ON(1);
}
spin_lock_init(&ring->lock);
#ifdef CONFIG_B43_DEBUG
ring->last_injected_overflow = jiffies;
#endif
err = alloc_ringmemory(ring);
if (err)
goto err_kfree_txhdr_cache;
err = dmacontroller_setup(ring);
if (err)
goto err_free_ringmemory;
out:
return ring;
err_free_ringmemory:
free_ringmemory(ring);
err_kfree_txhdr_cache:
kfree(ring->txhdr_cache);
err_kfree_meta:
kfree(ring->meta);
err_kfree_ring:
kfree(ring);
ring = NULL;
goto out;
}
/* Main cleanup function. */
static void b43_destroy_dmaring(struct b43_dmaring *ring)
{
if (!ring)
return;
b43dbg(ring->dev->wl, "DMA-%s 0x%04X (%s) max used slots: %d/%d\n",
(ring->dma64) ? "64" : "32",
ring->mmio_base,
(ring->tx) ? "TX" : "RX", ring->max_used_slots, ring->nr_slots);
/* Device IRQs are disabled prior entering this function,
* so no need to take care of concurrency with rx handler stuff.
*/
dmacontroller_cleanup(ring);
free_all_descbuffers(ring);
free_ringmemory(ring);
kfree(ring->txhdr_cache);
kfree(ring->meta);
kfree(ring);
}
void b43_dma_free(struct b43_wldev *dev)
{
struct b43_dma *dma = &dev->dma;
b43_destroy_dmaring(dma->rx_ring3);
dma->rx_ring3 = NULL;
b43_destroy_dmaring(dma->rx_ring0);
dma->rx_ring0 = NULL;
b43_destroy_dmaring(dma->tx_ring5);
dma->tx_ring5 = NULL;
b43_destroy_dmaring(dma->tx_ring4);
dma->tx_ring4 = NULL;
b43_destroy_dmaring(dma->tx_ring3);
dma->tx_ring3 = NULL;
b43_destroy_dmaring(dma->tx_ring2);
dma->tx_ring2 = NULL;
b43_destroy_dmaring(dma->tx_ring1);
dma->tx_ring1 = NULL;
b43_destroy_dmaring(dma->tx_ring0);
dma->tx_ring0 = NULL;
}
int b43_dma_init(struct b43_wldev *dev)
{
struct b43_dma *dma = &dev->dma;
struct b43_dmaring *ring;
int err;
u64 dmamask;
int dma64 = 0;
dmamask = supported_dma_mask(dev);
if (dmamask == DMA_64BIT_MASK)
dma64 = 1;
err = ssb_dma_set_mask(dev->dev, dmamask);
if (err) {
b43err(dev->wl, "The machine/kernel does not support "
"the required DMA mask (0x%08X%08X)\n",
(unsigned int)((dmamask & 0xFFFFFFFF00000000ULL) >> 32),
(unsigned int)(dmamask & 0x00000000FFFFFFFFULL));
return -EOPNOTSUPP;
}
err = -ENOMEM;
/* setup TX DMA channels. */
ring = b43_setup_dmaring(dev, 0, 1, dma64);
if (!ring)
goto out;
dma->tx_ring0 = ring;
ring = b43_setup_dmaring(dev, 1, 1, dma64);
if (!ring)
goto err_destroy_tx0;
dma->tx_ring1 = ring;
ring = b43_setup_dmaring(dev, 2, 1, dma64);
if (!ring)
goto err_destroy_tx1;
dma->tx_ring2 = ring;
ring = b43_setup_dmaring(dev, 3, 1, dma64);
if (!ring)
goto err_destroy_tx2;
dma->tx_ring3 = ring;
ring = b43_setup_dmaring(dev, 4, 1, dma64);
if (!ring)
goto err_destroy_tx3;
dma->tx_ring4 = ring;
ring = b43_setup_dmaring(dev, 5, 1, dma64);
if (!ring)
goto err_destroy_tx4;
dma->tx_ring5 = ring;
/* setup RX DMA channels. */
ring = b43_setup_dmaring(dev, 0, 0, dma64);
if (!ring)
goto err_destroy_tx5;
dma->rx_ring0 = ring;
if (dev->dev->id.revision < 5) {
ring = b43_setup_dmaring(dev, 3, 0, dma64);
if (!ring)
goto err_destroy_rx0;
dma->rx_ring3 = ring;
}
