OpenCloudOS-Kernel/sound/soc/codecs/sta350.c

1269 lines
37 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
*
* Copyright: 2014 Raumfeld GmbH
* Author: Sven Brandau <info@brandau.biz>
*
* based on code from:
* Raumfeld GmbH
* Johannes Stezenbach <js@sig21.net>
* Wolfson Microelectronics PLC.
* Mark Brown <broonie@opensource.wolfsonmicro.com>
* Freescale Semiconductor, Inc.
* Timur Tabi <timur@freescale.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio/consumer.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <sound/sta350.h>
#include "sta350.h"
#define STA350_RATES (SNDRV_PCM_RATE_32000 | \
SNDRV_PCM_RATE_44100 | \
SNDRV_PCM_RATE_48000 | \
SNDRV_PCM_RATE_88200 | \
SNDRV_PCM_RATE_96000 | \
SNDRV_PCM_RATE_176400 | \
SNDRV_PCM_RATE_192000)
#define STA350_FORMATS \
(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S18_3LE | \
SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_3LE | \
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
/* Power-up register defaults */
static const struct reg_default sta350_regs[] = {
{ 0x0, 0x63 },
{ 0x1, 0x80 },
{ 0x2, 0xdf },
{ 0x3, 0x40 },
{ 0x4, 0xc2 },
{ 0x5, 0x5c },
{ 0x6, 0x00 },
{ 0x7, 0xff },
{ 0x8, 0x60 },
{ 0x9, 0x60 },
{ 0xa, 0x60 },
{ 0xb, 0x00 },
{ 0xc, 0x00 },
{ 0xd, 0x00 },
{ 0xe, 0x00 },
{ 0xf, 0x40 },
{ 0x10, 0x80 },
{ 0x11, 0x77 },
{ 0x12, 0x6a },
{ 0x13, 0x69 },
{ 0x14, 0x6a },
{ 0x15, 0x69 },
{ 0x16, 0x00 },
{ 0x17, 0x00 },
{ 0x18, 0x00 },
{ 0x19, 0x00 },
{ 0x1a, 0x00 },
{ 0x1b, 0x00 },
{ 0x1c, 0x00 },
{ 0x1d, 0x00 },
{ 0x1e, 0x00 },
{ 0x1f, 0x00 },
{ 0x20, 0x00 },
{ 0x21, 0x00 },
{ 0x22, 0x00 },
{ 0x23, 0x00 },
{ 0x24, 0x00 },
{ 0x25, 0x00 },
{ 0x26, 0x00 },
{ 0x27, 0x2a },
{ 0x28, 0xc0 },
{ 0x29, 0xf3 },
{ 0x2a, 0x33 },
{ 0x2b, 0x00 },
{ 0x2c, 0x0c },
{ 0x31, 0x00 },
{ 0x36, 0x00 },
{ 0x37, 0x00 },
{ 0x38, 0x00 },
{ 0x39, 0x01 },
{ 0x3a, 0xee },
{ 0x3b, 0xff },
{ 0x3c, 0x7e },
{ 0x3d, 0xc0 },
{ 0x3e, 0x26 },
{ 0x3f, 0x00 },
{ 0x48, 0x00 },
{ 0x49, 0x00 },
{ 0x4a, 0x00 },
{ 0x4b, 0x04 },
{ 0x4c, 0x00 },
};
static const struct regmap_range sta350_write_regs_range[] = {
regmap_reg_range(STA350_CONFA, STA350_AUTO2),
regmap_reg_range(STA350_C1CFG, STA350_FDRC2),
regmap_reg_range(STA350_EQCFG, STA350_EVOLRES),
regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
};
static const struct regmap_range sta350_read_regs_range[] = {
regmap_reg_range(STA350_CONFA, STA350_AUTO2),
regmap_reg_range(STA350_C1CFG, STA350_STATUS),
regmap_reg_range(STA350_EQCFG, STA350_EVOLRES),
regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
};
static const struct regmap_range sta350_volatile_regs_range[] = {
regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
regmap_reg_range(STA350_STATUS, STA350_STATUS),
};
static const struct regmap_access_table sta350_write_regs = {
.yes_ranges = sta350_write_regs_range,
.n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range),
};
static const struct regmap_access_table sta350_read_regs = {
.yes_ranges = sta350_read_regs_range,
.n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range),
};
static const struct regmap_access_table sta350_volatile_regs = {
.yes_ranges = sta350_volatile_regs_range,
.n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range),
};
/* regulator power supply names */
static const char * const sta350_supply_names[] = {
"vdd-dig", /* digital supply, 3.3V */
"vdd-pll", /* pll supply, 3.3V */
"vcc" /* power amp supply, 5V - 26V */
};
/* codec private data */
struct sta350_priv {
struct regmap *regmap;
struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
struct sta350_platform_data *pdata;
unsigned int mclk;
unsigned int format;
u32 coef_shadow[STA350_COEF_COUNT];
int shutdown;
struct gpio_desc *gpiod_nreset;
struct gpio_desc *gpiod_power_down;
struct mutex coeff_lock;
};
static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
static const char * const sta350_drc_ac[] = {
"Anti-Clipping", "Dynamic Range Compression"
};
static const char * const sta350_auto_gc_mode[] = {
"User", "AC no clipping", "AC limited clipping (10%)",
"DRC nighttime listening mode"
};
static const char * const sta350_auto_xo_mode[] = {
"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
"200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
