OpenCloudOS-Kernel/include/linux/filter.h

315 lines
7.8 KiB
C
Raw Normal View History

/*
* Linux Socket Filter Data Structures
*/
#ifndef __LINUX_FILTER_H__
#define __LINUX_FILTER_H__
#include <linux/atomic.h>
#include <linux/compat.h>
net: fix unsafe set_memory_rw from softirq on x86 system with net.core.bpf_jit_enable = 1 sudo tcpdump -i eth1 'tcp port 22' causes the warning: [ 56.766097] Possible unsafe locking scenario: [ 56.766097] [ 56.780146] CPU0 [ 56.786807] ---- [ 56.793188] lock(&(&vb->lock)->rlock); [ 56.799593] <Interrupt> [ 56.805889] lock(&(&vb->lock)->rlock); [ 56.812266] [ 56.812266] *** DEADLOCK *** [ 56.812266] [ 56.830670] 1 lock held by ksoftirqd/1/13: [ 56.836838] #0: (rcu_read_lock){.+.+..}, at: [<ffffffff8118f44c>] vm_unmap_aliases+0x8c/0x380 [ 56.849757] [ 56.849757] stack backtrace: [ 56.862194] CPU: 1 PID: 13 Comm: ksoftirqd/1 Not tainted 3.12.0-rc3+ #45 [ 56.868721] Hardware name: System manufacturer System Product Name/P8Z77 WS, BIOS 3007 07/26/2012 [ 56.882004] ffffffff821944c0 ffff88080bbdb8c8 ffffffff8175a145 0000000000000007 [ 56.895630] ffff88080bbd5f40 ffff88080bbdb928 ffffffff81755b14 0000000000000001 [ 56.909313] ffff880800000001 ffff880800000000 ffffffff8101178f 0000000000000001 [ 56.923006] Call Trace: [ 56.929532] [<ffffffff8175a145>] dump_stack+0x55/0x76 [ 56.936067] [<ffffffff81755b14>] print_usage_bug+0x1f7/0x208 [ 56.942445] [<ffffffff8101178f>] ? save_stack_trace+0x2f/0x50 [ 56.948932] [<ffffffff810cc0a0>] ? check_usage_backwards+0x150/0x150 [ 56.955470] [<ffffffff810ccb52>] mark_lock+0x282/0x2c0 [ 56.961945] [<ffffffff810ccfed>] __lock_acquire+0x45d/0x1d50 [ 56.968474] [<ffffffff810cce6e>] ? __lock_acquire+0x2de/0x1d50 [ 56.975140] [<ffffffff81393bf5>] ? cpumask_next_and+0x55/0x90 [ 56.981942] [<ffffffff810cef72>] lock_acquire+0x92/0x1d0 [ 56.988745] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 56.995619] [<ffffffff817628f1>] _raw_spin_lock+0x41/0x50 [ 57.002493] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 57.009447] [<ffffffff8118f52a>] vm_unmap_aliases+0x16a/0x380 [ 57.016477] [<ffffffff8118f44c>] ? vm_unmap_aliases+0x8c/0x380 [ 57.023607] [<ffffffff810436b0>] change_page_attr_set_clr+0xc0/0x460 [ 57.030818] [<ffffffff810cfb8d>] ? trace_hardirqs_on+0xd/0x10 [ 57.037896] [<ffffffff811a8330>] ? kmem_cache_free+0xb0/0x2b0 [ 57.044789] [<ffffffff811b59c3>] ? free_object_rcu+0x93/0xa0 [ 57.051720] [<ffffffff81043d9f>] set_memory_rw+0x2f/0x40 [ 57.058727] [<ffffffff8104e17c>] bpf_jit_free+0x2c/0x40 [ 57.065577] [<ffffffff81642cba>] sk_filter_release_rcu+0x1a/0x30 [ 57.072338] [<ffffffff811108e2>] rcu_process_callbacks+0x202/0x7c0 [ 57.078962] [<ffffffff81057f17>] __do_softirq+0xf7/0x3f0 [ 57.085373] [<ffffffff81058245>] run_ksoftirqd+0x35/0x70 cannot reuse jited filter memory, since it's readonly, so use original bpf insns memory to hold work_struct defer kfree of sk_filter until jit completed freeing tested on x86_64 and i386 Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-04 15:14:06 +08:00
#include <linux/workqueue.h>
#include <uapi/linux/filter.h>
net: filter: rework/optimize internal BPF interpreter's instruction set This patch replaces/reworks the kernel-internal BPF interpreter with an optimized BPF instruction set format that is modelled closer to mimic native instruction sets and is designed to be JITed with one to one mapping. Thus, the new interpreter is noticeably faster than the current implementation of sk_run_filter(); mainly for two reasons: 1. Fall-through jumps: BPF jump instructions are forced to go either 'true' or 'false' branch which causes branch-miss penalty. The new BPF jump instructions have only one branch and fall-through otherwise, which fits the CPU branch predictor logic better. `perf stat` shows drastic difference for branch-misses between the old and new code. 2. Jump-threaded implementation of interpreter vs switch statement: Instead of single table-jump at the top of 'switch' statement, gcc will now generate multiple table-jump instructions, which helps CPU branch predictor logic. Note that the verification of filters is still being done through sk_chk_filter() in classical BPF format, so filters from user- or kernel space are verified in the same way as we do now, and same restrictions/constraints hold as well. We reuse current BPF JIT compilers in a way that this upgrade would even be fine as is, but nevertheless allows for a successive upgrade of BPF JIT compilers to the new format. The internal instruction set migration is being done after the probing for JIT compilation, so in case JIT compilers are able to create a native opcode image, we're going to use that, and in all other cases we're doing a follow-up migration of the BPF program's instruction set, so that it can be transparently run in the new interpreter. In short, the *internal* format extends BPF in the following way (more details can be taken from the appended documentation): - Number of registers increase from 2 to 10 - Register width increases from 32-bit to 64-bit - Conditional jt/jf targets replaced with jt/fall-through - Adds signed > and >= insns - 16 4-byte stack slots for register spill-fill replaced with up to 512 bytes of multi-use stack space - Introduction of bpf_call insn and register passing convention for zero overhead calls from/to other kernel functions - Adds arithmetic right shift and endianness conversion insns - Adds atomic_add insn - Old tax/txa insns are replaced with 'mov dst,src' insn Performance of two BPF filters generated by libpcap resp. bpf_asm was measured on x86_64, i386 and arm32 (other libpcap programs have similar performance differences): fprog #1 is taken from Documentation/networking/filter.txt: tcpdump -i eth0 port 22 -dd fprog #2 is taken from 'man tcpdump': tcpdump -i eth0 'tcp port 22 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)' -dd Raw performance data from BPF micro-benchmark: SK_RUN_FILTER on the same SKB (cache-hit) or 10k SKBs (cache-miss); time in ns per call, smaller is better: --x86_64-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 90 101 192 202 new BPF 31 71 47 97 old BPF jit 12 34 17 44 new BPF jit TBD --i386-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 107 136 227 252 new BPF 40 119 69 172 --arm32-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 202 300 475 540 new BPF 180 270 330 470 old BPF jit 26 182 37 202 new BPF jit TBD Thus, without changing any userland BPF filters, applications on top of AF_PACKET (or other families) such as libpcap/tcpdump, cls_bpf classifier, netfilter's xt_bpf, team driver's load-balancing mode, and many more will have better interpreter filtering performance. While we are replacing the internal BPF interpreter, we also need to convert seccomp BPF in the same step to make use of the new internal structure since it makes use of lower-level API details without being further decoupled through higher-level calls like sk_unattached_filter_{create,destroy}(), for example. Just as for normal socket filtering, also seccomp BPF experiences a time-to-verdict speedup: 05-sim-long_jumps.c of libseccomp was used as micro-benchmark: seccomp_rule_add_exact(ctx,... seccomp_rule_add_exact(ctx,... rc = seccomp_load(ctx); for (i = 0; i < 10000000; i++) syscall(199, 100); 'short filter' has 2 rules 'large filter' has 200 rules 'short filter' performance is slightly better on x86_64/i386/arm32 'large filter' is much faster on x86_64 and i386 and shows no difference on arm32 --x86_64-- short filter old BPF: 2.7 sec 39.12% bench libc-2.15.so [.] syscall 8.10% bench [kernel.kallsyms] [k] sk_run_filter 6.31% bench [kernel.kallsyms] [k] system_call 5.59% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 4.37% bench [kernel.kallsyms] [k] trace_hardirqs_off_caller 3.70% bench [kernel.kallsyms] [k] __secure_computing 3.67% bench [kernel.kallsyms] [k] lock_is_held 3.03% bench [kernel.kallsyms] [k] seccomp_bpf_load new BPF: 2.58 sec 42.05% bench libc-2.15.so [.] syscall 6.91% bench [kernel.kallsyms] [k] system_call 6.25% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 6.07% bench [kernel.kallsyms] [k] __secure_computing 5.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp --arm32-- short filter old BPF: 4.0 sec 39.92% bench [kernel.kallsyms] [k] vector_swi 16.60% bench [kernel.kallsyms] [k] sk_run_filter 14.66% bench libc-2.17.so [.] syscall 5.42% bench [kernel.kallsyms] [k] seccomp_bpf_load 5.10% bench [kernel.kallsyms] [k] __secure_computing new BPF: 3.7 sec 35.93% bench [kernel.kallsyms] [k] vector_swi 21.89% bench libc-2.17.so [.] syscall 13.45% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 6.25% bench [kernel.kallsyms] [k] __secure_computing 3.96% bench [kernel.kallsyms] [k] syscall_trace_exit --x86_64-- large filter old BPF: 8.6 seconds 73.38% bench [kernel.kallsyms] [k] sk_run_filter 10.70% bench libc-2.15.so [.] syscall 5.09% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.97% bench [kernel.kallsyms] [k] system_call new BPF: 5.7 seconds 66.20% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 16.75% bench libc-2.15.so [.] syscall 3.31% bench [kernel.kallsyms] [k] system_call 2.88% bench [kernel.kallsyms] [k] __secure_computing --i386-- large filter old BPF: 5.4 sec new BPF: 3.8 sec --arm32-- large filter old BPF: 13.5 sec 73.88% bench [kernel.kallsyms] [k] sk_run_filter 10.29% bench [kernel.kallsyms] [k] vector_swi 6.46% bench libc-2.17.so [.] syscall 2.94% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.19% bench [kernel.kallsyms] [k] __secure_computing 0.87% bench [kernel.kallsyms] [k] sys_getuid new BPF: 13.5 sec 76.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 10.98% bench [kernel.kallsyms] [k] vector_swi 5.87% bench libc-2.17.so [.] syscall 1.77% bench [kernel.kallsyms] [k] __secure_computing 0.93% bench [kernel.kallsyms] [k] sys_getuid BPF filters generated by seccomp are very branchy, so the new internal BPF performance is better than the old one. Performance gains will be even higher when BPF JIT is committed for the new structure, which is planned in future work (as successive JIT migrations). BPF has also been stress-tested with trinity's BPF fuzzer. Joint work with Daniel Borkmann. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: Kees Cook <keescook@chromium.org> Cc: Paul Moore <pmoore@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: linux-kernel@vger.kernel.org Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-29 01:58:25 +08:00
/* Internally used and optimized filter representation with extended
* instruction set based on top of classic BPF.
