License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2012-12-07 08:04:48 +08:00
|
|
|
#include <linux/err.h>
|
|
|
|
#include <linux/igmp.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/netdevice.h>
|
|
|
|
#include <linux/rculist.h>
|
|
|
|
#include <linux/skbuff.h>
|
2012-12-12 06:23:08 +08:00
|
|
|
#include <linux/if_ether.h>
|
2012-12-07 08:04:48 +08:00
|
|
|
#include <net/ip.h>
|
|
|
|
#include <net/netlink.h>
|
2016-01-11 04:06:23 +08:00
|
|
|
#include <net/switchdev.h>
|
2012-12-07 08:04:48 +08:00
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
|
|
#include <net/ipv6.h>
|
2013-09-04 08:13:39 +08:00
|
|
|
#include <net/addrconf.h>
|
2012-12-07 08:04:48 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "br_private.h"
|
|
|
|
|
2021-05-13 21:20:45 +08:00
|
|
|
static bool
|
2021-08-10 23:29:32 +08:00
|
|
|
br_ip4_rports_get_timer(struct net_bridge_mcast_port *pmctx,
|
|
|
|
unsigned long *timer)
|
2021-05-13 21:20:45 +08:00
|
|
|
{
|
2021-08-10 23:29:32 +08:00
|
|
|
*timer = br_timer_value(&pmctx->ip4_mc_router_timer);
|
|
|
|
return !hlist_unhashed(&pmctx->ip4_rlist);
|
2021-05-13 21:20:45 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static bool
|
2021-08-10 23:29:32 +08:00
|
|
|
br_ip6_rports_get_timer(struct net_bridge_mcast_port *pmctx,
|
|
|
|
unsigned long *timer)
|
2021-05-13 21:20:45 +08:00
|
|
|
{
|
2021-05-13 21:20:51 +08:00
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
2021-08-10 23:29:32 +08:00
|
|
|
*timer = br_timer_value(&pmctx->ip6_mc_router_timer);
|
|
|
|
return !hlist_unhashed(&pmctx->ip6_rlist);
|
2021-05-13 21:20:51 +08:00
|
|
|
#else
|
2021-05-13 21:20:45 +08:00
|
|
|
*timer = 0;
|
|
|
|
return false;
|
2021-05-13 21:20:51 +08:00
|
|
|
#endif
|
2021-05-13 21:20:45 +08:00
|
|
|
}
|
|
|
|
|
2021-08-16 22:57:05 +08:00
|
|
|
static size_t __br_rports_one_size(void)
|
|
|
|
{
|
|
|
|
return nla_total_size(sizeof(u32)) + /* MDBA_ROUTER_PORT */
|
|
|
|
nla_total_size(sizeof(u32)) + /* MDBA_ROUTER_PATTR_TIMER */
|
|
|
|
nla_total_size(sizeof(u8)) + /* MDBA_ROUTER_PATTR_TYPE */
|
|
|
|
nla_total_size(sizeof(u32)) + /* MDBA_ROUTER_PATTR_INET_TIMER */
|
|
|
|
nla_total_size(sizeof(u32)) + /* MDBA_ROUTER_PATTR_INET6_TIMER */
|
|
|
|
nla_total_size(sizeof(u32)); /* MDBA_ROUTER_PATTR_VID */
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t br_rports_size(const struct net_bridge_mcast *brmctx)
|
|
|
|
{
|
|
|
|
struct net_bridge_mcast_port *pmctx;
|
|
|
|
size_t size = nla_total_size(0); /* MDBA_ROUTER */
|
|
|
|
|
|
|
|
rcu_read_lock();
|
|
|
|
hlist_for_each_entry_rcu(pmctx, &brmctx->ip4_mc_router_list,
|
|
|
|
ip4_rlist)
|
|
|
|
size += __br_rports_one_size();
|
|
|
|
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
|
|
hlist_for_each_entry_rcu(pmctx, &brmctx->ip6_mc_router_list,
|
|
|
|
ip6_rlist)
|
|
|
|
size += __br_rports_one_size();
|
|
|
|
#endif
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
|
|
return size;
|
|
|
|
}
|
|
|
|
|
2021-08-10 23:29:33 +08:00
|
|
|
int br_rports_fill_info(struct sk_buff *skb,
|
|
|
|
const struct net_bridge_mcast *brmctx)
|
2012-12-07 08:04:48 +08:00
|
|
|
{
|
2021-08-10 23:29:32 +08:00
|
|
|
u16 vid = brmctx->vlan ? brmctx->vlan->vid : 0;
|
2021-05-13 21:20:45 +08:00
|
|
|
bool have_ip4_mc_rtr, have_ip6_mc_rtr;
|
|
|
|
unsigned long ip4_timer, ip6_timer;
|
2016-02-27 04:20:04 +08:00
|
|
|
struct nlattr *nest, *port_nest;
|
2021-05-13 21:20:45 +08:00
|
|
|
struct net_bridge_port *p;
|
|
|
|
|
2021-08-10 23:29:32 +08:00
|
|
|
if (!brmctx->multicast_router || !br_rports_have_mc_router(brmctx))
|
2012-12-07 08:04:48 +08:00
|
|
|
return 0;
|
|
|
|
|
2019-04-26 17:13:06 +08:00
|
|
|
nest = nla_nest_start_noflag(skb, MDBA_ROUTER);
|
2012-12-07 08:04:48 +08:00
|
|
|
if (nest == NULL)
|
|
|
|
return -EMSGSIZE;
|
|
|
|
|
2021-08-10 23:29:32 +08:00
|
|
|
list_for_each_entry_rcu(p, &brmctx->br->port_list, list) {
|
|
|
|
struct net_bridge_mcast_port *pmctx;
|
|
|
|
|
|
|
|
if (vid) {
|
|
|
|
struct net_bridge_vlan *v;
|
|
|
|
|
|
|
|
v = br_vlan_find(nbp_vlan_group(p), vid);
|
|
|
|
if (!v)
|
|
|
|
continue;
|
|
|
|
pmctx = &v->port_mcast_ctx;
|
|
|
|
} else {
|
|
|
|
pmctx = &p->multicast_ctx;
|
|
|
|
}
|
|
|
|
|
|
|
|
have_ip4_mc_rtr = br_ip4_rports_get_timer(pmctx, &ip4_timer);
|
|
|
|
have_ip6_mc_rtr = br_ip6_rports_get_timer(pmctx, &ip6_timer);
|
2021-05-13 21:20:45 +08:00
|
|
|
|
|
|
|
if (!have_ip4_mc_rtr && !have_ip6_mc_rtr)
|
2016-02-27 04:20:04 +08:00
|
|
|
continue;
|
2021-05-13 21:20:45 +08:00
|
|
|
|
2019-04-26 17:13:06 +08:00
|
|
|
port_nest = nla_nest_start_noflag(skb, MDBA_ROUTER_PORT);
|
2016-02-27 04:20:04 +08:00
|
|
|
if (!port_nest)
|
2012-12-07 08:04:48 +08:00
|
|
|
goto fail;
|
2021-05-13 21:20:45 +08:00
|
|
|
|
2016-02-27 04:20:04 +08:00
|
|
|
if (nla_put_nohdr(skb, sizeof(u32), &p->dev->ifindex) ||
|
|
|
|
nla_put_u32(skb, MDBA_ROUTER_PATTR_TIMER,
|
2021-05-13 21:20:45 +08:00
|
|
|
max(ip4_timer, ip6_timer)) ||
|
2016-02-27 04:20:04 +08:00
|
|
|
nla_put_u8(skb, MDBA_ROUTER_PATTR_TYPE,
|
2021-07-20 01:06:23 +08:00
|
|
|
p->multicast_ctx.multicast_router) ||
|
2021-05-13 21:20:52 +08:00
|
|
|
(have_ip4_mc_rtr &&
|
|
|
|
nla_put_u32(skb, MDBA_ROUTER_PATTR_INET_TIMER,
|
|
|
|
ip4_timer)) ||
|
|
|
|
(have_ip6_mc_rtr &&
|
|
|
|
nla_put_u32(skb, MDBA_ROUTER_PATTR_INET6_TIMER,
|
2021-08-10 23:29:33 +08:00
|
|
|
ip6_timer)) ||
|
|
|
|
(vid && nla_put_u16(skb, MDBA_ROUTER_PATTR_VID, vid))) {
|
2016-02-27 04:20:04 +08:00
|
|
|
nla_nest_cancel(skb, port_nest);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
nla_nest_end(skb, port_nest);
|
2012-12-07 08:04:48 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
nla_nest_end(skb, nest);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
|
|
nla_nest_cancel(skb, nest);
|
|
|
|
return -EMSGSIZE;
|
|
|
|
}
|
|
|
|
|
2016-02-03 16:57:05 +08:00
|
|
|
static void __mdb_entry_fill_flags(struct br_mdb_entry *e, unsigned char flags)
|
|
|
|
{
|
|
|
|
e->state = flags & MDB_PG_FLAGS_PERMANENT;
|
|
|
|
e->flags = 0;
|
|
|
|
if (flags & MDB_PG_FLAGS_OFFLOAD)
|
|
|
|
e->flags |= MDB_FLAGS_OFFLOAD;
|
2019-07-30 20:20:41 +08:00
|
|
|
if (flags & MDB_PG_FLAGS_FAST_LEAVE)
|
|
|
|
e->flags |= MDB_FLAGS_FAST_LEAVE;
|
net: bridge: mcast: handle port group filter modes
We need to handle group filter mode transitions and initial state.
To change a port group's INCLUDE -> EXCLUDE mode (or when we have added
a new port group in EXCLUDE mode) we need to add that port to all of
*,G ports' S,G entries for proper replication. When the EXCLUDE state is
changed from IGMPv3 report, br_multicast_fwd_filter_exclude() must be
called after the source list processing because the assumption is that
all of the group's S,G entries will be created before transitioning to
EXCLUDE mode, i.e. most importantly its blocked entries will already be
added so it will not get automatically added to them.
The transition EXCLUDE -> INCLUDE happens only when a port group timer
expires, it requires us to remove that port from all of *,G ports' S,G
entries where it was automatically added previously.
Finally when we are adding a new S,G entry we must add all of *,G's
EXCLUDE ports to it.