"340Hz", "360Hz"
};
static const char * const sta350_binary_output[] = {
"FFX 3-state output - normal operation", "Binary output"
};
static const char * const sta350_limiter_select[] = {
"Limiter Disabled", "Limiter #1", "Limiter #2"
};
static const char * const sta350_limiter_attack_rate[] = {
"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
"0.0645", "0.0564", "0.0501", "0.0451"
};
static const char * const sta350_limiter_release_rate[] = {
"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
"0.0134", "0.0117", "0.0110", "0.0104"
};
static const char * const sta350_noise_shaper_type[] = {
"Third order", "Fourth order"
};
static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
);
static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
);
static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
);
static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
);
static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
STA350_CONFD, STA350_CONFD_DRC_SHIFT,
sta350_drc_ac);
static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
sta350_noise_shaper_type);
static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
sta350_auto_gc_mode);
static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
sta350_auto_xo_mode);
static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
sta350_binary_output);
static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
sta350_binary_output);
static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
sta350_binary_output);
static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
sta350_limiter_select);
static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
sta350_limiter_select);
static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
sta350_limiter_select);
static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
STA350_L1AR, STA350_LxA_SHIFT,
sta350_limiter_attack_rate);
static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
STA350_L2AR, STA350_LxA_SHIFT,
sta350_limiter_attack_rate);
static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
STA350_L1AR, STA350_LxR_SHIFT,
sta350_limiter_release_rate);
static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
STA350_L2AR, STA350_LxR_SHIFT,
sta350_limiter_release_rate);
/*
* byte array controls for setting biquad, mixer, scaling coefficients;
* for biquads all five coefficients need to be set in one go,
* mixer and pre/postscale coefs can be set individually;
* each coef is 24bit, the bytes are ordered in the same way
* as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
*/
static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int numcoef = kcontrol->private_value >> 16;
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = 3 * numcoef;
return 0;
}
static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
int numcoef = kcontrol->private_value >> 16;
int index = kcontrol->private_value & 0xffff;
unsigned int cfud, val;
int i, ret = 0;
mutex_lock(&sta350->coeff_lock);
/* preserve reserved bits in STA350_CFUD */
regmap_read(sta350->regmap, STA350_CFUD, &cfud);
cfud &= 0xf0;
/*
* chip documentation does not say if the bits are self clearing,
* so do it explicitly
*/
regmap_write(sta350->regmap, STA350_CFUD, cfud);
regmap_write(sta350->regmap, STA350_CFADDR2, index);
if (numcoef == 1) {
regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
} else if (numcoef == 5) {
regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
} else {
ret = -EINVAL;
goto exit_unlock;
}
for (i = 0; i < 3 * numcoef; i++) {
regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
ucontrol->value.bytes.data[i] = val;
}
exit_unlock:
mutex_unlock(&sta350->coeff_lock);
return ret;
}
static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
int numcoef = kcontrol->private_value >> 16;
int index = kcontrol->private_value & 0xffff;
unsigned int cfud;
int i;
/* preserve reserved bits in STA350_CFUD */
regmap_read(sta350->regmap, STA350_CFUD, &cfud);
cfud &= 0xf0;
/*
* chip documentation does not say if the bits are self clearing,
* so do it explicitly
*/
regmap_write(sta350->regmap, STA350_CFUD, cfud);
regmap_write(sta350->regmap, STA350_CFADDR2, index);
for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