*/
net: filter: rework/optimize internal BPF interpreter's instruction set This patch replaces/reworks the kernel-internal BPF interpreter with an optimized BPF instruction set format that is modelled closer to mimic native instruction sets and is designed to be JITed with one to one mapping. Thus, the new interpreter is noticeably faster than the current implementation of sk_run_filter(); mainly for two reasons: 1. Fall-through jumps: BPF jump instructions are forced to go either 'true' or 'false' branch which causes branch-miss penalty. The new BPF jump instructions have only one branch and fall-through otherwise, which fits the CPU branch predictor logic better. `perf stat` shows drastic difference for branch-misses between the old and new code. 2. Jump-threaded implementation of interpreter vs switch statement: Instead of single table-jump at the top of 'switch' statement, gcc will now generate multiple table-jump instructions, which helps CPU branch predictor logic. Note that the verification of filters is still being done through sk_chk_filter() in classical BPF format, so filters from user- or kernel space are verified in the same way as we do now, and same restrictions/constraints hold as well. We reuse current BPF JIT compilers in a way that this upgrade would even be fine as is, but nevertheless allows for a successive upgrade of BPF JIT compilers to the new format. The internal instruction set migration is being done after the probing for JIT compilation, so in case JIT compilers are able to create a native opcode image, we're going to use that, and in all other cases we're doing a follow-up migration of the BPF program's instruction set, so that it can be transparently run in the new interpreter. In short, the *internal* format extends BPF in the following way (more details can be taken from the appended documentation): - Number of registers increase from 2 to 10 - Register width increases from 32-bit to 64-bit - Conditional jt/jf targets replaced with jt/fall-through - Adds signed > and >= insns - 16 4-byte stack slots for register spill-fill replaced with up to 512 bytes of multi-use stack space - Introduction of bpf_call insn and register passing convention for zero overhead calls from/to other kernel functions - Adds arithmetic right shift and endianness conversion insns - Adds atomic_add insn - Old tax/txa insns are replaced with 'mov dst,src' insn Performance of two BPF filters generated by libpcap resp. bpf_asm was measured on x86_64, i386 and arm32 (other libpcap programs have similar performance differences): fprog #1 is taken from Documentation/networking/filter.txt: tcpdump -i eth0 port 22 -dd fprog #2 is taken from 'man tcpdump': tcpdump -i eth0 'tcp port 22 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)' -dd Raw performance data from BPF micro-benchmark: SK_RUN_FILTER on the same SKB (cache-hit) or 10k SKBs (cache-miss); time in ns per call, smaller is better: --x86_64-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 90 101 192 202 new BPF 31 71 47 97 old BPF jit 12 34 17 44 new BPF jit TBD --i386-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 107 136 227 252 new BPF 40 119 69 172 --arm32-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 202 300 475 540 new BPF 180 270 330 470 old BPF jit 26 182 37 202 new BPF jit TBD Thus, without changing any userland BPF filters, applications on top of AF_PACKET (or other families) such as libpcap/tcpdump, cls_bpf classifier, netfilter's xt_bpf, team driver's load-balancing mode, and many more will have better interpreter filtering performance. While we are replacing the internal BPF interpreter, we also need to convert seccomp BPF in the same step to make use of the new internal structure since it makes use of lower-level API details without being further decoupled through higher-level calls like sk_unattached_filter_{create,destroy}(), for example. Just as for normal socket filtering, also seccomp BPF experiences a time-to-verdict speedup: 05-sim-long_jumps.c of libseccomp was used as micro-benchmark: seccomp_rule_add_exact(ctx,... seccomp_rule_add_exact(ctx,... rc = seccomp_load(ctx); for (i = 0; i < 10000000; i++) syscall(199, 100); 'short filter' has 2 rules 'large filter' has 200 rules 'short filter' performance is slightly better on x86_64/i386/arm32 'large filter' is much faster on x86_64 and i386 and shows no difference on arm32 --x86_64-- short filter old BPF: 2.7 sec 39.12% bench libc-2.15.so [.] syscall 8.10% bench [kernel.kallsyms] [k] sk_run_filter 6.31% bench [kernel.kallsyms] [k] system_call 5.59% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 4.37% bench [kernel.kallsyms] [k] trace_hardirqs_off_caller 3.70% bench [kernel.kallsyms] [k] __secure_computing 3.67% bench [kernel.kallsyms] [k] lock_is_held 3.03% bench [kernel.kallsyms] [k] seccomp_bpf_load new BPF: 2.58 sec 42.05% bench libc-2.15.so [.] syscall 6.91% bench [kernel.kallsyms] [k] system_call 6.25% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 6.07% bench [kernel.kallsyms] [k] __secure_computing 5.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp --arm32-- short filter old BPF: 4.0 sec 39.92% bench [kernel.kallsyms] [k] vector_swi 16.60% bench [kernel.kallsyms] [k] sk_run_filter 14.66% bench libc-2.17.so [.] syscall 5.42% bench [kernel.kallsyms] [k] seccomp_bpf_load 5.10% bench [kernel.kallsyms] [k] __secure_computing new BPF: 3.7 sec 35.93% bench [kernel.kallsyms] [k] vector_swi 21.89% bench libc-2.17.so [.] syscall 13.45% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 6.25% bench [kernel.kallsyms] [k] __secure_computing 3.96% bench [kernel.kallsyms] [k] syscall_trace_exit --x86_64-- large filter old BPF: 8.6 seconds 73.38% bench [kernel.kallsyms] [k] sk_run_filter 10.70% bench libc-2.15.so [.] syscall 5.09% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.97% bench [kernel.kallsyms] [k] system_call new BPF: 5.7 seconds 66.20% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 16.75% bench libc-2.15.so [.] syscall 3.31% bench [kernel.kallsyms] [k] system_call 2.88% bench [kernel.kallsyms] [k] __secure_computing --i386-- large filter old BPF: 5.4 sec new BPF: 3.8 sec --arm32-- large filter old BPF: 13.5 sec 73.88% bench [kernel.kallsyms] [k] sk_run_filter 10.29% bench [kernel.kallsyms] [k] vector_swi 6.46% bench libc-2.17.so [.] syscall 2.94% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.19% bench [kernel.kallsyms] [k] __secure_computing 0.87% bench [kernel.kallsyms] [k] sys_getuid new BPF: 13.5 sec 76.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 10.98% bench [kernel.kallsyms] [k] vector_swi 5.87% bench libc-2.17.so [.] syscall 1.77% bench [kernel.kallsyms] [k] __secure_computing 0.93% bench [kernel.kallsyms] [k] sys_getuid BPF filters generated by seccomp are very branchy, so the new internal BPF performance is better than the old one. Performance gains will be even higher when BPF JIT is committed for the new structure, which is planned in future work (as successive JIT migrations). BPF has also been stress-tested with trinity's BPF fuzzer. Joint work with Daniel Borkmann. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: Kees Cook <keescook@chromium.org> Cc: Paul Moore <pmoore@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: linux-kernel@vger.kernel.org Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-29 01:58:25 +08:00
/* instruction classes */
#define BPF_ALU64 0x07 /* alu mode in double word width */
/* ld/ldx fields */
#define BPF_DW 0x18 /* double word */
#define BPF_XADD 0xc0 /* exclusive add */
/* alu/jmp fields */
#define BPF_MOV 0xb0 /* mov reg to reg */
#define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */
/* change endianness of a register */
#define BPF_END 0xd0 /* flags for endianness conversion: */
#define BPF_TO_LE 0x00 /* convert to little-endian */
#define BPF_TO_BE 0x08 /* convert to big-endian */
#define BPF_FROM_LE BPF_TO_LE
#define BPF_FROM_BE BPF_TO_BE
#define BPF_JNE 0x50 /* jump != */
#define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */
#define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */
#define BPF_CALL 0x80 /* function call */
#define BPF_EXIT 0x90 /* function return */
/* Placeholder/dummy for 0 */
#define BPF_0 0
/* Register numbers */
enum {
BPF_REG_0 = 0,
BPF_REG_1,
BPF_REG_2,
BPF_REG_3,
BPF_REG_4,
BPF_REG_5,
BPF_REG_6,
BPF_REG_7,
BPF_REG_8,
BPF_REG_9,
BPF_REG_10,
__MAX_BPF_REG,
};
net: filter: rework/optimize internal BPF interpreter's instruction set This patch replaces/reworks the kernel-internal BPF interpreter with an optimized BPF instruction set format that is modelled closer to mimic native instruction sets and is designed to be JITed with one to one mapping. Thus, the new interpreter is noticeably faster than the current implementation of sk_run_filter(); mainly for two reasons: 1. Fall-through jumps: BPF jump instructions are forced to go either 'true' or 'false' branch which causes branch-miss penalty. The new BPF jump instructions have only one branch and fall-through otherwise, which fits the CPU branch predictor logic better. `perf stat` shows drastic difference for branch-misses between the old and new code. 2. Jump-threaded implementation of interpreter vs switch statement: Instead of single table-jump at the top of 'switch' statement, gcc will now generate multiple table-jump instructions, which helps CPU branch predictor logic. Note that the verification of filters is still being done through sk_chk_filter() in classical BPF format, so filters from user- or kernel space are verified in the same way as we do now, and same restrictions/constraints hold as well. We reuse current BPF JIT compilers in a way that this upgrade would even be fine as is, but nevertheless allows for a successive upgrade of BPF JIT compilers to the new format. The internal instruction set migration is being done after the probing for JIT compilation, so in case JIT compilers are able to create a native opcode image, we're going to use that, and in all other cases we're doing a follow-up migration of the BPF program's instruction set, so that it can be transparently run in the new interpreter. In short, the *internal* format extends BPF in the following way (more details can be taken from the appended documentation): - Number of registers increase from 2 to 10 - Register width increases from 32-bit to 64-bit - Conditional jt/jf targets replaced with jt/fall-through - Adds signed > and >= insns - 16 4-byte stack slots for register spill-fill replaced with up to 512 bytes of multi-use stack space - Introduction of bpf_call insn and register passing convention for zero overhead calls from/to other kernel functions - Adds arithmetic right shift and endianness conversion insns - Adds atomic_add insn - Old tax/txa insns are replaced with 'mov dst,src' insn Performance of two BPF filters generated by libpcap resp. bpf_asm was measured on x86_64, i386 and arm32 (other libpcap programs have similar performance differences): fprog #1 is taken from Documentation/networking/filter.txt: tcpdump -i eth0 port 22 -dd fprog #2 is taken from 'man tcpdump': tcpdump -i eth0 'tcp port 22 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)' -dd Raw performance data from BPF micro-benchmark: SK_RUN_FILTER on the same SKB (cache-hit) or 10k SKBs (cache-miss); time in ns per call, smaller is better: --x86_64-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 90 101 192 202 new BPF 31 71 47 97 old BPF jit 12 34 17 44 new BPF jit TBD --i386-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 107 136 227 252 new BPF 40 119 69 172 --arm32-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 202 300 475 540 new BPF 180 270 330 470 old BPF jit 26 182 37 202 new BPF jit TBD Thus, without changing any userland BPF filters, applications on top of AF_PACKET (or other families) such as libpcap/tcpdump, cls_bpf classifier, netfilter's xt_bpf, team driver's load-balancing mode, and many more will have better interpreter filtering performance. While we are replacing the internal BPF interpreter, we also need to convert seccomp BPF in the same step to make use of the new internal structure since it makes use of lower-level API details without being further decoupled through higher-level calls like sk_unattached_filter_{create,destroy}(), for example. Just as for normal socket filtering, also seccomp BPF experiences a time-to-verdict speedup: 05-sim-long_jumps.c of libseccomp was used as micro-benchmark: seccomp_rule_add_exact(ctx,... seccomp_rule_add_exact(ctx,... rc = seccomp_load(ctx); for (i = 0; i < 10000000; i++) syscall(199, 100); 'short filter' has 2 rules 'large filter' has 200 rules 'short filter' performance is slightly better on x86_64/i386/arm32 'large filter' is much faster on x86_64 and i386 and shows no difference on arm32 --x86_64-- short filter old BPF: 2.7 sec 39.12% bench libc-2.15.so [.] syscall 8.10% bench [kernel.kallsyms] [k] sk_run_filter 6.31% bench [kernel.kallsyms] [k] system_call 5.59% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 4.37% bench [kernel.kallsyms] [k] trace_hardirqs_off_caller 3.70% bench [kernel.kallsyms] [k] __secure_computing 3.67% bench [kernel.kallsyms] [k] lock_is_held 3.03% bench [kernel.kallsyms] [k] seccomp_bpf_load new BPF: 2.58 sec 42.05% bench libc-2.15.so [.] syscall 6.91% bench [kernel.kallsyms] [k] system_call 6.25% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 6.07% bench [kernel.kallsyms] [k] __secure_computing 5.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp --arm32-- short filter old BPF: 4.0 sec 39.92% bench [kernel.kallsyms] [k] vector_swi 16.60% bench [kernel.kallsyms] [k] sk_run_filter 14.66% bench libc-2.17.so [.] syscall 5.42% bench [kernel.kallsyms] [k] seccomp_bpf_load 5.10% bench [kernel.kallsyms] [k] __secure_computing new BPF: 3.7 sec 35.93% bench [kernel.kallsyms] [k] vector_swi 21.89% bench libc-2.17.so [.] syscall 13.45% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 6.25% bench [kernel.kallsyms] [k] __secure_computing 3.96% bench [kernel.kallsyms] [k] syscall_trace_exit --x86_64-- large filter old BPF: 8.6 seconds 73.38% bench [kernel.kallsyms] [k] sk_run_filter 10.70% bench libc-2.15.so [.] syscall 5.09% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.97% bench [kernel.kallsyms] [k] system_call new BPF: 5.7 seconds 66.20% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 16.75% bench libc-2.15.so [.] syscall 3.31% bench [kernel.kallsyms] [k] system_call 2.88% bench [kernel.kallsyms] [k] __secure_computing --i386-- large filter old BPF: 5.4 sec new BPF: 3.8 sec --arm32-- large filter old BPF: 13.5 sec 73.88% bench [kernel.kallsyms] [k] sk_run_filter 10.29% bench [kernel.kallsyms] [k] vector_swi 6.46% bench libc-2.17.so [.] syscall 2.94% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.19% bench [kernel.kallsyms] [k] __secure_computing 0.87% bench [kernel.kallsyms] [k] sys_getuid new BPF: 13.5 sec 76.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 10.98% bench [kernel.kallsyms] [k] vector_swi 5.87% bench libc-2.17.so [.] syscall 1.77% bench [kernel.kallsyms] [k] __secure_computing 0.93% bench [kernel.kallsyms] [k] sys_getuid BPF filters generated by seccomp are very branchy, so the new internal BPF performance is better than the old one. Performance gains will be even higher when BPF JIT is committed for the new structure, which is planned in future work (as successive JIT migrations). BPF has also been stress-tested with trinity's BPF fuzzer. Joint work with Daniel Borkmann. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: Kees Cook <keescook@chromium.org> Cc: Paul Moore <pmoore@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: linux-kernel@vger.kernel.org Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-29 01:58:25 +08:00
/* BPF has 10 general purpose 64-bit registers and stack frame. */
#define MAX_BPF_REG __MAX_BPF_REG
/* ArgX, context and stack frame pointer register positions. Note,
* Arg1, Arg2, Arg3, etc are used as argument mappings of function
* calls in BPF_CALL instruction.