In order to distinguish automatically added *,G EXCLUDE ports we have a
new port group flag - MDB_PG_FLAGS_STAR_EXCL.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-22 15:30:24 +08:00
|
|
|
if (flags & MDB_PG_FLAGS_STAR_EXCL)
|
|
|
|
e->flags |= MDB_FLAGS_STAR_EXCL;
|
2020-09-22 15:30:25 +08:00
|
|
|
if (flags & MDB_PG_FLAGS_BLOCKED)
|
|
|
|
e->flags |= MDB_FLAGS_BLOCKED;
|
2016-02-03 16:57:05 +08:00
|
|
|
}
|
|
|
|
|
2020-09-22 15:30:19 +08:00
|
|
|
static void __mdb_entry_to_br_ip(struct br_mdb_entry *entry, struct br_ip *ip,
|
|
|
|
struct nlattr **mdb_attrs)
|
2016-04-21 18:52:44 +08:00
|
|
|
{
|
|
|
|
memset(ip, 0, sizeof(struct br_ip));
|
|
|
|
ip->vid = entry->vid;
|
|
|
|
ip->proto = entry->addr.proto;
|
2020-09-22 15:30:19 +08:00
|
|
|
switch (ip->proto) {
|
|
|
|
case htons(ETH_P_IP):
|
2020-09-22 15:30:17 +08:00
|
|
|
ip->dst.ip4 = entry->addr.u.ip4;
|
2020-09-22 15:30:19 +08:00
|
|
|
if (mdb_attrs && mdb_attrs[MDBE_ATTR_SOURCE])
|
|
|
|
ip->src.ip4 = nla_get_in_addr(mdb_attrs[MDBE_ATTR_SOURCE]);
|
|
|
|
break;
|
2016-04-21 18:52:44 +08:00
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
2020-09-22 15:30:19 +08:00
|
|
|
case htons(ETH_P_IPV6):
|
2020-09-22 15:30:17 +08:00
|
|
|
ip->dst.ip6 = entry->addr.u.ip6;
|
2020-09-22 15:30:19 +08:00
|
|
|
if (mdb_attrs && mdb_attrs[MDBE_ATTR_SOURCE])
|
|
|
|
ip->src.ip6 = nla_get_in6_addr(mdb_attrs[MDBE_ATTR_SOURCE]);
|
|
|
|
break;
|
2016-04-21 18:52:44 +08:00
|
|
|
#endif
|
2020-10-29 07:38:31 +08:00
|
|
|
default:
|
|
|
|
ether_addr_copy(ip->dst.mac_addr, entry->addr.u.mac_addr);
|
2020-09-22 15:30:19 +08:00
|
|
|
}
|
|
|
|
|
2016-04-21 18:52:44 +08:00
|
|
|
}
|
|
|
|
|
2020-09-07 17:56:08 +08:00
|
|
|
static int __mdb_fill_srcs(struct sk_buff *skb,
|
|
|
|
struct net_bridge_port_group *p)
|
|
|
|
{
|
|
|
|
struct net_bridge_group_src *ent;
|
|
|
|
struct nlattr *nest, *nest_ent;
|
|
|
|
|
|
|
|
if (hlist_empty(&p->src_list))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
nest = nla_nest_start(skb, MDBA_MDB_EATTR_SRC_LIST);
|
|
|
|
if (!nest)
|
|
|
|
return -EMSGSIZE;
|
|
|
|
|
|
|
|
hlist_for_each_entry_rcu(ent, &p->src_list, node,
|
2020-09-22 15:30:22 +08:00
|
|
|
lockdep_is_held(&p->key.port->br->multicast_lock)) {
|
2020-09-07 17:56:08 +08:00
|
|
|
nest_ent = nla_nest_start(skb, MDBA_MDB_SRCLIST_ENTRY);
|
|
|
|
if (!nest_ent)
|
|
|
|
goto out_cancel_err;
|
|
|
|
switch (ent->addr.proto) {
|
|
|
|
case htons(ETH_P_IP):
|
|
|
|
if (nla_put_in_addr(skb, MDBA_MDB_SRCATTR_ADDRESS,
|
2020-09-22 15:30:16 +08:00
|
|
|
ent->addr.src.ip4)) {
|
2020-09-07 17:56:08 +08:00
|
|
|
nla_nest_cancel(skb, nest_ent);
|
|
|
|
goto out_cancel_err;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
|
|
case htons(ETH_P_IPV6):
|
|
|
|
if (nla_put_in6_addr(skb, MDBA_MDB_SRCATTR_ADDRESS,
|
2020-09-22 15:30:16 +08:00
|
|
|
&ent->addr.src.ip6)) {
|
2020-09-07 17:56:08 +08:00
|
|
|
nla_nest_cancel(skb, nest_ent);
|
|
|
|
goto out_cancel_err;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
default:
|
|
|
|
nla_nest_cancel(skb, nest_ent);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (nla_put_u32(skb, MDBA_MDB_SRCATTR_TIMER,
|
|
|
|
br_timer_value(&ent->timer))) {
|
|
|
|
nla_nest_cancel(skb, nest_ent);
|
|
|
|
goto out_cancel_err;
|
|
|
|
}
|
|
|
|
nla_nest_end(skb, nest_ent);
|
|
|
|
}
|
|
|
|
|
|
|
|
nla_nest_end(skb, nest);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_cancel_err:
|
|
|
|
nla_nest_cancel(skb, nest);
|
|
|
|
return -EMSGSIZE;
|
|
|
|
}
|
|
|
|
|
2019-08-17 19:22:11 +08:00
|
|
|
static int __mdb_fill_info(struct sk_buff *skb,
|
2019-08-17 19:22:12 +08:00
|
|
|
struct net_bridge_mdb_entry *mp,
|
2019-08-17 19:22:11 +08:00
|
|
|
struct net_bridge_port_group *p)
|
|
|
|
{
|
2020-09-07 17:56:08 +08:00
|
|
|
bool dump_srcs_mode = false;
|
2019-08-17 19:22:12 +08:00
|
|
|
struct timer_list *mtimer;
|
2019-08-17 19:22:11 +08:00
|
|
|
struct nlattr *nest_ent;
|
|
|
|
struct br_mdb_entry e;
|
2019-08-17 19:22:12 +08:00
|
|
|
u8 flags = 0;
|
|
|
|
int ifindex;
|
2019-08-17 19:22:11 +08:00
|
|
|
|
|
|
|
memset(&e, 0, sizeof(e));
|
2019-08-17 19:22:12 +08:00
|
|
|
if (p) {
|
2020-09-22 15:30:22 +08:00
|
|
|
ifindex = p->key.port->dev->ifindex;
|
2019-08-17 19:22:12 +08:00
|
|
|
mtimer = &p->timer;
|
|
|
|
flags = p->flags;
|
|
|
|
} else {
|
|
|
|
ifindex = mp->br->dev->ifindex;
|
|
|
|
mtimer = &mp->timer;
|
|
|
|
}
|
|
|
|
|
|
|
|
__mdb_entry_fill_flags(&e, flags);
|
|
|
|
e.ifindex = ifindex;
|
|
|
|
e.vid = mp->addr.vid;
|
2022-04-11 16:40:53 +08:00
|
|
|
if (mp->addr.proto == htons(ETH_P_IP)) {
|
2020-09-22 15:30:17 +08:00
|
|
|
e.addr.u.ip4 = mp->addr.dst.ip4;
|
2019-08-17 19:22:11 +08:00
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
2022-04-11 16:40:53 +08:00
|
|
|
} else if (mp->addr.proto == htons(ETH_P_IPV6)) {
|
2020-09-22 15:30:17 +08:00
|
|
|
e.addr.u.ip6 = mp->addr.dst.ip6;
|
2019-08-17 19:22:11 +08:00
|
|
|
#endif
|
2022-04-11 16:40:53 +08:00
|
|
|
} else {
|
2020-10-29 07:38:31 +08:00
|
|
|
ether_addr_copy(e.addr.u.mac_addr, mp->addr.dst.mac_addr);
|
2023-02-09 15:18:49 +08:00
|
|
|
e.state = MDB_PERMANENT;
|
2022-04-11 16:40:53 +08:00
|
|
|
}
|
2019-08-17 19:22:12 +08:00
|
|
|
e.addr.proto = mp->addr.proto;
|
2019-08-17 19:22:11 +08:00
|
|
|
nest_ent = nla_nest_start_noflag(skb,
|
|
|
|
MDBA_MDB_ENTRY_INFO);
|
|
|
|
if (!nest_ent)
|
|
|
|
return -EMSGSIZE;
|
|
|
|
|
|
|
|
if (nla_put_nohdr(skb, sizeof(e), &e) ||
|
|
|
|
nla_put_u32(skb,
|
|
|
|
MDBA_MDB_EATTR_TIMER,
|
2020-09-22 15:30:19 +08:00
|
|
|
br_timer_value(mtimer)))
|
|
|
|
goto nest_err;
|
2020-09-22 15:30:21 +08:00
|
|
|
|
2020-09-07 17:56:08 +08:00
|
|
|
switch (mp->addr.proto) {
|
|
|
|
case htons(ETH_P_IP):
|
2021-07-20 01:06:24 +08:00
|
|
|
dump_srcs_mode = !!(mp->br->multicast_ctx.multicast_igmp_version == 3);
|
2020-09-22 15:30:19 +08:00
|
|
|
if (mp->addr.src.ip4) {
|
|
|
|
if (nla_put_in_addr(skb, MDBA_MDB_EATTR_SOURCE,
|
|
|
|
mp->addr.src.ip4))
|
|
|
|
goto nest_err;
|
|
|
|
break;
|
|
|
|
}
|
2020-09-07 17:56:08 +08:00
|
|
|
break;
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
|
|
case htons(ETH_P_IPV6):
|
2021-07-20 01:06:24 +08:00
|
|
|
dump_srcs_mode = !!(mp->br->multicast_ctx.multicast_mld_version == 2);
|
2020-09-22 15:30:19 +08:00
|
|
|
if (!ipv6_addr_any(&mp->addr.src.ip6)) {
|
|
|
|
if (nla_put_in6_addr(skb, MDBA_MDB_EATTR_SOURCE,
|
|
|
|
&mp->addr.src.ip6))
|
|
|
|
goto nest_err;
|
|
|
|
break;
|
|
|
|
}
|
2020-09-07 17:56:08 +08:00
|
|
|
break;
|
|
|
|
#endif
|
2020-10-29 07:38:31 +08:00
|
|
|
default:
|
|
|
|
ether_addr_copy(e.addr.u.mac_addr, mp->addr.dst.mac_addr);
|
2020-09-07 17:56:08 +08:00
|
|
|
}
|
2020-09-22 15:30:21 +08:00
|
|
|
if (p) {
|
|
|
|
if (nla_put_u8(skb, MDBA_MDB_EATTR_RTPROT, p->rt_protocol))
|
|
|
|
goto nest_err;
|
|
|
|
if (dump_srcs_mode &&
|
|
|
|
(__mdb_fill_srcs(skb, p) ||
|
|
|
|
nla_put_u8(skb, MDBA_MDB_EATTR_GROUP_MODE,
|
|
|
|
p->filter_mode)))
|
|
|
|
goto nest_err;
|
|
|
|
}
|
2019-08-17 19:22:11 +08:00
|
|
|
nla_nest_end(skb, nest_ent);
|
|
|
|
|
|
|
|
return 0;
|
2020-09-22 15:30:19 +08:00
|
|
|
|
|
|
|
nest_err:
|
|
|
|
nla_nest_cancel(skb, nest_ent);
|
|
|
|
return -EMSGSIZE;
|
2019-08-17 19:22:11 +08:00
|
|
|
}
|
|
|
|
|
2012-12-07 08:04:48 +08:00
|
|
|
static int br_mdb_fill_info(struct sk_buff *skb, struct netlink_callback *cb,
|
|
|
|
struct net_device *dev)
|
|
|
|
{
|
2020-09-07 17:56:08 +08:00
|
|
|
int idx = 0, s_idx = cb->args[1], err = 0, pidx = 0, s_pidx = cb->args[2];
|
2012-12-07 08:04:48 +08:00
|
|
|
struct net_bridge *br = netdev_priv(dev);
|
2018-12-05 21:14:24 +08:00
|
|
|
struct net_bridge_mdb_entry *mp;
|
2012-12-07 08:04:48 +08:00
|
|
|
struct nlattr *nest, *nest2;
|
|
|
|
|
2018-09-26 22:01:03 +08:00
|
|
|
if (!br_opt_get(br, BROPT_MULTICAST_ENABLED))
|
2012-12-07 08:04:48 +08:00
|
|
|
return 0;
|
|
|
|
|
2019-04-26 17:13:06 +08:00
|
|
|
nest = nla_nest_start_noflag(skb, MDBA_MDB);
|
2012-12-07 08:04:48 +08:00
|
|
|
if (nest == NULL)
|
|
|
|
return -EMSGSIZE;
|
|
|
|
|
2018-12-05 21:14:24 +08:00
|
|
|
hlist_for_each_entry_rcu(mp, &br->mdb_list, mdb_node) {
|
2013-08-05 08:19:38 +08:00
|
|
|
struct net_bridge_port_group *p;
|
|
|
|
struct net_bridge_port_group __rcu **pp;
|
2012-12-07 08:04:48 +08:00
|
|
|
|
2018-12-05 21:14:24 +08:00
|
|
|
if (idx < s_idx)
|
|
|
|
goto skip;
|
2012-12-07 08:04:48 +08:00
|
|
|
|
2019-04-26 17:13:06 +08:00
|
|
|
nest2 = nla_nest_start_noflag(skb, MDBA_MDB_ENTRY);
|
2018-12-05 21:14:24 +08:00
|
|
|
if (!nest2) {
|
|
|
|
err = -EMSGSIZE;
|
|
|
|
break;
|
|
|
|
}
|
2012-12-07 08:04:48 +08:00
|
|
|
|
2020-09-07 17:56:08 +08:00
|
|
|
if (!s_pidx && mp->host_joined) {
|
2019-08-17 19:22:12 +08:00
|
|
|
err = __mdb_fill_info(skb, mp, NULL);
|
|
|
|
if (err) {
|
|
|
|
nla_nest_cancel(skb, nest2);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-05 21:14:24 +08:00
|
|
|
for (pp = &mp->ports; (p = rcu_dereference(*pp)) != NULL;
|
|
|
|
pp = &p->next) {
|
2020-09-22 15:30:22 +08:00
|
|
|
if (!p->key.port)
|
2018-12-05 21:14:24 +08:00
|
|
|
continue;
|
2020-09-07 17:56:08 +08:00
|
|
|
if (pidx < s_pidx)
|
|
|
|
goto skip_pg;
|
2018-12-05 21:14:24 +08:00
|
|
|
|
2019-08-17 19:22:12 +08:00
|
|
|
err = __mdb_fill_info(skb, mp, p);
|
2019-08-17 19:22:11 +08:00
|
|
|
if (err) {
|
2020-09-11 21:24:47 +08:00
|
|
|
nla_nest_end(skb, nest2);
|
2018-12-05 21:14:24 +08:00
|
|
|
goto out;
|
|
|
|
}
|
2020-09-07 17:56:08 +08:00
|
|
|
skip_pg:
|
|
|
|
pidx++;
|
2012-12-07 08:04:48 +08:00
|
|
|
}
|
2020-09-07 17:56:08 +08:00
|
|
|
pidx = 0;
|
|
|
|
s_pidx = 0;
|
2018-12-05 21:14:24 +08:00
|
|
|
nla_nest_end(skb, nest2);
|
|
|
|
skip:
|
|
|
|
idx++;
|
2012-12-07 08:04:48 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
cb->args[1] = idx;
|
2020-09-07 17:56:08 +08:00
|
|
|
cb->args[2] = pidx;
|
2012-12-07 08:04:48 +08:00
|
|
|
nla_nest_end(skb, nest);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2023-03-15 21:11:47 +08:00
|
|
|
int br_mdb_dump(struct net_device *dev, struct sk_buff *skb,
|
|
|
|
struct netlink_callback *cb)
|
2023-03-15 21:11:46 +08:00
|
|
|
{
|
|
|
|
struct net_bridge *br = netdev_priv(dev);
|
|
|
|
struct br_port_msg *bpm;
|
|
|
|
struct nlmsghdr *nlh;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
|
|
|
|
cb->nlh->nlmsg_seq, RTM_GETMDB, sizeof(*bpm),
|
|
|
|
NLM_F_MULTI);
|
|
|
|
if (!nlh)
|
|
|
|
return -EMSGSIZE;
|
|
|
|
|
|
|
|
bpm = nlmsg_data(nlh);
|
|
|
|
memset(bpm, 0, sizeof(*bpm));
|
|
|
|
bpm->ifindex = dev->ifindex;
|
|
|
|
|
|
|
|
rcu_read_lock();
|
|
|
|
|
|
|
|
err = br_mdb_fill_info(skb, cb, dev);
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
err = br_rports_fill_info(skb, &br->multicast_ctx);
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
out:
|
|
|
|
rcu_read_unlock();
|
|
|
|
nlmsg_end(skb, nlh);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2012-12-12 06:23:07 +08:00
|
|
|
static int nlmsg_populate_mdb_fill(struct sk_buff *skb,
|
|
|
|
struct net_device *dev,
|
2020-09-07 17:56:12 +08:00
|
|
|
struct net_bridge_mdb_entry *mp,
|
|
|
|
struct net_bridge_port_group *pg,
|
|
|
|
int type)
|
2012-12-12 06:23:07 +08:00
|
|
|
{
|
|
|
|
struct nlmsghdr *nlh;
|
|
|
|
struct br_port_msg *bpm;
|
|
|
|
struct nlattr *nest, *nest2;