sta350->coef_shadow[index + i] =
(ucontrol->value.bytes.data[3 * i] << 16)
| (ucontrol->value.bytes.data[3 * i + 1] << 8)
| (ucontrol->value.bytes.data[3 * i + 2]);
for (i = 0; i < 3 * numcoef; i++)
regmap_write(sta350->regmap, STA350_B1CF1 + i,
ucontrol->value.bytes.data[i]);
if (numcoef == 1)
regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
else if (numcoef == 5)
regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
else
return -EINVAL;
return 0;
}
static int sta350_sync_coef_shadow(struct snd_soc_component *component)
{
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
unsigned int cfud;
int i;
/* preserve reserved bits in STA350_CFUD */
regmap_read(sta350->regmap, STA350_CFUD, &cfud);
cfud &= 0xf0;
for (i = 0; i < STA350_COEF_COUNT; i++) {
regmap_write(sta350->regmap, STA350_CFADDR2, i);
regmap_write(sta350->regmap, STA350_B1CF1,
(sta350->coef_shadow[i] >> 16) & 0xff);
regmap_write(sta350->regmap, STA350_B1CF2,
(sta350->coef_shadow[i] >> 8) & 0xff);
regmap_write(sta350->regmap, STA350_B1CF3,
(sta350->coef_shadow[i]) & 0xff);
/*
* chip documentation does not say if the bits are
* self-clearing, so do it explicitly
*/
regmap_write(sta350->regmap, STA350_CFUD, cfud);
regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
}
return 0;
}
static int sta350_cache_sync(struct snd_soc_component *component)
{
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
unsigned int mute;
int rc;
/* mute during register sync */
regmap_read(sta350->regmap, STA350_CFUD, &mute);
regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
sta350_sync_coef_shadow(component);
rc = regcache_sync(sta350->regmap);
regmap_write(sta350->regmap, STA350_MMUTE, mute);
return rc;
}
#define SINGLE_COEF(xname, index) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = sta350_coefficient_info, \
.get = sta350_coefficient_get,\
.put = sta350_coefficient_put, \
.private_value = index | (1 << 16) }
#define BIQUAD_COEFS(xname, index) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = sta350_coefficient_info, \
.get = sta350_coefficient_get,\
.put = sta350_coefficient_put, \
.private_value = index | (5 << 16) }
static const struct snd_kcontrol_new sta350_snd_controls[] = {
SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
/* VOL */
SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
/* CONFD */
SOC_SINGLE("High Pass Filter Bypass Switch",
STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
SOC_SINGLE("De-emphasis Filter Switch",
STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
SOC_SINGLE("DSP Bypass Switch",
STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
SOC_SINGLE("Post-scale Link Switch",
STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
SOC_SINGLE("Biquad Coefficient Link Switch",
STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
SOC_SINGLE("Zero-detect Mute Enable Switch",
STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
SOC_SINGLE("Submix Mode Switch",
STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
/* CONFE */
SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
/* MUTE */
SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
/* AUTOx */
SOC_ENUM("Automode GC", sta350_auto_gc_enum),
SOC_ENUM("Automode XO", sta350_auto_xo_enum),
/* CxCFG */
SOC_SINGLE("Ch1 Tone Control Bypass Switch",
STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
SOC_SINGLE("Ch2 Tone Control Bypass Switch",
STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
SOC_SINGLE("Ch1 EQ Bypass Switch",
STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
SOC_SINGLE("Ch2 EQ Bypass Switch",
STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
SOC_SINGLE("Ch1 Master Volume Bypass Switch",
STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
SOC_SINGLE("Ch2 Master Volume Bypass Switch",
STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
SOC_SINGLE("Ch3 Master Volume Bypass Switch",
STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
/* TONE */
SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
/*
* depending on mode, the attack/release thresholds have
* two different enum definitions; provide both
*/
SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
STA350_L1ATRT, STA350_LxA_SHIFT,
16, 0, sta350_limiter_ac_attack_tlv),
SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
STA350_L2ATRT, STA350_LxA_SHIFT,
16, 0, sta350_limiter_ac_attack_tlv),
SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
STA350_L1ATRT, STA350_LxR_SHIFT,
16, 0, sta350_limiter_ac_release_tlv),
SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
STA350_L2ATRT, STA350_LxR_SHIFT,
16, 0, sta350_limiter_ac_release_tlv),
SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
STA350_L1ATRT, STA350_LxA_SHIFT,
16, 0, sta350_limiter_drc_attack_tlv),
SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
STA350_L2ATRT, STA350_LxA_SHIFT,
16, 0, sta350_limiter_drc_attack_tlv),
SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
STA350_L1ATRT, STA350_LxR_SHIFT,
16, 0, sta350_limiter_drc_release_tlv),
SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
STA350_L2ATRT, STA350_LxR_SHIFT,
16, 0, sta350_limiter_drc_release_tlv),
BIQUAD_COEFS("Ch1 - Biquad 1", 0),
BIQUAD_COEFS("Ch1 - Biquad 2", 5),
BIQUAD_COEFS("Ch1 - Biquad 3", 10),
BIQUAD_COEFS("Ch1 - Biquad 4", 15),
BIQUAD_COEFS("Ch2 - Biquad 1", 20),
BIQUAD_COEFS("Ch2 - Biquad 2", 25),
BIQUAD_COEFS("Ch2 - Biquad 3", 30),
BIQUAD_COEFS("Ch2 - Biquad 4", 35),
BIQUAD_COEFS("High-pass", 40),
BIQUAD_COEFS("Low-pass", 45),
SINGLE_COEF("Ch1 - Prescale", 50),
SINGLE_COEF("Ch2 - Prescale", 51),
SINGLE_COEF("Ch1 - Postscale", 52),
SINGLE_COEF("Ch2 - Postscale", 53),
SINGLE_COEF("Ch3 - Postscale", 54),
SINGLE_COEF("Thermal warning - Postscale", 55),
SINGLE_COEF("Ch1 - Mix 1", 56),
SINGLE_COEF("Ch1 - Mix 2", 57),
SINGLE_COEF("Ch2 - Mix 1", 58),
SINGLE_COEF("Ch2 - Mix 2", 59),
SINGLE_COEF("Ch3 - Mix 1", 60),
SINGLE_COEF("Ch3 - Mix 2", 61),
};
static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_OUTPUT("LEFT"),
SND_SOC_DAPM_OUTPUT("RIGHT"),
SND_SOC_DAPM_OUTPUT("SUB"),
};
static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
{ "LEFT", NULL, "DAC" },
{ "RIGHT", NULL, "DAC" },
{ "SUB", NULL, "DAC" },
{ "DAC", NULL, "Playback" },
};
/* MCLK interpolation ratio per fs */
static struct {
int fs;
int ir;
} interpolation_ratios[] = {
{ 32000, 0 },
{ 44100, 0 },
{ 48000, 0 },
{ 88200, 1 },
{ 96000, 1 },
{ 176400, 2 },
{ 192000, 2 },
};
/* MCLK to fs clock ratios */
static int mcs_ratio_table[3][6] = {
{ 768, 512, 384, 256, 128, 576 },
{ 384, 256, 192, 128, 64, 0 },
{ 192, 128, 96, 64, 32, 0 },
};
/**
* sta350_set_dai_sysclk - configure MCLK
* @codec_dai: the codec DAI
* @clk_id: the clock ID (ignored)
* @freq: the MCLK input frequency
* @dir: the clock direction (ignored)
*
* The value of MCLK is used to determine which sample rates are supported
* by the STA350, based on the mcs_ratio_table.
*
* This function must be called by the machine driver's 'startup' function,
* otherwise the list of supported sample rates will not be available in
* time for ALSA.
*/
static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_component *component = codec_dai->component;
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
dev_dbg(component->dev, "mclk=%u\n", freq);
sta350->mclk = freq;
return 0;
}
/**
* sta350_set_dai_fmt - configure the codec for the selected audio format
* @codec_dai: the codec DAI
* @fmt: a SND_SOC_DAIFMT_x value indicating the data format
*
* This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
* codec accordingly.
*/
static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_component *component = codec_dai->component;
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
unsigned int confb = 0;
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_CBC_CFC:
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_RIGHT_J:
case SND_SOC_DAIFMT_LEFT_J:
sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
confb |= STA350_CONFB_C2IM;
break;
case SND_SOC_DAIFMT_NB_IF:
confb |= STA350_CONFB_C1IM;
break;
default:
return -EINVAL;
}
return regmap_update_bits(sta350->regmap, STA350_CONFB,
STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
}
/**
* sta350_hw_params - program the STA350 with the given hardware parameters.
* @substream: the audio stream
* @params: the hardware parameters to set
* @dai: the SOC DAI (ignored)
*
* This function programs the hardware with the values provided.
* Specifically, the sample rate and the data format.