*/
#define BPF_REG_ARG1 BPF_REG_1
#define BPF_REG_ARG2 BPF_REG_2
#define BPF_REG_ARG3 BPF_REG_3
#define BPF_REG_ARG4 BPF_REG_4
#define BPF_REG_ARG5 BPF_REG_5
#define BPF_REG_CTX BPF_REG_6
#define BPF_REG_FP BPF_REG_10
/* Additional register mappings for converted user programs. */
#define BPF_REG_A BPF_REG_0
#define BPF_REG_X BPF_REG_7
#define BPF_REG_TMP BPF_REG_8
net: filter: rework/optimize internal BPF interpreter's instruction set This patch replaces/reworks the kernel-internal BPF interpreter with an optimized BPF instruction set format that is modelled closer to mimic native instruction sets and is designed to be JITed with one to one mapping. Thus, the new interpreter is noticeably faster than the current implementation of sk_run_filter(); mainly for two reasons: 1. Fall-through jumps: BPF jump instructions are forced to go either 'true' or 'false' branch which causes branch-miss penalty. The new BPF jump instructions have only one branch and fall-through otherwise, which fits the CPU branch predictor logic better. `perf stat` shows drastic difference for branch-misses between the old and new code. 2. Jump-threaded implementation of interpreter vs switch statement: Instead of single table-jump at the top of 'switch' statement, gcc will now generate multiple table-jump instructions, which helps CPU branch predictor logic. Note that the verification of filters is still being done through sk_chk_filter() in classical BPF format, so filters from user- or kernel space are verified in the same way as we do now, and same restrictions/constraints hold as well. We reuse current BPF JIT compilers in a way that this upgrade would even be fine as is, but nevertheless allows for a successive upgrade of BPF JIT compilers to the new format. The internal instruction set migration is being done after the probing for JIT compilation, so in case JIT compilers are able to create a native opcode image, we're going to use that, and in all other cases we're doing a follow-up migration of the BPF program's instruction set, so that it can be transparently run in the new interpreter. In short, the *internal* format extends BPF in the following way (more details can be taken from the appended documentation): - Number of registers increase from 2 to 10 - Register width increases from 32-bit to 64-bit - Conditional jt/jf targets replaced with jt/fall-through - Adds signed > and >= insns - 16 4-byte stack slots for register spill-fill replaced with up to 512 bytes of multi-use stack space - Introduction of bpf_call insn and register passing convention for zero overhead calls from/to other kernel functions - Adds arithmetic right shift and endianness conversion insns - Adds atomic_add insn - Old tax/txa insns are replaced with 'mov dst,src' insn Performance of two BPF filters generated by libpcap resp. bpf_asm was measured on x86_64, i386 and arm32 (other libpcap programs have similar performance differences): fprog #1 is taken from Documentation/networking/filter.txt: tcpdump -i eth0 port 22 -dd fprog #2 is taken from 'man tcpdump': tcpdump -i eth0 'tcp port 22 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)' -dd Raw performance data from BPF micro-benchmark: SK_RUN_FILTER on the same SKB (cache-hit) or 10k SKBs (cache-miss); time in ns per call, smaller is better: --x86_64-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 90 101 192 202 new BPF 31 71 47 97 old BPF jit 12 34 17 44 new BPF jit TBD --i386-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 107 136 227 252 new BPF 40 119 69 172 --arm32-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 202 300 475 540 new BPF 180 270 330 470 old BPF jit 26 182 37 202 new BPF jit TBD Thus, without changing any userland BPF filters, applications on top of AF_PACKET (or other families) such as libpcap/tcpdump, cls_bpf classifier, netfilter's xt_bpf, team driver's load-balancing mode, and many more will have better interpreter filtering performance. While we are replacing the internal BPF interpreter, we also need to convert seccomp BPF in the same step to make use of the new internal structure since it makes use of lower-level API details without being further decoupled through higher-level calls like sk_unattached_filter_{create,destroy}(), for example. Just as for normal socket filtering, also seccomp BPF experiences a time-to-verdict speedup: 05-sim-long_jumps.c of libseccomp was used as micro-benchmark: seccomp_rule_add_exact(ctx,... seccomp_rule_add_exact(ctx,... rc = seccomp_load(ctx); for (i = 0; i < 10000000; i++) syscall(199, 100); 'short filter' has 2 rules 'large filter' has 200 rules 'short filter' performance is slightly better on x86_64/i386/arm32 'large filter' is much faster on x86_64 and i386 and shows no difference on arm32 --x86_64-- short filter old BPF: 2.7 sec 39.12% bench libc-2.15.so [.] syscall 8.10% bench [kernel.kallsyms] [k] sk_run_filter 6.31% bench [kernel.kallsyms] [k] system_call 5.59% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 4.37% bench [kernel.kallsyms] [k] trace_hardirqs_off_caller 3.70% bench [kernel.kallsyms] [k] __secure_computing 3.67% bench [kernel.kallsyms] [k] lock_is_held 3.03% bench [kernel.kallsyms] [k] seccomp_bpf_load new BPF: 2.58 sec 42.05% bench libc-2.15.so [.] syscall 6.91% bench [kernel.kallsyms] [k] system_call 6.25% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 6.07% bench [kernel.kallsyms] [k] __secure_computing 5.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp --arm32-- short filter old BPF: 4.0 sec 39.92% bench [kernel.kallsyms] [k] vector_swi 16.60% bench [kernel.kallsyms] [k] sk_run_filter 14.66% bench libc-2.17.so [.] syscall 5.42% bench [kernel.kallsyms] [k] seccomp_bpf_load 5.10% bench [kernel.kallsyms] [k] __secure_computing new BPF: 3.7 sec 35.93% bench [kernel.kallsyms] [k] vector_swi 21.89% bench libc-2.17.so [.] syscall 13.45% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 6.25% bench [kernel.kallsyms] [k] __secure_computing 3.96% bench [kernel.kallsyms] [k] syscall_trace_exit --x86_64-- large filter old BPF: 8.6 seconds 73.38% bench [kernel.kallsyms] [k] sk_run_filter 10.70% bench libc-2.15.so [.] syscall 5.09% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.97% bench [kernel.kallsyms] [k] system_call new BPF: 5.7 seconds 66.20% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 16.75% bench libc-2.15.so [.] syscall 3.31% bench [kernel.kallsyms] [k] system_call 2.88% bench [kernel.kallsyms] [k] __secure_computing --i386-- large filter old BPF: 5.4 sec new BPF: 3.8 sec --arm32-- large filter old BPF: 13.5 sec 73.88% bench [kernel.kallsyms] [k] sk_run_filter 10.29% bench [kernel.kallsyms] [k] vector_swi 6.46% bench libc-2.17.so [.] syscall 2.94% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.19% bench [kernel.kallsyms] [k] __secure_computing 0.87% bench [kernel.kallsyms] [k] sys_getuid new BPF: 13.5 sec 76.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 10.98% bench [kernel.kallsyms] [k] vector_swi 5.87% bench libc-2.17.so [.] syscall 1.77% bench [kernel.kallsyms] [k] __secure_computing 0.93% bench [kernel.kallsyms] [k] sys_getuid BPF filters generated by seccomp are very branchy, so the new internal BPF performance is better than the old one. Performance gains will be even higher when BPF JIT is committed for the new structure, which is planned in future work (as successive JIT migrations). BPF has also been stress-tested with trinity's BPF fuzzer. Joint work with Daniel Borkmann. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: Kees Cook <keescook@chromium.org> Cc: Paul Moore <pmoore@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: linux-kernel@vger.kernel.org Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-29 01:58:25 +08:00
/* BPF program can access up to 512 bytes of stack space. */
#define MAX_BPF_STACK 512
/* bpf_add|sub|...: a += x, bpf_mov: a = x */
#define BPF_ALU64_REG(op, a, x) \
((struct sock_filter_int) {BPF_ALU64|BPF_OP(op)|BPF_X, a, x, 0, 0})
#define BPF_ALU32_REG(op, a, x) \
((struct sock_filter_int) {BPF_ALU|BPF_OP(op)|BPF_X, a, x, 0, 0})
/* bpf_add|sub|...: a += imm, bpf_mov: a = imm */
#define BPF_ALU64_IMM(op, a, imm) \
((struct sock_filter_int) {BPF_ALU64|BPF_OP(op)|BPF_K, a, 0, 0, imm})
#define BPF_ALU32_IMM(op, a, imm) \
((struct sock_filter_int) {BPF_ALU|BPF_OP(op)|BPF_K, a, 0, 0, imm})
/* R0 = *(uint *) (skb->data + off) */
#define BPF_LD_ABS(size, off) \
((struct sock_filter_int) {BPF_LD|BPF_SIZE(size)|BPF_ABS, 0, 0, 0, off})
/* R0 = *(uint *) (skb->data + x + off) */
#define BPF_LD_IND(size, x, off) \
((struct sock_filter_int) {BPF_LD|BPF_SIZE(size)|BPF_IND, 0, x, 0, off})
/* a = *(uint *) (x + off) */
#define BPF_LDX_MEM(sz, a, x, off) \
((struct sock_filter_int) {BPF_LDX|BPF_SIZE(sz)|BPF_MEM, a, x, off, 0})
/* if (a 'op' x) goto pc+off */
#define BPF_JMP_REG(op, a, x, off) \
((struct sock_filter_int) {BPF_JMP|BPF_OP(op)|BPF_X, a, x, off, 0})
/* if (a 'op' imm) goto pc+off */
#define BPF_JMP_IMM(op, a, imm, off) \
((struct sock_filter_int) {BPF_JMP|BPF_OP(op)|BPF_K, a, 0, off, imm})
#define BPF_EXIT_INSN() \
((struct sock_filter_int) {BPF_JMP|BPF_EXIT, 0, 0, 0, 0})
static inline int size_to_bpf(int size)
{
switch (size) {
case 1:
return BPF_B;
case 2:
return BPF_H;
case 4:
return BPF_W;
case 8:
return BPF_DW;
default:
return -EINVAL;
}
}
/* Macro to invoke filter function. */
#define SK_RUN_FILTER(filter, ctx) (*filter->bpf_func)(ctx, filter->insnsi)
net: filter: rework/optimize internal BPF interpreter's instruction set This patch replaces/reworks the kernel-internal BPF interpreter with an optimized BPF instruction set format that is modelled closer to mimic native instruction sets and is designed to be JITed with one to one mapping. Thus, the new interpreter is noticeably faster than the current implementation of sk_run_filter(); mainly for two reasons: 1. Fall-through jumps: BPF jump instructions are forced to go either 'true' or 'false' branch which causes branch-miss penalty. The new BPF jump instructions have only one branch and fall-through otherwise, which fits the CPU branch predictor logic better. `perf stat` shows drastic difference for branch-misses between the old and new code. 2. Jump-threaded implementation of interpreter vs switch statement: Instead of single table-jump at the top of 'switch' statement, gcc will now generate multiple table-jump instructions, which helps CPU branch predictor logic. Note that the verification of filters is still being done through sk_chk_filter() in classical BPF format, so filters from user- or kernel space are verified in the same way as we do now, and same restrictions/constraints hold as well. We reuse current BPF JIT compilers in a way that this upgrade would even be fine as is, but nevertheless allows for a successive upgrade of BPF JIT compilers to the new format. The internal instruction set migration is being done after the probing for JIT compilation, so in case JIT compilers are able to create a native opcode image, we're going to use that, and in all other cases we're doing a follow-up migration of the BPF program's instruction set, so that it can be transparently run in the new interpreter. In short, the *internal* format extends BPF in the following way (more details can be taken from the appended documentation): - Number of registers increase from 2 to 10 - Register width increases from 32-bit to 64-bit - Conditional jt/jf targets replaced with jt/fall-through - Adds signed > and >= insns - 16 4-byte stack slots for register spill-fill replaced with up to 512 bytes of multi-use stack space - Introduction of bpf_call insn and register passing convention for zero overhead calls from/to other kernel functions - Adds arithmetic right shift and endianness conversion insns - Adds atomic_add insn - Old tax/txa insns are replaced with 'mov dst,src' insn Performance of two BPF filters generated by libpcap resp. bpf_asm was measured on x86_64, i386 and arm32 (other libpcap programs have similar performance differences): fprog #1 is taken from Documentation/networking/filter.txt: tcpdump -i eth0 port 22 -dd fprog #2 is taken from 'man tcpdump': tcpdump -i eth0 'tcp port 22 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)' -dd Raw performance data from BPF micro-benchmark: SK_RUN_FILTER on the same SKB (cache-hit) or 10k SKBs (cache-miss); time in ns per call, smaller is better: --x86_64-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 90 101 192 202 new BPF 31 71 47 97 old BPF jit 12 34 17 44 new BPF jit TBD --i386-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 107 136 227 252 new BPF 40 119 69 172 --arm32-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 202 300 475 540 new BPF 180 270 330 470 old BPF jit 26 182 37 202 new BPF jit TBD Thus, without changing any userland BPF filters, applications on top of AF_PACKET (or other families) such as libpcap/tcpdump, cls_bpf classifier, netfilter's xt_bpf, team driver's load-balancing mode, and many more will have better interpreter filtering performance. While we are replacing the internal BPF interpreter, we also need to convert seccomp BPF in the same step to make use of the new internal structure since it makes use of lower-level API details without being further decoupled through higher-level calls like sk_unattached_filter_{create,destroy}(), for example. Just as for normal socket filtering, also seccomp BPF experiences a time-to-verdict speedup: 05-sim-long_jumps.c of libseccomp was used as micro-benchmark: seccomp_rule_add_exact(ctx,... seccomp_rule_add_exact(ctx,... rc = seccomp_load(ctx); for (i = 0; i < 10000000; i++) syscall(199, 100); 'short filter' has 2 rules 'large filter' has 200 rules 'short filter' performance is slightly better on x86_64/i386/arm32 'large filter' is much faster on x86_64 and i386 and shows no difference on arm32 --x86_64-- short filter old BPF: 2.7 sec 39.12% bench libc-2.15.so [.] syscall 8.10% bench [kernel.kallsyms] [k] sk_run_filter 6.31% bench [kernel.kallsyms] [k] system_call 5.59% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 4.37% bench [kernel.kallsyms] [k] trace_hardirqs_off_caller 3.70% bench [kernel.kallsyms] [k] __secure_computing 3.67% bench [kernel.kallsyms] [k] lock_is_held 3.03% bench [kernel.kallsyms] [k] seccomp_bpf_load new BPF: 2.58 sec 42.05% bench libc-2.15.so [.] syscall 6.91% bench [kernel.kallsyms] [k] system_call 6.25% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 6.07% bench [kernel.kallsyms] [k] __secure_computing 5.