OpenCloudOS-Kernel/drivers/spi/spi-tegra210-quad.c

1723 lines
46 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
//
// Copyright (C) 2020 NVIDIA CORPORATION.
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/reset.h>
#include <linux/spi/spi.h>
#include <linux/acpi.h>
#include <linux/property.h>
#define QSPI_COMMAND1 0x000
#define QSPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
#define QSPI_PACKED BIT(5)
#define QSPI_INTERFACE_WIDTH_MASK (0x03 << 7)
#define QSPI_INTERFACE_WIDTH(x) (((x) & 0x03) << 7)
#define QSPI_INTERFACE_WIDTH_SINGLE QSPI_INTERFACE_WIDTH(0)
#define QSPI_INTERFACE_WIDTH_DUAL QSPI_INTERFACE_WIDTH(1)
#define QSPI_INTERFACE_WIDTH_QUAD QSPI_INTERFACE_WIDTH(2)
#define QSPI_SDR_DDR_SEL BIT(9)
#define QSPI_TX_EN BIT(11)
#define QSPI_RX_EN BIT(12)
#define QSPI_CS_SW_VAL BIT(20)
#define QSPI_CS_SW_HW BIT(21)
#define QSPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
#define QSPI_CS_POL_INACTIVE_MASK (0xF << 22)
#define QSPI_CS_SEL_0 (0 << 26)
#define QSPI_CS_SEL_1 (1 << 26)
#define QSPI_CS_SEL_2 (2 << 26)
#define QSPI_CS_SEL_3 (3 << 26)
#define QSPI_CS_SEL_MASK (3 << 26)
#define QSPI_CS_SEL(x) (((x) & 0x3) << 26)
#define QSPI_CONTROL_MODE_0 (0 << 28)
#define QSPI_CONTROL_MODE_3 (3 << 28)
#define QSPI_CONTROL_MODE_MASK (3 << 28)
#define QSPI_M_S BIT(30)
#define QSPI_PIO BIT(31)
#define QSPI_COMMAND2 0x004
#define QSPI_TX_TAP_DELAY(x) (((x) & 0x3f) << 10)
#define QSPI_RX_TAP_DELAY(x) (((x) & 0xff) << 0)
#define QSPI_CS_TIMING1 0x008
#define QSPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
#define QSPI_CS_TIMING2 0x00c
#define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1f) << 0)
#define CS_ACTIVE_BETWEEN_PACKETS_0 BIT(5)
#define QSPI_TRANS_STATUS 0x010
#define QSPI_BLK_CNT(val) (((val) >> 0) & 0xffff)
#define QSPI_RDY BIT(30)
#define QSPI_FIFO_STATUS 0x014
#define QSPI_RX_FIFO_EMPTY BIT(0)
#define QSPI_RX_FIFO_FULL BIT(1)
#define QSPI_TX_FIFO_EMPTY BIT(2)
#define QSPI_TX_FIFO_FULL BIT(3)
#define QSPI_RX_FIFO_UNF BIT(4)
#define QSPI_RX_FIFO_OVF BIT(5)
#define QSPI_TX_FIFO_UNF BIT(6)
#define QSPI_TX_FIFO_OVF BIT(7)
#define QSPI_ERR BIT(8)
#define QSPI_TX_FIFO_FLUSH BIT(14)
#define QSPI_RX_FIFO_FLUSH BIT(15)
#define QSPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7f)
#define QSPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7f)
#define QSPI_FIFO_ERROR (QSPI_RX_FIFO_UNF | \
QSPI_RX_FIFO_OVF | \
QSPI_TX_FIFO_UNF | \
QSPI_TX_FIFO_OVF)
#define QSPI_FIFO_EMPTY (QSPI_RX_FIFO_EMPTY | \
QSPI_TX_FIFO_EMPTY)
#define QSPI_TX_DATA 0x018
#define QSPI_RX_DATA 0x01c
#define QSPI_DMA_CTL 0x020
#define QSPI_TX_TRIG(n) (((n) & 0x3) << 15)
#define QSPI_TX_TRIG_1 QSPI_TX_TRIG(0)
#define QSPI_TX_TRIG_4 QSPI_TX_TRIG(1)
#define QSPI_TX_TRIG_8 QSPI_TX_TRIG(2)
#define QSPI_TX_TRIG_16 QSPI_TX_TRIG(3)
#define QSPI_RX_TRIG(n) (((n) & 0x3) << 19)
#define QSPI_RX_TRIG_1 QSPI_RX_TRIG(0)
#define QSPI_RX_TRIG_4 QSPI_RX_TRIG(1)
#define QSPI_RX_TRIG_8 QSPI_RX_TRIG(2)
#define QSPI_RX_TRIG_16 QSPI_RX_TRIG(3)
#define QSPI_DMA_EN BIT(31)
#define QSPI_DMA_BLK 0x024
#define QSPI_DMA_BLK_SET(x) (((x) & 0xffff) << 0)
#define QSPI_TX_FIFO 0x108
#define QSPI_RX_FIFO 0x188
#define QSPI_FIFO_DEPTH 64
#define QSPI_INTR_MASK 0x18c
#define QSPI_INTR_RX_FIFO_UNF_MASK BIT(25)
#define QSPI_INTR_RX_FIFO_OVF_MASK BIT(26)
#define QSPI_INTR_TX_FIFO_UNF_MASK BIT(27)
#define QSPI_INTR_TX_FIFO_OVF_MASK BIT(28)
#define QSPI_INTR_RDY_MASK BIT(29)
#define QSPI_INTR_RX_TX_FIFO_ERR (QSPI_INTR_RX_FIFO_UNF_MASK | \
QSPI_INTR_RX_FIFO_OVF_MASK | \
QSPI_INTR_TX_FIFO_UNF_MASK | \
QSPI_INTR_TX_FIFO_OVF_MASK)
#define QSPI_MISC_REG 0x194
#define QSPI_NUM_DUMMY_CYCLE(x) (((x) & 0xff) << 0)
#define QSPI_DUMMY_CYCLES_MAX 0xff
#define QSPI_CMB_SEQ_CMD 0x19c
#define QSPI_COMMAND_VALUE_SET(X) (((x) & 0xFF) << 0)
#define QSPI_CMB_SEQ_CMD_CFG 0x1a0
#define QSPI_COMMAND_X1_X2_X4(x) (((x) & 0x3) << 13)
#define QSPI_COMMAND_X1_X2_X4_MASK (0x03 << 13)
#define QSPI_COMMAND_SDR_DDR BIT(12)
#define QSPI_COMMAND_SIZE_SET(x) (((x) & 0xFF) << 0)
#define QSPI_GLOBAL_CONFIG 0X1a4
#define QSPI_CMB_SEQ_EN BIT(0)
#define QSPI_CMB_SEQ_ADDR 0x1a8
#define QSPI_ADDRESS_VALUE_SET(X) (((x) & 0xFFFF) << 0)
#define QSPI_CMB_SEQ_ADDR_CFG 0x1ac
#define QSPI_ADDRESS_X1_X2_X4(x) (((x) & 0x3) << 13)
#define QSPI_ADDRESS_X1_X2_X4_MASK (0x03 << 13)
#define QSPI_ADDRESS_SDR_DDR BIT(12)
#define QSPI_ADDRESS_SIZE_SET(x) (((x) & 0xFF) << 0)
#define DATA_DIR_TX BIT(0)
#define DATA_DIR_RX BIT(1)
#define QSPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
#define DEFAULT_QSPI_DMA_BUF_LEN (64 * 1024)
#define CMD_TRANSFER 0
#define ADDR_TRANSFER 1
#define DATA_TRANSFER 2
struct tegra_qspi_soc_data {
bool has_dma;
bool cmb_xfer_capable;
unsigned int cs_count;
};
struct tegra_qspi_client_data {
int tx_clk_tap_delay;
int rx_clk_tap_delay;
};
struct tegra_qspi {
struct device *dev;
struct spi_master *master;
/* lock to protect data accessed by irq */
spinlock_t lock;
struct clk *clk;
void __iomem *base;
phys_addr_t phys;
unsigned int irq;
u32 cur_speed;
unsigned int cur_pos;
unsigned int words_per_32bit;
unsigned int bytes_per_word;
unsigned int curr_dma_words;
unsigned int cur_direction;
unsigned int cur_rx_pos;
unsigned int cur_tx_pos;
unsigned int dma_buf_size;
unsigned int max_buf_size;
bool is_curr_dma_xfer;
struct completion rx_dma_complete;
struct completion tx_dma_complete;
u32 tx_status;
u32 rx_status;
u32 status_reg;
bool is_packed;
bool use_dma;
u32 command1_reg;
u32 dma_control_reg;
u32 def_command1_reg;
u32 def_command2_reg;
u32 spi_cs_timing1;
u32 spi_cs_timing2;