|
|
|
|
|
2020-09-07 17:56:12 +08:00
|
|
|
nlh = nlmsg_put(skb, 0, 0, type, sizeof(*bpm), 0);
|
2012-12-12 06:23:07 +08:00
|
|
|
if (!nlh)
|
|
|
|
return -EMSGSIZE;
|
|
|
|
|
|
|
|
bpm = nlmsg_data(nlh);
|
2013-03-09 13:52:19 +08:00
|
|
|
memset(bpm, 0, sizeof(*bpm));
|
2012-12-12 06:23:07 +08:00
|
|
|
bpm->family = AF_BRIDGE;
|
|
|
|
bpm->ifindex = dev->ifindex;
|
2019-04-26 17:13:06 +08:00
|
|
|
nest = nla_nest_start_noflag(skb, MDBA_MDB);
|
2012-12-12 06:23:07 +08:00
|
|
|
if (nest == NULL)
|
|
|
|
goto cancel;
|
2019-04-26 17:13:06 +08:00
|
|
|
nest2 = nla_nest_start_noflag(skb, MDBA_MDB_ENTRY);
|
2012-12-12 06:23:07 +08:00
|
|
|
if (nest2 == NULL)
|
|
|
|
goto end;
|
|
|
|
|
2020-09-07 17:56:12 +08:00
|
|
|
if (__mdb_fill_info(skb, mp, pg))
|
2012-12-12 06:23:07 +08:00
|
|
|
goto end;
|
|
|
|
|
|
|
|
nla_nest_end(skb, nest2);
|
|
|
|
nla_nest_end(skb, nest);
|
2015-01-17 05:09:00 +08:00
|
|
|
nlmsg_end(skb, nlh);
|
|
|
|
return 0;
|
2012-12-12 06:23:07 +08:00
|
|
|
|
|
|
|
end:
|
|
|
|
nla_nest_end(skb, nest);
|
|
|
|
cancel:
|
|
|
|
nlmsg_cancel(skb, nlh);
|
|
|
|
return -EMSGSIZE;
|
|
|
|
}
|
|
|
|
|
2020-09-07 17:56:12 +08:00
|
|
|
static size_t rtnl_mdb_nlmsg_size(struct net_bridge_port_group *pg)
|
2012-12-12 06:23:07 +08:00
|
|
|
{
|
2020-09-07 17:56:12 +08:00
|
|
|
size_t nlmsg_size = NLMSG_ALIGN(sizeof(struct br_port_msg)) +
|
|
|
|
nla_total_size(sizeof(struct br_mdb_entry)) +
|
|
|
|
nla_total_size(sizeof(u32));
|
|
|
|
struct net_bridge_group_src *ent;
|
|
|
|
size_t addr_size = 0;
|
|
|
|
|
|
|
|
if (!pg)
|
|
|
|
goto out;
|
|
|
|
|
2020-09-22 15:30:21 +08:00
|
|
|
/* MDBA_MDB_EATTR_RTPROT */
|
|
|
|
nlmsg_size += nla_total_size(sizeof(u8));
|
|
|
|
|
2020-09-22 15:30:22 +08:00
|
|
|
switch (pg->key.addr.proto) {
|
2020-09-07 17:56:12 +08:00
|
|
|
case htons(ETH_P_IP):
|
2020-09-22 15:30:19 +08:00
|
|
|
/* MDBA_MDB_EATTR_SOURCE */
|
2020-09-22 15:30:22 +08:00
|
|
|
if (pg->key.addr.src.ip4)
|
2020-09-22 15:30:19 +08:00
|
|
|
nlmsg_size += nla_total_size(sizeof(__be32));
|
2021-07-20 01:06:24 +08:00
|
|
|
if (pg->key.port->br->multicast_ctx.multicast_igmp_version == 2)
|
2020-09-07 17:56:12 +08:00
|
|
|
goto out;
|
|
|
|
addr_size = sizeof(__be32);
|
|
|
|
break;
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
|
|
case htons(ETH_P_IPV6):
|
2020-09-22 15:30:19 +08:00
|
|
|
/* MDBA_MDB_EATTR_SOURCE */
|
2020-09-22 15:30:22 +08:00
|
|
|
if (!ipv6_addr_any(&pg->key.addr.src.ip6))
|
2020-09-22 15:30:19 +08:00
|
|
|
nlmsg_size += nla_total_size(sizeof(struct in6_addr));
|
2021-07-20 01:06:24 +08:00
|
|
|
if (pg->key.port->br->multicast_ctx.multicast_mld_version == 1)
|
2020-09-07 17:56:12 +08:00
|
|
|
goto out;
|
|
|
|
addr_size = sizeof(struct in6_addr);
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/* MDBA_MDB_EATTR_GROUP_MODE */
|
|
|
|
nlmsg_size += nla_total_size(sizeof(u8));
|
|
|
|
|
|
|
|
/* MDBA_MDB_EATTR_SRC_LIST nested attr */
|
|
|
|
if (!hlist_empty(&pg->src_list))
|
|
|
|
nlmsg_size += nla_total_size(0);
|
|
|
|
|
|
|
|
hlist_for_each_entry(ent, &pg->src_list, node) {
|
|
|
|
/* MDBA_MDB_SRCLIST_ENTRY nested attr +
|
|
|
|
* MDBA_MDB_SRCATTR_ADDRESS + MDBA_MDB_SRCATTR_TIMER
|
|
|
|
*/
|
|
|
|
nlmsg_size += nla_total_size(0) +
|
|
|
|
nla_total_size(addr_size) +
|
|
|
|
nla_total_size(sizeof(u32));
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
return nlmsg_size;
|
2012-12-12 06:23:07 +08:00
|
|
|
}
|
|
|
|
|
2021-10-28 00:21:17 +08:00
|
|
|
void br_mdb_notify(struct net_device *dev,
|
|
|
|
struct net_bridge_mdb_entry *mp,
|
|
|
|
struct net_bridge_port_group *pg,
|
|
|
|
int type)
|
|
|
|
{
|
|
|
|
struct net *net = dev_net(dev);
|
|
|
|
struct sk_buff *skb;
|
|
|
|
int err = -ENOBUFS;
|
|
|
|
|
|
|
|
br_switchdev_mdb_notify(dev, mp, pg, type);
|
2016-01-11 04:06:23 +08:00
|
|
|
|
2020-09-07 17:56:12 +08:00
|
|
|
skb = nlmsg_new(rtnl_mdb_nlmsg_size(pg), GFP_ATOMIC);
|
2012-12-12 06:23:07 +08:00
|
|
|
if (!skb)
|
|
|
|
goto errout;
|
|
|
|
|
2020-09-07 17:56:12 +08:00
|
|
|
err = nlmsg_populate_mdb_fill(skb, dev, mp, pg, type);
|
2012-12-12 06:23:07 +08:00
|
|
|
if (err < 0) {
|
|
|
|
kfree_skb(skb);
|
|
|
|
goto errout;
|
|
|
|
}
|
|
|
|
|
|
|
|
rtnl_notify(skb, net, 0, RTNLGRP_MDB, NULL, GFP_ATOMIC);
|
|
|
|
return;
|
|
|
|
errout:
|
|
|
|
rtnl_set_sk_err(net, RTNLGRP_MDB, err);
|
|
|
|
}
|
|
|
|
|
2015-07-23 20:00:53 +08:00
|
|
|
static int nlmsg_populate_rtr_fill(struct sk_buff *skb,
|
|
|
|
struct net_device *dev,
|
2021-07-20 01:06:33 +08:00
|
|
|
int ifindex, u16 vid, u32 pid,
|
2015-07-23 20:00:53 +08:00
|
|
|
u32 seq, int type, unsigned int flags)
|
|
|
|
{
|
2021-07-20 01:06:33 +08:00
|
|
|
struct nlattr *nest, *port_nest;
|
2015-07-23 20:00:53 +08:00
|
|
|
struct br_port_msg *bpm;
|
|
|
|
struct nlmsghdr *nlh;
|
|
|
|
|
2019-09-06 17:47:02 +08:00
|
|
|
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*bpm), 0);
|
2015-07-23 20:00:53 +08:00
|
|
|
if (!nlh)
|
|
|
|
return -EMSGSIZE;
|
|
|
|
|
|
|
|
bpm = nlmsg_data(nlh);
|
|
|
|
memset(bpm, 0, sizeof(*bpm));
|
|
|
|
bpm->family = AF_BRIDGE;
|
|
|
|
bpm->ifindex = dev->ifindex;
|
2019-04-26 17:13:06 +08:00
|
|
|
nest = nla_nest_start_noflag(skb, MDBA_ROUTER);
|
2015-07-23 20:00:53 +08:00
|
|
|
if (!nest)
|
|
|
|
goto cancel;
|
|
|
|
|
2021-07-20 01:06:33 +08:00
|
|
|
port_nest = nla_nest_start_noflag(skb, MDBA_ROUTER_PORT);
|
|
|
|
if (!port_nest)
|
|
|
|
goto end;
|
|
|
|
if (nla_put_nohdr(skb, sizeof(u32), &ifindex)) {
|
|
|
|
nla_nest_cancel(skb, port_nest);
|
2015-07-23 20:00:53 +08:00
|
|
|
goto end;
|
2021-07-20 01:06:33 +08:00
|
|
|
}
|
|
|
|
if (vid && nla_put_u16(skb, MDBA_ROUTER_PATTR_VID, vid)) {
|
|
|
|
nla_nest_cancel(skb, port_nest);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
nla_nest_end(skb, port_nest);
|
2015-07-23 20:00:53 +08:00
|
|
|
|
|
|
|
nla_nest_end(skb, nest);
|
|
|
|
nlmsg_end(skb, nlh);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
end:
|
|
|
|
nla_nest_end(skb, nest);
|
|
|
|
cancel:
|
|
|
|
nlmsg_cancel(skb, nlh);
|
|
|
|
return -EMSGSIZE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline size_t rtnl_rtr_nlmsg_size(void)
|
|
|
|
{
|
|
|
|
return NLMSG_ALIGN(sizeof(struct br_port_msg))
|
2021-07-20 01:06:33 +08:00
|
|
|
+ nla_total_size(sizeof(__u32))
|
|
|
|
+ nla_total_size(sizeof(u16));
|
2015-07-23 20:00:53 +08:00
|
|
|
}
|
|
|
|
|
2021-07-20 01:06:33 +08:00
|
|
|
void br_rtr_notify(struct net_device *dev, struct net_bridge_mcast_port *pmctx,
|
2015-07-23 20:00:53 +08:00
|
|
|
int type)
|
|
|
|
{
|
|
|
|
struct net *net = dev_net(dev);
|
|
|
|
struct sk_buff *skb;
|
|
|
|
int err = -ENOBUFS;
|
|
|
|
int ifindex;
|
2021-07-20 01:06:33 +08:00
|
|
|
u16 vid;
|
2015-07-23 20:00:53 +08:00
|
|
|
|
2021-07-20 01:06:33 +08:00
|
|
|
ifindex = pmctx ? pmctx->port->dev->ifindex : 0;
|
|
|
|
vid = pmctx && br_multicast_port_ctx_is_vlan(pmctx) ? pmctx->vlan->vid :
|
|
|
|
0;
|
2015-07-23 20:00:53 +08:00
|
|
|
skb = nlmsg_new(rtnl_rtr_nlmsg_size(), GFP_ATOMIC);
|
|
|
|
if (!skb)
|
|
|
|
goto errout;
|
|
|
|
|
2021-07-20 01:06:33 +08:00
|
|
|
err = nlmsg_populate_rtr_fill(skb, dev, ifindex, vid, 0, 0, type,
|
|
|
|
NTF_SELF);
|
2015-07-23 20:00:53 +08:00
|
|
|
if (err < 0) {
|
|
|
|
kfree_skb(skb);
|
|
|
|
goto errout;
|
|
|
|
}
|
|
|
|
|
|
|
|
rtnl_notify(skb, net, 0, RTNLGRP_MDB, NULL, GFP_ATOMIC);
|
|
|
|
return;
|
|
|
|
|
|
|
|
errout:
|
|
|
|
rtnl_set_sk_err(net, RTNLGRP_MDB, err);
|
|
|
|
}
|
|
|
|
|
2022-12-10 22:56:29 +08:00
|
|
|
static const struct nla_policy
|
|
|
|
br_mdbe_src_list_entry_pol[MDBE_SRCATTR_MAX + 1] = {
|
|
|
|
[MDBE_SRCATTR_ADDRESS] = NLA_POLICY_RANGE(NLA_BINARY,
|
|
|
|
sizeof(struct in_addr),
|
|
|
|
sizeof(struct in6_addr)),
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct nla_policy
|
|
|
|
br_mdbe_src_list_pol[MDBE_SRC_LIST_MAX + 1] = {
|
|
|
|
[MDBE_SRC_LIST_ENTRY] = NLA_POLICY_NESTED(br_mdbe_src_list_entry_pol),
|
|
|
|
};
|
|
|
|
|
2022-12-10 22:56:22 +08:00
|
|
|
static const struct nla_policy br_mdbe_attrs_pol[MDBE_ATTR_MAX + 1] = {
|
|
|
|
[MDBE_ATTR_SOURCE] = NLA_POLICY_RANGE(NLA_BINARY,
|
|
|
|
sizeof(struct in_addr),
|
|
|
|
sizeof(struct in6_addr)),
|
2022-12-10 22:56:29 +08:00
|
|
|
[MDBE_ATTR_GROUP_MODE] = NLA_POLICY_RANGE(NLA_U8, MCAST_EXCLUDE,
|
|
|
|
MCAST_INCLUDE),
|
|
|
|
[MDBE_ATTR_SRC_LIST] = NLA_POLICY_NESTED(br_mdbe_src_list_pol),
|
2022-12-10 22:56:30 +08:00
|
|
|
[MDBE_ATTR_RTPROT] = NLA_POLICY_MIN(NLA_U8, RTPROT_STATIC),
|
2022-12-10 22:56:22 +08:00
|
|
|
};
|
|
|
|
|
2020-09-22 15:30:19 +08:00
|
|
|
static bool is_valid_mdb_source(struct nlattr *attr, __be16 proto,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
switch (proto) {
|
|
|
|
case htons(ETH_P_IP):
|
|
|
|
if (nla_len(attr) != sizeof(struct in_addr)) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "IPv4 invalid source address length");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (ipv4_is_multicast(nla_get_in_addr(attr))) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "IPv4 multicast source address is not allowed");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
|
|
case htons(ETH_P_IPV6): {
|
|
|
|
struct in6_addr src;
|
|
|
|
|
|
|
|
if (nla_len(attr) != sizeof(struct in6_addr)) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "IPv6 invalid source address length");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
src = nla_get_in6_addr(attr);
|
|
|
|
if (ipv6_addr_is_multicast(&src)) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "IPv6 multicast source address is not allowed");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
default:
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Invalid protocol used with source address");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-07-21 22:01:26 +08:00
|
|
|
static struct net_bridge_mcast *
|
|
|
|
__br_mdb_choose_context(struct net_bridge *br,
|
|
|
|
const struct br_mdb_entry *entry,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct net_bridge_mcast *brmctx = NULL;
|
|
|
|
struct net_bridge_vlan *v;
|
|
|
|
|
|
|
|
if (!br_opt_get(br, BROPT_MCAST_VLAN_SNOOPING_ENABLED)) {
|
|
|
|
brmctx = &br->multicast_ctx;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!entry->vid) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Cannot add an entry without a vlan when vlan snooping is enabled");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
v = br_vlan_find(br_vlan_group(br), entry->vid);
|
|
|
|
if (!v) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Vlan is not configured");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
if (br_multicast_ctx_vlan_global_disabled(&v->br_mcast_ctx)) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Vlan's multicast processing is disabled");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
brmctx = &v->br_mcast_ctx;
|
|
|
|
out:
|
|
|
|
return brmctx;
|
|
|
|
}
|
|
|
|
|
bridge: mcast: Support replacement of MDB port group entries
Now that user space can specify additional attributes of port group
entries such as filter mode and source list, it makes sense to allow
user space to atomically modify these attributes by replacing entries
instead of forcing user space to delete the entries and add them back.