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp --arm32-- short filter old BPF: 4.0 sec 39.92% bench [kernel.kallsyms] [k] vector_swi 16.60% bench [kernel.kallsyms] [k] sk_run_filter 14.66% bench libc-2.17.so [.] syscall 5.42% bench [kernel.kallsyms] [k] seccomp_bpf_load 5.10% bench [kernel.kallsyms] [k] __secure_computing new BPF: 3.7 sec 35.93% bench [kernel.kallsyms] [k] vector_swi 21.89% bench libc-2.17.so [.] syscall 13.45% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 6.25% bench [kernel.kallsyms] [k] __secure_computing 3.96% bench [kernel.kallsyms] [k] syscall_trace_exit --x86_64-- large filter old BPF: 8.6 seconds 73.38% bench [kernel.kallsyms] [k] sk_run_filter 10.70% bench libc-2.15.so [.] syscall 5.09% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.97% bench [kernel.kallsyms] [k] system_call new BPF: 5.7 seconds 66.20% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 16.75% bench libc-2.15.so [.] syscall 3.31% bench [kernel.kallsyms] [k] system_call 2.88% bench [kernel.kallsyms] [k] __secure_computing --i386-- large filter old BPF: 5.4 sec new BPF: 3.8 sec --arm32-- large filter old BPF: 13.5 sec 73.88% bench [kernel.kallsyms] [k] sk_run_filter 10.29% bench [kernel.kallsyms] [k] vector_swi 6.46% bench libc-2.17.so [.] syscall 2.94% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.19% bench [kernel.kallsyms] [k] __secure_computing 0.87% bench [kernel.kallsyms] [k] sys_getuid new BPF: 13.5 sec 76.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 10.98% bench [kernel.kallsyms] [k] vector_swi 5.87% bench libc-2.17.so [.] syscall 1.77% bench [kernel.kallsyms] [k] __secure_computing 0.93% bench [kernel.kallsyms] [k] sys_getuid BPF filters generated by seccomp are very branchy, so the new internal BPF performance is better than the old one. Performance gains will be even higher when BPF JIT is committed for the new structure, which is planned in future work (as successive JIT migrations). BPF has also been stress-tested with trinity's BPF fuzzer. Joint work with Daniel Borkmann. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: Kees Cook <keescook@chromium.org> Cc: Paul Moore <pmoore@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: linux-kernel@vger.kernel.org Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-29 01:58:25 +08:00
struct sock_filter_int {
__u8 code; /* opcode */
__u8 a_reg:4; /* dest register */
__u8 x_reg:4; /* source register */
__s16 off; /* signed offset */
__s32 imm; /* signed immediate constant */
};
#ifdef CONFIG_COMPAT
/* A struct sock_filter is architecture independent. */
struct compat_sock_fprog {
u16 len;
net: filter: rework/optimize internal BPF interpreter's instruction set This patch replaces/reworks the kernel-internal BPF interpreter with an optimized BPF instruction set format that is modelled closer to mimic native instruction sets and is designed to be JITed with one to one mapping. Thus, the new interpreter is noticeably faster than the current implementation of sk_run_filter(); mainly for two reasons: 1. Fall-through jumps: BPF jump instructions are forced to go either 'true' or 'false' branch which causes branch-miss penalty. The new BPF jump instructions have only one branch and fall-through otherwise, which fits the CPU branch predictor logic better. `perf stat` shows drastic difference for branch-misses between the old and new code. 2. Jump-threaded implementation of interpreter vs switch statement: Instead of single table-jump at the top of 'switch' statement, gcc will now generate multiple table-jump instructions, which helps CPU branch predictor logic. Note that the verification of filters is still being done through sk_chk_filter() in classical BPF format, so filters from user- or kernel space are verified in the same way as we do now, and same restrictions/constraints hold as well. We reuse current BPF JIT compilers in a way that this upgrade would even be fine as is, but nevertheless allows for a successive upgrade of BPF JIT compilers to the new format. The internal instruction set migration is being done after the probing for JIT compilation, so in case JIT compilers are able to create a native opcode image, we're going to use that, and in all other cases we're doing a follow-up migration of the BPF program's instruction set, so that it can be transparently run in the new interpreter. In short, the *internal* format extends BPF in the following way (more details can be taken from the appended documentation): - Number of registers increase from 2 to 10 - Register width increases from 32-bit to 64-bit - Conditional jt/jf targets replaced with jt/fall-through - Adds signed > and >= insns - 16 4-byte stack slots for register spill-fill replaced with up to 512 bytes of multi-use stack space - Introduction of bpf_call insn and register passing convention for zero overhead calls from/to other kernel functions - Adds arithmetic right shift and endianness conversion insns - Adds atomic_add insn - Old tax/txa insns are replaced with 'mov dst,src' insn Performance of two BPF filters generated by libpcap resp. bpf_asm was measured on x86_64, i386 and arm32 (other libpcap programs have similar performance differences): fprog #1 is taken from Documentation/networking/filter.txt: tcpdump -i eth0 port 22 -dd fprog #2 is taken from 'man tcpdump': tcpdump -i eth0 'tcp port 22 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)' -dd Raw performance data from BPF micro-benchmark: SK_RUN_FILTER on the same SKB (cache-hit) or 10k SKBs (cache-miss); time in ns per call, smaller is better: --x86_64-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 90 101 192 202 new BPF 31 71 47 97 old BPF jit 12 34 17 44 new BPF jit TBD --i386-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 107 136 227 252 new BPF 40 119 69 172 --arm32-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 202 300 475 540 new BPF 180 270 330 470 old BPF jit 26 182 37 202 new BPF jit TBD Thus, without changing any userland BPF filters, applications on top of AF_PACKET (or other families) such as libpcap/tcpdump, cls_bpf classifier, netfilter's xt_bpf, team driver's load-balancing mode, and many more will have better interpreter filtering performance. While we are replacing the internal BPF interpreter, we also need to convert seccomp BPF in the same step to make use of the new internal structure since it makes use of lower-level API details without being further decoupled through higher-level calls like sk_unattached_filter_{create,destroy}(), for example. Just as for normal socket filtering, also seccomp BPF experiences a time-to-verdict speedup: 05-sim-long_jumps.c of libseccomp was used as micro-benchmark: seccomp_rule_add_exact(ctx,... seccomp_rule_add_exact(ctx,... rc = seccomp_load(ctx); for (i = 0; i < 10000000; i++) syscall(199, 100); 'short filter' has 2 rules 'large filter' has 200 rules 'short filter' performance is slightly better on x86_64/i386/arm32 'large filter' is much faster on x86_64 and i386 and shows no difference on arm32 --x86_64-- short filter old BPF: 2.7 sec 39.12% bench libc-2.15.so [.] syscall 8.10% bench [kernel.kallsyms] [k] sk_run_filter 6.31% bench [kernel.kallsyms] [k] system_call 5.59% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 4.37% bench [kernel.kallsyms] [k] trace_hardirqs_off_caller 3.70% bench [kernel.kallsyms] [k] __secure_computing 3.67% bench [kernel.kallsyms] [k] lock_is_held 3.03% bench [kernel.kallsyms] [k] seccomp_bpf_load new BPF: 2.58 sec 42.05% bench libc-2.15.so [.] syscall 6.91% bench [kernel.kallsyms] [k] system_call 6.25% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 6.07% bench [kernel.kallsyms] [k] __secure_computing 5.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp --arm32-- short filter old BPF: 4.0 sec 39.92% bench [kernel.kallsyms] [k] vector_swi 16.60% bench [kernel.kallsyms] [k] sk_run_filter 14.66% bench libc-2.17.so [.] syscall 5.42% bench [kernel.kallsyms] [k] seccomp_bpf_load 5.10% bench [kernel.kallsyms] [k] __secure_computing new BPF: 3.7 sec 35.93% bench [kernel.kallsyms] [k] vector_swi 21.89% bench libc-2.17.so [.] syscall 13.45% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 6.25% bench [kernel.kallsyms] [k] __secure_computing 3.96% bench [kernel.kallsyms] [k] syscall_trace_exit --x86_64-- large filter old BPF: 8.6 seconds 73.38% bench [kernel.kallsyms] [k] sk_run_filter 10.70% bench libc-2.15.so [.] syscall 5.09% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.97% bench [kernel.kallsyms] [k] system_call new BPF: 5.7 seconds 66.20% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 16.75% bench libc-2.15.so [.] syscall 3.31% bench [kernel.kallsyms] [k] system_call 2.88% bench [kernel.kallsyms] [k] __secure_computing --i386-- large filter old BPF: 5.4 sec new BPF: 3.8 sec --arm32-- large filter old BPF: 13.5 sec 73.88% bench [kernel.kallsyms] [k] sk_run_filter 10.29% bench [kernel.kallsyms] [k] vector_swi 6.46% bench libc-2.17.so [.] syscall 2.94% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.19% bench [kernel.kallsyms] [k] __secure_computing 0.87% bench [kernel.kallsyms] [k] sys_getuid new BPF: 13.5 sec 76.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 10.98% bench [kernel.kallsyms] [k] vector_swi 5.87% bench libc-2.17.so [.] syscall 1.77% bench [kernel.kallsyms] [k] __secure_computing 0.93% bench [kernel.kallsyms] [k] sys_getuid BPF filters generated by seccomp are very branchy, so the new internal BPF performance is better than the old one. Performance gains will be even higher when BPF JIT is committed for the new structure, which is planned in future work (as successive JIT migrations). BPF has also been stress-tested with trinity's BPF fuzzer. Joint work with Daniel Borkmann. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: Kees Cook <keescook@chromium.org> Cc: Paul Moore <pmoore@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: linux-kernel@vger.kernel.org Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-29 01:58:25 +08:00
compat_uptr_t filter; /* struct sock_filter * */
};
#endif
struct sock_fprog_kern {
u16 len;
struct sock_filter *filter;
};
struct sk_buff;
struct sock;
