OpenCloudOS-Kernel/drivers/fpga/microchip-spi.c

399 lines
9.5 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Microchip Polarfire FPGA programming over slave SPI interface.
*/
#include <asm/unaligned.h>
#include <linux/delay.h>
#include <linux/fpga/fpga-mgr.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/spi/spi.h>
#define MPF_SPI_ISC_ENABLE 0x0B
#define MPF_SPI_ISC_DISABLE 0x0C
#define MPF_SPI_READ_STATUS 0x00
#define MPF_SPI_READ_DATA 0x01
#define MPF_SPI_FRAME_INIT 0xAE
#define MPF_SPI_FRAME 0xEE
#define MPF_SPI_PRG_MODE 0x01
#define MPF_SPI_RELEASE 0x23
#define MPF_SPI_FRAME_SIZE 16
#define MPF_HEADER_SIZE_OFFSET 24
#define MPF_DATA_SIZE_OFFSET 55
#define MPF_LOOKUP_TABLE_RECORD_SIZE 9
#define MPF_LOOKUP_TABLE_BLOCK_ID_OFFSET 0
#define MPF_LOOKUP_TABLE_BLOCK_START_OFFSET 1
#define MPF_COMPONENTS_SIZE_ID 5
#define MPF_BITSTREAM_ID 8
#define MPF_BITS_PER_COMPONENT_SIZE 22
#define MPF_STATUS_POLL_RETRIES 10000
#define MPF_STATUS_BUSY BIT(0)
#define MPF_STATUS_READY BIT(1)
#define MPF_STATUS_SPI_VIOLATION BIT(2)
#define MPF_STATUS_SPI_ERROR BIT(3)
struct mpf_priv {
struct spi_device *spi;
bool program_mode;
};
static int mpf_read_status(struct spi_device *spi)
{
u8 status = 0, status_command = MPF_SPI_READ_STATUS;
struct spi_transfer xfers[2] = { 0 };
int ret;
/*
* HW status is returned on MISO in the first byte after CS went
* active. However, first reading can be inadequate, so we submit
* two identical SPI transfers and use result of the later one.
*/
xfers[0].tx_buf = &status_command;
xfers[1].tx_buf = &status_command;
xfers[0].rx_buf = &status;
xfers[1].rx_buf = &status;
xfers[0].len = 1;
xfers[1].len = 1;
xfers[0].cs_change = 1;
ret = spi_sync_transfer(spi, xfers, 2);
if ((status & MPF_STATUS_SPI_VIOLATION) ||
(status & MPF_STATUS_SPI_ERROR))
ret = -EIO;
return ret ? : status;
}
static enum fpga_mgr_states mpf_ops_state(struct fpga_manager *mgr)
{
struct mpf_priv *priv = mgr->priv;
struct spi_device *spi;
bool program_mode;
int status;
spi = priv->spi;
program_mode = priv->program_mode;
status = mpf_read_status(spi);
if (!program_mode && !status)
return FPGA_MGR_STATE_OPERATING;
return FPGA_MGR_STATE_UNKNOWN;
}
static int mpf_ops_parse_header(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
size_t component_size_byte_num, component_size_byte_off,
components_size_start, bitstream_start,
block_id_offset, block_start_offset;
u8 header_size, blocks_num, block_id;
u32 block_start, component_size;
u16 components_num, i;
if (!buf) {
dev_err(&mgr->dev, "Image buffer is not provided\n");
return -EINVAL;
}
header_size = *(buf + MPF_HEADER_SIZE_OFFSET);
if (header_size > count) {
info->header_size = header_size;
return -EAGAIN;
}
/*
* Go through look-up table to find out where actual bitstream starts
* and where sizes of components of the bitstream lies.