b43dbg(dev->wl, "%d-bit DMA initialized\n",
(dmamask == DMA_64BIT_MASK) ? 64 :
(dmamask == DMA_32BIT_MASK) ? 32 : 30);
err = 0;
out:
return err;
err_destroy_rx0:
b43_destroy_dmaring(dma->rx_ring0);
dma->rx_ring0 = NULL;
err_destroy_tx5:
b43_destroy_dmaring(dma->tx_ring5);
dma->tx_ring5 = NULL;
err_destroy_tx4:
b43_destroy_dmaring(dma->tx_ring4);
dma->tx_ring4 = NULL;
err_destroy_tx3:
b43_destroy_dmaring(dma->tx_ring3);
dma->tx_ring3 = NULL;
err_destroy_tx2:
b43_destroy_dmaring(dma->tx_ring2);
dma->tx_ring2 = NULL;
err_destroy_tx1:
b43_destroy_dmaring(dma->tx_ring1);
dma->tx_ring1 = NULL;
err_destroy_tx0:
b43_destroy_dmaring(dma->tx_ring0);
dma->tx_ring0 = NULL;
goto out;
}
/* Generate a cookie for the TX header. */
static u16 generate_cookie(struct b43_dmaring *ring, int slot)
{
u16 cookie = 0x1000;
/* Use the upper 4 bits of the cookie as
* DMA controller ID and store the slot number
* in the lower 12 bits.
* Note that the cookie must never be 0, as this
* is a special value used in RX path.
* It can also not be 0xFFFF because that is special
* for multicast frames.
*/
switch (ring->index) {
case 0:
cookie = 0x1000;
break;
case 1:
cookie = 0x2000;
break;
case 2:
cookie = 0x3000;
break;
case 3:
cookie = 0x4000;
break;
case 4:
cookie = 0x5000;
break;
case 5:
cookie = 0x6000;
break;
default:
B43_WARN_ON(1);
}
B43_WARN_ON(slot & ~0x0FFF);
cookie |= (u16) slot;
return cookie;
}
/* Inspect a cookie and find out to which controller/slot it belongs. */
static
struct b43_dmaring *parse_cookie(struct b43_wldev *dev, u16 cookie, int *slot)
{
struct b43_dma *dma = &dev->dma;
struct b43_dmaring *ring = NULL;
switch (cookie & 0xF000) {
case 0x1000:
ring = dma->tx_ring0;
break;
case 0x2000:
ring = dma->tx_ring1;
break;
case 0x3000:
ring = dma->tx_ring2;
break;
case 0x4000:
ring = dma->tx_ring3;
break;
case 0x5000:
ring = dma->tx_ring4;
break;
case 0x6000:
ring = dma->tx_ring5;
break;
default:
B43_WARN_ON(1);
}
*slot = (cookie & 0x0FFF);
B43_WARN_ON(!(ring && *slot >= 0 && *slot < ring->nr_slots));
return ring;
}
static int dma_tx_fragment(struct b43_dmaring *ring,
struct sk_buff *skb,
struct ieee80211_tx_control *ctl)
{
const struct b43_dma_ops *ops = ring->ops;
u8 *header;
int slot;
int err;
struct b43_dmadesc_generic *desc;
struct b43_dmadesc_meta *meta;
struct b43_dmadesc_meta *meta_hdr;
struct sk_buff *bounce_skb;
u16 cookie;
#define SLOTS_PER_PACKET 2
B43_WARN_ON(skb_shinfo(skb)->nr_frags);
/* Get a slot for the header. */
slot = request_slot(ring);
desc = ops->idx2desc(ring, slot, &meta_hdr);
memset(meta_hdr, 0, sizeof(*meta_hdr));
header = &(ring->txhdr_cache[slot * sizeof(struct b43_txhdr_fw4)]);
cookie = generate_cookie(ring, slot);
b43_generate_txhdr(ring->dev, header,
skb->data, skb->len, ctl, cookie);
meta_hdr->dmaaddr = map_descbuffer(ring, (unsigned char *)header,
sizeof(struct b43_txhdr_fw4), 1);
if (dma_mapping_error(meta_hdr->dmaaddr))
return -EIO;