u8 dummy_cycles;
struct completion xfer_completion;
struct spi_transfer *curr_xfer;
struct dma_chan *rx_dma_chan;
u32 *rx_dma_buf;
dma_addr_t rx_dma_phys;
struct dma_async_tx_descriptor *rx_dma_desc;
struct dma_chan *tx_dma_chan;
u32 *tx_dma_buf;
dma_addr_t tx_dma_phys;
struct dma_async_tx_descriptor *tx_dma_desc;
const struct tegra_qspi_soc_data *soc_data;
};
static inline u32 tegra_qspi_readl(struct tegra_qspi *tqspi, unsigned long offset)
{
return readl(tqspi->base + offset);
}
static inline void tegra_qspi_writel(struct tegra_qspi *tqspi, u32 value, unsigned long offset)
{
writel(value, tqspi->base + offset);
/* read back register to make sure that register writes completed */
if (offset != QSPI_TX_FIFO)
readl(tqspi->base + QSPI_COMMAND1);
}
static void tegra_qspi_mask_clear_irq(struct tegra_qspi *tqspi)
{
u32 value;
/* write 1 to clear status register */
value = tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS);
tegra_qspi_writel(tqspi, value, QSPI_TRANS_STATUS);
value = tegra_qspi_readl(tqspi, QSPI_INTR_MASK);
if (!(value & QSPI_INTR_RDY_MASK)) {
value |= (QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR);
tegra_qspi_writel(tqspi, value, QSPI_INTR_MASK);
}
/* clear fifo status error if any */
value = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
if (value & QSPI_ERR)
tegra_qspi_writel(tqspi, QSPI_ERR | QSPI_FIFO_ERROR, QSPI_FIFO_STATUS);
}
static unsigned int
tegra_qspi_calculate_curr_xfer_param(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
unsigned int max_word, max_len, total_fifo_words;
unsigned int remain_len = t->len - tqspi->cur_pos;
unsigned int bits_per_word = t->bits_per_word;
tqspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
/*
* Tegra QSPI controller supports packed or unpacked mode transfers.
* Packed mode is used for data transfers using 8, 16, or 32 bits per
* word with a minimum transfer of 1 word and for all other transfers
* unpacked mode will be used.
*/
if ((bits_per_word == 8 || bits_per_word == 16 ||
bits_per_word == 32) && t->len > 3) {
tqspi->is_packed = true;
tqspi->words_per_32bit = 32 / bits_per_word;
} else {
tqspi->is_packed = false;
tqspi->words_per_32bit = 1;
}
if (tqspi->is_packed) {
max_len = min(remain_len, tqspi->max_buf_size);
tqspi->curr_dma_words = max_len / tqspi->bytes_per_word;
total_fifo_words = (max_len + 3) / 4;
} else {
max_word = (remain_len - 1) / tqspi->bytes_per_word + 1;
max_word = min(max_word, tqspi->max_buf_size / 4);
tqspi->curr_dma_words = max_word;
total_fifo_words = max_word;
}
return total_fifo_words;
}
static unsigned int
tegra_qspi_fill_tx_fifo_from_client_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
unsigned int written_words, fifo_words_left, count;
unsigned int len, tx_empty_count, max_n_32bit, i;
u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
u32 fifo_status;
fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
tx_empty_count = QSPI_TX_FIFO_EMPTY_COUNT(fifo_status);
if (tqspi->is_packed) {
fifo_words_left = tx_empty_count * tqspi->words_per_32bit;
written_words = min(fifo_words_left, tqspi->curr_dma_words);
len = written_words * tqspi->bytes_per_word;
max_n_32bit = DIV_ROUND_UP(len, 4);
for (count = 0; count < max_n_32bit; count++) {
u32 x = 0;
for (i = 0; (i < 4) && len; i++, len--)
x |= (u32)(*tx_buf++) << (i * 8);
tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO);
}
tqspi->cur_tx_pos += written_words * tqspi->bytes_per_word;
} else {
unsigned int write_bytes;
u8 bytes_per_word = tqspi->bytes_per_word;
max_n_32bit = min(tqspi->curr_dma_words, tx_empty_count);
written_words = max_n_32bit;
len = written_words * tqspi->bytes_per_word;
if (len > t->len - tqspi->cur_pos)
len = t->len - tqspi->cur_pos;
write_bytes = len;
for (count = 0; count < max_n_32bit; count++) {
u32 x = 0;
for (i = 0; len && (i < bytes_per_word); i++, len--)
x |= (u32)(*tx_buf++) << (i * 8);
tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO);
}
tqspi->cur_tx_pos += write_bytes;
}
return written_words;
}
static unsigned int
tegra_qspi_read_rx_fifo_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos;
unsigned int len, rx_full_count, count, i;
unsigned int read_words = 0;
u32 fifo_status, x;
fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
rx_full_count = QSPI_RX_FIFO_FULL_COUNT(fifo_status);
if (tqspi->is_packed) {
len = tqspi->curr_dma_words * tqspi->bytes_per_word;
for (count = 0; count < rx_full_count; count++) {
x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO);
for (i = 0; len && (i < 4); i++, len--)
*rx_buf++ = (x >> i * 8) & 0xff;
}
read_words += tqspi->curr_dma_words;
tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
} else {
u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
u8 bytes_per_word = tqspi->bytes_per_word;
unsigned int read_bytes;
len = rx_full_count * bytes_per_word;
if (len > t->len - tqspi->cur_pos)
len = t->len - tqspi->cur_pos;
read_bytes = len;
for (count = 0; count < rx_full_count; count++) {
x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO) & rx_mask;
for (i = 0; len && (i < bytes_per_word); i++, len--)
*rx_buf++ = (x >> (i * 8)) & 0xff;
}
read_words += rx_full_count;
tqspi->cur_rx_pos += read_bytes;
}
return read_words;
}
static void
tegra_qspi_copy_client_txbuf_to_qspi_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
dma_sync_single_for_cpu(tqspi->dev, tqspi->tx_dma_phys,
tqspi->dma_buf_size, DMA_TO_DEVICE);
/*
* In packed mode, each word in FIFO may contain multiple packets
* based on bits per word. So all bytes in each FIFO word are valid.