*/
blocks_num = *(buf + header_size - 1);
block_id_offset = header_size + MPF_LOOKUP_TABLE_BLOCK_ID_OFFSET;
block_start_offset = header_size + MPF_LOOKUP_TABLE_BLOCK_START_OFFSET;
header_size += blocks_num * MPF_LOOKUP_TABLE_RECORD_SIZE;
if (header_size > count) {
info->header_size = header_size;
return -EAGAIN;
}
components_size_start = 0;
bitstream_start = 0;
while (blocks_num--) {
block_id = *(buf + block_id_offset);
block_start = get_unaligned_le32(buf + block_start_offset);
switch (block_id) {
case MPF_BITSTREAM_ID:
bitstream_start = block_start;
info->header_size = block_start;
if (block_start > count)
return -EAGAIN;
break;
case MPF_COMPONENTS_SIZE_ID:
components_size_start = block_start;
break;
default:
break;
}
if (bitstream_start && components_size_start)
break;
block_id_offset += MPF_LOOKUP_TABLE_RECORD_SIZE;
block_start_offset += MPF_LOOKUP_TABLE_RECORD_SIZE;
}
if (!bitstream_start || !components_size_start) {
dev_err(&mgr->dev, "Failed to parse header look-up table\n");
return -EFAULT;
}
/*
* Parse bitstream size.
* Sizes of components of the bitstream are 22-bits long placed next
* to each other. Image header should be extended by now up to where
* actual bitstream starts, so no need for overflow check anymore.
*/
components_num = get_unaligned_le16(buf + MPF_DATA_SIZE_OFFSET);
for (i = 0; i < components_num; i++) {
component_size_byte_num =
(i * MPF_BITS_PER_COMPONENT_SIZE) / BITS_PER_BYTE;
component_size_byte_off =
(i * MPF_BITS_PER_COMPONENT_SIZE) % BITS_PER_BYTE;
component_size = get_unaligned_le32(buf +
components_size_start +
component_size_byte_num);
component_size >>= component_size_byte_off;
component_size &= GENMASK(MPF_BITS_PER_COMPONENT_SIZE - 1, 0);
info->data_size += component_size * MPF_SPI_FRAME_SIZE;
}
return 0;
}
/* Poll HW status until busy bit is cleared and mask bits are set. */
static int mpf_poll_status(struct spi_device *spi, u8 mask)
{
int status, retries = MPF_STATUS_POLL_RETRIES;
while (retries--) {
status = mpf_read_status(spi);
if (status < 0)
return status;
if (status & MPF_STATUS_BUSY)
continue;
if (!mask || (status & mask))
return status;
}
return -EBUSY;
}
static int mpf_spi_write(struct spi_device *spi, const void *buf, size_t buf_size)
{
int status = mpf_poll_status(spi, 0);
if (status < 0)
return status;
return spi_write(spi, buf, buf_size);
}
static int mpf_spi_write_then_read(struct spi_device *spi,
const void *txbuf, size_t txbuf_size,
void *rxbuf, size_t rxbuf_size)
{
const u8 read_command[] = { MPF_SPI_READ_DATA };
int ret;
ret = mpf_spi_write(spi, txbuf, txbuf_size);
if (ret)
return ret;
ret = mpf_poll_status(spi, MPF_STATUS_READY);
if (ret < 0)
return ret;
return spi_write_then_read(spi, read_command, sizeof(read_command),
rxbuf, rxbuf_size);
}
static int mpf_ops_write_init(struct fpga_manager *mgr,
struct fpga_image_info *info, const char *buf,
size_t count)
{
const u8 program_mode[] = { MPF_SPI_FRAME_INIT, MPF_SPI_PRG_MODE };
const u8 isc_en_command[] = { MPF_SPI_ISC_ENABLE };
struct mpf_priv *priv = mgr->priv;
struct device *dev = &mgr->dev;
struct spi_device *spi;
u32 isc_ret = 0;
int ret;
if (info->flags & FPGA_MGR_PARTIAL_RECONFIG) {
dev_err(dev, "Partial reconfiguration is not supported\n");