ops->fill_descriptor(ring, desc, meta_hdr->dmaaddr,
sizeof(struct b43_txhdr_fw4), 1, 0, 0);
/* Get a slot for the payload. */
slot = request_slot(ring);
desc = ops->idx2desc(ring, slot, &meta);
memset(meta, 0, sizeof(*meta));
memcpy(&meta->txstat.control, ctl, sizeof(*ctl));
meta->skb = skb;
meta->is_last_fragment = 1;
meta->dmaaddr = map_descbuffer(ring, skb->data, skb->len, 1);
/* create a bounce buffer in zone_dma on mapping failure. */
if (dma_mapping_error(meta->dmaaddr)) {
bounce_skb = __dev_alloc_skb(skb->len, GFP_ATOMIC | GFP_DMA);
if (!bounce_skb) {
err = -ENOMEM;
goto out_unmap_hdr;
}
memcpy(skb_put(bounce_skb, skb->len), skb->data, skb->len);
dev_kfree_skb_any(skb);
skb = bounce_skb;
meta->skb = skb;
meta->dmaaddr = map_descbuffer(ring, skb->data, skb->len, 1);
if (dma_mapping_error(meta->dmaaddr)) {
err = -EIO;
goto out_free_bounce;
}
}
ops->fill_descriptor(ring, desc, meta->dmaaddr, skb->len, 0, 1, 1);
if (ctl->flags & IEEE80211_TXCTL_SEND_AFTER_DTIM) {
/* Tell the firmware about the cookie of the last
* mcast frame, so it can clear the more-data bit in it. */
b43_shm_write16(ring->dev, B43_SHM_SHARED,
B43_SHM_SH_MCASTCOOKIE, cookie);
}
/* Now transfer the whole frame. */
wmb();
ops->poke_tx(ring, next_slot(ring, slot));
return 0;
out_free_bounce:
dev_kfree_skb_any(skb);
out_unmap_hdr:
unmap_descbuffer(ring, meta_hdr->dmaaddr,
sizeof(struct b43_txhdr_fw4), 1);
return err;
}
static inline int should_inject_overflow(struct b43_dmaring *ring)
{
#ifdef CONFIG_B43_DEBUG
if (unlikely(b43_debug(ring->dev, B43_DBG_DMAOVERFLOW))) {
/* Check if we should inject another ringbuffer overflow
* to test handling of this situation in the stack. */
unsigned long next_overflow;
next_overflow = ring->last_injected_overflow + HZ;
if (time_after(jiffies, next_overflow)) {
ring->last_injected_overflow = jiffies;
b43dbg(ring->dev->wl,
"Injecting TX ring overflow on "
"DMA controller %d\n", ring->index);
return 1;
}
}
#endif /* CONFIG_B43_DEBUG */
return 0;
}
int b43_dma_tx(struct b43_wldev *dev,
struct sk_buff *skb, struct ieee80211_tx_control *ctl)
{
struct b43_dmaring *ring;
struct ieee80211_hdr *hdr;
int err = 0;
unsigned long flags;
if (unlikely(skb->len < 2 + 2 + 6)) {
/* Too short, this can't be a valid frame. */
return -EINVAL;
}
hdr = (struct ieee80211_hdr *)skb->data;
if (ctl->flags & IEEE80211_TXCTL_SEND_AFTER_DTIM) {
/* The multicast ring will be sent after the DTIM */
ring = dev->dma.tx_ring4;
/* Set the more-data bit. Ucode will clear it on
* the last frame for us. */
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
} else {
/* Decide by priority where to put this frame. */
ring = priority_to_txring(dev, ctl->queue);
}
spin_lock_irqsave(&ring->lock, flags);
B43_WARN_ON(!ring->tx);
if (unlikely(free_slots(ring) < SLOTS_PER_PACKET)) {
b43warn(dev->wl, "DMA queue overflow\n");
err = -ENOSPC;
goto out_unlock;
}
/* Check if the queue was stopped in mac80211,
* but we got called nevertheless.
