OpenCloudOS-Kernel/drivers/net/dsa/microchip/ksz_common.c

1229 lines
29 KiB
C
Raw Normal View History

/*
* Microchip switch driver main logic
*
* Copyright (C) 2017
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/gpio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <net/dsa.h>
#include <net/switchdev.h>
#include "ksz_priv.h"
static const struct {
int index;
char string[ETH_GSTRING_LEN];
} mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
{ 0x00, "rx_hi" },
{ 0x01, "rx_undersize" },
{ 0x02, "rx_fragments" },
{ 0x03, "rx_oversize" },
{ 0x04, "rx_jabbers" },
{ 0x05, "rx_symbol_err" },
{ 0x06, "rx_crc_err" },
{ 0x07, "rx_align_err" },
{ 0x08, "rx_mac_ctrl" },
{ 0x09, "rx_pause" },
{ 0x0A, "rx_bcast" },
{ 0x0B, "rx_mcast" },
{ 0x0C, "rx_ucast" },
{ 0x0D, "rx_64_or_less" },
{ 0x0E, "rx_65_127" },
{ 0x0F, "rx_128_255" },
{ 0x10, "rx_256_511" },
{ 0x11, "rx_512_1023" },
{ 0x12, "rx_1024_1522" },
{ 0x13, "rx_1523_2000" },
{ 0x14, "rx_2001" },
{ 0x15, "tx_hi" },
{ 0x16, "tx_late_col" },
{ 0x17, "tx_pause" },
{ 0x18, "tx_bcast" },
{ 0x19, "tx_mcast" },
{ 0x1A, "tx_ucast" },
{ 0x1B, "tx_deferred" },
{ 0x1C, "tx_total_col" },
{ 0x1D, "tx_exc_col" },
{ 0x1E, "tx_single_col" },
{ 0x1F, "tx_mult_col" },
{ 0x80, "rx_total" },
{ 0x81, "tx_total" },
{ 0x82, "rx_discards" },
{ 0x83, "tx_discards" },
};
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
u8 data;
ksz_read8(dev, addr, &data);
if (set)
data |= bits;
else
data &= ~bits;
ksz_write8(dev, addr, data);
}
static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
{
u32 data;
ksz_read32(dev, addr, &data);
if (set)
data |= bits;
else
data &= ~bits;
ksz_write32(dev, addr, data);
}
static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
bool set)
{
u32 addr;
u8 data;
addr = PORT_CTRL_ADDR(port, offset);
ksz_read8(dev, addr, &data);
if (set)
data |= bits;
else
data &= ~bits;
ksz_write8(dev, addr, data);
}
static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
u32 bits, bool set)
{
u32 addr;
u32 data;
addr = PORT_CTRL_ADDR(port, offset);
ksz_read32(dev, addr, &data);
if (set)
data |= bits;
else
data &= ~bits;
ksz_write32(dev, addr, data);
}
static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
u8 data;
do {
ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
if (!(data & waiton))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (timeout <= 0)
return -ETIMEDOUT;
return 0;
}
static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
{
struct ksz_device *dev = ds->priv;
int ret;
mutex_lock(&dev->vlan_mutex);
ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
/* wait to be cleared */
ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to read vlan table\n");
goto exit;
}
ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
exit:
mutex_unlock(&dev->vlan_mutex);
return ret;
}
static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
{
struct ksz_device *dev = ds->priv;
int ret;
mutex_lock(&dev->vlan_mutex);
ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
/* wait to be cleared */
ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to write vlan table\n");
goto exit;
}
ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
/* update vlan cache table */
dev->vlan_cache[vid].table[0] = vlan_table[0];
dev->vlan_cache[vid].table[1] = vlan_table[1];
dev->vlan_cache[vid].table[2] = vlan_table[2];
exit:
mutex_unlock(&dev->vlan_mutex);
return ret;
}
static void read_table(struct dsa_switch *ds, u32 *table)
{
struct ksz_device *dev = ds->priv;
ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
}
static void write_table(struct dsa_switch *ds, u32 *table)
{
struct ksz_device *dev = ds->priv;
ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
}
static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
u32 data;
do {
ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
if (!(data & waiton))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (timeout <= 0)
return -ETIMEDOUT;
return 0;
}
static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
u32 data;
do {
ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
if (!(data & waiton))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (timeout <= 0)
return -ETIMEDOUT;
return 0;
}
static int ksz_reset_switch(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
u8 data8;
u16 data16;
u32 data32;
/* reset switch */
ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
/* turn off SPI DO Edge select */
ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