*
* In unpacked mode, each word in FIFO contains single packet and
* based on bits per word any remaining bits in FIFO word will be
* ignored by the hardware and are invalid bits.
*/
if (tqspi->is_packed) {
tqspi->cur_tx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
} else {
u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
unsigned int i, count, consume, write_bytes;
/*
* Fill tx_dma_buf to contain single packet in each word based
* on bits per word from SPI core tx_buf.
*/
consume = tqspi->curr_dma_words * tqspi->bytes_per_word;
if (consume > t->len - tqspi->cur_pos)
consume = t->len - tqspi->cur_pos;
write_bytes = consume;
for (count = 0; count < tqspi->curr_dma_words; count++) {
u32 x = 0;
for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--)
x |= (u32)(*tx_buf++) << (i * 8);
tqspi->tx_dma_buf[count] = x;
}
tqspi->cur_tx_pos += write_bytes;
}
dma_sync_single_for_device(tqspi->dev, tqspi->tx_dma_phys,
tqspi->dma_buf_size, DMA_TO_DEVICE);
}
static void
tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
dma_sync_single_for_cpu(tqspi->dev, tqspi->rx_dma_phys,
tqspi->dma_buf_size, DMA_FROM_DEVICE);
if (tqspi->is_packed) {
tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
} else {
unsigned char *rx_buf = t->rx_buf + tqspi->cur_rx_pos;
u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
unsigned int i, count, consume, read_bytes;
/*
* Each FIFO word contains single data packet.
* Skip invalid bits in each FIFO word based on bits per word
* and align bytes while filling in SPI core rx_buf.
*/
consume = tqspi->curr_dma_words * tqspi->bytes_per_word;
if (consume > t->len - tqspi->cur_pos)
consume = t->len - tqspi->cur_pos;
read_bytes = consume;
for (count = 0; count < tqspi->curr_dma_words; count++) {
u32 x = tqspi->rx_dma_buf[count] & rx_mask;
for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--)
*rx_buf++ = (x >> (i * 8)) & 0xff;
}
tqspi->cur_rx_pos += read_bytes;
}
dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys,
tqspi->dma_buf_size, DMA_FROM_DEVICE);
}
static void tegra_qspi_dma_complete(void *args)
{
struct completion *dma_complete = args;
complete(dma_complete);
}
static int tegra_qspi_start_tx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len)
{
dma_addr_t tx_dma_phys;
reinit_completion(&tqspi->tx_dma_complete);
if (tqspi->is_packed)
tx_dma_phys = t->tx_dma;
else
tx_dma_phys = tqspi->tx_dma_phys;
tqspi->tx_dma_desc = dmaengine_prep_slave_single(tqspi->tx_dma_chan, tx_dma_phys,
len, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tqspi->tx_dma_desc) {
dev_err(tqspi->dev, "Unable to get TX descriptor\n");
return -EIO;
}
tqspi->tx_dma_desc->callback = tegra_qspi_dma_complete;
tqspi->tx_dma_desc->callback_param = &tqspi->tx_dma_complete;
dmaengine_submit(tqspi->tx_dma_desc);
dma_async_issue_pending(tqspi->tx_dma_chan);
return 0;
}
static int tegra_qspi_start_rx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len)
{
dma_addr_t rx_dma_phys;
reinit_completion(&tqspi->rx_dma_complete);
if (tqspi->is_packed)
rx_dma_phys = t->rx_dma;
else
rx_dma_phys = tqspi->rx_dma_phys;
tqspi->rx_dma_desc = dmaengine_prep_slave_single(tqspi->rx_dma_chan, rx_dma_phys,
len, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tqspi->rx_dma_desc) {
dev_err(tqspi->dev, "Unable to get RX descriptor\n");
return -EIO;
}
tqspi->rx_dma_desc->callback = tegra_qspi_dma_complete;
tqspi->rx_dma_desc->callback_param = &tqspi->rx_dma_complete;
dmaengine_submit(tqspi->rx_dma_desc);
dma_async_issue_pending(tqspi->rx_dma_chan);
return 0;
}
static int tegra_qspi_flush_fifos(struct tegra_qspi *tqspi, bool atomic)
{
void __iomem *addr = tqspi->base + QSPI_FIFO_STATUS;
u32 val;
val = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
if ((val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY)
return 0;
val |= QSPI_RX_FIFO_FLUSH | QSPI_TX_FIFO_FLUSH;
tegra_qspi_writel(tqspi, val, QSPI_FIFO_STATUS);
if (!atomic)
return readl_relaxed_poll_timeout(addr, val,
(val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY,
1000, 1000000);
return readl_relaxed_poll_timeout_atomic(addr, val,
(val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY,
1000, 1000000);
}
static void tegra_qspi_unmask_irq(struct tegra_qspi *tqspi)
{
u32 intr_mask;
intr_mask = tegra_qspi_readl(tqspi, QSPI_INTR_MASK);
intr_mask &= ~(QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR);
tegra_qspi_writel(tqspi, intr_mask, QSPI_INTR_MASK);
}
static int tegra_qspi_dma_map_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos;
unsigned int len;
len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
if (t->tx_buf) {
t->tx_dma = dma_map_single(tqspi->dev, (void *)tx_buf, len, DMA_TO_DEVICE);
if (dma_mapping_error(tqspi->dev, t->tx_dma))
return -ENOMEM;
}
if (t->rx_buf) {
t->rx_dma = dma_map_single(tqspi->dev, (void *)rx_buf, len, DMA_FROM_DEVICE);
if (dma_mapping_error(tqspi->dev, t->rx_dma)) {
dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE);