* That would be a mac80211 bug. */
B43_WARN_ON(ring->stopped);
err = dma_tx_fragment(ring, skb, ctl);
if (unlikely(err)) {
b43err(dev->wl, "DMA tx mapping failure\n");
goto out_unlock;
}
ring->nr_tx_packets++;
if ((free_slots(ring) < SLOTS_PER_PACKET) ||
should_inject_overflow(ring)) {
/* This TX ring is full. */
ieee80211_stop_queue(dev->wl->hw, txring_to_priority(ring));
ring->stopped = 1;
if (b43_debug(dev, B43_DBG_DMAVERBOSE)) {
b43dbg(dev->wl, "Stopped TX ring %d\n", ring->index);
}
}
out_unlock:
spin_unlock_irqrestore(&ring->lock, flags);
return err;
}
void b43_dma_handle_txstatus(struct b43_wldev *dev,
const struct b43_txstatus *status)
{
const struct b43_dma_ops *ops;
struct b43_dmaring *ring;
struct b43_dmadesc_generic *desc;
struct b43_dmadesc_meta *meta;
int slot;
ring = parse_cookie(dev, status->cookie, &slot);
if (unlikely(!ring))
return;
B43_WARN_ON(!irqs_disabled());
spin_lock(&ring->lock);
B43_WARN_ON(!ring->tx);
ops = ring->ops;
while (1) {
B43_WARN_ON(!(slot >= 0 && slot < ring->nr_slots));
desc = ops->idx2desc(ring, slot, &meta);
if (meta->skb)
unmap_descbuffer(ring, meta->dmaaddr, meta->skb->len,
1);
else
unmap_descbuffer(ring, meta->dmaaddr,
sizeof(struct b43_txhdr_fw4), 1);
if (meta->is_last_fragment) {
B43_WARN_ON(!meta->skb);
/* Call back to inform the ieee80211 subsystem about the
* status of the transmission.
* Some fields of txstat are already filled in dma_tx().
*/
if (status->acked) {
meta->txstat.flags |= IEEE80211_TX_STATUS_ACK;
} else {
if (!(meta->txstat.control.flags
& IEEE80211_TXCTL_NO_ACK))
meta->txstat.excessive_retries = 1;
}
if (status->frame_count == 0) {
/* The frame was not transmitted at all. */
meta->txstat.retry_count = 0;
} else
meta->txstat.retry_count = status->frame_count - 1;
ieee80211_tx_status_irqsafe(dev->wl->hw, meta->skb,
&(meta->txstat));
/* skb is freed by ieee80211_tx_status_irqsafe() */
meta->skb = NULL;
} else {
/* No need to call free_descriptor_buffer here, as
* this is only the txhdr, which is not allocated.
*/
B43_WARN_ON(meta->skb);
}
/* Everything unmapped and free'd. So it's not used anymore. */
ring->used_slots--;
if (meta->is_last_fragment)
break;
slot = next_slot(ring, slot);
}
dev->stats.last_tx = jiffies;
if (ring->stopped) {
B43_WARN_ON(free_slots(ring) < SLOTS_PER_PACKET);
ieee80211_wake_queue(dev->wl->hw, txring_to_priority(ring));
ring->stopped = 0;
if (b43_debug(dev, B43_DBG_DMAVERBOSE)) {
b43dbg(dev->wl, "Woke up TX ring %d\n", ring->index);
}
}
spin_unlock(&ring->lock);
}
void b43_dma_get_tx_stats(struct b43_wldev *dev,
struct ieee80211_tx_queue_stats *stats)
{
const int nr_queues = dev->wl->hw->queues;
struct b43_dmaring *ring;
struct ieee80211_tx_queue_stats_data *data;
unsigned long flags;
int i;
for (i = 0; i < nr_queues; i++) {
data = &(stats->data[i]);
ring = priority_to_txring(dev, i);
spin_lock_irqsave(&ring->lock, flags);
data->len = ring->used_slots / SLOTS_PER_PACKET;
data->limit = ring->nr_slots / SLOTS_PER_PACKET;
data->count = ring->nr_tx_packets;
spin_unlock_irqrestore(&ring->lock, flags);
}
}
static void dma_rx(struct b43_dmaring *ring, int *slot)
{
const struct b43_dma_ops *ops = ring->ops;
struct b43_dmadesc_generic *desc;
struct b43_dmadesc_meta *meta;
struct b43_rxhdr_fw4 *rxhdr;
struct sk_buff *skb;
u16 len;
int err;
dma_addr_t dmaaddr;
desc = ops->idx2desc(ring, *slot, &meta);
sync_descbuffer_for_cpu(ring, meta->dmaaddr, ring->rx_buffersize);
skb = meta->skb;
if (ring->index == 3) {
/* We received an xmit status. */
struct b43_hwtxstatus *hw = (struct b43_hwtxstatus *)skb->data;
int i = 0;
while (hw->cookie == 0) {
if (i > 100)
break;
i++;
udelay(2);
barrier();
}
b43_handle_hwtxstatus(ring->dev, hw);
/* recycle the descriptor buffer. */
sync_descbuffer_for_device(ring, meta->dmaaddr,
ring->rx_buffersize);
return;
}
rxhdr = (struct b43_rxhdr_fw4 *)skb->data;
len = le16_to_cpu(rxhdr->frame_len);
if (len == 0) {
int i = 0;
do {
udelay(2);
barrier();
len = le16_to_cpu(rxhdr->frame_len);
} while (len == 0 && i++ < 5);
if (unlikely(len == 0)) {
/* recycle the descriptor buffer. */
sync_descbuffer_for_device(ring, meta->dmaaddr,
ring->rx_buffersize);
goto drop;
}
}
if (unlikely(len > ring->rx_buffersize)) {
/* The data did not fit into one descriptor buffer
* and is split over multiple buffers.