net: filter: rework/optimize internal BPF interpreter's instruction set This patch replaces/reworks the kernel-internal BPF interpreter with an optimized BPF instruction set format that is modelled closer to mimic native instruction sets and is designed to be JITed with one to one mapping. Thus, the new interpreter is noticeably faster than the current implementation of sk_run_filter(); mainly for two reasons: 1. Fall-through jumps: BPF jump instructions are forced to go either 'true' or 'false' branch which causes branch-miss penalty. The new BPF jump instructions have only one branch and fall-through otherwise, which fits the CPU branch predictor logic better. `perf stat` shows drastic difference for branch-misses between the old and new code. 2. Jump-threaded implementation of interpreter vs switch statement: Instead of single table-jump at the top of 'switch' statement, gcc will now generate multiple table-jump instructions, which helps CPU branch predictor logic. Note that the verification of filters is still being done through sk_chk_filter() in classical BPF format, so filters from user- or kernel space are verified in the same way as we do now, and same restrictions/constraints hold as well. We reuse current BPF JIT compilers in a way that this upgrade would even be fine as is, but nevertheless allows for a successive upgrade of BPF JIT compilers to the new format. The internal instruction set migration is being done after the probing for JIT compilation, so in case JIT compilers are able to create a native opcode image, we're going to use that, and in all other cases we're doing a follow-up migration of the BPF program's instruction set, so that it can be transparently run in the new interpreter. In short, the *internal* format extends BPF in the following way (more details can be taken from the appended documentation): - Number of registers increase from 2 to 10 - Register width increases from 32-bit to 64-bit - Conditional jt/jf targets replaced with jt/fall-through - Adds signed > and >= insns - 16 4-byte stack slots for register spill-fill replaced with up to 512 bytes of multi-use stack space - Introduction of bpf_call insn and register passing convention for zero overhead calls from/to other kernel functions - Adds arithmetic right shift and endianness conversion insns - Adds atomic_add insn - Old tax/txa insns are replaced with 'mov dst,src' insn Performance of two BPF filters generated by libpcap resp. bpf_asm was measured on x86_64, i386 and arm32 (other libpcap programs have similar performance differences): fprog #1 is taken from Documentation/networking/filter.txt: tcpdump -i eth0 port 22 -dd fprog #2 is taken from 'man tcpdump': tcpdump -i eth0 'tcp port 22 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)' -dd Raw performance data from BPF micro-benchmark: SK_RUN_FILTER on the same SKB (cache-hit) or 10k SKBs (cache-miss); time in ns per call, smaller is better: --x86_64-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 90 101 192 202 new BPF 31 71 47 97 old BPF jit 12 34 17 44 new BPF jit TBD --i386-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 107 136 227 252 new BPF 40 119 69 172 --arm32-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 202 300 475 540 new BPF 180 270 330 470 old BPF jit 26 182 37 202 new BPF jit TBD Thus, without changing any userland BPF filters, applications on top of AF_PACKET (or other families) such as libpcap/tcpdump, cls_bpf classifier, netfilter's xt_bpf, team driver's load-balancing mode, and many more will have better interpreter filtering performance. While we are replacing the internal BPF interpreter, we also need to convert seccomp BPF in the same step to make use of the new internal structure since it makes use of lower-level API details without being further decoupled through higher-level calls like sk_unattached_filter_{create,destroy}(), for example. Just as for normal socket filtering, also seccomp BPF experiences a time-to-verdict speedup: 05-sim-long_jumps.c of libseccomp was used as micro-benchmark: seccomp_rule_add_exact(ctx,... seccomp_rule_add_exact(ctx,... rc = seccomp_load(ctx); for (i = 0; i < 10000000; i++) syscall(199, 100); 'short filter' has 2 rules 'large filter' has 200 rules 'short filter' performance is slightly better on x86_64/i386/arm32 'large filter' is much faster on x86_64 and i386 and shows no difference on arm32 --x86_64-- short filter old BPF: 2.7 sec 39.12% bench libc-2.15.so [.] syscall 8.10% bench [kernel.kallsyms] [k] sk_run_filter 6.31% bench [kernel.kallsyms] [k] system_call 5.59% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 4.37% bench [kernel.kallsyms] [k] trace_hardirqs_off_caller 3.70% bench [kernel.kallsyms] [k] __secure_computing 3.67% bench [kernel.kallsyms] [k] lock_is_held 3.03% bench [kernel.kallsyms] [k] seccomp_bpf_load new BPF: 2.58 sec 42.05% bench libc-2.15.so [.] syscall 6.91% bench [kernel.kallsyms] [k] system_call 6.25% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 6.07% bench [kernel.kallsyms] [k] __secure_computing 5.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp --arm32-- short filter old BPF: 4.0 sec 39.92% bench [kernel.kallsyms] [k] vector_swi 16.60% bench [kernel.kallsyms] [k] sk_run_filter 14.66% bench libc-2.17.so [.] syscall 5.42% bench [kernel.kallsyms] [k] seccomp_bpf_load 5.10% bench [kernel.kallsyms] [k] __secure_computing new BPF: 3.7 sec 35.93% bench [kernel.kallsyms] [k] vector_swi 21.89% bench libc-2.17.so [.] syscall 13.45% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 6.25% bench [kernel.kallsyms] [k] __secure_computing 3.96% bench [kernel.kallsyms] [k] syscall_trace_exit --x86_64-- large filter old BPF: 8.6 seconds 73.38% bench [kernel.kallsyms] [k] sk_run_filter 10.70% bench libc-2.15.so [.] syscall 5.09% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.97% bench [kernel.kallsyms] [k] system_call new BPF: 5.7 seconds 66.20% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 16.75% bench libc-2.15.so [.] syscall 3.31% bench [kernel.kallsyms] [k] system_call 2.88% bench [kernel.kallsyms] [k] __secure_computing --i386-- large filter old BPF: 5.4 sec new BPF: 3.8 sec --arm32-- large filter old BPF: 13.5 sec 73.88% bench [kernel.kallsyms] [k] sk_run_filter 10.29% bench [kernel.kallsyms] [k] vector_swi 6.46% bench libc-2.17.so [.] syscall 2.94% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.19% bench [kernel.kallsyms] [k] __secure_computing 0.87% bench [kernel.kallsyms] [k] sys_getuid new BPF: 13.5 sec 76.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 10.98% bench [kernel.kallsyms] [k] vector_swi 5.87% bench libc-2.17.so [.] syscall 1.77% bench [kernel.kallsyms] [k] __secure_computing 0.93% bench [kernel.kallsyms] [k] sys_getuid BPF filters generated by seccomp are very branchy, so the new internal BPF performance is better than the old one. Performance gains will be even higher when BPF JIT is committed for the new structure, which is planned in future work (as successive JIT migrations). BPF has also been stress-tested with trinity's BPF fuzzer. Joint work with Daniel Borkmann. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: Kees Cook <keescook@chromium.org> Cc: Paul Moore <pmoore@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: linux-kernel@vger.kernel.org Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-29 01:58:25 +08:00
struct seccomp_data;
struct sk_filter {
atomic_t refcnt;
u32 jited:1, /* Is our filter JIT'ed? */
len:31; /* Number of filter blocks */
struct sock_fprog_kern *orig_prog; /* Original BPF program */
net: fix unsafe set_memory_rw from softirq on x86 system with net.core.bpf_jit_enable = 1 sudo tcpdump -i eth1 'tcp port 22' causes the warning: [ 56.766097] Possible unsafe locking scenario: [ 56.766097] [ 56.780146] CPU0 [ 56.786807] ---- [ 56.793188] lock(&(&vb->lock)->rlock); [ 56.799593] <Interrupt> [ 56.805889] lock(&(&vb->lock)->rlock); [ 56.812266] [ 56.812266] *** DEADLOCK *** [ 56.812266] [ 56.830670] 1 lock held by ksoftirqd/1/13: [ 56.836838] #0: (rcu_read_lock){.+.+..}, at: [<ffffffff8118f44c>] vm_unmap_aliases+0x8c/0x380 [ 56.849757] [ 56.849757] stack backtrace: [ 56.862194] CPU: 1 PID: 13 Comm: ksoftirqd/1 Not tainted 3.12.0-rc3+ #45 [ 56.868721] Hardware name: System manufacturer System Product Name/P8Z77 WS, BIOS 3007 07/26/2012 [ 56.882004] ffffffff821944c0 ffff88080bbdb8c8 ffffffff8175a145 0000000000000007 [ 56.895630] ffff88080bbd5f40 ffff88080bbdb928 ffffffff81755b14 0000000000000001 [ 56.909313] ffff880800000001 ffff880800000000 ffffffff8101178f 0000000000000001 [ 56.923006] Call Trace: [ 56.929532] [<ffffffff8175a145>] dump_stack+0x55/0x76 [ 56.936067] [<ffffffff81755b14>] print_usage_bug+0x1f7/0x208 [ 56.942445] [<ffffffff8101178f>] ? save_stack_trace+0x2f/0x50 [ 56.948932] [<ffffffff810cc0a0>] ? check_usage_backwards+0x150/0x150 [ 56.955470] [<ffffffff810ccb52>] mark_lock+0x282/0x2c0 [ 56.961945] [<ffffffff810ccfed>] __lock_acquire+0x45d/0x1d50 [ 56.968474] [<ffffffff810cce6e>] ? __lock_acquire+0x2de/0x1d50 [ 56.975140] [<ffffffff81393bf5>] ? cpumask_next_and+0x55/0x90 [ 56.981942] [<ffffffff810cef72>] lock_acquire+0x92/0x1d0 [ 56.988745] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 56.995619] [<ffffffff817628f1>] _raw_spin_lock+0x41/0x50 [ 57.002493] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 57.009447] [<ffffffff8118f52a>] vm_unmap_aliases+0x16a/0x380 [ 57.016477] [<ffffffff8118f44c>] ? vm_unmap_aliases+0x8c/0x380 [ 57.023607] [<ffffffff810436b0>] change_page_attr_set_clr+0xc0/0x460 [ 57.030818] [<ffffffff810cfb8d>] ? trace_hardirqs_on+0xd/0x10 [ 57.037896] [<ffffffff811a8330>] ? kmem_cache_free+0xb0/0x2b0 [ 57.044789] [<ffffffff811b59c3>] ? free_object_rcu+0x93/0xa0 [ 57.051720] [<ffffffff81043d9f>] set_memory_rw+0x2f/0x40 [ 57.058727] [<ffffffff8104e17c>] bpf_jit_free+0x2c/0x40 [ 57.065577] [<ffffffff81642cba>] sk_filter_release_rcu+0x1a/0x30 [ 57.072338] [<ffffffff811108e2>] rcu_process_callbacks+0x202/0x7c0 [ 57.078962] [<ffffffff81057f17>] __do_softirq+0xf7/0x3f0 [ 57.085373] [<ffffffff81058245>] run_ksoftirqd+0x35/0x70 cannot reuse jited filter memory, since it's readonly, so use original bpf insns memory to hold work_struct defer kfree of sk_filter until jit completed freeing tested on x86_64 and i386 Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-04 15:14:06 +08:00
struct rcu_head rcu;
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
unsigned int (*bpf_func)(const struct sk_buff *skb,
net: filter: rework/optimize internal BPF interpreter's instruction set This patch replaces/reworks the kernel-internal BPF interpreter with an optimized BPF instruction set format that is modelled closer to mimic native instruction sets and is designed to be JITed with one to one mapping. Thus, the new interpreter is noticeably faster than the current implementation of sk_run_filter(); mainly for two reasons: 1. Fall-through jumps: BPF jump instructions are forced to go either 'true' or 'false' branch which causes branch-miss penalty. The new BPF jump instructions have only one branch and fall-through otherwise, which fits the CPU branch predictor logic better. `perf stat` shows drastic difference for branch-misses between the old and new code. 2. Jump-threaded implementation of interpreter vs switch statement: Instead of single table-jump at the top of 'switch' statement, gcc will now generate multiple table-jump instructions, which helps CPU branch predictor logic. Note that the verification of filters is still being done through sk_chk_filter() in classical BPF format, so filters from user- or kernel space are verified in the same way as we do now, and same restrictions/constraints hold as well. We reuse current BPF JIT compilers in a way that this upgrade would even be fine as is, but nevertheless allows for a successive upgrade of BPF JIT compilers to the new format. The internal instruction set migration is being done after the probing for JIT compilation, so in case JIT compilers are able to create a native opcode image, we're going to use that, and in all other cases we're doing a follow-up migration of the BPF program's instruction set, so that it can be transparently run in the new interpreter. In short, the *internal* format extends BPF in the following way (more details can be taken from the appended documentation): - Number of registers increase from 2 to 10 - Register width increases from 32-bit to 64-bit - Conditional jt/jf targets replaced with jt/fall-through - Adds signed > and >= insns - 16 4-byte stack slots for register spill-fill replaced with up to 512 bytes of multi-use stack space - Introduction of bpf_call insn and register passing convention for zero overhead calls from/to other kernel functions - Adds arithmetic right shift and endianness conversion insns - Adds atomic_add insn - Old tax/txa insns are replaced with 'mov dst,src' insn Performance of two BPF filters generated by libpcap resp. bpf_asm was measured on x86_64, i386 and arm32 (other libpcap programs have similar performance differences): fprog #1 is taken from Documentation/networking/filter.txt: tcpdump -i eth0 port 22 -dd fprog #2 is taken from 'man tcpdump': tcpdump -i eth0 'tcp port 22 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)' -dd Raw performance data from BPF micro-benchmark: SK_RUN_FILTER on the same SKB (cache-hit) or 10k SKBs (cache-miss); time in ns per call, smaller is better: --x86_64-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 90 101 192 202 new BPF 31 71 47 97 old BPF jit 12 34 17 44 new BPF jit TBD --i386-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 107 136 227 252 new BPF 40 119 69 172 --arm32-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 202 300 475 540 new BPF 180 270 330 470 old BPF jit 26 182 37 202 new BPF jit TBD Thus, without changing any userland BPF filters, applications on top of AF_PACKET (or other families) such as libpcap/tcpdump, cls_bpf classifier, netfilter's xt_bpf, team driver's load-balancing mode, and many more will have better interpreter filtering performance. While we are replacing the internal BPF interpreter, we also need to convert seccomp BPF in the same step to make use of the new internal structure since it makes use of lower-level API details without being further decoupled through higher-level calls like sk_unattached_filter_{create,destroy}(), for example. Just as for normal socket filtering, also seccomp BPF experiences a time-to-verdict speedup: 05-sim-long_jumps.c of libseccomp was used as micro-benchmark: seccomp_rule_add_exact(ctx,... seccomp_rule_add_exact(ctx,... rc = seccomp_load(ctx); for (i = 0; i < 10000000; i++) syscall(199, 100); 'short filter' has 2 rules 'large filter' has 200 rules 'short filter' performance is slightly better on x86_64/i386/arm32 'large filter' is much faster on x86_64 and i386 and shows no difference on arm32 --x86_64-- short filter old BPF: 2.7 sec 39.12% bench libc-2.15.so [.] syscall 8.10% bench [kernel.kallsyms] [k] sk_run_filter 6.31% bench [kernel.kallsyms] [k] system_call 5.59% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 4.37% bench [kernel.kallsyms] [k] trace_hardirqs_off_caller 3.70% bench [kernel.kallsyms] [k] __secure_computing 3.67% bench [kernel.kallsyms] [k] lock_is_held 3.03% bench [kernel.kallsyms] [k] seccomp_bpf_load new BPF: 2.58 sec 42.05% bench libc-2.15.so [.] syscall 6.91% bench [kernel.kallsyms] [k] system_call 6.25% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 6.07% bench [kernel.kallsyms] [k] __secure_computing 5.