Replace MDB port group entries when the 'NLM_F_REPLACE' flag is
specified in the netlink message header.
When a (*, G) entry is replaced, update the following attributes: Source
list, state, filter mode, protocol and flags. If the entry is temporary
and in EXCLUDE mode, reset the group timer to the group membership
interval. If the entry is temporary and in INCLUDE mode, reset the
source timers of associated sources to the group membership interval.
Examples:
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 permanent source_list 192.0.2.1,192.0.2.2 filter_mode include
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.2 permanent filter_mode include proto static 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.1 permanent filter_mode include proto static 0.00
dev br0 port dummy10 grp 239.1.1.1 permanent filter_mode include source_list 192.0.2.2/0.00,192.0.2.1/0.00 proto static 0.00
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 permanent source_list 192.0.2.1,192.0.2.3 filter_mode exclude proto zebra
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.3 permanent filter_mode include proto zebra blocked 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.1 permanent filter_mode include proto zebra blocked 0.00
dev br0 port dummy10 grp 239.1.1.1 permanent filter_mode exclude source_list 192.0.2.3/0.00,192.0.2.1/0.00 proto zebra 0.00
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 temp source_list 192.0.2.4,192.0.2.3 filter_mode include proto bgp
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.4 temp filter_mode include proto bgp 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.3 temp filter_mode include proto bgp 0.00
dev br0 port dummy10 grp 239.1.1.1 temp filter_mode include source_list 192.0.2.4/259.44,192.0.2.3/259.44 proto bgp 0.00
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:31 +08:00
|
|
|
static int br_mdb_replace_group_sg(const struct br_mdb_config *cfg,
|
|
|
|
struct net_bridge_mdb_entry *mp,
|
|
|
|
struct net_bridge_port_group *pg,
|
|
|
|
struct net_bridge_mcast *brmctx,
|
|
|
|
unsigned char flags)
|
|
|
|
{
|
|
|
|
unsigned long now = jiffies;
|
|
|
|
|
|
|
|
pg->flags = flags;
|
|
|
|
pg->rt_protocol = cfg->rt_protocol;
|
|
|
|
if (!(flags & MDB_PG_FLAGS_PERMANENT) && !cfg->src_entry)
|
|
|
|
mod_timer(&pg->timer,
|
|
|
|
now + brmctx->multicast_membership_interval);
|
|
|
|
else
|
|
|
|
del_timer(&pg->timer);
|
|
|
|
|
|
|
|
br_mdb_notify(cfg->br->dev, mp, pg, RTM_NEWMDB);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
static int br_mdb_add_group_sg(const struct br_mdb_config *cfg,
|
|
|
|
struct net_bridge_mdb_entry *mp,
|
|
|
|
struct net_bridge_mcast *brmctx,
|
|
|
|
unsigned char flags,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct net_bridge_port_group __rcu **pp;
|
|
|
|
struct net_bridge_port_group *p;
|
|
|
|
unsigned long now = jiffies;
|
|
|
|
|
|
|
|
for (pp = &mp->ports;
|
|
|
|
(p = mlock_dereference(*pp, cfg->br)) != NULL;
|
|
|
|
pp = &p->next) {
|
|
|
|
if (p->key.port == cfg->p) {
|
bridge: mcast: Support replacement of MDB port group entries
Now that user space can specify additional attributes of port group
entries such as filter mode and source list, it makes sense to allow
user space to atomically modify these attributes by replacing entries
instead of forcing user space to delete the entries and add them back.
Replace MDB port group entries when the 'NLM_F_REPLACE' flag is
specified in the netlink message header.
When a (*, G) entry is replaced, update the following attributes: Source
list, state, filter mode, protocol and flags. If the entry is temporary
and in EXCLUDE mode, reset the group timer to the group membership
interval. If the entry is temporary and in INCLUDE mode, reset the
source timers of associated sources to the group membership interval.
Examples:
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 permanent source_list 192.0.2.1,192.0.2.2 filter_mode include
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.2 permanent filter_mode include proto static 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.1 permanent filter_mode include proto static 0.00
dev br0 port dummy10 grp 239.1.1.1 permanent filter_mode include source_list 192.0.2.2/0.00,192.0.2.1/0.00 proto static 0.00
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 permanent source_list 192.0.2.1,192.0.2.3 filter_mode exclude proto zebra
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.3 permanent filter_mode include proto zebra blocked 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.1 permanent filter_mode include proto zebra blocked 0.00
dev br0 port dummy10 grp 239.1.1.1 permanent filter_mode exclude source_list 192.0.2.3/0.00,192.0.2.1/0.00 proto zebra 0.00
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 temp source_list 192.0.2.4,192.0.2.3 filter_mode include proto bgp
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.4 temp filter_mode include proto bgp 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.3 temp filter_mode include proto bgp 0.00
dev br0 port dummy10 grp 239.1.1.1 temp filter_mode include source_list 192.0.2.4/259.44,192.0.2.3/259.44 proto bgp 0.00
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:31 +08:00
|
|
|
if (!(cfg->nlflags & NLM_F_REPLACE)) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "(S, G) group is already joined by port");
|
|
|
|
return -EEXIST;
|
|
|
|
}
|
|
|
|
return br_mdb_replace_group_sg(cfg, mp, p, brmctx,
|
|
|
|
flags);
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
}
|
|
|
|
if ((unsigned long)p->key.port < (unsigned long)cfg->p)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
p = br_multicast_new_port_group(cfg->p, &cfg->group, *pp, flags, NULL,
|
2023-02-03 01:59:20 +08:00
|
|
|
MCAST_INCLUDE, cfg->rt_protocol, extack);
|
2023-02-03 01:59:21 +08:00
|
|
|
if (unlikely(!p))
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
return -ENOMEM;
|
2023-02-03 01:59:21 +08:00
|
|
|
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
rcu_assign_pointer(*pp, p);
|
2022-12-10 22:56:27 +08:00
|
|
|
if (!(flags & MDB_PG_FLAGS_PERMANENT) && !cfg->src_entry)
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
mod_timer(&p->timer,
|
|
|
|
now + brmctx->multicast_membership_interval);
|
|
|
|
br_mdb_notify(cfg->br->dev, mp, p, RTM_NEWMDB);
|
|
|
|
|
|
|
|
/* All of (*, G) EXCLUDE ports need to be added to the new (S, G) for
|
|
|
|
* proper replication.
|
|
|
|
*/
|
|
|
|
if (br_multicast_should_handle_mode(brmctx, cfg->group.proto)) {
|
|
|
|
struct net_bridge_mdb_entry *star_mp;
|
|
|
|
struct br_ip star_group;
|
|
|
|
|
|
|
|
star_group = p->key.addr;
|
|
|
|
memset(&star_group.src, 0, sizeof(star_group.src));
|
|
|
|
star_mp = br_mdb_ip_get(cfg->br, &star_group);
|
|
|
|
if (star_mp)
|
|
|
|
br_multicast_sg_add_exclude_ports(star_mp, p);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
bridge: mcast: Add support for (*, G) with a source list and filter mode
In preparation for allowing user space to add (*, G) entries with a
source list and associated filter mode, add the necessary plumbing to
handle such requests.
Extend the MDB configuration structure with a currently empty source
array and filter mode that is currently hard coded to EXCLUDE.
Add the source entries and the corresponding (S, G) entries before
making the new (*, G) port group entry visible to the data path.
Handle the creation of each source entry in a similar fashion to how it
is created from the data path in response to received Membership
Reports: Create the source entry, arm the source timer (if needed), add
a corresponding (S, G) forwarding entry and finally mark the source
entry as installed (by user space).
Add the (S, G) entry by populating an MDB configuration structure and
calling br_mdb_add_group_sg() as if a new entry is created by user
space, with the sole difference that the 'src_entry' field is set to
make sure that the group timer of such entries is never armed.
Note that it is not currently possible to add more than 32 source
entries to a port group entry. If this proves to be a problem we can
either increase 'PG_SRC_ENT_LIMIT' or avoid forcing a limit on entries
created by user space.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:28 +08:00
|
|
|
static int br_mdb_add_group_src_fwd(const struct br_mdb_config *cfg,
|
|
|
|
struct br_ip *src_ip,
|
|
|
|
struct net_bridge_mcast *brmctx,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct net_bridge_mdb_entry *sgmp;
|
|
|
|
struct br_mdb_config sg_cfg;
|
|
|
|
struct br_ip sg_ip;
|
|
|
|
u8 flags = 0;
|
|
|
|
|
|
|
|
sg_ip = cfg->group;
|
|
|
|
sg_ip.src = src_ip->src;
|
|
|
|
sgmp = br_multicast_new_group(cfg->br, &sg_ip);
|
|
|
|
if (IS_ERR(sgmp)) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Failed to add (S, G) MDB entry");
|
|
|
|
return PTR_ERR(sgmp);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cfg->entry->state == MDB_PERMANENT)
|
|
|
|
flags |= MDB_PG_FLAGS_PERMANENT;
|
|
|
|
if (cfg->filter_mode == MCAST_EXCLUDE)
|
|
|
|
flags |= MDB_PG_FLAGS_BLOCKED;
|
|
|
|
|
|
|
|
memset(&sg_cfg, 0, sizeof(sg_cfg));
|
|
|
|
sg_cfg.br = cfg->br;
|
|
|
|
sg_cfg.p = cfg->p;
|
|
|
|
sg_cfg.entry = cfg->entry;
|
|
|
|
sg_cfg.group = sg_ip;
|
|
|
|
sg_cfg.src_entry = true;
|
|
|
|
sg_cfg.filter_mode = MCAST_INCLUDE;
|
2022-12-10 22:56:30 +08:00
|
|
|
sg_cfg.rt_protocol = cfg->rt_protocol;
|
bridge: mcast: Support replacement of MDB port group entries
Now that user space can specify additional attributes of port group
entries such as filter mode and source list, it makes sense to allow
user space to atomically modify these attributes by replacing entries
instead of forcing user space to delete the entries and add them back.
Replace MDB port group entries when the 'NLM_F_REPLACE' flag is
specified in the netlink message header.
When a (*, G) entry is replaced, update the following attributes: Source
list, state, filter mode, protocol and flags. If the entry is temporary
and in EXCLUDE mode, reset the group timer to the group membership
interval. If the entry is temporary and in INCLUDE mode, reset the
source timers of associated sources to the group membership interval.
