OpenCloudOS-Kernel/drivers/edac/sb_edac.c

3555 lines
94 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
*
* This driver supports the memory controllers found on the Intel
* processor family Sandy Bridge.
*
* Copyright (c) 2011 by:
* Mauro Carvalho Chehab
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
#include <linux/math64.h>
#include <linux/mod_devicetable.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/processor.h>
#include <asm/mce.h>
#include "edac_module.h"
/* Static vars */
static LIST_HEAD(sbridge_edac_list);
/*
* Alter this version for the module when modifications are made
*/
#define SBRIDGE_REVISION " Ver: 1.1.2 "
#define EDAC_MOD_STR "sb_edac"
/*
* Debug macros
*/
#define sbridge_printk(level, fmt, arg...) \
edac_printk(level, "sbridge", fmt, ##arg)
#define sbridge_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
/*
* Get a bit field at register value <v>, from bit <lo> to bit <hi>
*/
#define GET_BITFIELD(v, lo, hi) \
(((v) & GENMASK_ULL(hi, lo)) >> (lo))
/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
static const u32 sbridge_dram_rule[] = {
0x80, 0x88, 0x90, 0x98, 0xa0,
0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
};
static const u32 ibridge_dram_rule[] = {
0x60, 0x68, 0x70, 0x78, 0x80,
0x88, 0x90, 0x98, 0xa0, 0xa8,
0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
};
static const u32 knl_dram_rule[] = {
0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
0x100, 0x108, 0x110, 0x118, /* 20-23 */
};
#define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
#define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
static char *show_dram_attr(u32 attr)
{
switch (attr) {
case 0:
return "DRAM";
case 1:
return "MMCFG";
case 2:
return "NXM";
default:
return "unknown";
}
}
static const u32 sbridge_interleave_list[] = {
0x84, 0x8c, 0x94, 0x9c, 0xa4,
0xac, 0xb4, 0xbc, 0xc4, 0xcc,
};
static const u32 ibridge_interleave_list[] = {
0x64, 0x6c, 0x74, 0x7c, 0x84,
0x8c, 0x94, 0x9c, 0xa4, 0xac,
0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
0xdc, 0xe4, 0xec, 0xf4, 0xfc,
};
static const u32 knl_interleave_list[] = {
0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
};
#define MAX_INTERLEAVE \
(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \
max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
ARRAY_SIZE(knl_interleave_list))))
struct interleave_pkg {
unsigned char start;
unsigned char end;
};
static const struct interleave_pkg sbridge_interleave_pkg[] = {
{ 0, 2 },
{ 3, 5 },
{ 8, 10 },
{ 11, 13 },
{ 16, 18 },
{ 19, 21 },
{ 24, 26 },
{ 27, 29 },
};
static const struct interleave_pkg ibridge_interleave_pkg[] = {
{ 0, 3 },
{ 4, 7 },
{ 8, 11 },
{ 12, 15 },
{ 16, 19 },
{ 20, 23 },
{ 24, 27 },
{ 28, 31 },
};
static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
int interleave)
{
return GET_BITFIELD(reg, table[interleave].start,
table[interleave].end);
}
/* Devices 12 Function 7 */
#define TOLM 0x80
#define TOHM 0x84
sb_edac: Fix discovery of top-of-low-memory for Haswell Haswell moved the TOLM/TOHM registers to a different device and offset. The sb_edac driver accounted for the change of device, but not for the new offset. There was also a typo in the constant to fill in the low 26 bits (was 0x1ffffff, should be 0x3ffffff). This resulted in a bogus value for the top of low memory: EDAC DEBUG: get_memory_layout: TOLM: 0.032 GB (0x0000000001ffffff) which would result in EDAC refusing to translate addresses for errors above the bogus value and below 4GB: sbridge MC3: HANDLING MCE MEMORY ERROR sbridge MC3: CPU 0: Machine Check Event: 0 Bank 7: 8c00004000010090 sbridge MC3: TSC 0 sbridge MC3: ADDR 2000000 sbridge MC3: MISC 523eac86 sbridge MC3: PROCESSOR 0:306f3 TIME 1414600951 SOCKET 0 APIC 0 MC3: 1 CE Error at TOLM area, on addr 0x02000000 on any memory ( page:0x0 offset:0x0 grain:32 syndrome:0x0) With the fix we see the