*/
static int sta350_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
int i, mcs = -EINVAL, ir = -EINVAL;
unsigned int confa, confb;
unsigned int rate, ratio;
int ret;
if (!sta350->mclk) {
dev_err(component->dev,
"sta350->mclk is unset. Unable to determine ratio\n");
return -EIO;
}
rate = params_rate(params);
ratio = sta350->mclk / rate;
dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
if (interpolation_ratios[i].fs == rate) {
ir = interpolation_ratios[i].ir;
break;
}
}
if (ir < 0) {
dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
return -EINVAL;
}
for (i = 0; i < 6; i++) {
if (mcs_ratio_table[ir][i] == ratio) {
mcs = i;
break;
}
}
if (mcs < 0) {
dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
return -EINVAL;
}
confa = (ir << STA350_CONFA_IR_SHIFT) |
(mcs << STA350_CONFA_MCS_SHIFT);
confb = 0;
switch (params_width(params)) {
case 24:
dev_dbg(component->dev, "24bit\n");
fallthrough;
case 32:
dev_dbg(component->dev, "24bit or 32bit\n");
switch (sta350->format) {
case SND_SOC_DAIFMT_I2S:
confb |= 0x0;
break;
case SND_SOC_DAIFMT_LEFT_J:
confb |= 0x1;
break;
case SND_SOC_DAIFMT_RIGHT_J:
confb |= 0x2;
break;
}
break;
case 20:
dev_dbg(component->dev, "20bit\n");
switch (sta350->format) {
case SND_SOC_DAIFMT_I2S:
confb |= 0x4;
break;
case SND_SOC_DAIFMT_LEFT_J:
confb |= 0x5;
break;
case SND_SOC_DAIFMT_RIGHT_J:
confb |= 0x6;
break;
}
break;
case 18:
dev_dbg(component->dev, "18bit\n");
switch (sta350->format) {
case SND_SOC_DAIFMT_I2S:
confb |= 0x8;
break;
case SND_SOC_DAIFMT_LEFT_J:
confb |= 0x9;
break;
case SND_SOC_DAIFMT_RIGHT_J:
confb |= 0xa;
break;
}
break;
case 16:
dev_dbg(component->dev, "16bit\n");
switch (sta350->format) {
case SND_SOC_DAIFMT_I2S:
confb |= 0x0;
break;
case SND_SOC_DAIFMT_LEFT_J:
confb |= 0xd;
break;
case SND_SOC_DAIFMT_RIGHT_J:
confb |= 0xe;
break;
}
break;
default:
return -EINVAL;
}
ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
confa);
if (ret < 0)
return ret;
ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
confb);
if (ret < 0)
return ret;
return 0;
}
static int sta350_startup_sequence(struct sta350_priv *sta350)
{
if (sta350->gpiod_power_down)
gpiod_set_value(sta350->gpiod_power_down, 1);
if (sta350->gpiod_nreset) {
gpiod_set_value(sta350->gpiod_nreset, 0);
mdelay(1);
gpiod_set_value(sta350->gpiod_nreset, 1);
mdelay(1);
}
return 0;
}
/**
* sta350_set_bias_level - DAPM callback
* @component: the component device
* @level: DAPM power level
*
* This is called by ALSA to put the component into low power mode
* or to wake it up. If the component is powered off completely
* all registers must be restored after power on.
*/
static int sta350_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
int ret;
dev_dbg(component->dev, "level = %d\n", level);
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
/* Full power on */
regmap_update_bits(sta350->regmap, STA350_CONFF,
STA350_CONFF_PWDN | STA350_CONFF_EAPD,
STA350_CONFF_PWDN | STA350_CONFF_EAPD);
break;
case SND_SOC_BIAS_STANDBY:
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
ret = regulator_bulk_enable(
ARRAY_SIZE(sta350->supplies),
sta350->supplies);
if (ret < 0) {
dev_err(component->dev,
"Failed to enable supplies: %d\n",
ret);
return ret;
}
sta350_startup_sequence(sta350);
sta350_cache_sync(component);
}
/* Power down */
regmap_update_bits(sta350->regmap, STA350_CONFF,
STA350_CONFF_PWDN | STA350_CONFF_EAPD,
0);
break;
case SND_SOC_BIAS_OFF:
/* The chip runs through the power down sequence for us */
regmap_update_bits(sta350->regmap, STA350_CONFF,
STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
/* power down: low */