return -ENOMEM;
}
}
return 0;
}
static void tegra_qspi_dma_unmap_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
unsigned int len;
len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE);
dma_unmap_single(tqspi->dev, t->rx_dma, len, DMA_FROM_DEVICE);
}
static int tegra_qspi_start_dma_based_transfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
struct dma_slave_config dma_sconfig = { 0 };
unsigned int len;
u8 dma_burst;
int ret = 0;
u32 val;
if (tqspi->is_packed) {
ret = tegra_qspi_dma_map_xfer(tqspi, t);
if (ret < 0)
return ret;
}
val = QSPI_DMA_BLK_SET(tqspi->curr_dma_words - 1);
tegra_qspi_writel(tqspi, val, QSPI_DMA_BLK);
tegra_qspi_unmask_irq(tqspi);
if (tqspi->is_packed)
len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
else
len = tqspi->curr_dma_words * 4;
/* set attention level based on length of transfer */
val = 0;
if (len & 0xf) {
val |= QSPI_TX_TRIG_1 | QSPI_RX_TRIG_1;
dma_burst = 1;
} else if (((len) >> 4) & 0x1) {
val |= QSPI_TX_TRIG_4 | QSPI_RX_TRIG_4;
dma_burst = 4;
} else {
val |= QSPI_TX_TRIG_8 | QSPI_RX_TRIG_8;
dma_burst = 8;
}
tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL);
tqspi->dma_control_reg = val;
dma_sconfig.device_fc = true;
if (tqspi->cur_direction & DATA_DIR_TX) {
dma_sconfig.dst_addr = tqspi->phys + QSPI_TX_FIFO;
dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_sconfig.dst_maxburst = dma_burst;
ret = dmaengine_slave_config(tqspi->tx_dma_chan, &dma_sconfig);
if (ret < 0) {
dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret);
return ret;
}
tegra_qspi_copy_client_txbuf_to_qspi_txbuf(tqspi, t);
ret = tegra_qspi_start_tx_dma(tqspi, t, len);
if (ret < 0) {
dev_err(tqspi->dev, "failed to starting TX DMA: %d\n", ret);
return ret;
}
}
if (tqspi->cur_direction & DATA_DIR_RX) {
dma_sconfig.src_addr = tqspi->phys + QSPI_RX_FIFO;
dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_sconfig.src_maxburst = dma_burst;
ret = dmaengine_slave_config(tqspi->rx_dma_chan, &dma_sconfig);
if (ret < 0) {
dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret);
return ret;
}
dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys,
tqspi->dma_buf_size,
DMA_FROM_DEVICE);
ret = tegra_qspi_start_rx_dma(tqspi, t, len);
if (ret < 0) {
dev_err(tqspi->dev, "failed to start RX DMA: %d\n", ret);
if (tqspi->cur_direction & DATA_DIR_TX)
dmaengine_terminate_all(tqspi->tx_dma_chan);
return ret;
}
}
tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
tqspi->is_curr_dma_xfer = true;
tqspi->dma_control_reg = val;
val |= QSPI_DMA_EN;
tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL);
return ret;
}
static int tegra_qspi_start_cpu_based_transfer(struct tegra_qspi *qspi, struct spi_transfer *t)
{
u32 val;
unsigned int cur_words;
if (qspi->cur_direction & DATA_DIR_TX)
cur_words = tegra_qspi_fill_tx_fifo_from_client_txbuf(qspi, t);
else
cur_words = qspi->curr_dma_words;
val = QSPI_DMA_BLK_SET(cur_words - 1);
tegra_qspi_writel(qspi, val, QSPI_DMA_BLK);
tegra_qspi_unmask_irq(qspi);
qspi->is_curr_dma_xfer = false;
val = qspi->command1_reg;
val |= QSPI_PIO;
tegra_qspi_writel(qspi, val, QSPI_COMMAND1);
return 0;
}
static void tegra_qspi_deinit_dma(struct tegra_qspi *tqspi)
{
if (!tqspi->soc_data->has_dma)
return;
if (tqspi->tx_dma_buf) {
dma_free_coherent(tqspi->dev, tqspi->dma_buf_size,
tqspi->tx_dma_buf, tqspi->tx_dma_phys);
tqspi->tx_dma_buf = NULL;
}
if (tqspi->tx_dma_chan) {
dma_release_channel(tqspi->tx_dma_chan);
tqspi->tx_dma_chan = NULL;
}
if (tqspi->rx_dma_buf) {
dma_free_coherent(tqspi->dev, tqspi->dma_buf_size,
tqspi->rx_dma_buf, tqspi->rx_dma_phys);
tqspi->rx_dma_buf = NULL;
}
if (tqspi->rx_dma_chan) {
dma_release_channel(tqspi->rx_dma_chan);
tqspi->rx_dma_chan = NULL;
}
}
static int tegra_qspi_init_dma(struct tegra_qspi *tqspi)
{
struct dma_chan *dma_chan;
dma_addr_t dma_phys;
u32 *dma_buf;
int err;
if (!tqspi->soc_data->has_dma)
return 0;
dma_chan = dma_request_chan(tqspi->dev, "rx");
if (IS_ERR(dma_chan)) {
err = PTR_ERR(dma_chan);
goto err_out;
}
tqspi->rx_dma_chan = dma_chan;
dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL);
if (!dma_buf) {
err = -ENOMEM;
goto err_out;
}
tqspi->rx_dma_buf = dma_buf;
tqspi->rx_dma_phys = dma_phys;
dma_chan = dma_request_chan(tqspi->dev, "tx");
if (IS_ERR(dma_chan)) {
err = PTR_ERR(dma_chan);
goto err_out;
}
tqspi->tx_dma_chan = dma_chan;
dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL);
if (!dma_buf) {
err = -ENOMEM;
goto err_out;
}
tqspi->tx_dma_buf = dma_buf;
tqspi->tx_dma_phys = dma_phys;
tqspi->use_dma = true;
return 0;
err_out:
tegra_qspi_deinit_dma(tqspi);
if (err != -EPROBE_DEFER) {
dev_err(tqspi->dev, "cannot use DMA: %d\n", err);
dev_err(tqspi->dev, "falling back to PIO\n");
return 0;
}
return err;
}
static u32 tegra_qspi_setup_transfer_one(struct spi_device *spi, struct spi_transfer *t,
bool is_first_of_msg)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