data8 &= ~SPI_AUTO_EDGE_DETECTION;
ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
/* default configuration */
ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
/* disable interrupts */
ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
/* set broadcast storm protection 10% rate */
ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
data16 &= ~BROADCAST_STORM_RATE;
data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
return 0;
}
static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
u8 data8;
u16 data16;
/* enable tag tail for host port */
if (cpu_port)
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
true);
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
/* set back pressure */
ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
/* set flow control */
ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
/* enable broadcast storm limit */
ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
/* disable DiffServ priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
/* replace priority */
ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
false);
ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
MTI_PVID_REPLACE, false);
/* enable 802.1p priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
/* configure MAC to 1G & RGMII mode */
ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
data8 |= PORT_RGMII_ID_EG_ENABLE;
data8 &= ~PORT_MII_NOT_1GBIT;
data8 &= ~PORT_MII_SEL_M;
data8 |= PORT_RGMII_SEL;
ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
/* clear pending interrupts */
ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
}
static void ksz_config_cpu_port(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
int i;
ds->num_ports = dev->port_cnt;
for (i = 0; i < ds->num_ports; i++) {
if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
dev->cpu_port = i;
/* enable cpu port */
port_setup(dev, i, true);
}
}
}
static int ksz_setup(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
int ret = 0;
dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
dev->num_vlans, GFP_KERNEL);
if (!dev->vlan_cache)
return -ENOMEM;
ret = ksz_reset_switch(ds);
if (ret) {
dev_err(ds->dev, "failed to reset switch\n");
return ret;
}
/* accept packet up to 2000bytes */
ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
ksz_config_cpu_port(ds);
ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
/* queue based egress rate limit */
ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
/* start switch */
ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
return 0;
}
static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
int port)
{
return DSA_TAG_PROTO_KSZ;
}
static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
{
struct ksz_device *dev = ds->priv;
u16 val = 0;
ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
return val;
}
static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
{
struct ksz_device *dev = ds->priv;
ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
return 0;
}
static int ksz_enable_port(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct ksz_device *dev = ds->priv;
/* setup slave port */
port_setup(dev, port, false);
return 0;
}
static void ksz_disable_port(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct ksz_device *dev = ds->priv;
/* there is no port disable */
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
}
static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return 0;
return TOTAL_SWITCH_COUNTER_NUM;
}
static void ksz_get_strings(struct dsa_switch *ds, int port,
u32 stringset, uint8_t *buf)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
ETH_GSTRING_LEN);
}
}
static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *buf)
{
struct ksz_device *dev = ds->priv;
int i;
u32 data;
int timeout;
mutex_lock(&dev->stats_mutex);
for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
data = MIB_COUNTER_READ;
data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
timeout = 1000;
do {
ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
&data);
usleep_range(1, 10);
if (!(data & MIB_COUNTER_READ))
break;
} while (timeout-- > 0);
/* failed to read MIB. get out of loop */
if (!timeout) {
dev_dbg(dev->dev, "Failed to get MIB\n");
break;
}
/* count resets upon read */
ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
dev->mib_value[i] += (uint64_t)data;
buf[i] = dev->mib_value[i];
}
mutex_unlock(&dev->stats_mutex);
}
static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