Examples:
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 permanent source_list 192.0.2.1,192.0.2.2 filter_mode include
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.2 permanent filter_mode include proto static 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.1 permanent filter_mode include proto static 0.00
dev br0 port dummy10 grp 239.1.1.1 permanent filter_mode include source_list 192.0.2.2/0.00,192.0.2.1/0.00 proto static 0.00
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 permanent source_list 192.0.2.1,192.0.2.3 filter_mode exclude proto zebra
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.3 permanent filter_mode include proto zebra blocked 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.1 permanent filter_mode include proto zebra blocked 0.00
dev br0 port dummy10 grp 239.1.1.1 permanent filter_mode exclude source_list 192.0.2.3/0.00,192.0.2.1/0.00 proto zebra 0.00
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 temp source_list 192.0.2.4,192.0.2.3 filter_mode include proto bgp
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.4 temp filter_mode include proto bgp 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.3 temp filter_mode include proto bgp 0.00
dev br0 port dummy10 grp 239.1.1.1 temp filter_mode include source_list 192.0.2.4/259.44,192.0.2.3/259.44 proto bgp 0.00
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:31 +08:00
|
|
|
sg_cfg.nlflags = cfg->nlflags;
|
bridge: mcast: Add support for (*, G) with a source list and filter mode
In preparation for allowing user space to add (*, G) entries with a
source list and associated filter mode, add the necessary plumbing to
handle such requests.
Extend the MDB configuration structure with a currently empty source
array and filter mode that is currently hard coded to EXCLUDE.
Add the source entries and the corresponding (S, G) entries before
making the new (*, G) port group entry visible to the data path.
Handle the creation of each source entry in a similar fashion to how it
is created from the data path in response to received Membership
Reports: Create the source entry, arm the source timer (if needed), add
a corresponding (S, G) forwarding entry and finally mark the source
entry as installed (by user space).
Add the (S, G) entry by populating an MDB configuration structure and
calling br_mdb_add_group_sg() as if a new entry is created by user
space, with the sole difference that the 'src_entry' field is set to
make sure that the group timer of such entries is never armed.
Note that it is not currently possible to add more than 32 source
entries to a port group entry. If this proves to be a problem we can
either increase 'PG_SRC_ENT_LIMIT' or avoid forcing a limit on entries
created by user space.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:28 +08:00
|
|
|
return br_mdb_add_group_sg(&sg_cfg, sgmp, brmctx, flags, extack);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int br_mdb_add_group_src(const struct br_mdb_config *cfg,
|
|
|
|
struct net_bridge_port_group *pg,
|
|
|
|
struct net_bridge_mcast *brmctx,
|
|
|
|
struct br_mdb_src_entry *src,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct net_bridge_group_src *ent;
|
|
|
|
unsigned long now = jiffies;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
ent = br_multicast_find_group_src(pg, &src->addr);
|
|
|
|
if (!ent) {
|
|
|
|
ent = br_multicast_new_group_src(pg, &src->addr);
|
|
|
|
if (!ent) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Failed to add new source entry");
|
|
|
|
return -ENOSPC;
|
|
|
|
}
|
bridge: mcast: Support replacement of MDB port group entries
Now that user space can specify additional attributes of port group
entries such as filter mode and source list, it makes sense to allow
user space to atomically modify these attributes by replacing entries
instead of forcing user space to delete the entries and add them back.
Replace MDB port group entries when the 'NLM_F_REPLACE' flag is
specified in the netlink message header.
When a (*, G) entry is replaced, update the following attributes: Source
list, state, filter mode, protocol and flags. If the entry is temporary
and in EXCLUDE mode, reset the group timer to the group membership
interval. If the entry is temporary and in INCLUDE mode, reset the
source timers of associated sources to the group membership interval.
Examples:
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 permanent source_list 192.0.2.1,192.0.2.2 filter_mode include
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.2 permanent filter_mode include proto static 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.1 permanent filter_mode include proto static 0.00
dev br0 port dummy10 grp 239.1.1.1 permanent filter_mode include source_list 192.0.2.2/0.00,192.0.2.1/0.00 proto static 0.00
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 permanent source_list 192.0.2.1,192.0.2.3 filter_mode exclude proto zebra
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.3 permanent filter_mode include proto zebra blocked 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.1 permanent filter_mode include proto zebra blocked 0.00
dev br0 port dummy10 grp 239.1.1.1 permanent filter_mode exclude source_list 192.0.2.3/0.00,192.0.2.1/0.00 proto zebra 0.00
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 temp source_list 192.0.2.4,192.0.2.3 filter_mode include proto bgp
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.4 temp filter_mode include proto bgp 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.3 temp filter_mode include proto bgp 0.00
dev br0 port dummy10 grp 239.1.1.1 temp filter_mode include source_list 192.0.2.4/259.44,192.0.2.3/259.44 proto bgp 0.00
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:31 +08:00
|
|
|
} else if (!(cfg->nlflags & NLM_F_REPLACE)) {
|
bridge: mcast: Add support for (*, G) with a source list and filter mode
In preparation for allowing user space to add (*, G) entries with a
source list and associated filter mode, add the necessary plumbing to
handle such requests.
Extend the MDB configuration structure with a currently empty source
array and filter mode that is currently hard coded to EXCLUDE.
Add the source entries and the corresponding (S, G) entries before
making the new (*, G) port group entry visible to the data path.
Handle the creation of each source entry in a similar fashion to how it
is created from the data path in response to received Membership
Reports: Create the source entry, arm the source timer (if needed), add
a corresponding (S, G) forwarding entry and finally mark the source
entry as installed (by user space).
Add the (S, G) entry by populating an MDB configuration structure and
calling br_mdb_add_group_sg() as if a new entry is created by user
space, with the sole difference that the 'src_entry' field is set to
make sure that the group timer of such entries is never armed.
Note that it is not currently possible to add more than 32 source
entries to a port group entry. If this proves to be a problem we can
either increase 'PG_SRC_ENT_LIMIT' or avoid forcing a limit on entries
created by user space.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:28 +08:00
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Source entry already exists");
|
|
|
|
return -EEXIST;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cfg->filter_mode == MCAST_INCLUDE &&
|
|
|
|
cfg->entry->state == MDB_TEMPORARY)
|
|
|
|
mod_timer(&ent->timer, now + br_multicast_gmi(brmctx));
|
|
|
|
else
|
|
|
|
del_timer(&ent->timer);
|
|
|
|
|
|
|
|
/* Install a (S, G) forwarding entry for the source. */
|
|
|
|
err = br_mdb_add_group_src_fwd(cfg, &src->addr, brmctx, extack);
|
|
|
|
if (err)
|
|
|
|
goto err_del_sg;
|
|
|
|
|
|
|
|
ent->flags = BR_SGRP_F_INSTALLED | BR_SGRP_F_USER_ADDED;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_del_sg:
|
|
|
|
__br_multicast_del_group_src(ent);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void br_mdb_del_group_src(struct net_bridge_port_group *pg,
|
|
|
|
struct br_mdb_src_entry *src)
|
|
|
|
{
|
|
|
|
struct net_bridge_group_src *ent;
|
|
|
|
|
|
|
|
ent = br_multicast_find_group_src(pg, &src->addr);
|
|
|
|
if (WARN_ON_ONCE(!ent))
|
|
|
|
return;
|
|
|
|
br_multicast_del_group_src(ent, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int br_mdb_add_group_srcs(const struct br_mdb_config *cfg,
|
|
|
|
struct net_bridge_port_group *pg,
|
|
|
|
struct net_bridge_mcast *brmctx,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
int i, err;
|
|
|
|
|
|
|
|
for (i = 0; i < cfg->num_src_entries; i++) {
|
|
|
|
err = br_mdb_add_group_src(cfg, pg, brmctx,
|
|
|
|
&cfg->src_entries[i], extack);
|
|
|
|
if (err)
|
|
|
|
goto err_del_group_srcs;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_del_group_srcs:
|
|
|
|
for (i--; i >= 0; i--)
|
|
|
|
br_mdb_del_group_src(pg, &cfg->src_entries[i]);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
bridge: mcast: Support replacement of MDB port group entries
Now that user space can specify additional attributes of port group
entries such as filter mode and source list, it makes sense to allow
user space to atomically modify these attributes by replacing entries
instead of forcing user space to delete the entries and add them back.
Replace MDB port group entries when the 'NLM_F_REPLACE' flag is
specified in the netlink message header.
When a (*, G) entry is replaced, update the following attributes: Source
list, state, filter mode, protocol and flags. If the entry is temporary
and in EXCLUDE mode, reset the group timer to the group membership
interval. If the entry is temporary and in INCLUDE mode, reset the
source timers of associated sources to the group membership interval.
Examples:
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 permanent source_list 192.0.2.1,192.0.2.2 filter_mode include
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.2 permanent filter_mode include proto static 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.1 permanent filter_mode include proto static 0.00
dev br0 port dummy10 grp 239.1.1.1 permanent filter_mode include source_list 192.0.2.2/0.00,192.0.2.1/0.00 proto static 0.00
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 permanent source_list 192.0.2.1,192.0.2.3 filter_mode exclude proto zebra
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.3 permanent filter_mode include proto zebra blocked 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.1 permanent filter_mode include proto zebra blocked 0.00
dev br0 port dummy10 grp 239.1.1.1 permanent filter_mode exclude source_list 192.0.2.3/0.00,192.0.2.1/0.00 proto zebra 0.00
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 temp source_list 192.0.2.4,192.0.2.3 filter_mode include proto bgp
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.4 temp filter_mode include proto bgp 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.3 temp filter_mode include proto bgp 0.00
dev br0 port dummy10 grp 239.1.1.1 temp filter_mode include source_list 192.0.2.4/259.44,192.0.2.3/259.44 proto bgp 0.00
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:31 +08:00
|
|
|
static int br_mdb_replace_group_srcs(const struct br_mdb_config *cfg,
|
|
|
|
struct net_bridge_port_group *pg,
|
|
|
|
struct net_bridge_mcast *brmctx,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct net_bridge_group_src *ent;
|
|
|
|
struct hlist_node *tmp;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
hlist_for_each_entry(ent, &pg->src_list, node)
|
|
|
|
ent->flags |= BR_SGRP_F_DELETE;
|
|
|
|
|
|
|
|
err = br_mdb_add_group_srcs(cfg, pg, brmctx, extack);
|
|
|
|
if (err)
|
|
|
|
goto err_clear_delete;
|
|
|
|
|
|
|
|
hlist_for_each_entry_safe(ent, tmp, &pg->src_list, node) {
|
|
|
|
if (ent->flags & BR_SGRP_F_DELETE)
|
|
|
|
br_multicast_del_group_src(ent, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_clear_delete:
|
|
|
|
hlist_for_each_entry(ent, &pg->src_list, node)
|
|
|
|
ent->flags &= ~BR_SGRP_F_DELETE;
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int br_mdb_replace_group_star_g(const struct br_mdb_config *cfg,
|
|
|
|
struct net_bridge_mdb_entry *mp,
|
|
|
|
struct net_bridge_port_group *pg,
|
|
|
|
struct net_bridge_mcast *brmctx,
|
|
|
|
unsigned char flags,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
unsigned long now = jiffies;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = br_mdb_replace_group_srcs(cfg, pg, brmctx, extack);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
pg->flags = flags;
|
|
|
|
pg->filter_mode = cfg->filter_mode;
|
|
|
|
pg->rt_protocol = cfg->rt_protocol;
|
|
|
|
if (!(flags & MDB_PG_FLAGS_PERMANENT) &&
|
|
|
|
cfg->filter_mode == MCAST_EXCLUDE)
|
|
|
|
mod_timer(&pg->timer,
|
|
|
|
now + brmctx->multicast_membership_interval);
|
|
|
|
else
|
|
|
|
del_timer(&pg->timer);
|
|
|
|
|
|
|
|
br_mdb_notify(cfg->br->dev, mp, pg, RTM_NEWMDB);
|
|
|
|
|
|
|
|
if (br_multicast_should_handle_mode(brmctx, cfg->group.proto))
|
|
|
|
br_multicast_star_g_handle_mode(pg, cfg->filter_mode);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
static int br_mdb_add_group_star_g(const struct br_mdb_config *cfg,
|
|
|
|
struct net_bridge_mdb_entry *mp,
|
|
|
|
struct net_bridge_mcast *brmctx,
|
|
|
|
unsigned char flags,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct net_bridge_port_group __rcu **pp;
|
|
|
|
struct net_bridge_port_group *p;
|
|
|
|
unsigned long now = jiffies;
|
bridge: mcast: Add support for (*, G) with a source list and filter mode
In preparation for allowing user space to add (*, G) entries with a
source list and associated filter mode, add the necessary plumbing to
handle such requests.
Extend the MDB configuration structure with a currently empty source
array and filter mode that is currently hard coded to EXCLUDE.
Add the source entries and the corresponding (S, G) entries before
making the new (*, G) port group entry visible to the data path.
Handle the creation of each source entry in a similar fashion to how it
is created from the data path in response to received Membership
Reports: Create the source entry, arm the source timer (if needed), add
a corresponding (S, G) forwarding entry and finally mark the source
entry as installed (by user space).
Add the (S, G) entry by populating an MDB configuration structure and
calling br_mdb_add_group_sg() as if a new entry is created by user
space, with the sole difference that the 'src_entry' field is set to
make sure that the group timer of such entries is never armed.