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp --arm32-- short filter old BPF: 4.0 sec 39.92% bench [kernel.kallsyms] [k] vector_swi 16.60% bench [kernel.kallsyms] [k] sk_run_filter 14.66% bench libc-2.17.so [.] syscall 5.42% bench [kernel.kallsyms] [k] seccomp_bpf_load 5.10% bench [kernel.kallsyms] [k] __secure_computing new BPF: 3.7 sec 35.93% bench [kernel.kallsyms] [k] vector_swi 21.89% bench libc-2.17.so [.] syscall 13.45% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 6.25% bench [kernel.kallsyms] [k] __secure_computing 3.96% bench [kernel.kallsyms] [k] syscall_trace_exit --x86_64-- large filter old BPF: 8.6 seconds 73.38% bench [kernel.kallsyms] [k] sk_run_filter 10.70% bench libc-2.15.so [.] syscall 5.09% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.97% bench [kernel.kallsyms] [k] system_call new BPF: 5.7 seconds 66.20% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 16.75% bench libc-2.15.so [.] syscall 3.31% bench [kernel.kallsyms] [k] system_call 2.88% bench [kernel.kallsyms] [k] __secure_computing --i386-- large filter old BPF: 5.4 sec new BPF: 3.8 sec --arm32-- large filter old BPF: 13.5 sec 73.88% bench [kernel.kallsyms] [k] sk_run_filter 10.29% bench [kernel.kallsyms] [k] vector_swi 6.46% bench libc-2.17.so [.] syscall 2.94% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.19% bench [kernel.kallsyms] [k] __secure_computing 0.87% bench [kernel.kallsyms] [k] sys_getuid new BPF: 13.5 sec 76.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 10.98% bench [kernel.kallsyms] [k] vector_swi 5.87% bench libc-2.17.so [.] syscall 1.77% bench [kernel.kallsyms] [k] __secure_computing 0.93% bench [kernel.kallsyms] [k] sys_getuid BPF filters generated by seccomp are very branchy, so the new internal BPF performance is better than the old one. Performance gains will be even higher when BPF JIT is committed for the new structure, which is planned in future work (as successive JIT migrations). BPF has also been stress-tested with trinity's BPF fuzzer. Joint work with Daniel Borkmann. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: Kees Cook <keescook@chromium.org> Cc: Paul Moore <pmoore@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: linux-kernel@vger.kernel.org Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-29 01:58:25 +08:00
const struct sock_filter_int *filter);
net: fix unsafe set_memory_rw from softirq on x86 system with net.core.bpf_jit_enable = 1 sudo tcpdump -i eth1 'tcp port 22' causes the warning: [ 56.766097] Possible unsafe locking scenario: [ 56.766097] [ 56.780146] CPU0 [ 56.786807] ---- [ 56.793188] lock(&(&vb->lock)->rlock); [ 56.799593] <Interrupt> [ 56.805889] lock(&(&vb->lock)->rlock); [ 56.812266] [ 56.812266] *** DEADLOCK *** [ 56.812266] [ 56.830670] 1 lock held by ksoftirqd/1/13: [ 56.836838] #0: (rcu_read_lock){.+.+..}, at: [<ffffffff8118f44c>] vm_unmap_aliases+0x8c/0x380 [ 56.849757] [ 56.849757] stack backtrace: [ 56.862194] CPU: 1 PID: 13 Comm: ksoftirqd/1 Not tainted 3.12.0-rc3+ #45 [ 56.868721] Hardware name: System manufacturer System Product Name/P8Z77 WS, BIOS 3007 07/26/2012 [ 56.882004] ffffffff821944c0 ffff88080bbdb8c8 ffffffff8175a145 0000000000000007 [ 56.895630] ffff88080bbd5f40 ffff88080bbdb928 ffffffff81755b14 0000000000000001 [ 56.909313] ffff880800000001 ffff880800000000 ffffffff8101178f 0000000000000001 [ 56.923006] Call Trace: [ 56.929532] [<ffffffff8175a145>] dump_stack+0x55/0x76 [ 56.936067] [<ffffffff81755b14>] print_usage_bug+0x1f7/0x208 [ 56.942445] [<ffffffff8101178f>] ? save_stack_trace+0x2f/0x50 [ 56.948932] [<ffffffff810cc0a0>] ? check_usage_backwards+0x150/0x150 [ 56.955470] [<ffffffff810ccb52>] mark_lock+0x282/0x2c0 [ 56.961945] [<ffffffff810ccfed>] __lock_acquire+0x45d/0x1d50 [ 56.968474] [<ffffffff810cce6e>] ? __lock_acquire+0x2de/0x1d50 [ 56.975140] [<ffffffff81393bf5>] ? cpumask_next_and+0x55/0x90 [ 56.981942] [<ffffffff810cef72>] lock_acquire+0x92/0x1d0 [ 56.988745] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 56.995619] [<ffffffff817628f1>] _raw_spin_lock+0x41/0x50 [ 57.002493] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 57.009447] [<ffffffff8118f52a>] vm_unmap_aliases+0x16a/0x380 [ 57.016477] [<ffffffff8118f44c>] ? vm_unmap_aliases+0x8c/0x380 [ 57.023607] [<ffffffff810436b0>] change_page_attr_set_clr+0xc0/0x460 [ 57.030818] [<ffffffff810cfb8d>] ? trace_hardirqs_on+0xd/0x10 [ 57.037896] [<ffffffff811a8330>] ? kmem_cache_free+0xb0/0x2b0 [ 57.044789] [<ffffffff811b59c3>] ? free_object_rcu+0x93/0xa0 [ 57.051720] [<ffffffff81043d9f>] set_memory_rw+0x2f/0x40 [ 57.058727] [<ffffffff8104e17c>] bpf_jit_free+0x2c/0x40 [ 57.065577] [<ffffffff81642cba>] sk_filter_release_rcu+0x1a/0x30 [ 57.072338] [<ffffffff811108e2>] rcu_process_callbacks+0x202/0x7c0 [ 57.078962] [<ffffffff81057f17>] __do_softirq+0xf7/0x3f0 [ 57.085373] [<ffffffff81058245>] run_ksoftirqd+0x35/0x70 cannot reuse jited filter memory, since it's readonly, so use original bpf insns memory to hold work_struct defer kfree of sk_filter until jit completed freeing tested on x86_64 and i386 Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-04 15:14:06 +08:00
union {
net: filter: rework/optimize internal BPF interpreter's instruction set This patch replaces/reworks the kernel-internal BPF interpreter with an optimized BPF instruction set format that is modelled closer to mimic native instruction sets and is designed to be JITed with one to one mapping. Thus, the new interpreter is noticeably faster than the current implementation of sk_run_filter(); mainly for two reasons: 1. Fall-through jumps: BPF jump instructions are forced to go either 'true' or 'false' branch which causes branch-miss penalty. The new BPF jump instructions have only one branch and fall-through otherwise, which fits the CPU branch predictor logic better. `perf stat` shows drastic difference for branch-misses between the old and new code. 2. Jump-threaded implementation of interpreter vs switch statement: Instead of single table-jump at the top of 'switch' statement, gcc will now generate multiple table-jump instructions, which helps CPU branch predictor logic. Note that the verification of filters is still being done through sk_chk_filter() in classical BPF format, so filters from user- or kernel space are verified in the same way as we do now, and same restrictions/constraints hold as well. We reuse current BPF JIT compilers in a way that this upgrade would even be fine as is, but nevertheless allows for a successive upgrade of BPF JIT compilers to the new format. The internal instruction set migration is being done after the probing for JIT compilation, so in case JIT compilers are able to create a native opcode image, we're going to use that, and in all other cases we're doing a follow-up migration of the BPF program's instruction set, so that it can be transparently run in the new interpreter. In short, the *internal* format extends BPF in the following way (more details can be taken from the appended documentation): - Number of registers increase from 2 to 10 - Register width increases from 32-bit to 64-bit - Conditional jt/jf targets replaced with jt/fall-through - Adds signed > and >= insns - 16 4-byte stack slots for register spill-fill replaced with up to 512 bytes of multi-use stack space - Introduction of bpf_call insn and register passing convention for zero overhead calls from/to other kernel functions - Adds arithmetic right shift and endianness conversion insns - Adds atomic_add insn - Old tax/txa insns are replaced with 'mov dst,src' insn Performance of two BPF filters generated by libpcap resp. bpf_asm was measured on x86_64, i386 and arm32 (other libpcap programs have similar performance differences): fprog #1 is taken from Documentation/networking/filter.txt: tcpdump -i eth0 port 22 -dd fprog #2 is taken from 'man tcpdump': tcpdump -i eth0 'tcp port 22 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)' -dd Raw performance data from BPF micro-benchmark: SK_RUN_FILTER on the same SKB (cache-hit) or 10k SKBs (cache-miss); time in ns per call, smaller is better: --x86_64-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 90 101 192 202 new BPF 31 71 47 97 old BPF jit 12 34 17 44 new BPF jit TBD --i386-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 107 136 227 252 new BPF 40 119 69 172 --arm32-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 202 300 475 540 new BPF 180 270 330 470 old BPF jit 26 182 37 202 new BPF jit TBD Thus, without changing any userland BPF filters, applications on top of AF_PACKET (or other families) such as libpcap/tcpdump, cls_bpf classifier, netfilter's xt_bpf, team driver's load-balancing mode, and many more will have better interpreter filtering performance. While we are replacing the internal BPF interpreter, we also need to convert seccomp BPF in the same step to make use of the new internal structure since it makes use of lower-level API details without being further decoupled through higher-level calls like sk_unattached_filter_{create,destroy}(), for example. Just as for normal socket filtering, also seccomp BPF experiences a time-to-verdict speedup: 05-sim-long_jumps.c of libseccomp was used as micro-benchmark: seccomp_rule_add_exact(ctx,... seccomp_rule_add_exact(ctx,... rc = seccomp_load(ctx); for (i = 0; i < 10000000; i++) syscall(199, 100); 'short filter' has 2 rules 'large filter' has 200 rules 'short filter' performance is slightly better on x86_64/i386/arm32 'large filter' is much faster on x86_64 and i386 and shows no difference on arm32 --x86_64-- short filter old BPF: 2.7 sec 39.12% bench libc-2.15.so [.] syscall 8.10% bench [kernel.kallsyms] [k] sk_run_filter 6.31% bench [kernel.kallsyms] [k] system_call 5.59% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 4.37% bench [kernel.kallsyms] [k] trace_hardirqs_off_caller 3.70% bench [kernel.kallsyms] [k] __secure_computing 3.67% bench [kernel.kallsyms] [k] lock_is_held 3.03% bench [kernel.kallsyms] [k] seccomp_bpf_load new BPF: 2.58 sec 42.05% bench libc-2.15.so [.] syscall 6.91% bench [kernel.kallsyms] [k] system_call 6.25% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 6.07% bench [kernel.kallsyms] [k] __secure_computing 5.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp --arm32-- short filter old BPF: 4.0 sec 39.92% bench [kernel.kallsyms] [k] vector_swi 16.60% bench [kernel.kallsyms] [k] sk_run_filter 14.66% bench libc-2.17.so [.] syscall 5.42% bench [kernel.kallsyms] [k] seccomp_bpf_load 5.10% bench [kernel.kallsyms] [k] __secure_computing new BPF: 3.7 sec 35.93% bench [kernel.kallsyms] [k] vector_swi 21.89% bench libc-2.17.so [.] syscall 13.45% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 6.25% bench [kernel.kallsyms] [k] __secure_computing 3.96% bench [kernel.kallsyms] [k] syscall_trace_exit --x86_64-- large filter old BPF: 8.6 seconds 73.38% bench [kernel.kallsyms] [k] sk_run_filter 10.70% bench libc-2.15.so [.] syscall 5.09% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.97% bench [kernel.kallsyms] [k] system_call new BPF: 5.7 seconds 66.20% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 16.75% bench libc-2.15.so [.] syscall 3.31% bench [kernel.kallsyms] [k] system_call 2.88% bench [kernel.kallsyms] [k] __secure_computing --i386-- large filter old BPF: 5.4 sec new BPF: 3.8 sec --arm32-- large filter old BPF: 13.5 sec 73.88% bench [kernel.kallsyms] [k] sk_run_filter 10.29% bench [kernel.kallsyms] [k] vector_swi 6.46% bench libc-2.17.so [.] syscall 2.94% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.19% bench [kernel.kallsyms] [k] __secure_computing 0.87% bench [kernel.kallsyms] [k] sys_getuid new BPF: 13.5 sec 76.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 10.98% bench [kernel.kallsyms] [k] vector_swi 5.87% bench libc-2.17.so [.] syscall 1.77% bench [kernel.kallsyms] [k] __secure_computing 0.93% bench [kernel.kallsyms] [k] sys_getuid BPF filters generated by seccomp are very branchy, so the new internal BPF performance is better than the old one. Performance gains will be even higher when BPF JIT is committed for the new structure, which is planned in future work (as successive JIT migrations). BPF has also been stress-tested with trinity's BPF fuzzer. Joint work with Daniel Borkmann. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: Kees Cook <keescook@chromium.org> Cc: Paul Moore <pmoore@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: linux-kernel@vger.kernel.org Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-29 01:58:25 +08:00
struct sock_filter insns[0];
struct sock_filter_int insnsi[0];