struct ksz_device *dev = ds->priv;
u8 data;
ksz_pread8(dev, port, P_STP_CTRL, &data);
data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
switch (state) {
case BR_STATE_DISABLED:
data |= PORT_LEARN_DISABLE;
break;
case BR_STATE_LISTENING:
data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
break;
case BR_STATE_LEARNING:
data |= PORT_RX_ENABLE;
break;
case BR_STATE_FORWARDING:
data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
break;
case BR_STATE_BLOCKING:
data |= PORT_LEARN_DISABLE;
break;
default:
dev_err(ds->dev, "invalid STP state: %d\n", state);
return;
}
ksz_pwrite8(dev, port, P_STP_CTRL, data);
}
static void ksz_port_fast_age(struct dsa_switch *ds, int port)
{
struct ksz_device *dev = ds->priv;
u8 data8;
ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
data8 |= SW_FAST_AGING;
ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
data8 &= ~SW_FAST_AGING;
ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
}
static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
{
struct ksz_device *dev = ds->priv;
if (flag) {
ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
PORT_VLAN_LOOKUP_VID_0, true);
ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
} else {
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
PORT_VLAN_LOOKUP_VID_0, false);
}
return 0;
}
static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
/* nothing needed */
return 0;
}
static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct ksz_device *dev = ds->priv;
u32 vlan_table[3];
u16 vid;
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
if (get_vlan_table(ds, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to get vlan table\n");
return;
}
vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
if (untagged)
vlan_table[1] |= BIT(port);
else
vlan_table[1] &= ~BIT(port);
vlan_table[1] &= ~(BIT(dev->cpu_port));
vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
if (set_vlan_table(ds, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to set vlan table\n");
return;
}
/* change PVID */
if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
}
}
static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct ksz_device *dev = ds->priv;
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
u32 vlan_table[3];
u16 vid;
u16 pvid;
ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
pvid = pvid & 0xFFF;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
if (get_vlan_table(ds, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to get vlan table\n");
return -ETIMEDOUT;
}
vlan_table[2] &= ~BIT(port);
if (pvid == vid)
pvid = 1;
if (untagged)
vlan_table[1] &= ~BIT(port);
if (set_vlan_table(ds, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to set vlan table\n");
return -ETIMEDOUT;
}
}
ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
return 0;
}
struct alu_struct {
/* entry 1 */
u8 is_static:1;
u8 is_src_filter:1;
u8 is_dst_filter:1;
u8 prio_age:3;
u32 _reserv_0_1:23;
u8 mstp:3;
/* entry 2 */
u8 is_override:1;
u8 is_use_fid:1;
u32 _reserv_1_1:23;
u8 port_forward:7;
/* entry 3 & 4*/
u32 _reserv_2_1:9;
u8 fid:7;
u8 mac[ETH_ALEN];
};
static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct ksz_device *dev = ds->priv;
u32 alu_table[4];
u32 data;
int ret = 0;
mutex_lock(&dev->alu_mutex);
/* find any entry with mac & vid */
data = vid << ALU_FID_INDEX_S;
data |= ((addr[0] << 8) | addr[1]);
ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
data = ((addr[2] << 24) | (addr[3] << 16));
data |= ((addr[4] << 8) | addr[5]);
ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
/* start read operation */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
/* wait to be finished */
ret = wait_alu_ready(dev, ALU_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to read ALU\n");
goto exit;
}
/* read ALU entry */
read_table(ds, alu_table);
/* update ALU entry */
alu_table[0] = ALU_V_STATIC_VALID;
alu_table[1] |= BIT(port);
if (vid)
alu_table[1] |= ALU_V_USE_FID;
alu_table[2] = (vid << ALU_V_FID_S);
alu_table[2] |= ((addr[0] << 8) | addr[1]);
alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
alu_table[3] |= ((addr[4] << 8) | addr[5]);
write_table(ds, alu_table);
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
/* wait to be finished */
ret = wait_alu_ready(dev, ALU_START, 1000);
if (ret < 0)
dev_dbg(dev->dev, "Failed to write ALU\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct ksz_device *dev = ds->priv;
u32 alu_table[4];
u32 data;
int ret = 0;