struct tegra_qspi_client_data *cdata = spi->controller_data;
u32 command1, command2, speed = t->speed_hz;
u8 bits_per_word = t->bits_per_word;
u32 tx_tap = 0, rx_tap = 0;
int req_mode;
if (!has_acpi_companion(tqspi->dev) && speed != tqspi->cur_speed) {
clk_set_rate(tqspi->clk, speed);
tqspi->cur_speed = speed;
}
tqspi->cur_pos = 0;
tqspi->cur_rx_pos = 0;
tqspi->cur_tx_pos = 0;
tqspi->curr_xfer = t;
if (is_first_of_msg) {
tegra_qspi_mask_clear_irq(tqspi);
command1 = tqspi->def_command1_reg;
command1 |= QSPI_CS_SEL(spi->chip_select);
command1 |= QSPI_BIT_LENGTH(bits_per_word - 1);
command1 &= ~QSPI_CONTROL_MODE_MASK;
req_mode = spi->mode & 0x3;
if (req_mode == SPI_MODE_3)
command1 |= QSPI_CONTROL_MODE_3;
else
command1 |= QSPI_CONTROL_MODE_0;
if (spi->mode & SPI_CS_HIGH)
command1 |= QSPI_CS_SW_VAL;
else
command1 &= ~QSPI_CS_SW_VAL;
tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1);
if (cdata && cdata->tx_clk_tap_delay)
tx_tap = cdata->tx_clk_tap_delay;
if (cdata && cdata->rx_clk_tap_delay)
rx_tap = cdata->rx_clk_tap_delay;
command2 = QSPI_TX_TAP_DELAY(tx_tap) | QSPI_RX_TAP_DELAY(rx_tap);
if (command2 != tqspi->def_command2_reg)
tegra_qspi_writel(tqspi, command2, QSPI_COMMAND2);
} else {
command1 = tqspi->command1_reg;
command1 &= ~QSPI_BIT_LENGTH(~0);
command1 |= QSPI_BIT_LENGTH(bits_per_word - 1);
}
command1 &= ~QSPI_SDR_DDR_SEL;
return command1;
}
static int tegra_qspi_start_transfer_one(struct spi_device *spi,
struct spi_transfer *t, u32 command1)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
unsigned int total_fifo_words;
u8 bus_width = 0;
int ret;
total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t);
command1 &= ~QSPI_PACKED;
if (tqspi->is_packed)
command1 |= QSPI_PACKED;
tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1);
tqspi->cur_direction = 0;
command1 &= ~(QSPI_TX_EN | QSPI_RX_EN);
if (t->rx_buf) {
command1 |= QSPI_RX_EN;
tqspi->cur_direction |= DATA_DIR_RX;
bus_width = t->rx_nbits;
}
if (t->tx_buf) {
command1 |= QSPI_TX_EN;
tqspi->cur_direction |= DATA_DIR_TX;
bus_width = t->tx_nbits;
}
command1 &= ~QSPI_INTERFACE_WIDTH_MASK;
if (bus_width == SPI_NBITS_QUAD)
command1 |= QSPI_INTERFACE_WIDTH_QUAD;
else if (bus_width == SPI_NBITS_DUAL)
command1 |= QSPI_INTERFACE_WIDTH_DUAL;
else
command1 |= QSPI_INTERFACE_WIDTH_SINGLE;
tqspi->command1_reg = command1;
tegra_qspi_writel(tqspi, QSPI_NUM_DUMMY_CYCLE(tqspi->dummy_cycles), QSPI_MISC_REG);
ret = tegra_qspi_flush_fifos(tqspi, false);
if (ret < 0)
return ret;
if (tqspi->use_dma && total_fifo_words > QSPI_FIFO_DEPTH)
ret = tegra_qspi_start_dma_based_transfer(tqspi, t);
else
ret = tegra_qspi_start_cpu_based_transfer(tqspi, t);
return ret;
}
static struct tegra_qspi_client_data *tegra_qspi_parse_cdata_dt(struct spi_device *spi)
{
struct tegra_qspi_client_data *cdata;
struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
cdata = devm_kzalloc(tqspi->dev, sizeof(*cdata), GFP_KERNEL);
if (!cdata)
return NULL;
device_property_read_u32(&spi->dev, "nvidia,tx-clk-tap-delay",
&cdata->tx_clk_tap_delay);
device_property_read_u32(&spi->dev, "nvidia,rx-clk-tap-delay",
&cdata->rx_clk_tap_delay);
return cdata;
}
static int tegra_qspi_setup(struct spi_device *spi)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
struct tegra_qspi_client_data *cdata = spi->controller_data;
unsigned long flags;
u32 val;
int ret;
ret = pm_runtime_resume_and_get(tqspi->dev);
if (ret < 0) {
dev_err(tqspi->dev, "failed to get runtime PM: %d\n", ret);
return ret;
}
if (!cdata) {
cdata = tegra_qspi_parse_cdata_dt(spi);
spi->controller_data = cdata;
}
spin_lock_irqsave(&tqspi->lock, flags);
/* keep default cs state to inactive */
val = tqspi->def_command1_reg;
val |= QSPI_CS_SEL(spi->chip_select);
if (spi->mode & SPI_CS_HIGH)
val &= ~QSPI_CS_POL_INACTIVE(spi->chip_select);
else
val |= QSPI_CS_POL_INACTIVE(spi->chip_select);
tqspi->def_command1_reg = val;
tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
spin_unlock_irqrestore(&tqspi->lock, flags);
pm_runtime_put(tqspi->dev);
return 0;
}
static void tegra_qspi_dump_regs(struct tegra_qspi *tqspi)
{
dev_dbg(tqspi->dev, "============ QSPI REGISTER DUMP ============\n");
dev_dbg(tqspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n",
tegra_qspi_readl(tqspi, QSPI_COMMAND1),
tegra_qspi_readl(tqspi, QSPI_COMMAND2));
dev_dbg(tqspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
tegra_qspi_readl(tqspi, QSPI_DMA_CTL),
tegra_qspi_readl(tqspi, QSPI_DMA_BLK));
dev_dbg(tqspi->dev, "INTR_MASK: 0x%08x | MISC: 0x%08x\n",
tegra_qspi_readl(tqspi, QSPI_INTR_MASK),
tegra_qspi_readl(tqspi, QSPI_MISC_REG));
dev_dbg(tqspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS),
tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS));
}
static void tegra_qspi_handle_error(struct tegra_qspi *tqspi)
{
dev_err(tqspi->dev, "error in transfer, fifo status 0x%08x\n", tqspi->status_reg);
tegra_qspi_dump_regs(tqspi);
tegra_qspi_flush_fifos(tqspi, true);
if (device_reset(tqspi->dev) < 0)