correct TOLM value: DEBUG: get_memory_layout: TOLM: 2.048 GB (0x000000007fffffff) and we decode address 2000000 correctly: sbridge MC3: HANDLING MCE MEMORY ERROR sbridge MC3: CPU 0: Machine Check Event: 0 Bank 7: 8c00004000010090 sbridge MC3: TSC 0 sbridge MC3: ADDR 2000000 sbridge MC3: MISC 523e1086 sbridge MC3: PROCESSOR 0:306f3 TIME 1414601319 SOCKET 0 APIC 0 DEBUG: get_memory_error_data: SAD interleave package: 0 = CPU socket 0, HA 0, shiftup: 0 DEBUG: get_memory_error_data: TAD#0: address 0x0000000002000000 < 0x000000007fffffff, socket interleave 1, channel interleave 4 (offset 0x00000000), index 0, base ch: 0, ch mask: 0x01 DEBUG: get_memory_error_data: RIR#0, limit: 4.095 GB (0x00000000ffffffff), way: 1 DEBUG: get_memory_error_data: RIR#0: channel address 0x00200000 < 0xffffffff, RIR interleave 0, index 0 DEBUG: sbridge_mce_output_error: area:DRAM err_code:0001:0090 socket:0 channel_mask:1 rank:0 MC3: 1 CE memory read error on CPU_SrcID#0_Channel#0_DIMM#0 (channel:0 slot:0 page:0x2000 offset:0x0 grain:32 syndrome:0x0 - area:DRAM err_code:0001:0090 socket:0 channel_mask:1 rank:0) Signed-off-by: Tony Luck <tony.luck@intel.com> Acked-by: Aristeu Rozanski <aris@redhat.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2014-10-30 01:36:50 +08:00
#define HASWELL_TOLM 0xd0
#define HASWELL_TOHM_0 0xd4
#define HASWELL_TOHM_1 0xd8
#define KNL_TOLM 0xd0
#define KNL_TOHM_0 0xd4
#define KNL_TOHM_1 0xd8
#define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
#define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
/* Device 13 Function 6 */
#define SAD_TARGET 0xf0
#define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
#define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
#define SAD_CONTROL 0xf4
/* Device 14 function 0 */
static const u32 tad_dram_rule[] = {
0x40, 0x44, 0x48, 0x4c,
0x50, 0x54, 0x58, 0x5c,
0x60, 0x64, 0x68, 0x6c,
};
#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
#define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
#define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
#define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
#define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
#define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
#define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
#define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
/* Device 15, function 0 */
#define MCMTR 0x7c
#define KNL_MCMTR 0x624
#define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
#define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
#define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
/* Device 15, function 1 */
#define RASENABLES 0xac
#define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
/* Device 15, functions 2-5 */
static const int mtr_regs[] = {
0x80, 0x84, 0x88,
};
static const int knl_mtr_reg = 0xb60;
#define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
#define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
#define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
#define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
#define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
static const u32 tad_ch_nilv_offset[] = {
0x90, 0x94, 0x98, 0x9c,
0xa0, 0xa4, 0xa8, 0xac,
0xb0, 0xb4, 0xb8, 0xbc,
};
#define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
#define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
static const u32 rir_way_limit[] = {
0x108, 0x10c, 0x110, 0x114, 0x118,
};
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
#define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
#define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
#define MAX_RIR_WAY 8
static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
};
#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
/* Device 16, functions 2-7 */
/*
* FIXME: Implement the error count reads directly