if (sta350->gpiod_power_down)
gpiod_set_value(sta350->gpiod_power_down, 0);
if (sta350->gpiod_nreset)
gpiod_set_value(sta350->gpiod_nreset, 0);
regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
sta350->supplies);
break;
}
return 0;
}
static const struct snd_soc_dai_ops sta350_dai_ops = {
.hw_params = sta350_hw_params,
.set_sysclk = sta350_set_dai_sysclk,
.set_fmt = sta350_set_dai_fmt,
};
static struct snd_soc_dai_driver sta350_dai = {
.name = "sta350-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 2,
.channels_max = 2,
.rates = STA350_RATES,
.formats = STA350_FORMATS,
},
.ops = &sta350_dai_ops,
};
static int sta350_probe(struct snd_soc_component *component)
{
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
struct sta350_platform_data *pdata = sta350->pdata;
int i, ret = 0, thermal = 0;
ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
sta350->supplies);
if (ret < 0) {
dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
return ret;
}
ret = sta350_startup_sequence(sta350);
if (ret < 0) {
dev_err(component->dev, "Failed to startup device\n");
return ret;
}
/* CONFA */
if (!pdata->thermal_warning_recovery)
thermal |= STA350_CONFA_TWAB;
if (!pdata->thermal_warning_adjustment)
thermal |= STA350_CONFA_TWRB;
if (!pdata->fault_detect_recovery)
thermal |= STA350_CONFA_FDRB;
regmap_update_bits(sta350->regmap, STA350_CONFA,
STA350_CONFA_TWAB | STA350_CONFA_TWRB |
STA350_CONFA_FDRB,
thermal);
/* CONFC */
regmap_update_bits(sta350->regmap, STA350_CONFC,
STA350_CONFC_OM_MASK,
pdata->ffx_power_output_mode
<< STA350_CONFC_OM_SHIFT);
regmap_update_bits(sta350->regmap, STA350_CONFC,
STA350_CONFC_CSZ_MASK,
pdata->drop_compensation_ns
<< STA350_CONFC_CSZ_SHIFT);
regmap_update_bits(sta350->regmap,
STA350_CONFC,
STA350_CONFC_OCRB,
pdata->oc_warning_adjustment ?
STA350_CONFC_OCRB : 0);
/* CONFE */
regmap_update_bits(sta350->regmap, STA350_CONFE,
STA350_CONFE_MPCV,
pdata->max_power_use_mpcc ?
STA350_CONFE_MPCV : 0);
regmap_update_bits(sta350->regmap, STA350_CONFE,
STA350_CONFE_MPC,
pdata->max_power_correction ?
STA350_CONFE_MPC : 0);
regmap_update_bits(sta350->regmap, STA350_CONFE,
STA350_CONFE_AME,
pdata->am_reduction_mode ?
STA350_CONFE_AME : 0);
regmap_update_bits(sta350->regmap, STA350_CONFE,
STA350_CONFE_PWMS,
pdata->odd_pwm_speed_mode ?
STA350_CONFE_PWMS : 0);
regmap_update_bits(sta350->regmap, STA350_CONFE,
STA350_CONFE_DCCV,
pdata->distortion_compensation ?
STA350_CONFE_DCCV : 0);
/* CONFF */
regmap_update_bits(sta350->regmap, STA350_CONFF,
STA350_CONFF_IDE,
pdata->invalid_input_detect_mute ?
STA350_CONFF_IDE : 0);
regmap_update_bits(sta350->regmap, STA350_CONFF,
STA350_CONFF_OCFG_MASK,
pdata->output_conf
<< STA350_CONFF_OCFG_SHIFT);
/* channel to output mapping */
regmap_update_bits(sta350->regmap, STA350_C1CFG,
STA350_CxCFG_OM_MASK,
pdata->ch1_output_mapping
<< STA350_CxCFG_OM_SHIFT);
regmap_update_bits(sta350->regmap, STA350_C2CFG,
STA350_CxCFG_OM_MASK,
pdata->ch2_output_mapping
<< STA350_CxCFG_OM_SHIFT);
regmap_update_bits(sta350->regmap, STA350_C3CFG,
STA350_CxCFG_OM_MASK,
pdata->ch3_output_mapping
<< STA350_CxCFG_OM_SHIFT);
/* miscellaneous registers */
regmap_update_bits(sta350->regmap, STA350_MISC1,
STA350_MISC1_CPWMEN,
pdata->activate_mute_output ?
STA350_MISC1_CPWMEN : 0);
regmap_update_bits(sta350->regmap, STA350_MISC1,
STA350_MISC1_BRIDGOFF,
pdata->bridge_immediate_off ?
STA350_MISC1_BRIDGOFF : 0);
regmap_update_bits(sta350->regmap, STA350_MISC1,
STA350_MISC1_NSHHPEN,
pdata->noise_shape_dc_cut ?
STA350_MISC1_NSHHPEN : 0);
regmap_update_bits(sta350->regmap, STA350_MISC1,
STA350_MISC1_RPDNEN,
pdata->powerdown_master_vol ?