* This should never happen, as we try to allocate buffers
* big enough. So simply ignore this packet.
*/
int cnt = 0;
s32 tmp = len;
while (1) {
desc = ops->idx2desc(ring, *slot, &meta);
/* recycle the descriptor buffer. */
sync_descbuffer_for_device(ring, meta->dmaaddr,
ring->rx_buffersize);
*slot = next_slot(ring, *slot);
cnt++;
tmp -= ring->rx_buffersize;
if (tmp <= 0)
break;
}
b43err(ring->dev->wl, "DMA RX buffer too small "
"(len: %u, buffer: %u, nr-dropped: %d)\n",
len, ring->rx_buffersize, cnt);
goto drop;
}
dmaaddr = meta->dmaaddr;
err = setup_rx_descbuffer(ring, desc, meta, GFP_ATOMIC);
if (unlikely(err)) {
b43dbg(ring->dev->wl, "DMA RX: setup_rx_descbuffer() failed\n");
sync_descbuffer_for_device(ring, dmaaddr, ring->rx_buffersize);
goto drop;
}
unmap_descbuffer(ring, dmaaddr, ring->rx_buffersize, 0);
skb_put(skb, len + ring->frameoffset);
skb_pull(skb, ring->frameoffset);
b43_rx(ring->dev, skb, rxhdr);
drop:
return;
}
void b43_dma_rx(struct b43_dmaring *ring)
{
const struct b43_dma_ops *ops = ring->ops;
int slot, current_slot;
int used_slots = 0;
B43_WARN_ON(ring->tx);
current_slot = ops->get_current_rxslot(ring);
B43_WARN_ON(!(current_slot >= 0 && current_slot < ring->nr_slots));
slot = ring->current_slot;
for (; slot != current_slot; slot = next_slot(ring, slot)) {
dma_rx(ring, &slot);
update_max_used_slots(ring, ++used_slots);
}
ops->set_current_rxslot(ring, slot);
ring->current_slot = slot;
}
static void b43_dma_tx_suspend_ring(struct b43_dmaring *ring)
{
unsigned long flags;
spin_lock_irqsave(&ring->lock, flags);
B43_WARN_ON(!ring->tx);
ring->ops->tx_suspend(ring);
spin_unlock_irqrestore(&ring->lock, flags);
}
static void b43_dma_tx_resume_ring(struct b43_dmaring *ring)
{
unsigned long flags;
spin_lock_irqsave(&ring->lock, flags);
B43_WARN_ON(!ring->tx);
ring->ops->tx_resume(ring);
spin_unlock_irqrestore(&ring->lock, flags);
}
void b43_dma_tx_suspend(struct b43_wldev *dev)
{
b43_power_saving_ctl_bits(dev, B43_PS_AWAKE);
b43_dma_tx_suspend_ring(dev->dma.tx_ring0);
b43_dma_tx_suspend_ring(dev->dma.tx_ring1);
b43_dma_tx_suspend_ring(dev->dma.tx_ring2);
b43_dma_tx_suspend_ring(dev->dma.tx_ring3);
b43_dma_tx_suspend_ring(dev->dma.tx_ring4);
b43_dma_tx_suspend_ring(dev->dma.tx_ring5);
}
void b43_dma_tx_resume(struct b43_wldev *dev)
{
b43_dma_tx_resume_ring(dev->dma.tx_ring5);
b43_dma_tx_resume_ring(dev->dma.tx_ring4);
b43_dma_tx_resume_ring(dev->dma.tx_ring3);
b43_dma_tx_resume_ring(dev->dma.tx_ring2);
b43_dma_tx_resume_ring(dev->dma.tx_ring1);
b43_dma_tx_resume_ring(dev->dma.tx_ring0);
b43_power_saving_ctl_bits(dev, 0);
}