mutex_lock(&dev->alu_mutex);
/* read any entry with mac & vid */
data = vid << ALU_FID_INDEX_S;
data |= ((addr[0] << 8) | addr[1]);
ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
data = ((addr[2] << 24) | (addr[3] << 16));
data |= ((addr[4] << 8) | addr[5]);
ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
/* start read operation */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
/* wait to be finished */
ret = wait_alu_ready(dev, ALU_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to read ALU\n");
goto exit;
}
ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
if (alu_table[0] & ALU_V_STATIC_VALID) {
ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
/* clear forwarding port */
alu_table[2] &= ~BIT(port);
/* if there is no port to forward, clear table */
if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
alu_table[0] = 0;
alu_table[1] = 0;
alu_table[2] = 0;
alu_table[3] = 0;
}
} else {
alu_table[0] = 0;
alu_table[1] = 0;
alu_table[2] = 0;
alu_table[3] = 0;
}
write_table(ds, alu_table);
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
/* wait to be finished */
ret = wait_alu_ready(dev, ALU_START, 1000);
if (ret < 0)
dev_dbg(dev->dev, "Failed to write ALU\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static void convert_alu(struct alu_struct *alu, u32 *alu_table)
{
alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
ALU_V_PRIO_AGE_CNT_M;
alu->mstp = alu_table[0] & ALU_V_MSTP_M;
alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
alu->mac[1] = alu_table[2] & 0xFF;
alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
alu->mac[5] = alu_table[3] & 0xFF;
}
static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct ksz_device *dev = ds->priv;
int ret = 0;
u32 ksz_data;
u32 alu_table[4];
struct alu_struct alu;
int timeout;
mutex_lock(&dev->alu_mutex);
/* start ALU search */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
do {
timeout = 1000;
do {
ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (!timeout) {
dev_dbg(dev->dev, "Failed to search ALU\n");
ret = -ETIMEDOUT;
goto exit;
}
/* read ALU table */
read_table(ds, alu_table);
convert_alu(&alu, alu_table);
if (alu.port_forward & BIT(port)) {
ret = cb(alu.mac, alu.fid, alu.is_static, data);
if (ret)
goto exit;
}
} while (ksz_data & ALU_START);
exit:
/* stop ALU search */
ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
mutex_unlock(&dev->alu_mutex);
return ret;
}
static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
/* nothing to do */
return 0;
}
static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct ksz_device *dev = ds->priv;
u32 static_table[4];
u32 data;
int index;
u32 mac_hi, mac_lo;
mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
mutex_lock(&dev->alu_mutex);
for (index = 0; index < dev->num_statics; index++) {
/* find empty slot first */
data = (index << ALU_STAT_INDEX_S) |
ALU_STAT_READ | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
goto exit;
}
/* read ALU static table */
read_table(ds, static_table);
if (static_table[0] & ALU_V_STATIC_VALID) {
/* check this has same vid & mac address */
if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
(static_table[3] == mac_lo)) {
/* found matching one */
break;
}
} else {
/* found empty one */
break;
}
}
/* no available entry */
if (index == dev->num_statics)
goto exit;
/* add entry */
static_table[0] = ALU_V_STATIC_VALID;
static_table[1] |= BIT(port);
if (mdb->vid)
static_table[1] |= ALU_V_USE_FID;
static_table[2] = (mdb->vid << ALU_V_FID_S);
static_table[2] |= mac_hi;
static_table[3] = mac_lo;
write_table(ds, static_table);
data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
exit:
mutex_unlock(&dev->alu_mutex);
}
static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct ksz_device *dev = ds->priv;
u32 static_table[4];
u32 data;
int index;
int ret = 0;
u32 mac_hi, mac_lo;
mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
mutex_lock(&dev->alu_mutex);
for (index = 0; index < dev->num_statics; index++) {
/* find empty slot first */
data = (index << ALU_STAT_INDEX_S) |
ALU_STAT_READ | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
goto exit;
}
/* read ALU static table */
read_table(ds, static_table);
if (static_table[0] & ALU_V_STATIC_VALID) {
/* check this has same vid & mac address */
if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
(static_table[3] == mac_lo)) {
/* found matching one */
break;
}
}
}
/* no available entry */
if (index == dev->num_statics) {