net: fix unsafe set_memory_rw from softirq on x86 system with net.core.bpf_jit_enable = 1 sudo tcpdump -i eth1 'tcp port 22' causes the warning: [ 56.766097] Possible unsafe locking scenario: [ 56.766097] [ 56.780146] CPU0 [ 56.786807] ---- [ 56.793188] lock(&(&vb->lock)->rlock); [ 56.799593] <Interrupt> [ 56.805889] lock(&(&vb->lock)->rlock); [ 56.812266] [ 56.812266] *** DEADLOCK *** [ 56.812266] [ 56.830670] 1 lock held by ksoftirqd/1/13: [ 56.836838] #0: (rcu_read_lock){.+.+..}, at: [<ffffffff8118f44c>] vm_unmap_aliases+0x8c/0x380 [ 56.849757] [ 56.849757] stack backtrace: [ 56.862194] CPU: 1 PID: 13 Comm: ksoftirqd/1 Not tainted 3.12.0-rc3+ #45 [ 56.868721] Hardware name: System manufacturer System Product Name/P8Z77 WS, BIOS 3007 07/26/2012 [ 56.882004] ffffffff821944c0 ffff88080bbdb8c8 ffffffff8175a145 0000000000000007 [ 56.895630] ffff88080bbd5f40 ffff88080bbdb928 ffffffff81755b14 0000000000000001 [ 56.909313] ffff880800000001 ffff880800000000 ffffffff8101178f 0000000000000001 [ 56.923006] Call Trace: [ 56.929532] [<ffffffff8175a145>] dump_stack+0x55/0x76 [ 56.936067] [<ffffffff81755b14>] print_usage_bug+0x1f7/0x208 [ 56.942445] [<ffffffff8101178f>] ? save_stack_trace+0x2f/0x50 [ 56.948932] [<ffffffff810cc0a0>] ? check_usage_backwards+0x150/0x150 [ 56.955470] [<ffffffff810ccb52>] mark_lock+0x282/0x2c0 [ 56.961945] [<ffffffff810ccfed>] __lock_acquire+0x45d/0x1d50 [ 56.968474] [<ffffffff810cce6e>] ? __lock_acquire+0x2de/0x1d50 [ 56.975140] [<ffffffff81393bf5>] ? cpumask_next_and+0x55/0x90 [ 56.981942] [<ffffffff810cef72>] lock_acquire+0x92/0x1d0 [ 56.988745] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 56.995619] [<ffffffff817628f1>] _raw_spin_lock+0x41/0x50 [ 57.002493] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 57.009447] [<ffffffff8118f52a>] vm_unmap_aliases+0x16a/0x380 [ 57.016477] [<ffffffff8118f44c>] ? vm_unmap_aliases+0x8c/0x380 [ 57.023607] [<ffffffff810436b0>] change_page_attr_set_clr+0xc0/0x460 [ 57.030818] [<ffffffff810cfb8d>] ? trace_hardirqs_on+0xd/0x10 [ 57.037896] [<ffffffff811a8330>] ? kmem_cache_free+0xb0/0x2b0 [ 57.044789] [<ffffffff811b59c3>] ? free_object_rcu+0x93/0xa0 [ 57.051720] [<ffffffff81043d9f>] set_memory_rw+0x2f/0x40 [ 57.058727] [<ffffffff8104e17c>] bpf_jit_free+0x2c/0x40 [ 57.065577] [<ffffffff81642cba>] sk_filter_release_rcu+0x1a/0x30 [ 57.072338] [<ffffffff811108e2>] rcu_process_callbacks+0x202/0x7c0 [ 57.078962] [<ffffffff81057f17>] __do_softirq+0xf7/0x3f0 [ 57.085373] [<ffffffff81058245>] run_ksoftirqd+0x35/0x70 cannot reuse jited filter memory, since it's readonly, so use original bpf insns memory to hold work_struct defer kfree of sk_filter until jit completed freeing tested on x86_64 and i386 Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-04 15:14:06 +08:00
struct work_struct work;
};
};
net: fix unsafe set_memory_rw from softirq on x86 system with net.core.bpf_jit_enable = 1 sudo tcpdump -i eth1 'tcp port 22' causes the warning: [ 56.766097] Possible unsafe locking scenario: [ 56.766097] [ 56.780146] CPU0 [ 56.786807] ---- [ 56.793188] lock(&(&vb->lock)->rlock); [ 56.799593] <Interrupt> [ 56.805889] lock(&(&vb->lock)->rlock); [ 56.812266] [ 56.812266] *** DEADLOCK *** [ 56.812266] [ 56.830670] 1 lock held by ksoftirqd/1/13: [ 56.836838] #0: (rcu_read_lock){.+.+..}, at: [<ffffffff8118f44c>] vm_unmap_aliases+0x8c/0x380 [ 56.849757] [ 56.849757] stack backtrace: [ 56.862194] CPU: 1 PID: 13 Comm: ksoftirqd/1 Not tainted 3.12.0-rc3+ #45 [ 56.868721] Hardware name: System manufacturer System Product Name/P8Z77 WS, BIOS 3007 07/26/2012 [ 56.882004] ffffffff821944c0 ffff88080bbdb8c8 ffffffff8175a145 0000000000000007 [ 56.895630] ffff88080bbd5f40 ffff88080bbdb928 ffffffff81755b14 0000000000000001 [ 56.909313] ffff880800000001 ffff880800000000 ffffffff8101178f 0000000000000001 [ 56.923006] Call Trace: [ 56.929532] [<ffffffff8175a145>] dump_stack+0x55/0x76 [ 56.936067] [<ffffffff81755b14>] print_usage_bug+0x1f7/0x208 [ 56.942445] [<ffffffff8101178f>] ? save_stack_trace+0x2f/0x50 [ 56.948932] [<ffffffff810cc0a0>] ? check_usage_backwards+0x150/0x150 [ 56.955470] [<ffffffff810ccb52>] mark_lock+0x282/0x2c0 [ 56.961945] [<ffffffff810ccfed>] __lock_acquire+0x45d/0x1d50 [ 56.968474] [<ffffffff810cce6e>] ? __lock_acquire+0x2de/0x1d50 [ 56.975140] [<ffffffff81393bf5>] ? cpumask_next_and+0x55/0x90 [ 56.981942] [<ffffffff810cef72>] lock_acquire+0x92/0x1d0 [ 56.988745] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 56.995619] [<ffffffff817628f1>] _raw_spin_lock+0x41/0x50 [ 57.002493] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 57.009447] [<ffffffff8118f52a>] vm_unmap_aliases+0x16a/0x380 [ 57.016477] [<ffffffff8118f44c>] ? vm_unmap_aliases+0x8c/0x380 [ 57.023607] [<ffffffff810436b0>] change_page_attr_set_clr+0xc0/0x460 [ 57.030818] [<ffffffff810cfb8d>] ? trace_hardirqs_on+0xd/0x10 [ 57.037896] [<ffffffff811a8330>] ? kmem_cache_free+0xb0/0x2b0 [ 57.044789] [<ffffffff811b59c3>] ? free_object_rcu+0x93/0xa0 [ 57.051720] [<ffffffff81043d9f>] set_memory_rw+0x2f/0x40 [ 57.058727] [<ffffffff8104e17c>] bpf_jit_free+0x2c/0x40 [ 57.065577] [<ffffffff81642cba>] sk_filter_release_rcu+0x1a/0x30 [ 57.072338] [<ffffffff811108e2>] rcu_process_callbacks+0x202/0x7c0 [ 57.078962] [<ffffffff81057f17>] __do_softirq+0xf7/0x3f0 [ 57.085373] [<ffffffff81058245>] run_ksoftirqd+0x35/0x70 cannot reuse jited filter memory, since it's readonly, so use original bpf insns memory to hold work_struct defer kfree of sk_filter until jit completed freeing tested on x86_64 and i386 Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-04 15:14:06 +08:00
static inline unsigned int sk_filter_size(unsigned int proglen)
{
net: fix unsafe set_memory_rw from softirq on x86 system with net.core.bpf_jit_enable = 1 sudo tcpdump -i eth1 'tcp port 22' causes the warning: [ 56.766097] Possible unsafe locking scenario: [ 56.766097] [ 56.780146] CPU0 [ 56.786807] ---- [ 56.793188] lock(&(&vb->lock)->rlock); [ 56.799593] <Interrupt> [ 56.805889] lock(&(&vb->lock)->rlock); [ 56.812266] [ 56.812266] *** DEADLOCK *** [ 56.812266] [ 56.830670] 1 lock held by ksoftirqd/1/13: [ 56.836838] #0: (rcu_read_lock){.+.+..}, at: [<ffffffff8118f44c>] vm_unmap_aliases+0x8c/0x380 [ 56.849757] [ 56.849757] stack backtrace: [ 56.862194] CPU: 1 PID: 13 Comm: ksoftirqd/1 Not tainted 3.12.0-rc3+ #45 [ 56.868721] Hardware name: System manufacturer System Product Name/P8Z77 WS, BIOS 3007 07/26/2012 [ 56.882004] ffffffff821944c0 ffff88080bbdb8c8 ffffffff8175a145 0000000000000007 [ 56.895630] ffff88080bbd5f40 ffff88080bbdb928 ffffffff81755b14 0000000000000001 [ 56.909313] ffff880800000001 ffff880800000000 ffffffff8101178f 0000000000000001 [ 56.923006] Call Trace: [ 56.929532] [<ffffffff8175a145>] dump_stack+0x55/0x76 [ 56.936067] [<ffffffff81755b14>] print_usage_bug+0x1f7/0x208 [ 56.942445] [<ffffffff8101178f>] ? save_stack_trace+0x2f/0x50 [ 56.948932] [<ffffffff810cc0a0>] ? check_usage_backwards+0x150/0x150 [ 56.955470] [<ffffffff810ccb52>] mark_lock+0x282/0x2c0 [ 56.961945] [<ffffffff810ccfed>] __lock_acquire+0x45d/0x1d50 [ 56.968474] [<ffffffff810cce6e>] ? __lock_acquire+0x2de/0x1d50 [ 56.975140] [<ffffffff81393bf5>] ? cpumask_next_and+0x55/0x90 [ 56.981942] [<ffffffff810cef72>] lock_acquire+0x92/0x1d0 [ 56.988745] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 56.995619] [<ffffffff817628f1>] _raw_spin_lock+0x41/0x50 [ 57.002493] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 57.009447] [<ffffffff8118f52a>] vm_unmap_aliases+0x16a/0x380 [ 57.016477] [<ffffffff8118f44c>] ? vm_unmap_aliases+0x8c/0x380 [ 57.023607] [<ffffffff810436b0>] change_page_attr_set_clr+0xc0/0x460 [ 57.030818] [<ffffffff810cfb8d>] ? trace_hardirqs_on+0xd/0x10 [ 57.037896] [<ffffffff811a8330>] ? kmem_cache_free+0xb0/0x2b0 [ 57.044789] [<ffffffff811b59c3>] ? free_object_rcu+0x93/0xa0 [ 57.051720] [<ffffffff81043d9f>] set_memory_rw+0x2f/0x40 [ 57.058727] [<ffffffff8104e17c>] bpf_jit_free+0x2c/0x40 [ 57.065577] [<ffffffff81642cba>] sk_filter_release_rcu+0x1a/0x30 [ 57.072338] [<ffffffff811108e2>] rcu_process_callbacks+0x202/0x7c0 [ 57.078962] [<ffffffff81057f17>] __do_softirq+0xf7/0x3f0 [ 57.085373] [<ffffffff81058245>] run_ksoftirqd+0x35/0x70 cannot reuse jited filter memory, since it's readonly, so use original bpf insns memory to hold work_struct defer kfree of sk_filter until jit completed freeing tested on x86_64 and i386 Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-04 15:14:06 +08:00
return max(sizeof(struct sk_filter),
offsetof(struct sk_filter, insns[proglen]));
}
#define sk_filter_proglen(fprog) \
(fprog->len * sizeof(fprog->filter[0]))
int sk_filter(struct sock *sk, struct sk_buff *skb);
net: filter: rework/optimize internal BPF interpreter's instruction set This patch replaces/reworks the kernel-internal BPF interpreter with an optimized BPF instruction set format that is modelled closer to mimic native instruction sets and is designed to be JITed with one to one mapping. Thus, the new interpreter is noticeably faster than the current implementation of sk_run_filter(); mainly for two reasons: 1. Fall-through jumps: BPF jump instructions are forced to go either 'true' or 'false' branch which causes branch-miss penalty. The new BPF jump instructions have only one branch and fall-through otherwise, which fits the CPU branch predictor logic better. `perf stat` shows drastic difference for branch-misses between the old and new code. 2. Jump-threaded implementation of interpreter vs switch statement: Instead of single table-jump at the top of 'switch' statement, gcc will now generate multiple table-jump instructions, which helps CPU branch predictor logic. Note that the verification of filters is still being done through sk_chk_filter() in classical BPF format, so filters from user- or kernel space are verified in the same way as we do now, and same restrictions/constraints hold as well. We reuse current BPF JIT compilers in a way that this upgrade would even be fine as is, but nevertheless allows for a successive upgrade of BPF JIT compilers to the new format. The internal instruction set migration is being done after the probing for JIT compilation, so in case JIT compilers are able to create a native opcode image, we're going to use that, and in all other cases we're doing a follow-up migration of the BPF program's instruction set, so that it can be transparently run in the new interpreter. In short, the *internal* format extends BPF in the following way (more details can be taken from the appended documentation): - Number of registers increase from 2 to 10 - Register width increases from 32-bit to 64-bit - Conditional jt/jf targets replaced with jt/fall-through - Adds signed > and >= insns - 16 4-byte stack slots for register spill-fill replaced with up to 512 bytes of multi-use stack space - Introduction of bpf_call insn and register passing convention for zero overhead calls from/to other kernel functions - Adds arithmetic right shift and endianness conversion insns - Adds atomic_add insn - Old tax/txa insns are replaced with 'mov dst,src' insn Performance of two BPF filters generated by libpcap resp. bpf_asm was measured on x86_64, i386 and arm32 (other libpcap programs have similar performance differences): fprog #1 is taken from Documentation/networking/filter.txt: tcpdump -i eth0 port 22 -dd fprog #2 is taken from 'man tcpdump': tcpdump -i eth0 'tcp port 22 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)' -dd Raw performance data from BPF micro-benchmark: SK_RUN_FILTER on the same SKB (cache-hit) or 10k SKBs (cache-miss); time in ns per call, smaller is better: --x86_64-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 90 101 192 202 new BPF 31 71 47 97 old BPF jit 12 34 17 44 new BPF jit TBD --i386-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 107 136 227 252 new BPF 40 119 69 172 --arm32-- fprog #1 fprog #1 fprog #2 fprog #2 cache-hit cache-miss cache-hit cache-miss old BPF 202 300 475 540 new BPF 180 270 330 470 old BPF jit 26 182 37 202 new BPF jit TBD Thus, without changing any userland BPF filters, applications on top of AF_PACKET (or other families) such as libpcap/tcpdump, cls_bpf classifier, netfilter's xt_bpf, team driver's load-balancing mode, and many more will have better interpreter filtering performance. While we are replacing the internal BPF interpreter, we also need to convert seccomp BPF in the same step to make use of the new internal structure since it makes use of lower-level API details without being further decoupled through higher-level calls like sk_unattached_filter_{create,destroy}(), for example. Just as for normal socket filtering, also seccomp BPF experiences a time-to-verdict speedup: 05-sim-long_jumps.c of libseccomp was used as micro-benchmark: seccomp_rule_add_exact(ctx,... seccomp_rule_add_exact(ctx,... rc = seccomp_load(ctx); for (i = 0; i < 10000000; i++) syscall(199, 100); 'short filter' has 2 rules 'large filter' has 200 rules 'short filter' performance is slightly better on x86_64/i386/arm32 'large filter' is much faster on x86_64 and i386 and shows no difference on arm32 --x86_64-- short filter old BPF: 2.7 sec 39.12% bench libc-2.15.so [.] syscall 8.10% bench [kernel.kallsyms] [k] sk_run_filter 6.31% bench [kernel.kallsyms] [k] system_call 5.59% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 4.37% bench [kernel.kallsyms] [k] trace_hardirqs_off_caller 3.70% bench [kernel.kallsyms] [k] __secure_computing 3.67% bench [kernel.kallsyms] [k] lock_is_held 3.03% bench [kernel.kallsyms] [k] seccomp_bpf_load new BPF: 2.58 sec 42.05% bench libc-2.15.so [.] syscall 6.91% bench [kernel.kallsyms] [k] system_call 6.25% bench [kernel.kallsyms] [k] trace_hardirqs_on_caller 6.07% bench [kernel.kallsyms] [k] __secure_computing 5.