Note that it is not currently possible to add more than 32 source
entries to a port group entry. If this proves to be a problem we can
either increase 'PG_SRC_ENT_LIMIT' or avoid forcing a limit on entries
created by user space.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:28 +08:00
|
|
|
int err;
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
|
|
|
|
for (pp = &mp->ports;
|
|
|
|
(p = mlock_dereference(*pp, cfg->br)) != NULL;
|
|
|
|
pp = &p->next) {
|
|
|
|
if (p->key.port == cfg->p) {
|
bridge: mcast: Support replacement of MDB port group entries
Now that user space can specify additional attributes of port group
entries such as filter mode and source list, it makes sense to allow
user space to atomically modify these attributes by replacing entries
instead of forcing user space to delete the entries and add them back.
Replace MDB port group entries when the 'NLM_F_REPLACE' flag is
specified in the netlink message header.
When a (*, G) entry is replaced, update the following attributes: Source
list, state, filter mode, protocol and flags. If the entry is temporary
and in EXCLUDE mode, reset the group timer to the group membership
interval. If the entry is temporary and in INCLUDE mode, reset the
source timers of associated sources to the group membership interval.
Examples:
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 permanent source_list 192.0.2.1,192.0.2.2 filter_mode include
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.2 permanent filter_mode include proto static 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.1 permanent filter_mode include proto static 0.00
dev br0 port dummy10 grp 239.1.1.1 permanent filter_mode include source_list 192.0.2.2/0.00,192.0.2.1/0.00 proto static 0.00
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 permanent source_list 192.0.2.1,192.0.2.3 filter_mode exclude proto zebra
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.3 permanent filter_mode include proto zebra blocked 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.1 permanent filter_mode include proto zebra blocked 0.00
dev br0 port dummy10 grp 239.1.1.1 permanent filter_mode exclude source_list 192.0.2.3/0.00,192.0.2.1/0.00 proto zebra 0.00
# bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 temp source_list 192.0.2.4,192.0.2.3 filter_mode include proto bgp
# bridge -d -s mdb show
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.4 temp filter_mode include proto bgp 0.00
dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.3 temp filter_mode include proto bgp 0.00
dev br0 port dummy10 grp 239.1.1.1 temp filter_mode include source_list 192.0.2.4/259.44,192.0.2.3/259.44 proto bgp 0.00
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:31 +08:00
|
|
|
if (!(cfg->nlflags & NLM_F_REPLACE)) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "(*, G) group is already joined by port");
|
|
|
|
return -EEXIST;
|
|
|
|
}
|
|
|
|
return br_mdb_replace_group_star_g(cfg, mp, p, brmctx,
|
|
|
|
flags, extack);
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
}
|
|
|
|
if ((unsigned long)p->key.port < (unsigned long)cfg->p)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
p = br_multicast_new_port_group(cfg->p, &cfg->group, *pp, flags, NULL,
|
2023-02-03 01:59:20 +08:00
|
|
|
cfg->filter_mode, cfg->rt_protocol,
|
|
|
|
extack);
|
2023-02-03 01:59:21 +08:00
|
|
|
if (unlikely(!p))
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
return -ENOMEM;
|
bridge: mcast: Add support for (*, G) with a source list and filter mode
In preparation for allowing user space to add (*, G) entries with a
source list and associated filter mode, add the necessary plumbing to
handle such requests.
Extend the MDB configuration structure with a currently empty source
array and filter mode that is currently hard coded to EXCLUDE.
Add the source entries and the corresponding (S, G) entries before
making the new (*, G) port group entry visible to the data path.
Handle the creation of each source entry in a similar fashion to how it
is created from the data path in response to received Membership
Reports: Create the source entry, arm the source timer (if needed), add
a corresponding (S, G) forwarding entry and finally mark the source
entry as installed (by user space).
Add the (S, G) entry by populating an MDB configuration structure and
calling br_mdb_add_group_sg() as if a new entry is created by user
space, with the sole difference that the 'src_entry' field is set to
make sure that the group timer of such entries is never armed.
Note that it is not currently possible to add more than 32 source
entries to a port group entry. If this proves to be a problem we can
either increase 'PG_SRC_ENT_LIMIT' or avoid forcing a limit on entries
created by user space.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:28 +08:00
|
|
|
|
|
|
|
err = br_mdb_add_group_srcs(cfg, p, brmctx, extack);
|
|
|
|
if (err)
|
|
|
|
goto err_del_port_group;
|
|
|
|
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
rcu_assign_pointer(*pp, p);
|
bridge: mcast: Add support for (*, G) with a source list and filter mode
In preparation for allowing user space to add (*, G) entries with a
source list and associated filter mode, add the necessary plumbing to
handle such requests.
Extend the MDB configuration structure with a currently empty source
array and filter mode that is currently hard coded to EXCLUDE.
Add the source entries and the corresponding (S, G) entries before
making the new (*, G) port group entry visible to the data path.
Handle the creation of each source entry in a similar fashion to how it
is created from the data path in response to received Membership
Reports: Create the source entry, arm the source timer (if needed), add
a corresponding (S, G) forwarding entry and finally mark the source
entry as installed (by user space).
Add the (S, G) entry by populating an MDB configuration structure and
calling br_mdb_add_group_sg() as if a new entry is created by user
space, with the sole difference that the 'src_entry' field is set to
make sure that the group timer of such entries is never armed.
Note that it is not currently possible to add more than 32 source
entries to a port group entry. If this proves to be a problem we can
either increase 'PG_SRC_ENT_LIMIT' or avoid forcing a limit on entries
created by user space.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:28 +08:00
|
|
|
if (!(flags & MDB_PG_FLAGS_PERMANENT) &&
|
|
|
|
cfg->filter_mode == MCAST_EXCLUDE)
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
mod_timer(&p->timer,
|
|
|
|
now + brmctx->multicast_membership_interval);
|
|
|
|
br_mdb_notify(cfg->br->dev, mp, p, RTM_NEWMDB);
|
|
|
|
/* If we are adding a new EXCLUDE port group (*, G), it needs to be
|
|
|
|
* also added to all (S, G) entries for proper replication.
|
|
|
|
*/
|
bridge: mcast: Add support for (*, G) with a source list and filter mode
In preparation for allowing user space to add (*, G) entries with a
source list and associated filter mode, add the necessary plumbing to
handle such requests.
Extend the MDB configuration structure with a currently empty source
array and filter mode that is currently hard coded to EXCLUDE.
Add the source entries and the corresponding (S, G) entries before
making the new (*, G) port group entry visible to the data path.
Handle the creation of each source entry in a similar fashion to how it
is created from the data path in response to received Membership
Reports: Create the source entry, arm the source timer (if needed), add
a corresponding (S, G) forwarding entry and finally mark the source
entry as installed (by user space).
Add the (S, G) entry by populating an MDB configuration structure and
calling br_mdb_add_group_sg() as if a new entry is created by user
space, with the sole difference that the 'src_entry' field is set to
make sure that the group timer of such entries is never armed.
Note that it is not currently possible to add more than 32 source
entries to a port group entry. If this proves to be a problem we can
either increase 'PG_SRC_ENT_LIMIT' or avoid forcing a limit on entries
created by user space.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:28 +08:00
|
|
|
if (br_multicast_should_handle_mode(brmctx, cfg->group.proto) &&
|
|
|
|
cfg->filter_mode == MCAST_EXCLUDE)
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
br_multicast_star_g_handle_mode(p, MCAST_EXCLUDE);
|
|
|
|
|
|
|
|
return 0;
|
bridge: mcast: Add support for (*, G) with a source list and filter mode
In preparation for allowing user space to add (*, G) entries with a
source list and associated filter mode, add the necessary plumbing to
handle such requests.
Extend the MDB configuration structure with a currently empty source
array and filter mode that is currently hard coded to EXCLUDE.
Add the source entries and the corresponding (S, G) entries before
making the new (*, G) port group entry visible to the data path.
Handle the creation of each source entry in a similar fashion to how it
is created from the data path in response to received Membership
Reports: Create the source entry, arm the source timer (if needed), add
a corresponding (S, G) forwarding entry and finally mark the source
entry as installed (by user space).
Add the (S, G) entry by populating an MDB configuration structure and
calling br_mdb_add_group_sg() as if a new entry is created by user
space, with the sole difference that the 'src_entry' field is set to
make sure that the group timer of such entries is never armed.
Note that it is not currently possible to add more than 32 source
entries to a port group entry. If this proves to be a problem we can
either increase 'PG_SRC_ENT_LIMIT' or avoid forcing a limit on entries
created by user space.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:28 +08:00
|
|
|
|
|
|
|
err_del_port_group:
|
2023-02-03 01:59:22 +08:00
|
|
|
br_multicast_del_port_group(p);
|
bridge: mcast: Add support for (*, G) with a source list and filter mode
In preparation for allowing user space to add (*, G) entries with a
source list and associated filter mode, add the necessary plumbing to
handle such requests.
Extend the MDB configuration structure with a currently empty source
array and filter mode that is currently hard coded to EXCLUDE.
Add the source entries and the corresponding (S, G) entries before
making the new (*, G) port group entry visible to the data path.
Handle the creation of each source entry in a similar fashion to how it
is created from the data path in response to received Membership
Reports: Create the source entry, arm the source timer (if needed), add
a corresponding (S, G) forwarding entry and finally mark the source
entry as installed (by user space).
Add the (S, G) entry by populating an MDB configuration structure and
calling br_mdb_add_group_sg() as if a new entry is created by user
space, with the sole difference that the 'src_entry' field is set to
make sure that the group timer of such entries is never armed.
Note that it is not currently possible to add more than 32 source
entries to a port group entry. If this proves to be a problem we can
either increase 'PG_SRC_ENT_LIMIT' or avoid forcing a limit on entries
created by user space.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:28 +08:00
|
|
|
return err;
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
}
|
|
|
|
|
2022-12-06 18:58:08 +08:00
|
|
|
static int br_mdb_add_group(const struct br_mdb_config *cfg,
|
2020-09-22 15:30:14 +08:00
|
|
|
struct netlink_ext_ack *extack)
|
2012-12-12 06:23:08 +08:00
|
|
|
{
|
2022-12-06 18:58:08 +08:00
|
|
|
struct br_mdb_entry *entry = cfg->entry;
|
|
|
|
struct net_bridge_port *port = cfg->p;
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
struct net_bridge_mdb_entry *mp;
|
2022-12-06 18:58:08 +08:00
|
|
|
struct net_bridge *br = cfg->br;
|
2021-07-21 22:01:26 +08:00
|
|
|
struct net_bridge_mcast *brmctx;
|
2022-12-06 18:58:05 +08:00
|
|
|
struct br_ip group = cfg->group;
|
2020-10-29 07:48:15 +08:00
|
|
|
unsigned char flags = 0;
|
2012-12-12 06:23:08 +08:00
|
|
|
|
2021-07-21 22:01:26 +08:00
|
|
|
brmctx = __br_mdb_choose_context(br, entry, extack);
|
|
|
|
if (!brmctx)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2022-10-18 14:40:01 +08:00
|
|
|
mp = br_multicast_new_group(br, &group);
|
|
|
|
if (IS_ERR(mp))
|
|
|
|
return PTR_ERR(mp);
|
2012-12-12 06:23:08 +08:00
|
|
|
|
2019-08-17 19:22:13 +08:00
|
|
|
/* host join */
|
|
|
|
if (!port) {
|
2020-09-22 15:30:14 +08:00
|
|
|
if (mp->host_joined) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Group is already joined by host");
|
2019-08-17 19:22:13 +08:00
|
|
|
return -EEXIST;
|
2020-09-22 15:30:14 +08:00
|
|
|
}
|
2019-08-17 19:22:13 +08:00
|
|
|
|
2021-07-21 22:01:27 +08:00
|
|
|
br_multicast_host_join(brmctx, mp, false);
|
2020-09-07 17:56:12 +08:00
|
|
|
br_mdb_notify(br->dev, mp, NULL, RTM_NEWMDB);
|
2019-08-17 19:22:13 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2020-10-29 07:48:15 +08:00
|
|
|
if (entry->state == MDB_PERMANENT)
|
|
|
|
flags |= MDB_PG_FLAGS_PERMANENT;
|
|
|
|
|
bridge: mcast: Split (*, G) and (S, G) addition into different functions
When the bridge is using IGMP version 3 or MLD version 2, it handles the
addition of (*, G) and (S, G) entries differently.
When a new (S, G) port group entry is added, all the (*, G) EXCLUDE
ports need to be added to the port group of the new entry. Similarly,
when a new (*, G) EXCLUDE port group entry is added, the port needs to
be added to the port group of all the matching (S, G) entries.
Subsequent patches will create more differences between both entry
types. Namely, filter mode and source list can only be specified for (*,
G) entries.