ret = -EINVAL;
goto exit;
}
/* clear port */
static_table[1] &= ~BIT(port);
if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
/* delete entry */
static_table[0] = 0;
static_table[1] = 0;
static_table[2] = 0;
static_table[3] = 0;
}
write_table(ds, static_table);
data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
if (ret < 0)
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress)
{
struct ksz_device *dev = ds->priv;
if (ingress)
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
else
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
/* configure mirror port */
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, true);
ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
return 0;
}
static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
struct ksz_device *dev = ds->priv;
u8 data;
if (mirror->ingress)
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
else
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, false);
}
static const struct dsa_switch_ops ksz_switch_ops = {
.get_tag_protocol = ksz_get_tag_protocol,
.setup = ksz_setup,
.phy_read = ksz_phy_read16,
.phy_write = ksz_phy_write16,
.port_enable = ksz_enable_port,
.port_disable = ksz_disable_port,
.get_strings = ksz_get_strings,
.get_ethtool_stats = ksz_get_ethtool_stats,
.get_sset_count = ksz_sset_count,
.port_stp_state_set = ksz_port_stp_state_set,
.port_fast_age = ksz_port_fast_age,
.port_vlan_filtering = ksz_port_vlan_filtering,
.port_vlan_prepare = ksz_port_vlan_prepare,
.port_vlan_add = ksz_port_vlan_add,
.port_vlan_del = ksz_port_vlan_del,
.port_fdb_dump = ksz_port_fdb_dump,
.port_fdb_add = ksz_port_fdb_add,
.port_fdb_del = ksz_port_fdb_del,
.port_mdb_prepare = ksz_port_mdb_prepare,
.port_mdb_add = ksz_port_mdb_add,
.port_mdb_del = ksz_port_mdb_del,
.port_mirror_add = ksz_port_mirror_add,
.port_mirror_del = ksz_port_mirror_del,
};
struct ksz_chip_data {
u32 chip_id;
const char *dev_name;
int num_vlans;
int num_alus;
int num_statics;
int cpu_ports;
int port_cnt;
};
static const struct ksz_chip_data ksz_switch_chips[] = {
{
.chip_id = 0x00947700,
.dev_name = "KSZ9477",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x7F, /* can be configured as cpu port */
.port_cnt = 7, /* total physical port count */
},
{
.chip_id = 0x00989700,
.dev_name = "KSZ9897",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x7F, /* can be configured as cpu port */
.port_cnt = 7, /* total physical port count */
},
};
static int ksz_switch_init(struct ksz_device *dev)
{
int i;
mutex_init(&dev->reg_mutex);
mutex_init(&dev->stats_mutex);
mutex_init(&dev->alu_mutex);
mutex_init(&dev->vlan_mutex);
dev->ds->ops = &ksz_switch_ops;
for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
const struct ksz_chip_data *chip = &ksz_switch_chips[i];
if (dev->chip_id == chip->chip_id) {
dev->name = chip->dev_name;
dev->num_vlans = chip->num_vlans;
dev->num_alus = chip->num_alus;
dev->num_statics = chip->num_statics;
dev->port_cnt = chip->port_cnt;
dev->cpu_ports = chip->cpu_ports;
break;
}
}
/* no switch found */
if (!dev->port_cnt)
return -ENODEV;
return 0;
}
struct ksz_device *ksz_switch_alloc(struct device *base,
const struct ksz_io_ops *ops,
void *priv)
{
struct dsa_switch *ds;
struct ksz_device *swdev;
ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
if (!ds)
return NULL;
swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
if (!swdev)
return NULL;
ds->priv = swdev;
swdev->dev = base;
swdev->ds = ds;
swdev->priv = priv;
swdev->ops = ops;
return swdev;
}
EXPORT_SYMBOL(ksz_switch_alloc);
int ksz_switch_detect(struct ksz_device *dev)
{
u8 data8;
u32 id32;
int ret;
/* turn off SPI DO Edge select */
ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
if (ret)
return ret;
data8 &= ~SPI_AUTO_EDGE_DETECTION;
ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
if (ret)
return ret;
/* read chip id */
ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
if (ret)
return ret;
dev->chip_id = id32;
return 0;
}
EXPORT_SYMBOL(ksz_switch_detect);
int ksz_switch_register(struct ksz_device *dev)
{
int ret;
if (dev->pdata)
dev->chip_id = dev->pdata->chip_id;
if (ksz_switch_detect(dev))
return -EINVAL;
ret = ksz_switch_init(dev);
if (ret)
return ret;
return dsa_register_switch(dev->ds);
}
EXPORT_SYMBOL(ksz_switch_register);
void ksz_switch_remove(struct ksz_device *dev)
{
dsa_unregister_switch(dev->ds);
}
EXPORT_SYMBOL(ksz_switch_remove);
MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
MODULE_LICENSE("GPL");