dev_warn_once(tqspi->dev, "device reset failed\n");
}
static void tegra_qspi_transfer_end(struct spi_device *spi)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
if (cs_val)
tqspi->command1_reg |= QSPI_CS_SW_VAL;
else
tqspi->command1_reg &= ~QSPI_CS_SW_VAL;
tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
}
static u32 tegra_qspi_cmd_config(bool is_ddr, u8 bus_width, u8 len)
{
u32 cmd_config = 0;
/* Extract Command configuration and value */
if (is_ddr)
cmd_config |= QSPI_COMMAND_SDR_DDR;
else
cmd_config &= ~QSPI_COMMAND_SDR_DDR;
cmd_config |= QSPI_COMMAND_X1_X2_X4(bus_width);
cmd_config |= QSPI_COMMAND_SIZE_SET((len * 8) - 1);
return cmd_config;
}
static u32 tegra_qspi_addr_config(bool is_ddr, u8 bus_width, u8 len)
{
u32 addr_config = 0;
/* Extract Address configuration and value */
is_ddr = 0; //Only SDR mode supported
bus_width = 0; //X1 mode
if (is_ddr)
addr_config |= QSPI_ADDRESS_SDR_DDR;
else
addr_config &= ~QSPI_ADDRESS_SDR_DDR;
addr_config |= QSPI_ADDRESS_X1_X2_X4(bus_width);
addr_config |= QSPI_ADDRESS_SIZE_SET((len * 8) - 1);
return addr_config;
}
static int tegra_qspi_combined_seq_xfer(struct tegra_qspi *tqspi,
struct spi_message *msg)
{
bool is_first_msg = true;
struct spi_transfer *xfer;
struct spi_device *spi = msg->spi;
u8 transfer_phase = 0;
u32 cmd1 = 0, dma_ctl = 0;
int ret = 0;
u32 address_value = 0;
u32 cmd_config = 0, addr_config = 0;
u8 cmd_value = 0, val = 0;
/* Enable Combined sequence mode */
val = tegra_qspi_readl(tqspi, QSPI_GLOBAL_CONFIG);
val |= QSPI_CMB_SEQ_EN;
tegra_qspi_writel(tqspi, val, QSPI_GLOBAL_CONFIG);
/* Process individual transfer list */
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
switch (transfer_phase) {
case CMD_TRANSFER:
/* X1 SDR mode */
cmd_config = tegra_qspi_cmd_config(false, 0,
xfer->len);
cmd_value = *((const u8 *)(xfer->tx_buf));
break;
case ADDR_TRANSFER:
/* X1 SDR mode */
addr_config = tegra_qspi_addr_config(false, 0,
xfer->len);
address_value = *((const u32 *)(xfer->tx_buf));
break;
case DATA_TRANSFER:
/* Program Command, Address value in register */
tegra_qspi_writel(tqspi, cmd_value, QSPI_CMB_SEQ_CMD);
tegra_qspi_writel(tqspi, address_value,
QSPI_CMB_SEQ_ADDR);
/* Program Command and Address config in register */
tegra_qspi_writel(tqspi, cmd_config,
QSPI_CMB_SEQ_CMD_CFG);
tegra_qspi_writel(tqspi, addr_config,
QSPI_CMB_SEQ_ADDR_CFG);
reinit_completion(&tqspi->xfer_completion);
cmd1 = tegra_qspi_setup_transfer_one(spi, xfer,
is_first_msg);
ret = tegra_qspi_start_transfer_one(spi, xfer,
cmd1);
if (ret < 0) {
dev_err(tqspi->dev, "Failed to start transfer-one: %d\n",
ret);
return ret;
}
is_first_msg = false;
ret = wait_for_completion_timeout
(&tqspi->xfer_completion,
QSPI_DMA_TIMEOUT);
if (WARN_ON(ret == 0)) {
dev_err(tqspi->dev, "QSPI Transfer failed with timeout: %d\n",
ret);
if (tqspi->is_curr_dma_xfer &&
(tqspi->cur_direction & DATA_DIR_TX))
dmaengine_terminate_all
(tqspi->tx_dma_chan);
if (tqspi->is_curr_dma_xfer &&
(tqspi->cur_direction & DATA_DIR_RX))
dmaengine_terminate_all
(tqspi->rx_dma_chan);
/* Abort transfer by resetting pio/dma bit */
if (!tqspi->is_curr_dma_xfer) {
cmd1 = tegra_qspi_readl
(tqspi,
QSPI_COMMAND1);
cmd1 &= ~QSPI_PIO;
tegra_qspi_writel
(tqspi, cmd1,
QSPI_COMMAND1);
} else {
dma_ctl = tegra_qspi_readl
(tqspi,
QSPI_DMA_CTL);
dma_ctl &= ~QSPI_DMA_EN;
tegra_qspi_writel(tqspi, dma_ctl,
QSPI_DMA_CTL);
}
/* Reset controller if timeout happens */
if (device_reset(tqspi->dev) < 0)
dev_warn_once(tqspi->dev,
"device reset failed\n");
ret = -EIO;
goto exit;
}
if (tqspi->tx_status || tqspi->rx_status) {
dev_err(tqspi->dev, "QSPI Transfer failed\n");
tqspi->tx_status = 0;
tqspi->rx_status = 0;
ret = -EIO;
goto exit;
}
if (!xfer->cs_change) {
tegra_qspi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
}
break;
default:
ret = -EINVAL;
goto exit;
}
msg->actual_length += xfer->len;
transfer_phase++;
}
ret = 0;
exit:
msg->status = ret;
if (ret < 0) {
tegra_qspi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
}
return ret;
}
static int tegra_qspi_non_combined_seq_xfer(struct tegra_qspi *tqspi,
struct spi_message *msg)
{
struct spi_device *spi = msg->spi;
struct spi_transfer *transfer;
bool is_first_msg = true;
int ret = 0, val = 0;
msg->status = 0;
msg->actual_length = 0;
tqspi->tx_status = 0;
tqspi->rx_status = 0;
/* Disable Combined sequence mode */
val = tegra_qspi_readl(tqspi, QSPI_GLOBAL_CONFIG);
val &= ~QSPI_CMB_SEQ_EN;
tegra_qspi_writel(tqspi, val, QSPI_GLOBAL_CONFIG);
list_for_each_entry(transfer, &msg->transfers, transfer_list) {
struct spi_transfer *xfer = transfer;
u8 dummy_bytes = 0;
u32 cmd1;
tqspi->dummy_cycles = 0;
/*
* Tegra QSPI hardware supports dummy bytes transfer after actual transfer
* bytes based on programmed dummy clock cycles in the QSPI_MISC register.
* So, check if the next transfer is dummy data transfer and program dummy
* clock cycles along with the current transfer and skip next transfer.