Given the current and future differences between both entry types,
handle the addition of each entry type in a different function, thereby
avoiding the creation of one complex function.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:21 +08:00
|
|
|
if (br_multicast_is_star_g(&group))
|
|
|
|
return br_mdb_add_group_star_g(cfg, mp, brmctx, flags, extack);
|
|
|
|
else
|
|
|
|
return br_mdb_add_group_sg(cfg, mp, brmctx, flags, extack);
|
2012-12-12 06:23:08 +08:00
|
|
|
}
|
|
|
|
|
2022-12-06 18:58:04 +08:00
|
|
|
static int __br_mdb_add(const struct br_mdb_config *cfg,
|
2020-09-22 15:30:14 +08:00
|
|
|
struct netlink_ext_ack *extack)
|
2012-12-12 06:23:08 +08:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
2022-12-06 18:58:04 +08:00
|
|
|
spin_lock_bh(&cfg->br->multicast_lock);
|
2022-12-06 18:58:08 +08:00
|
|
|
ret = br_mdb_add_group(cfg, extack);
|
2022-12-06 18:58:04 +08:00
|
|
|
spin_unlock_bh(&cfg->br->multicast_lock);
|
2020-09-22 15:30:13 +08:00
|
|
|
|
2012-12-12 06:23:08 +08:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2022-12-10 22:56:29 +08:00
|
|
|
static int br_mdb_config_src_entry_init(struct nlattr *src_entry,
|
|
|
|
struct br_mdb_src_entry *src,
|
|
|
|
__be16 proto,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct nlattr *tb[MDBE_SRCATTR_MAX + 1];
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = nla_parse_nested(tb, MDBE_SRCATTR_MAX, src_entry,
|
|
|
|
br_mdbe_src_list_entry_pol, extack);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
if (NL_REQ_ATTR_CHECK(extack, src_entry, tb, MDBE_SRCATTR_ADDRESS))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (!is_valid_mdb_source(tb[MDBE_SRCATTR_ADDRESS], proto, extack))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
src->addr.proto = proto;
|
|
|
|
nla_memcpy(&src->addr.src, tb[MDBE_SRCATTR_ADDRESS],
|
|
|
|
nla_len(tb[MDBE_SRCATTR_ADDRESS]));
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int br_mdb_config_src_list_init(struct nlattr *src_list,
|
|
|
|
struct br_mdb_config *cfg,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct nlattr *src_entry;
|
|
|
|
int rem, err;
|
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
nla_for_each_nested(src_entry, src_list, rem)
|
|
|
|
cfg->num_src_entries++;
|
|
|
|
|
|
|
|
if (cfg->num_src_entries >= PG_SRC_ENT_LIMIT) {
|
|
|
|
NL_SET_ERR_MSG_FMT_MOD(extack, "Exceeded maximum number of source entries (%u)",
|
|
|
|
PG_SRC_ENT_LIMIT - 1);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
cfg->src_entries = kcalloc(cfg->num_src_entries,
|
|
|
|
sizeof(struct br_mdb_src_entry), GFP_KERNEL);
|
|
|
|
if (!cfg->src_entries)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
nla_for_each_nested(src_entry, src_list, rem) {
|
|
|
|
err = br_mdb_config_src_entry_init(src_entry,
|
|
|
|
&cfg->src_entries[i],
|
|
|
|
cfg->entry->addr.proto,
|
|
|
|
extack);
|
|
|
|
if (err)
|
|
|
|
goto err_src_entry_init;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_src_entry_init:
|
|
|
|
kfree(cfg->src_entries);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void br_mdb_config_src_list_fini(struct br_mdb_config *cfg)
|
|
|
|
{
|
|
|
|
kfree(cfg->src_entries);
|
|
|
|
}
|
|
|
|
|
2022-12-06 18:58:01 +08:00
|
|
|
static int br_mdb_config_attrs_init(struct nlattr *set_attrs,
|
|
|
|
struct br_mdb_config *cfg,
|
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
|
|
|
struct nlattr *mdb_attrs[MDBE_ATTR_MAX + 1];
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = nla_parse_nested(mdb_attrs, MDBE_ATTR_MAX, set_attrs,
|
|
|
|
br_mdbe_attrs_pol, extack);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
if (mdb_attrs[MDBE_ATTR_SOURCE] &&
|
|
|
|
!is_valid_mdb_source(mdb_attrs[MDBE_ATTR_SOURCE],
|
|
|
|
cfg->entry->addr.proto, extack))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
__mdb_entry_to_br_ip(cfg->entry, &cfg->group, mdb_attrs);
|
|
|
|
|
2022-12-10 22:56:29 +08:00
|
|
|
if (mdb_attrs[MDBE_ATTR_GROUP_MODE]) {
|
|
|
|
if (!cfg->p) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Filter mode cannot be set for host groups");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
if (!br_multicast_is_star_g(&cfg->group)) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Filter mode can only be set for (*, G) entries");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
cfg->filter_mode = nla_get_u8(mdb_attrs[MDBE_ATTR_GROUP_MODE]);
|
|
|
|
} else {
|
|
|
|
cfg->filter_mode = MCAST_EXCLUDE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mdb_attrs[MDBE_ATTR_SRC_LIST]) {
|
|
|
|
if (!cfg->p) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Source list cannot be set for host groups");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
if (!br_multicast_is_star_g(&cfg->group)) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Source list can only be set for (*, G) entries");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
if (!mdb_attrs[MDBE_ATTR_GROUP_MODE]) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Source list cannot be set without filter mode");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
err = br_mdb_config_src_list_init(mdb_attrs[MDBE_ATTR_SRC_LIST],
|
|
|
|
cfg, extack);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!cfg->num_src_entries && cfg->filter_mode == MCAST_INCLUDE) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Cannot add (*, G) INCLUDE with an empty source list");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2022-12-10 22:56:30 +08:00
|
|
|
if (mdb_attrs[MDBE_ATTR_RTPROT]) {
|
|
|
|
if (!cfg->p) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Protocol cannot be set for host groups");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
cfg->rt_protocol = nla_get_u8(mdb_attrs[MDBE_ATTR_RTPROT]);
|
|
|
|
}
|
|
|
|
|
2022-12-06 18:58:01 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-03-15 21:11:47 +08:00
|
|
|
static int br_mdb_config_init(struct br_mdb_config *cfg, struct net_device *dev,
|
|
|
|
struct nlattr *tb[], u16 nlmsg_flags,
|
2022-12-06 18:58:01 +08:00
|
|
|
struct netlink_ext_ack *extack)
|
|
|
|
{
|
2023-03-15 21:11:47 +08:00
|
|
|
struct net *net = dev_net(dev);
|
2022-12-06 18:58:01 +08:00
|
|
|
|
|
|
|
memset(cfg, 0, sizeof(*cfg));
|
bridge: mcast: Add support for (*, G) with a source list and filter mode
In preparation for allowing user space to add (*, G) entries with a
source list and associated filter mode, add the necessary plumbing to
handle such requests.
Extend the MDB configuration structure with a currently empty source
array and filter mode that is currently hard coded to EXCLUDE.
Add the source entries and the corresponding (S, G) entries before
making the new (*, G) port group entry visible to the data path.
Handle the creation of each source entry in a similar fashion to how it
is created from the data path in response to received Membership
Reports: Create the source entry, arm the source timer (if needed), add
a corresponding (S, G) forwarding entry and finally mark the source
entry as installed (by user space).
Add the (S, G) entry by populating an MDB configuration structure and
calling br_mdb_add_group_sg() as if a new entry is created by user
space, with the sole difference that the 'src_entry' field is set to
make sure that the group timer of such entries is never armed.
Note that it is not currently possible to add more than 32 source
entries to a port group entry. If this proves to be a problem we can
either increase 'PG_SRC_ENT_LIMIT' or avoid forcing a limit on entries
created by user space.
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-10 22:56:28 +08:00
|
|
|
cfg->filter_mode = MCAST_EXCLUDE;
|
2022-12-10 22:56:30 +08:00
|
|
|
cfg->rt_protocol = RTPROT_STATIC;
|
2023-03-15 21:11:47 +08:00
|
|
|
cfg->nlflags = nlmsg_flags;
|
2022-12-06 18:58:01 +08:00
|
|
|
|
|
|
|
cfg->br = netdev_priv(dev);
|
|
|
|
|
|
|
|
if (!netif_running(cfg->br->dev)) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Bridge device is not running");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!br_opt_get(cfg->br, BROPT_MULTICAST_ENABLED)) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Bridge's multicast processing is disabled");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
cfg->entry = nla_data(tb[MDBA_SET_ENTRY]);
|
|
|
|
|
|
|
|
if (cfg->entry->ifindex != cfg->br->dev->ifindex) {
|
|
|
|
struct net_device *pdev;
|
|
|
|
|
|
|
|
pdev = __dev_get_by_index(net, cfg->entry->ifindex);
|
|
|
|
if (!pdev) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Port net device doesn't exist");
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
|
|
|
cfg->p = br_port_get_rtnl(pdev);
|
|
|
|
if (!cfg->p) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Net device is not a bridge port");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cfg->p->br != cfg->br) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Port belongs to a different bridge device");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-03-15 21:11:48 +08:00
|
|
|
if (cfg->entry->addr.proto == htons(ETH_P_IP) &&
|
|
|
|
ipv4_is_zeronet(cfg->entry->addr.u.ip4)) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "IPv4 entry group address 0.0.0.0 is not allowed");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2022-12-06 18:58:01 +08:00
|
|
|
if (tb[MDBA_SET_ENTRY_ATTRS])
|
|
|
|
return br_mdb_config_attrs_init(tb[MDBA_SET_ENTRY_ATTRS], cfg,
|
|
|
|
extack);
|
|
|
|
else
|
|
|
|
__mdb_entry_to_br_ip(cfg->entry, &cfg->group, NULL);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2022-12-10 22:56:29 +08:00
|
|
|
static void br_mdb_config_fini(struct br_mdb_config *cfg)
|
|
|
|
{
|
|
|
|
br_mdb_config_src_list_fini(cfg);
|
|
|
|
}
|
|
|
|
|
2023-03-15 21:11:47 +08:00
|
|
|
int br_mdb_add(struct net_device *dev, struct nlattr *tb[], u16 nlmsg_flags,
|
|
|
|
struct netlink_ext_ack *extack)
|
2012-12-12 06:23:08 +08:00
|
|
|
{
|
bridge: vlan: add per-vlan struct and move to rhashtables
This patch changes the bridge vlan implementation to use rhashtables
instead of bitmaps. The main motivation behind this change is that we
need extensible per-vlan structures (both per-port and global) so more
advanced features can be introduced and the vlan support can be
extended. I've tried to break this up but the moment net_port_vlans is
changed and the whole API goes away, thus this is a larger patch.
A few short goals of this patch are:
- Extensible per-vlan structs stored in rhashtables and a sorted list
- Keep user-visible behaviour (compressed vlans etc)
- Keep fastpath ingress/egress logic the same (optimizations to come
later)
Here's a brief list of some of the new features we'd like to introduce:
- per-vlan counters
- vlan ingress/egress mapping
- per-vlan igmp configuration
- vlan priorities
- avoid fdb entries replication (e.g. local fdb scaling issues)
The structure is kept single for both global and per-port entries so to
avoid code duplication where possible and also because we'll soon introduce
"port0 / aka bridge as port" which should simplify things further
(thanks to Vlad for the suggestion!).
Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port
rhashtable, if an entry is added to a port it'll get a pointer to its
global context so it can be quickly accessed later. There's also a
sorted vlan list which is used for stable walks and some user-visible
behaviour such as the vlan ranges, also for error paths.
VLANs are stored in a "vlan group" which currently contains the
rhashtable, sorted vlan list and the number of "real" vlan entries.
A good side-effect of this change is that it resembles how hw keeps
per-vlan data.
One important note after this change is that if a VLAN is being looked up
in the bridge's rhashtable for filtering purposes (or to check if it's an
existing usable entry, not just a global context) then the new helper
br_vlan_should_use() needs to be used if the vlan is found. In case the
lookup is done only with a port's vlan group, then this check can be
skipped.
Things tested so far:
- basic vlan ingress/egress
- pvids
- untagged vlans
- undef CONFIG_BRIDGE_VLAN_FILTERING
- adding/deleting vlans in different scenarios (with/without global ctx,
while transmitting traffic, in ranges etc)
- loading/removing the module while having/adding/deleting vlans
- extracting bridge vlan information (user ABI), compressed requests
- adding/deleting fdbs on vlans
- bridge mac change, promisc mode
- default pvid change
- kmemleak ON during the whole time
Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-26 01:00:11 +08:00
|
|
|
struct net_bridge_vlan_group *vg;
|
|
|
|
struct net_bridge_vlan *v;
|
2022-12-06 18:58:01 +08:00
|
|
|
struct br_mdb_config cfg;
|
2012-12-12 06:23:08 +08:00
|
|
|
int err;
|
|
|
|
|
2023-03-15 21:11:47 +08:00
|
|
|
err = br_mdb_config_init(&cfg, dev, tb, nlmsg_flags, extack);
|
2022-12-06 18:58:01 +08:00
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
2022-12-10 22:56:23 +08:00
|
|
|
err = -EINVAL;
|
2022-12-06 18:58:07 +08:00
|
|
|
/* host join errors which can happen before creating the group */
|
|
|
|
if (!cfg.p && !br_group_is_l2(&cfg.group)) {
|
|
|
|
/* don't allow any flags for host-joined IP groups */
|
|
|
|
if (cfg.entry->state) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Flags are not allowed for host groups");
|
2022-12-10 22:56:23 +08:00
|
|
|
goto out;
|
2022-12-06 18:58:07 +08:00
|
|
|
}
|
|
|
|
if (!br_multicast_is_star_g(&cfg.group)) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Groups with sources cannot be manually host joined");
|
2022-12-10 22:56:23 +08:00
|
|
|
goto out;
|
2022-12-06 18:58:07 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (br_group_is_l2(&cfg.group) && cfg.entry->state != MDB_PERMANENT) {
|
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Only permanent L2 entries allowed");
|
2022-12-10 22:56:23 +08:00
|
|
|
goto out;
|
2022-12-06 18:58:07 +08:00
|
|
|
}
|
|
|
|
|
2022-12-06 18:58:03 +08:00
|
|
|
if (cfg.p) {
|
|
|
|
if (cfg.p->state == BR_STATE_DISABLED && cfg.entry->state != MDB_PERMANENT) {
|
2022-06-14 14:32:23 +08:00
|
|
|
NL_SET_ERR_MSG_MOD(extack, "Port is in disabled state and entry is not permanent");
|
2022-12-10 22:56:23 +08:00
|
|
|
goto out;
|
2020-09-22 15:30:14 +08:00
|
|
|
}
|
2022-12-06 18:58:02 +08:00
|
|
|
vg = nbp_vlan_group(cfg.p);
|
2019-08-17 19:22:13 +08:00
|
|
|
} else {
|
2022-12-06 18:58:03 +08:00
|
|
|
vg = br_vlan_group(cfg.br);
|
2019-08-17 19:22:13 +08:00
|
|
|
}
|
2015-08-03 19:29:16 +08:00
|
|
|
|
2019-08-17 19:22:10 +08:00
|
|
|
/* If vlan filtering is enabled and VLAN is not specified
|
|
|
|
* install mdb entry on all vlans configured on the port.
|
|
|
|
*/
|
2022-12-06 18:58:03 +08:00
|
|
|
if (br_vlan_enabled(cfg.br->dev) && vg && cfg.entry->vid == 0) {
|
bridge: vlan: add per-vlan struct and move to rhashtables
This patch changes the bridge vlan implementation to use rhashtables
instead of bitmaps. The main motivation behind this change is that we
need extensible per-vlan structures (both per-port and global) so more
advanced features can be introduced and the vlan support can be
extended. I've tried to break this up but the moment net_port_vlans is
changed and the whole API goes away, thus this is a larger patch.