return -EOPNOTSUPP;
}
spi = priv->spi;
ret = mpf_spi_write_then_read(spi, isc_en_command, sizeof(isc_en_command),
&isc_ret, sizeof(isc_ret));
if (ret || isc_ret) {
dev_err(dev, "Failed to enable ISC: spi_ret %d, isc_ret %u\n",
ret, isc_ret);
return -EFAULT;
}
ret = mpf_spi_write(spi, program_mode, sizeof(program_mode));
if (ret) {
dev_err(dev, "Failed to enter program mode: %d\n", ret);
return ret;
}
priv->program_mode = true;
return 0;
}
static int mpf_ops_write(struct fpga_manager *mgr, const char *buf, size_t count)
{
u8 spi_frame_command[] = { MPF_SPI_FRAME };
struct spi_transfer xfers[2] = { 0 };
struct mpf_priv *priv = mgr->priv;
struct device *dev = &mgr->dev;
struct spi_device *spi;
int ret, i;
if (count % MPF_SPI_FRAME_SIZE) {
dev_err(dev, "Bitstream size is not a multiple of %d\n",
MPF_SPI_FRAME_SIZE);
return -EINVAL;
}
spi = priv->spi;
xfers[0].tx_buf = spi_frame_command;
xfers[0].len = sizeof(spi_frame_command);
for (i = 0; i < count / MPF_SPI_FRAME_SIZE; i++) {
xfers[1].tx_buf = buf + i * MPF_SPI_FRAME_SIZE;
xfers[1].len = MPF_SPI_FRAME_SIZE;
ret = mpf_poll_status(spi, 0);
if (ret >= 0)
ret = spi_sync_transfer(spi, xfers, ARRAY_SIZE(xfers));
if (ret) {
dev_err(dev, "Failed to write bitstream frame %d/%zu\n",
i, count / MPF_SPI_FRAME_SIZE);
return ret;
}
}
return 0;
}
static int mpf_ops_write_complete(struct fpga_manager *mgr,
struct fpga_image_info *info)
{
const u8 isc_dis_command[] = { MPF_SPI_ISC_DISABLE };
const u8 release_command[] = { MPF_SPI_RELEASE };
struct mpf_priv *priv = mgr->priv;
struct device *dev = &mgr->dev;
struct spi_device *spi;
int ret;
spi = priv->spi;
ret = mpf_spi_write(spi, isc_dis_command, sizeof(isc_dis_command));
if (ret) {
dev_err(dev, "Failed to disable ISC: %d\n", ret);
return ret;
}
usleep_range(1000, 2000);
ret = mpf_spi_write(spi, release_command, sizeof(release_command));
if (ret) {
dev_err(dev, "Failed to exit program mode: %d\n", ret);
return ret;
}
priv->program_mode = false;
return 0;
}
static const struct fpga_manager_ops mpf_ops = {
.state = mpf_ops_state,
.initial_header_size = 71,
.skip_header = true,
.parse_header = mpf_ops_parse_header,
.write_init = mpf_ops_write_init,
.write = mpf_ops_write,
.write_complete = mpf_ops_write_complete,
};
static int mpf_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct fpga_manager *mgr;
struct mpf_priv *priv;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->spi = spi;
mgr = devm_fpga_mgr_register(dev, "Microchip Polarfire SPI FPGA Manager",
&mpf_ops, priv);
return PTR_ERR_OR_ZERO(mgr);
}
static const struct spi_device_id mpf_spi_ids[] = {
{ .name = "mpf-spi-fpga-mgr", },
{},
};
MODULE_DEVICE_TABLE(spi, mpf_spi_ids);
#if IS_ENABLED(CONFIG_OF)
static const struct of_device_id mpf_of_ids[] = {
{ .compatible = "microchip,mpf-spi-fpga-mgr" },
{},
};
MODULE_DEVICE_TABLE(of, mpf_of_ids);
#endif /* IS_ENABLED(CONFIG_OF) */
static struct spi_driver mpf_driver = {
.probe = mpf_probe,
.id_table = mpf_spi_ids,
.driver = {
.name = "microchip_mpf_spi_fpga_mgr",
.of_match_table = of_match_ptr(mpf_of_ids),
},
};
module_spi_driver(mpf_driver);
MODULE_DESCRIPTION("Microchip Polarfire SPI FPGA Manager");
MODULE_LICENSE("GPL");