*/
if (!list_is_last(&xfer->transfer_list, &msg->transfers)) {
struct spi_transfer *next_xfer;
next_xfer = list_next_entry(xfer, transfer_list);
if (next_xfer->dummy_data) {
u32 dummy_cycles = next_xfer->len * 8 / next_xfer->tx_nbits;
if (dummy_cycles <= QSPI_DUMMY_CYCLES_MAX) {
tqspi->dummy_cycles = dummy_cycles;
dummy_bytes = next_xfer->len;
transfer = next_xfer;
}
}
}
reinit_completion(&tqspi->xfer_completion);
cmd1 = tegra_qspi_setup_transfer_one(spi, xfer, is_first_msg);
ret = tegra_qspi_start_transfer_one(spi, xfer, cmd1);
if (ret < 0) {
dev_err(tqspi->dev, "failed to start transfer: %d\n", ret);
goto complete_xfer;
}
ret = wait_for_completion_timeout(&tqspi->xfer_completion,
QSPI_DMA_TIMEOUT);
if (WARN_ON(ret == 0)) {
dev_err(tqspi->dev, "transfer timeout\n");
if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_TX))
dmaengine_terminate_all(tqspi->tx_dma_chan);
if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_RX))
dmaengine_terminate_all(tqspi->rx_dma_chan);
tegra_qspi_handle_error(tqspi);
ret = -EIO;
goto complete_xfer;
}
if (tqspi->tx_status || tqspi->rx_status) {
tegra_qspi_handle_error(tqspi);
ret = -EIO;
goto complete_xfer;
}
msg->actual_length += xfer->len + dummy_bytes;
complete_xfer:
if (ret < 0) {
tegra_qspi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
goto exit;
}
if (list_is_last(&xfer->transfer_list, &msg->transfers)) {
/* de-activate CS after last transfer only when cs_change is not set */
if (!xfer->cs_change) {
tegra_qspi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
}
} else if (xfer->cs_change) {
/* de-activated CS between the transfers only when cs_change is set */
tegra_qspi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
}
}
ret = 0;
exit:
msg->status = ret;
return ret;
}
static bool tegra_qspi_validate_cmb_seq(struct tegra_qspi *tqspi,
struct spi_message *msg)
{
int transfer_count = 0;
struct spi_transfer *xfer;
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
transfer_count++;
}
if (!tqspi->soc_data->cmb_xfer_capable || transfer_count != 3)
return false;
xfer = list_first_entry(&msg->transfers, typeof(*xfer),
transfer_list);
if (xfer->len > 2)
return false;
xfer = list_next_entry(xfer, transfer_list);
if (xfer->len > 4 || xfer->len < 3)
return false;
xfer = list_next_entry(xfer, transfer_list);
if (!tqspi->soc_data->has_dma && xfer->len > (QSPI_FIFO_DEPTH << 2))
return false;
return true;
}
static int tegra_qspi_transfer_one_message(struct spi_master *master,
struct spi_message *msg)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
int ret;
if (tegra_qspi_validate_cmb_seq(tqspi, msg))
ret = tegra_qspi_combined_seq_xfer(tqspi, msg);
else
ret = tegra_qspi_non_combined_seq_xfer(tqspi, msg);
spi_finalize_current_message(master);
return ret;
}
static irqreturn_t handle_cpu_based_xfer(struct tegra_qspi *tqspi)
{
struct spi_transfer *t = tqspi->curr_xfer;
unsigned long flags;
spin_lock_irqsave(&tqspi->lock, flags);
if (tqspi->tx_status || tqspi->rx_status) {
tegra_qspi_handle_error(tqspi);
complete(&tqspi->xfer_completion);
goto exit;
}
if (tqspi->cur_direction & DATA_DIR_RX)
tegra_qspi_read_rx_fifo_to_client_rxbuf(tqspi, t);
if (tqspi->cur_direction & DATA_DIR_TX)
tqspi->cur_pos = tqspi->cur_tx_pos;
else
tqspi->cur_pos = tqspi->cur_rx_pos;
if (tqspi->cur_pos == t->len) {
complete(&tqspi->xfer_completion);
goto exit;
}
tegra_qspi_calculate_curr_xfer_param(tqspi, t);
tegra_qspi_start_cpu_based_transfer(tqspi, t);
exit:
spin_unlock_irqrestore(&tqspi->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t handle_dma_based_xfer(struct tegra_qspi *tqspi)
{
struct spi_transfer *t = tqspi->curr_xfer;
unsigned int total_fifo_words;
unsigned long flags;
long wait_status;
int err = 0;
if (tqspi->cur_direction & DATA_DIR_TX) {
if (tqspi->tx_status) {
dmaengine_terminate_all(tqspi->tx_dma_chan);
err += 1;
} else {
wait_status = wait_for_completion_interruptible_timeout(
&tqspi->tx_dma_complete, QSPI_DMA_TIMEOUT);
if (wait_status <= 0) {
dmaengine_terminate_all(tqspi->tx_dma_chan);
dev_err(tqspi->dev, "failed TX DMA transfer\n");
err += 1;
}
}
}
if (tqspi->cur_direction & DATA_DIR_RX) {
if (tqspi->rx_status) {
dmaengine_terminate_all(tqspi->rx_dma_chan);
err += 2;
} else {
wait_status = wait_for_completion_interruptible_timeout(
&tqspi->rx_dma_complete, QSPI_DMA_TIMEOUT);
if (wait_status <= 0) {
dmaengine_terminate_all(tqspi->rx_dma_chan);
dev_err(tqspi->dev, "failed RX DMA transfer\n");
err += 2;
}
}
}
spin_lock_irqsave(&tqspi->lock, flags);
if (err) {
tegra_qspi_dma_unmap_xfer(tqspi, t);
tegra_qspi_handle_error(tqspi);
complete(&tqspi->xfer_completion);
goto exit;
}
if (tqspi->cur_direction & DATA_DIR_RX)
tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(tqspi, t);
if (tqspi->cur_direction & DATA_DIR_TX)
tqspi->cur_pos = tqspi->cur_tx_pos;
else
tqspi->cur_pos = tqspi->cur_rx_pos;
if (tqspi->cur_pos == t->len) {
tegra_qspi_dma_unmap_xfer(tqspi, t);
complete(&tqspi->xfer_completion);
goto exit;
}
tegra_qspi_dma_unmap_xfer(tqspi, t);
/* continue transfer in current message */
total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t);
if (total_fifo_words > QSPI_FIFO_DEPTH)
err = tegra_qspi_start_dma_based_transfer(tqspi, t);
else
err = tegra_qspi_start_cpu_based_transfer(tqspi, t);
exit:
spin_unlock_irqrestore(&tqspi->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t tegra_qspi_isr_thread(int irq, void *context_data)
{
struct tegra_qspi *tqspi = context_data;
tqspi->status_reg = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
if (tqspi->cur_direction & DATA_DIR_TX)
tqspi->tx_status = tqspi->status_reg & (QSPI_TX_FIFO_UNF | QSPI_TX_FIFO_OVF);
if (tqspi->cur_direction & DATA_DIR_RX)
tqspi->rx_status = tqspi->status_reg & (QSPI_RX_FIFO_OVF | QSPI_RX_FIFO_UNF);
tegra_qspi_mask_clear_irq(tqspi);
if (!tqspi->is_curr_dma_xfer)
return handle_cpu_based_xfer(tqspi);
return handle_dma_based_xfer(tqspi);
}
static struct tegra_qspi_soc_data tegra210_qspi_soc_data = {
.has_dma = true,
.cmb_xfer_capable = false,
.cs_count = 1,
};
static struct tegra_qspi_soc_data tegra186_qspi_soc_data = {
.has_dma = true,
.cmb_xfer_capable = true,
.cs_count = 1,
};