A few short goals of this patch are:
- Extensible per-vlan structs stored in rhashtables and a sorted list
- Keep user-visible behaviour (compressed vlans etc)
- Keep fastpath ingress/egress logic the same (optimizations to come
later)
Here's a brief list of some of the new features we'd like to introduce:
- per-vlan counters
- vlan ingress/egress mapping
- per-vlan igmp configuration
- vlan priorities
- avoid fdb entries replication (e.g. local fdb scaling issues)
The structure is kept single for both global and per-port entries so to
avoid code duplication where possible and also because we'll soon introduce
"port0 / aka bridge as port" which should simplify things further
(thanks to Vlad for the suggestion!).
Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port
rhashtable, if an entry is added to a port it'll get a pointer to its
global context so it can be quickly accessed later. There's also a
sorted vlan list which is used for stable walks and some user-visible
behaviour such as the vlan ranges, also for error paths.
VLANs are stored in a "vlan group" which currently contains the
rhashtable, sorted vlan list and the number of "real" vlan entries.
A good side-effect of this change is that it resembles how hw keeps
per-vlan data.
One important note after this change is that if a VLAN is being looked up
in the bridge's rhashtable for filtering purposes (or to check if it's an
existing usable entry, not just a global context) then the new helper
br_vlan_should_use() needs to be used if the vlan is found. In case the
lookup is done only with a port's vlan group, then this check can be
skipped.
Things tested so far:
- basic vlan ingress/egress
- pvids
- untagged vlans
- undef CONFIG_BRIDGE_VLAN_FILTERING
- adding/deleting vlans in different scenarios (with/without global ctx,
while transmitting traffic, in ranges etc)
- loading/removing the module while having/adding/deleting vlans
- extracting bridge vlan information (user ABI), compressed requests
- adding/deleting fdbs on vlans
- bridge mac change, promisc mode
- default pvid change
- kmemleak ON during the whole time
Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-26 01:00:11 +08:00
|
|
|
list_for_each_entry(v, &vg->vlan_list, vlist) {
|
2022-12-06 18:58:03 +08:00
|
|
|
cfg.entry->vid = v->vid;
|
2022-12-06 18:58:05 +08:00
|
|
|
cfg.group.vid = v->vid;
|
2022-12-06 18:58:06 +08:00
|
|
|
err = __br_mdb_add(&cfg, extack);
|
2015-08-03 19:29:16 +08:00
|
|
|
if (err)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
2022-12-06 18:58:06 +08:00
|
|
|
err = __br_mdb_add(&cfg, extack);
|
2015-08-03 19:29:16 +08:00
|
|
|
}
|
|
|
|
|
2022-12-10 22:56:23 +08:00
|
|
|
out:
|
2022-12-10 22:56:29 +08:00
|
|
|
br_mdb_config_fini(&cfg);
|
2012-12-12 06:23:08 +08:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2022-12-06 18:58:06 +08:00
|
|
|
static int __br_mdb_del(const struct br_mdb_config *cfg)
|
2012-12-12 06:23:08 +08:00
|
|
|
{
|
2022-12-06 18:58:04 +08:00
|
|
|
struct br_mdb_entry *entry = cfg->entry;
|
|
|
|
struct net_bridge *br = cfg->br;
|
2012-12-12 06:23:08 +08:00
|
|
|
struct net_bridge_mdb_entry *mp;
|
|
|
|
struct net_bridge_port_group *p;
|
|
|
|
struct net_bridge_port_group __rcu **pp;
|
2022-12-06 18:58:05 +08:00
|
|
|
struct br_ip ip = cfg->group;
|
2012-12-12 06:23:08 +08:00
|
|
|
int err = -EINVAL;
|
|
|
|
|
|
|
|
spin_lock_bh(&br->multicast_lock);
|
2018-12-05 21:14:24 +08:00
|
|
|
mp = br_mdb_ip_get(br, &ip);
|
2012-12-12 06:23:08 +08:00
|
|
|
if (!mp)
|
|
|
|
goto unlock;
|
|
|
|
|
2019-08-17 19:22:13 +08:00
|
|
|
/* host leave */
|
|
|
|
if (entry->ifindex == mp->br->dev->ifindex && mp->host_joined) {
|
|
|
|
br_multicast_host_leave(mp, false);
|
|
|
|
err = 0;
|
2020-09-07 17:56:12 +08:00
|
|
|
br_mdb_notify(br->dev, mp, NULL, RTM_DELMDB);
|
2019-08-17 19:22:13 +08:00
|
|
|
if (!mp->ports && netif_running(br->dev))
|
|
|
|
mod_timer(&mp->timer, jiffies);
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
|
2012-12-12 06:23:08 +08:00
|
|
|
for (pp = &mp->ports;
|
|
|
|
(p = mlock_dereference(*pp, br)) != NULL;
|
|
|
|
pp = &p->next) {
|
2020-09-22 15:30:22 +08:00
|
|
|
if (!p->key.port || p->key.port->dev->ifindex != entry->ifindex)
|
2012-12-12 06:23:08 +08:00
|
|
|
continue;
|
|
|
|
|
2020-09-07 17:56:06 +08:00
|
|
|
br_multicast_del_pg(mp, p, pp);
|
2012-12-12 06:23:08 +08:00
|
|
|
err = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
unlock:
|
|
|
|
spin_unlock_bh(&br->multicast_lock);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2023-03-15 21:11:47 +08:00
|
|
|
int br_mdb_del(struct net_device *dev, struct nlattr *tb[],
|
|
|
|
struct netlink_ext_ack *extack)
|
2012-12-12 06:23:08 +08:00
|
|
|
{
|
bridge: vlan: add per-vlan struct and move to rhashtables
This patch changes the bridge vlan implementation to use rhashtables
instead of bitmaps. The main motivation behind this change is that we
need extensible per-vlan structures (both per-port and global) so more
advanced features can be introduced and the vlan support can be
extended. I've tried to break this up but the moment net_port_vlans is
changed and the whole API goes away, thus this is a larger patch.
A few short goals of this patch are:
- Extensible per-vlan structs stored in rhashtables and a sorted list
- Keep user-visible behaviour (compressed vlans etc)
- Keep fastpath ingress/egress logic the same (optimizations to come
later)
Here's a brief list of some of the new features we'd like to introduce:
- per-vlan counters
- vlan ingress/egress mapping
- per-vlan igmp configuration
- vlan priorities
- avoid fdb entries replication (e.g. local fdb scaling issues)
The structure is kept single for both global and per-port entries so to
avoid code duplication where possible and also because we'll soon introduce
"port0 / aka bridge as port" which should simplify things further
(thanks to Vlad for the suggestion!).
Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port
rhashtable, if an entry is added to a port it'll get a pointer to its
global context so it can be quickly accessed later. There's also a
sorted vlan list which is used for stable walks and some user-visible
behaviour such as the vlan ranges, also for error paths.
VLANs are stored in a "vlan group" which currently contains the
rhashtable, sorted vlan list and the number of "real" vlan entries.
A good side-effect of this change is that it resembles how hw keeps
per-vlan data.
One important note after this change is that if a VLAN is being looked up
in the bridge's rhashtable for filtering purposes (or to check if it's an
existing usable entry, not just a global context) then the new helper
br_vlan_should_use() needs to be used if the vlan is found. In case the
lookup is done only with a port's vlan group, then this check can be
skipped.
Things tested so far:
- basic vlan ingress/egress
- pvids
- untagged vlans
- undef CONFIG_BRIDGE_VLAN_FILTERING
- adding/deleting vlans in different scenarios (with/without global ctx,
while transmitting traffic, in ranges etc)
- loading/removing the module while having/adding/deleting vlans
- extracting bridge vlan information (user ABI), compressed requests
- adding/deleting fdbs on vlans
- bridge mac change, promisc mode
- default pvid change
- kmemleak ON during the whole time
Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-26 01:00:11 +08:00
|
|
|
struct net_bridge_vlan_group *vg;
|
|
|
|
struct net_bridge_vlan *v;
|
2022-12-06 18:58:01 +08:00
|
|
|
struct br_mdb_config cfg;
|
2012-12-12 06:23:08 +08:00
|
|
|
int err;
|
|
|
|
|
2023-03-15 21:11:47 +08:00
|
|
|
err = br_mdb_config_init(&cfg, dev, tb, 0, extack);
|
2022-12-06 18:58:01 +08:00
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
2022-12-06 18:58:03 +08:00
|
|
|
if (cfg.p)
|
2022-12-06 18:58:02 +08:00
|
|
|
vg = nbp_vlan_group(cfg.p);
|
|
|
|
else
|
2022-12-06 18:58:03 +08:00
|
|
|
vg = br_vlan_group(cfg.br);
|
2015-08-03 19:29:16 +08:00
|
|
|
|
2019-08-17 19:22:10 +08:00
|
|
|
/* If vlan filtering is enabled and VLAN is not specified
|
|
|
|
* delete mdb entry on all vlans configured on the port.
|
|
|
|
*/
|
2022-12-06 18:58:03 +08:00
|
|
|
if (br_vlan_enabled(cfg.br->dev) && vg && cfg.entry->vid == 0) {
|
bridge: vlan: add per-vlan struct and move to rhashtables
This patch changes the bridge vlan implementation to use rhashtables
instead of bitmaps. The main motivation behind this change is that we
need extensible per-vlan structures (both per-port and global) so more
advanced features can be introduced and the vlan support can be
extended. I've tried to break this up but the moment net_port_vlans is
changed and the whole API goes away, thus this is a larger patch.
A few short goals of this patch are:
- Extensible per-vlan structs stored in rhashtables and a sorted list
- Keep user-visible behaviour (compressed vlans etc)
- Keep fastpath ingress/egress logic the same (optimizations to come
later)
Here's a brief list of some of the new features we'd like to introduce:
- per-vlan counters
- vlan ingress/egress mapping
- per-vlan igmp configuration
- vlan priorities
- avoid fdb entries replication (e.g. local fdb scaling issues)
The structure is kept single for both global and per-port entries so to
avoid code duplication where possible and also because we'll soon introduce
"port0 / aka bridge as port" which should simplify things further
(thanks to Vlad for the suggestion!).
Now we have per-vlan global rhashtable (bridge-wide) and per-vlan port
rhashtable, if an entry is added to a port it'll get a pointer to its
global context so it can be quickly accessed later. There's also a
sorted vlan list which is used for stable walks and some user-visible
behaviour such as the vlan ranges, also for error paths.
VLANs are stored in a "vlan group" which currently contains the
rhashtable, sorted vlan list and the number of "real" vlan entries.
A good side-effect of this change is that it resembles how hw keeps
per-vlan data.
One important note after this change is that if a VLAN is being looked up
in the bridge's rhashtable for filtering purposes (or to check if it's an
existing usable entry, not just a global context) then the new helper
br_vlan_should_use() needs to be used if the vlan is found. In case the
lookup is done only with a port's vlan group, then this check can be
skipped.
Things tested so far:
- basic vlan ingress/egress
- pvids
- untagged vlans
- undef CONFIG_BRIDGE_VLAN_FILTERING
- adding/deleting vlans in different scenarios (with/without global ctx,
while transmitting traffic, in ranges etc)
- loading/removing the module while having/adding/deleting vlans
- extracting bridge vlan information (user ABI), compressed requests
- adding/deleting fdbs on vlans
- bridge mac change, promisc mode
- default pvid change
- kmemleak ON during the whole time
Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-26 01:00:11 +08:00
|
|
|
list_for_each_entry(v, &vg->vlan_list, vlist) {
|
2022-12-06 18:58:03 +08:00
|
|
|
cfg.entry->vid = v->vid;
|
2022-12-06 18:58:05 +08:00
|
|
|
cfg.group.vid = v->vid;
|
2022-12-06 18:58:06 +08:00
|
|
|
err = __br_mdb_del(&cfg);
|
2015-08-03 19:29:16 +08:00
|
|
|
}
|
|
|
|
} else {
|
2022-12-06 18:58:06 +08:00
|
|
|
err = __br_mdb_del(&cfg);
|
2015-08-03 19:29:16 +08:00
|
|
|
}
|
|
|
|
|
2022-12-10 22:56:29 +08:00
|
|
|
br_mdb_config_fini(&cfg);
|
2012-12-12 06:23:08 +08:00
|
|
|
return err;
|
|
|
|
}
|