STA350_MISC1_RPDNEN: 0);
regmap_update_bits(sta350->regmap, STA350_MISC2,
STA350_MISC2_PNDLSL_MASK,
pdata->powerdown_delay_divider
<< STA350_MISC2_PNDLSL_SHIFT);
/* initialize coefficient shadow RAM with reset values */
for (i = 4; i <= 49; i += 5)
sta350->coef_shadow[i] = 0x400000;
for (i = 50; i <= 54; i++)
sta350->coef_shadow[i] = 0x7fffff;
sta350->coef_shadow[55] = 0x5a9df7;
sta350->coef_shadow[56] = 0x7fffff;
sta350->coef_shadow[59] = 0x7fffff;
sta350->coef_shadow[60] = 0x400000;
sta350->coef_shadow[61] = 0x400000;
snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
/* Bias level configuration will have done an extra enable */
regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
return 0;
}
static void sta350_remove(struct snd_soc_component *component)
{
struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
}
static const struct snd_soc_component_driver sta350_component = {
.probe = sta350_probe,
.remove = sta350_remove,
.set_bias_level = sta350_set_bias_level,
.controls = sta350_snd_controls,
.num_controls = ARRAY_SIZE(sta350_snd_controls),
.dapm_widgets = sta350_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(sta350_dapm_widgets),
.dapm_routes = sta350_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(sta350_dapm_routes),
.suspend_bias_off = 1,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
};
static const struct regmap_config sta350_regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = STA350_MISC2,
.reg_defaults = sta350_regs,
.num_reg_defaults = ARRAY_SIZE(sta350_regs),
.cache_type = REGCACHE_RBTREE,
.wr_table = &sta350_write_regs,
.rd_table = &sta350_read_regs,
.volatile_table = &sta350_volatile_regs,
};
#ifdef CONFIG_OF
static const struct of_device_id st350_dt_ids[] = {
{ .compatible = "st,sta350", },
{ }
};
MODULE_DEVICE_TABLE(of, st350_dt_ids);
static const char * const sta350_ffx_modes[] = {
[STA350_FFX_PM_DROP_COMP] = "drop-compensation",
[STA350_FFX_PM_TAPERED_COMP] = "tapered-compensation",
[STA350_FFX_PM_FULL_POWER] = "full-power-mode",
[STA350_FFX_PM_VARIABLE_DROP_COMP] = "variable-drop-compensation",
};
static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
{
struct device_node *np = dev->of_node;
struct sta350_platform_data *pdata;
const char *ffx_power_mode;
u16 tmp;
u8 tmp8;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
of_property_read_u8(np, "st,output-conf",
&pdata->output_conf);
of_property_read_u8(np, "st,ch1-output-mapping",
&pdata->ch1_output_mapping);
of_property_read_u8(np, "st,ch2-output-mapping",
&pdata->ch2_output_mapping);
of_property_read_u8(np, "st,ch3-output-mapping",
&pdata->ch3_output_mapping);
if (of_get_property(np, "st,thermal-warning-recovery", NULL))
pdata->thermal_warning_recovery = 1;
if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
pdata->thermal_warning_adjustment = 1;
if (of_get_property(np, "st,fault-detect-recovery", NULL))
pdata->fault_detect_recovery = 1;
pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
if (!of_property_read_string(np, "st,ffx-power-output-mode",
&ffx_power_mode)) {
int i, mode = -EINVAL;
for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
mode = i;
if (mode < 0)
dev_warn(dev, "Unsupported ffx output mode: %s\n",
ffx_power_mode);
else
pdata->ffx_power_output_mode = mode;
}
tmp = 140;
of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL))
pdata->oc_warning_adjustment = 1;
/* CONFE */
if (of_get_property(np, "st,max-power-use-mpcc", NULL))
pdata->max_power_use_mpcc = 1;
if (of_get_property(np, "st,max-power-correction", NULL))
pdata->max_power_correction = 1;
if (of_get_property(np, "st,am-reduction-mode", NULL))
pdata->am_reduction_mode = 1;
if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
pdata->odd_pwm_speed_mode = 1;
if (of_get_property(np, "st,distortion-compensation", NULL))
pdata->distortion_compensation = 1;
/* CONFF */
if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
pdata->invalid_input_detect_mute = 1;
/* MISC */
if (of_get_property(np, "st,activate-mute-output", NULL))
pdata->activate_mute_output = 1;
if (of_get_property(np, "st,bridge-immediate-off", NULL))
pdata->bridge_immediate_off = 1;
if (of_get_property(np, "st,noise-shape-dc-cut", NULL))
pdata->noise_shape_dc_cut = 1;
if (of_get_property(np, "st,powerdown-master-volume", NULL))