static struct tegra_qspi_soc_data tegra234_qspi_soc_data = {
.has_dma = false,
.cmb_xfer_capable = true,
.cs_count = 1,
};
static struct tegra_qspi_soc_data tegra241_qspi_soc_data = {
.has_dma = false,
.cmb_xfer_capable = true,
.cs_count = 4,
};
static const struct of_device_id tegra_qspi_of_match[] = {
{
.compatible = "nvidia,tegra210-qspi",
.data = &tegra210_qspi_soc_data,
}, {
.compatible = "nvidia,tegra186-qspi",
.data = &tegra186_qspi_soc_data,
}, {
.compatible = "nvidia,tegra194-qspi",
.data = &tegra186_qspi_soc_data,
}, {
.compatible = "nvidia,tegra234-qspi",
.data = &tegra234_qspi_soc_data,
}, {
.compatible = "nvidia,tegra241-qspi",
.data = &tegra241_qspi_soc_data,
},
{}
};
MODULE_DEVICE_TABLE(of, tegra_qspi_of_match);
#ifdef CONFIG_ACPI
static const struct acpi_device_id tegra_qspi_acpi_match[] = {
{
.id = "NVDA1213",
.driver_data = (kernel_ulong_t)&tegra210_qspi_soc_data,
}, {
.id = "NVDA1313",
.driver_data = (kernel_ulong_t)&tegra186_qspi_soc_data,
}, {
.id = "NVDA1413",
.driver_data = (kernel_ulong_t)&tegra234_qspi_soc_data,
}, {
.id = "NVDA1513",
.driver_data = (kernel_ulong_t)&tegra241_qspi_soc_data,
},
{}
};
MODULE_DEVICE_TABLE(acpi, tegra_qspi_acpi_match);
#endif
static int tegra_qspi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct tegra_qspi *tqspi;
struct resource *r;
int ret, qspi_irq;
int bus_num;
master = devm_spi_alloc_master(&pdev->dev, sizeof(*tqspi));
if (!master)
return -ENOMEM;
platform_set_drvdata(pdev, master);
tqspi = spi_master_get_devdata(master);
master->mode_bits = SPI_MODE_0 | SPI_MODE_3 | SPI_CS_HIGH |
SPI_TX_DUAL | SPI_RX_DUAL | SPI_TX_QUAD | SPI_RX_QUAD;
master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) | SPI_BPW_MASK(8);
master->flags = SPI_CONTROLLER_HALF_DUPLEX;
master->setup = tegra_qspi_setup;
master->transfer_one_message = tegra_qspi_transfer_one_message;
master->num_chipselect = 1;
master->auto_runtime_pm = true;
bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
if (bus_num >= 0)
master->bus_num = bus_num;
tqspi->master = master;
tqspi->dev = &pdev->dev;
spin_lock_init(&tqspi->lock);
tqspi->soc_data = device_get_match_data(&pdev->dev);
master->num_chipselect = tqspi->soc_data->cs_count;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
tqspi->base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(tqspi->base))
return PTR_ERR(tqspi->base);
tqspi->phys = r->start;
qspi_irq = platform_get_irq(pdev, 0);
if (qspi_irq < 0)
return qspi_irq;
tqspi->irq = qspi_irq;
if (!has_acpi_companion(tqspi->dev)) {
tqspi->clk = devm_clk_get(&pdev->dev, "qspi");
if (IS_ERR(tqspi->clk)) {
ret = PTR_ERR(tqspi->clk);
dev_err(&pdev->dev, "failed to get clock: %d\n", ret);
return ret;
}
}
tqspi->max_buf_size = QSPI_FIFO_DEPTH << 2;
tqspi->dma_buf_size = DEFAULT_QSPI_DMA_BUF_LEN;
ret = tegra_qspi_init_dma(tqspi);
if (ret < 0)
return ret;
if (tqspi->use_dma)
tqspi->max_buf_size = tqspi->dma_buf_size;
init_completion(&tqspi->tx_dma_complete);
init_completion(&tqspi->rx_dma_complete);
init_completion(&tqspi->xfer_completion);
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed to get runtime PM: %d\n", ret);
goto exit_pm_disable;
}
if (device_reset(tqspi->dev) < 0)
dev_warn_once(tqspi->dev, "device reset failed\n");
tqspi->def_command1_reg = QSPI_M_S | QSPI_CS_SW_HW | QSPI_CS_SW_VAL;
tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
tqspi->spi_cs_timing1 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING1);
tqspi->spi_cs_timing2 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING2);
tqspi->def_command2_reg = tegra_qspi_readl(tqspi, QSPI_COMMAND2);
pm_runtime_put(&pdev->dev);
ret = request_threaded_irq(tqspi->irq, NULL,
tegra_qspi_isr_thread, IRQF_ONESHOT,
dev_name(&pdev->dev), tqspi);
if (ret < 0) {
dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", tqspi->irq, ret);
goto exit_pm_disable;
}
master->dev.of_node = pdev->dev.of_node;
ret = spi_register_master(master);
if (ret < 0) {
dev_err(&pdev->dev, "failed to register master: %d\n", ret);
goto exit_free_irq;
}
return 0;
exit_free_irq:
free_irq(qspi_irq, tqspi);
exit_pm_disable:
pm_runtime_force_suspend(&pdev->dev);
tegra_qspi_deinit_dma(tqspi);
return ret;
}
static void tegra_qspi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
spi_unregister_master(master);
free_irq(tqspi->irq, tqspi);
pm_runtime_force_suspend(&pdev->dev);
tegra_qspi_deinit_dma(tqspi);
}
static int __maybe_unused tegra_qspi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
return spi_master_suspend(master);
}
static int __maybe_unused tegra_qspi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0) {
dev_err(dev, "failed to get runtime PM: %d\n", ret);
return ret;
}
tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
tegra_qspi_writel(tqspi, tqspi->def_command2_reg, QSPI_COMMAND2);
pm_runtime_put(dev);
return spi_master_resume(master);
}
static int __maybe_unused tegra_qspi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
/* Runtime pm disabled with ACPI */
if (has_acpi_companion(tqspi->dev))
return 0;
/* flush all write which are in PPSB queue by reading back */
tegra_qspi_readl(tqspi, QSPI_COMMAND1);
clk_disable_unprepare(tqspi->clk);
return 0;
}
static int __maybe_unused tegra_qspi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
int ret;
/* Runtime pm disabled with ACPI */
if (has_acpi_companion(tqspi->dev))
return 0;
ret = clk_prepare_enable(tqspi->clk);
if (ret < 0)
dev_err(tqspi->dev, "failed to enable clock: %d\n", ret);
return ret;
}
static const struct dev_pm_ops tegra_qspi_pm_ops = {
SET_RUNTIME_PM_OPS(tegra_qspi_runtime_suspend, tegra_qspi_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(tegra_qspi_suspend, tegra_qspi_resume)
};
static struct platform_driver tegra_qspi_driver = {
.driver = {
.name = "tegra-qspi",
.pm = &tegra_qspi_pm_ops,
.of_match_table = tegra_qspi_of_match,
.acpi_match_table = ACPI_PTR(tegra_qspi_acpi_match),
},
.probe = tegra_qspi_probe,
.remove_new = tegra_qspi_remove,
};
module_platform_driver(tegra_qspi_driver);
MODULE_ALIAS("platform:qspi-tegra");
MODULE_DESCRIPTION("NVIDIA Tegra QSPI Controller Driver");
MODULE_AUTHOR("Sowjanya Komatineni <skomatineni@nvidia.com>");
MODULE_LICENSE("GPL v2");