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp --arm32-- short filter old BPF: 4.0 sec 39.92% bench [kernel.kallsyms] [k] vector_swi 16.60% bench [kernel.kallsyms] [k] sk_run_filter 14.66% bench libc-2.17.so [.] syscall 5.42% bench [kernel.kallsyms] [k] seccomp_bpf_load 5.10% bench [kernel.kallsyms] [k] __secure_computing new BPF: 3.7 sec 35.93% bench [kernel.kallsyms] [k] vector_swi 21.89% bench libc-2.17.so [.] syscall 13.45% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 6.25% bench [kernel.kallsyms] [k] __secure_computing 3.96% bench [kernel.kallsyms] [k] syscall_trace_exit --x86_64-- large filter old BPF: 8.6 seconds 73.38% bench [kernel.kallsyms] [k] sk_run_filter 10.70% bench libc-2.15.so [.] syscall 5.09% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.97% bench [kernel.kallsyms] [k] system_call new BPF: 5.7 seconds 66.20% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 16.75% bench libc-2.15.so [.] syscall 3.31% bench [kernel.kallsyms] [k] system_call 2.88% bench [kernel.kallsyms] [k] __secure_computing --i386-- large filter old BPF: 5.4 sec new BPF: 3.8 sec --arm32-- large filter old BPF: 13.5 sec 73.88% bench [kernel.kallsyms] [k] sk_run_filter 10.29% bench [kernel.kallsyms] [k] vector_swi 6.46% bench libc-2.17.so [.] syscall 2.94% bench [kernel.kallsyms] [k] seccomp_bpf_load 1.19% bench [kernel.kallsyms] [k] __secure_computing 0.87% bench [kernel.kallsyms] [k] sys_getuid new BPF: 13.5 sec 76.08% bench [kernel.kallsyms] [k] sk_run_filter_int_seccomp 10.98% bench [kernel.kallsyms] [k] vector_swi 5.87% bench libc-2.17.so [.] syscall 1.77% bench [kernel.kallsyms] [k] __secure_computing 0.93% bench [kernel.kallsyms] [k] sys_getuid BPF filters generated by seccomp are very branchy, so the new internal BPF performance is better than the old one. Performance gains will be even higher when BPF JIT is committed for the new structure, which is planned in future work (as successive JIT migrations). BPF has also been stress-tested with trinity's BPF fuzzer. Joint work with Daniel Borkmann. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: Kees Cook <keescook@chromium.org> Cc: Paul Moore <pmoore@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: linux-kernel@vger.kernel.org Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-29 01:58:25 +08:00
u32 sk_run_filter_int_seccomp(const struct seccomp_data *ctx,
const struct sock_filter_int *insni);
u32 sk_run_filter_int_skb(const struct sk_buff *ctx,
const struct sock_filter_int *insni);
int sk_convert_filter(struct sock_filter *prog, int len,
struct sock_filter_int *new_prog, int *new_len);
int sk_unattached_filter_create(struct sk_filter **pfp,
struct sock_fprog *fprog);
void sk_unattached_filter_destroy(struct sk_filter *fp);
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
int sk_detach_filter(struct sock *sk);
int sk_chk_filter(struct sock_filter *filter, unsigned int flen);
int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
unsigned int len);
void sk_decode_filter(struct sock_filter *filt, struct sock_filter *to);
void sk_filter_charge(struct sock *sk, struct sk_filter *fp);
void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
void bpf_int_jit_compile(struct sk_filter *fp);
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
#ifdef CONFIG_BPF_JIT
#include <stdarg.h>
#include <linux/linkage.h>
#include <linux/printk.h>
void bpf_jit_compile(struct sk_filter *fp);
void bpf_jit_free(struct sk_filter *fp);
static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
u32 pass, void *image)
{
pr_err("flen=%u proglen=%u pass=%u image=%pK\n",
flen, proglen, pass, image);
if (image)
print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
16, 1, image, proglen, false);
}
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
#else
net: fix unsafe set_memory_rw from softirq on x86 system with net.core.bpf_jit_enable = 1 sudo tcpdump -i eth1 'tcp port 22' causes the warning: [ 56.766097] Possible unsafe locking scenario: [ 56.766097] [ 56.780146] CPU0 [ 56.786807] ---- [ 56.793188] lock(&(&vb->lock)->rlock); [ 56.799593] <Interrupt> [ 56.805889] lock(&(&vb->lock)->rlock); [ 56.812266] [ 56.812266] *** DEADLOCK *** [ 56.812266] [ 56.830670] 1 lock held by ksoftirqd/1/13: [ 56.836838] #0: (rcu_read_lock){.+.+..}, at: [<ffffffff8118f44c>] vm_unmap_aliases+0x8c/0x380 [ 56.849757] [ 56.849757] stack backtrace: [ 56.862194] CPU: 1 PID: 13 Comm: ksoftirqd/1 Not tainted 3.12.0-rc3+ #45 [ 56.868721] Hardware name: System manufacturer System Product Name/P8Z77 WS, BIOS 3007 07/26/2012 [ 56.882004] ffffffff821944c0 ffff88080bbdb8c8 ffffffff8175a145 0000000000000007 [ 56.895630] ffff88080bbd5f40 ffff88080bbdb928 ffffffff81755b14 0000000000000001 [ 56.909313] ffff880800000001 ffff880800000000 ffffffff8101178f 0000000000000001 [ 56.923006] Call Trace: [ 56.929532] [<ffffffff8175a145>] dump_stack+0x55/0x76 [ 56.936067] [<ffffffff81755b14>] print_usage_bug+0x1f7/0x208 [ 56.942445] [<ffffffff8101178f>] ? save_stack_trace+0x2f/0x50 [ 56.948932] [<ffffffff810cc0a0>] ? check_usage_backwards+0x150/0x150 [ 56.955470] [<ffffffff810ccb52>] mark_lock+0x282/0x2c0 [ 56.961945] [<ffffffff810ccfed>] __lock_acquire+0x45d/0x1d50 [ 56.968474] [<ffffffff810cce6e>] ? __lock_acquire+0x2de/0x1d50 [ 56.975140] [<ffffffff81393bf5>] ? cpumask_next_and+0x55/0x90 [ 56.981942] [<ffffffff810cef72>] lock_acquire+0x92/0x1d0 [ 56.988745] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 56.995619] [<ffffffff817628f1>] _raw_spin_lock+0x41/0x50 [ 57.002493] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 57.009447] [<ffffffff8118f52a>] vm_unmap_aliases+0x16a/0x380 [ 57.016477] [<ffffffff8118f44c>] ? vm_unmap_aliases+0x8c/0x380 [ 57.023607] [<ffffffff810436b0>] change_page_attr_set_clr+0xc0/0x460 [ 57.030818] [<ffffffff810cfb8d>] ? trace_hardirqs_on+0xd/0x10 [ 57.037896] [<ffffffff811a8330>] ? kmem_cache_free+0xb0/0x2b0 [ 57.044789] [<ffffffff811b59c3>] ? free_object_rcu+0x93/0xa0 [ 57.051720] [<ffffffff81043d9f>] set_memory_rw+0x2f/0x40 [ 57.058727] [<ffffffff8104e17c>] bpf_jit_free+0x2c/0x40 [ 57.065577] [<ffffffff81642cba>] sk_filter_release_rcu+0x1a/0x30 [ 57.072338] [<ffffffff811108e2>] rcu_process_callbacks+0x202/0x7c0 [ 57.078962] [<ffffffff81057f17>] __do_softirq+0xf7/0x3f0 [ 57.085373] [<ffffffff81058245>] run_ksoftirqd+0x35/0x70 cannot reuse jited filter memory, since it's readonly, so use original bpf insns memory to hold work_struct defer kfree of sk_filter until jit completed freeing tested on x86_64 and i386 Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-04 15:14:06 +08:00
#include <linux/slab.h>
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
static inline void bpf_jit_compile(struct sk_filter *fp)
{
}
static inline void bpf_jit_free(struct sk_filter *fp)
{
net: fix unsafe set_memory_rw from softirq on x86 system with net.core.bpf_jit_enable = 1 sudo tcpdump -i eth1 'tcp port 22' causes the warning: [ 56.766097] Possible unsafe locking scenario: [ 56.766097] [ 56.780146] CPU0 [ 56.786807] ---- [ 56.793188] lock(&(&vb->lock)->rlock); [ 56.799593] <Interrupt> [ 56.805889] lock(&(&vb->lock)->rlock); [ 56.812266] [ 56.812266] *** DEADLOCK *** [ 56.812266] [ 56.830670] 1 lock held by ksoftirqd/1/13: [ 56.836838] #0: (rcu_read_lock){.+.+..}, at: [<ffffffff8118f44c>] vm_unmap_aliases+0x8c/0x380 [ 56.849757] [ 56.849757] stack backtrace: [ 56.862194] CPU: 1 PID: 13 Comm: ksoftirqd/1 Not tainted 3.12.0-rc3+ #45 [ 56.868721] Hardware name: System manufacturer System Product Name/P8Z77 WS, BIOS 3007 07/26/2012 [ 56.882004] ffffffff821944c0 ffff88080bbdb8c8 ffffffff8175a145 0000000000000007 [ 56.895630] ffff88080bbd5f40 ffff88080bbdb928 ffffffff81755b14 0000000000000001 [ 56.909313] ffff880800000001 ffff880800000000 ffffffff8101178f 0000000000000001 [ 56.923006] Call Trace: [ 56.929532] [<ffffffff8175a145>] dump_stack+0x55/0x76 [ 56.936067] [<ffffffff81755b14>] print_usage_bug+0x1f7/0x208 [ 56.942445] [<ffffffff8101178f>] ? save_stack_trace+0x2f/0x50 [ 56.948932] [<ffffffff810cc0a0>] ? check_usage_backwards+0x150/0x150 [ 56.955470] [<ffffffff810ccb52>] mark_lock+0x282/0x2c0 [ 56.961945] [<ffffffff810ccfed>] __lock_acquire+0x45d/0x1d50 [ 56.968474] [<ffffffff810cce6e>] ? __lock_acquire+0x2de/0x1d50 [ 56.975140] [<ffffffff81393bf5>] ? cpumask_next_and+0x55/0x90 [ 56.981942] [<ffffffff810cef72>] lock_acquire+0x92/0x1d0 [ 56.988745] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 56.995619] [<ffffffff817628f1>] _raw_spin_lock+0x41/0x50 [ 57.002493] [<ffffffff8118f52a>] ? vm_unmap_aliases+0x16a/0x380 [ 57.009447] [<ffffffff8118f52a>] vm_unmap_aliases+0x16a/0x380 [ 57.016477] [<ffffffff8118f44c>] ? vm_unmap_aliases+0x8c/0x380 [ 57.023607] [<ffffffff810436b0>] change_page_attr_set_clr+0xc0/0x460 [ 57.030818] [<ffffffff810cfb8d>] ? trace_hardirqs_on+0xd/0x10 [ 57.037896] [<ffffffff811a8330>] ? kmem_cache_free+0xb0/0x2b0 [ 57.044789] [<ffffffff811b59c3>] ? free_object_rcu+0x93/0xa0 [ 57.051720] [<ffffffff81043d9f>] set_memory_rw+0x2f/0x40 [ 57.058727] [<ffffffff8104e17c>] bpf_jit_free+0x2c/0x40 [ 57.065577] [<ffffffff81642cba>] sk_filter_release_rcu+0x1a/0x30 [ 57.072338] [<ffffffff811108e2>] rcu_process_callbacks+0x202/0x7c0 [ 57.078962] [<ffffffff81057f17>] __do_softirq+0xf7/0x3f0 [ 57.085373] [<ffffffff81058245>] run_ksoftirqd+0x35/0x70 cannot reuse jited filter memory, since it's readonly, so use original bpf insns memory to hold work_struct defer kfree of sk_filter until jit completed freeing tested on x86_64 and i386 Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-04 15:14:06 +08:00
kfree(fp);
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
}
#endif
static inline int bpf_tell_extensions(void)
{
net: filter: let bpf_tell_extensions return SKF_AD_MAX Michal Sekletar added in commit ea02f9411d9f ("net: introduce SO_BPF_EXTENSIONS") a facility where user space can enquire the BPF ancillary instruction set, which is imho a step into the right direction for letting user space high-level to BPF optimizers make an informed decision for possibly using these extensions. The original rationale was to return through a getsockopt(2) a bitfield of which instructions are supported and which are not, as of right now, we just return 0 to indicate a base support for SKF_AD_PROTOCOL up to SKF_AD_PAY_OFFSET. Limitations of this approach are that this API which we need to maintain for a long time can only support a maximum of 32 extensions, and needs to be additionally maintained/updated when each new extension that comes in. I thought about this a bit more and what we can do here to overcome this is to just return SKF_AD_MAX. Since we never remove any extension since we cannot break user space and always linearly increase SKF_AD_MAX on each newly added extension, user space can make a decision on what extensions are supported in the whole set of extensions and which aren't, by just checking which of them from the whole set have an offset < SKF_AD_MAX of the underlying kernel. Since SKF_AD_MAX must be updated each time we add new ones, we don't need to introduce an additional enum and got maintenance for free. At some point in time when SO_BPF_EXTENSIONS becomes ubiquitous for most kernels, then an application can simply make use of this and easily be run on newer or older underlying kernels without needing to be recompiled, of course. Since that is for 3.14, it's not too late to do this change. Cc: Michal Sekletar <msekleta@redhat.com> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Acked-by: Michal Sekletar <msekleta@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-21 07:19:37 +08:00
return SKF_AD_MAX;
}
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
enum {
BPF_S_RET_K = 1,
BPF_S_RET_A,
BPF_S_ALU_ADD_K,
BPF_S_ALU_ADD_X,
BPF_S_ALU_SUB_K,
BPF_S_ALU_SUB_X,
BPF_S_ALU_MUL_K,
BPF_S_ALU_MUL_X,
BPF_S_ALU_DIV_X,
BPF_S_ALU_MOD_K,
BPF_S_ALU_MOD_X,
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
BPF_S_ALU_AND_K,
BPF_S_ALU_AND_X,
BPF_S_ALU_OR_K,
BPF_S_ALU_OR_X,
BPF_S_ALU_XOR_K,
BPF_S_ALU_XOR_X,
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
BPF_S_ALU_LSH_K,
BPF_S_ALU_LSH_X,
BPF_S_ALU_RSH_K,
BPF_S_ALU_RSH_X,
BPF_S_ALU_NEG,
BPF_S_LD_W_ABS,
BPF_S_LD_H_ABS,
BPF_S_LD_B_ABS,
BPF_S_LD_W_LEN,
BPF_S_LD_W_IND,
BPF_S_LD_H_IND,
BPF_S_LD_B_IND,
BPF_S_LD_IMM,
BPF_S_LDX_W_LEN,
BPF_S_LDX_B_MSH,
BPF_S_LDX_IMM,
BPF_S_MISC_TAX,
BPF_S_MISC_TXA,
BPF_S_ALU_DIV_K,
BPF_S_LD_MEM,
BPF_S_LDX_MEM,
BPF_S_ST,
BPF_S_STX,
BPF_S_JMP_JA,
BPF_S_JMP_JEQ_K,
BPF_S_JMP_JEQ_X,
BPF_S_JMP_JGE_K,
BPF_S_JMP_JGE_X,
BPF_S_JMP_JGT_K,
BPF_S_JMP_JGT_X,
BPF_S_JMP_JSET_K,
BPF_S_JMP_JSET_X,
/* Ancillary data */
BPF_S_ANC_PROTOCOL,
BPF_S_ANC_PKTTYPE,
BPF_S_ANC_IFINDEX,
BPF_S_ANC_NLATTR,
BPF_S_ANC_NLATTR_NEST,
BPF_S_ANC_MARK,
BPF_S_ANC_QUEUE,
BPF_S_ANC_HATYPE,
BPF_S_ANC_RXHASH,
BPF_S_ANC_CPU,
BPF_S_ANC_ALU_XOR_X,
BPF_S_ANC_VLAN_TAG,
BPF_S_ANC_VLAN_TAG_PRESENT,
BPF_S_ANC_PAY_OFFSET,
BPF_S_ANC_RANDOM,
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
};
#endif /* __LINUX_FILTER_H__ */