pdata->powerdown_master_vol = 1;
if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
pdata->powerdown_delay_divider = ilog2(tmp8);
else
dev_warn(dev, "Unsupported powerdown delay divider %d\n",
tmp8);
}
sta350->pdata = pdata;
return 0;
}
#endif
static int sta350_i2c_probe(struct i2c_client *i2c)
{
struct device *dev = &i2c->dev;
struct sta350_priv *sta350;
int ret, i;
sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
if (!sta350)
return -ENOMEM;
mutex_init(&sta350->coeff_lock);
sta350->pdata = dev_get_platdata(dev);
#ifdef CONFIG_OF
if (dev->of_node) {
ret = sta350_probe_dt(dev, sta350);
if (ret < 0)
return ret;
}
#endif
/* GPIOs */
sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(sta350->gpiod_nreset))
return PTR_ERR(sta350->gpiod_nreset);
sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
GPIOD_OUT_LOW);
if (IS_ERR(sta350->gpiod_power_down))
return PTR_ERR(sta350->gpiod_power_down);
/* regulators */
for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
sta350->supplies[i].supply = sta350_supply_names[i];
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
sta350->supplies);
if (ret < 0) {
dev_err(dev, "Failed to request supplies: %d\n", ret);
return ret;
}
sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
if (IS_ERR(sta350->regmap)) {
ret = PTR_ERR(sta350->regmap);
dev_err(dev, "Failed to init regmap: %d\n", ret);
return ret;
}
i2c_set_clientdata(i2c, sta350);
ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1);
if (ret < 0)
dev_err(dev, "Failed to register component (%d)\n", ret);
return ret;
}
i2c: Make remove callback return void The value returned by an i2c driver's remove function is mostly ignored. (Only an error message is printed if the value is non-zero that the error is ignored.) So change the prototype of the remove function to return no value. This way driver authors are not tempted to assume that passing an error to the upper layer is a good idea. All drivers are adapted accordingly. There is no intended change of behaviour, all callbacks were prepared to return 0 before. Reviewed-by: Peter Senna Tschudin <peter.senna@gmail.com> Reviewed-by: Jeremy Kerr <jk@codeconstruct.com.au> Reviewed-by: Benjamin Mugnier <benjamin.mugnier@foss.st.com> Reviewed-by: Javier Martinez Canillas <javierm@redhat.com> Reviewed-by: Crt Mori <cmo@melexis.com> Reviewed-by: Heikki Krogerus <heikki.krogerus@linux.intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Marek Behún <kabel@kernel.org> # for leds-turris-omnia Acked-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Petr Machata <petrm@nvidia.com> # for mlxsw Reviewed-by: Maximilian Luz <luzmaximilian@gmail.com> # for surface3_power Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> # for bmc150-accel-i2c + kxcjk-1013 Reviewed-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> # for media/* + staging/media/* Acked-by: Miguel Ojeda <ojeda@kernel.org> # for auxdisplay/ht16k33 + auxdisplay/lcd2s Reviewed-by: Luca Ceresoli <luca.ceresoli@bootlin.com> # for versaclock5 Reviewed-by: Ajay Gupta <ajayg@nvidia.com> # for ucsi_ccg Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> # for iio Acked-by: Peter Rosin <peda@axentia.se> # for i2c-mux-*, max9860 Acked-by: Adrien Grassein <adrien.grassein@gmail.com> # for lontium-lt8912b Reviewed-by: Jean Delvare <jdelvare@suse.de> # for hwmon, i2c-core and i2c/muxes Acked-by: Corey Minyard <cminyard@mvista.com> # for IPMI Reviewed-by: Vladimir Oltean <olteanv@gmail.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Sebastian Reichel <sebastian.reichel@collabora.com> # for drivers/power Acked-by: Krzysztof Hałasa <khalasa@piap.pl> Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Wolfram Sang <wsa@kernel.org>
2022-08-15 16:02:30 +08:00
static void sta350_i2c_remove(struct i2c_client *client)
{}
static const struct i2c_device_id sta350_i2c_id[] = {
{ "sta350", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
static struct i2c_driver sta350_i2c_driver = {
.driver = {
.name = "sta350",
.of_match_table = of_match_ptr(st350_dt_ids),
},
.probe_new = sta350_i2c_probe,
.remove = sta350_i2c_remove,
.id_table = sta350_i2c_id,
};
module_i2c_driver(sta350_i2c_driver);
MODULE_DESCRIPTION("ASoC STA350 driver");
MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
MODULE_LICENSE("GPL");