*/
#define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
#define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
#define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
#if 0 /* Currently unused*/
static const u32 correrrcnt[] = {
0x104, 0x108, 0x10c, 0x110,
};
static const u32 correrrthrsld[] = {
0x11c, 0x120, 0x124, 0x128,
};
#endif
#define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
/* Device 17, function 0 */
#define SB_RANK_CFG_A 0x0328
#define IB_RANK_CFG_A 0x0320
/*
* sbridge structs
*/
#define NUM_CHANNELS 6 /* Max channels per MC */
#define MAX_DIMMS 3 /* Max DIMMS per channel */
#define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
#define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
#define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
#define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
enum type {
SANDY_BRIDGE,
IVY_BRIDGE,
HASWELL,
BROADWELL,
KNIGHTS_LANDING,
};
enum domain {
IMC0 = 0,
IMC1,
SOCK,
};
EDAC, sb_edac: Classify memory mirroring modes Basically, there are full memory mirroring and address range partial memory mirroring (supported by Haswell EX and Broadwell EX) modes. a) In full memory mirroring, the memory behind each memory controller is mirrored, i.e. the memory is split into two identical mirrors (primary and secondary), half of the memory is reserved for redundancy. b) In address range partial memory mirroring, the memory size (range) of primary and secondary behind each memory controller can be user defined by the TAD0 register. The rest of memory ranges defined by TAD1/TAD2/... in that memory controller are non-mirrored. For more detail on memory mirroring, see the following link written by Tony Luck: https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux Currently the sb_edac driver only supports address decoding in full memory mirroring and non-mirroring modes. In address range partial memory mirroring mode, it may fail to decode an address that falls in a non-mirroring area (the following was one of this kind of failed logs). mce: Uncorrected hardware memory error in user-access at 566d53a400 Memory failure: 0x566d53a: Killing einj_mem_uc:4647 due to hardware memory corruption Memory failure: 0x566d53a: recovery action for dirty LRU page: Recovered mce: [Hardware Error]: Machine check events logged EDAC sbridge MC1: HANDLING MCE MEMORY ERROR EDAC sbridge MC1: CPU 48: Machine Check Event: 0 Bank 7: ec00000000010090 EDAC sbridge MC1: TSC 4b914aa5a99dab EDAC sbridge MC1: ADDR 566d53a400 EDAC sbridge MC1: MISC 1443a0c86 EDAC sbridge MC1: PROCESSOR 0:406f1 TIME 1499712764 SOCKET 2 APIC 80 EDAC MC1: 0 UE Can't discover the memory rank for ch addr 0x7fb54e900 on any memory ( page:0x0 offset:0x0 grain:32) mce: [Hardware Error]: Machine check events logged Therefore, classify memory mirroring modes and make the address decoding in address range partial memory mode correct. Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170730180651.30060-1-qiuxu.zhuo@intel.com Signed-off-by: Borislav Petkov <bp@suse.de>
2017-07-31 02:06:51 +08:00
enum mirroring_mode {
NON_MIRRORING,
ADDR_RANGE_MIRRORING,
FULL_MIRRORING,
};
struct sbridge_pvt;
struct sbridge_info {
enum type type;
u32 mcmtr;
u32 rankcfgr;
u64 (*get_tolm)(struct sbridge_pvt *pvt);
u64 (*get_tohm)(struct sbridge_pvt *pvt);
u64 (*rir_limit)(u32 reg);
u64 (*sad_limit)(u32 reg);
u32 (*interleave_mode)(u32 reg);
u32 (*dram_attr)(u32 reg);
const u32 *dram_rule;
const u32 *interleave_list;
const struct interleave_pkg *interleave_pkg;
u8 max_sad;
u8 (*get_node_id)(struct sbridge_pvt *pvt);
u8 (*get_ha)(u8 bank);
enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt);
enum dev_type (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
struct pci_dev *pci_vtd;
};
struct sbridge_channel {
u32 ranks;
u32 dimms;
};
struct pci_id_descr {
int dev_id;
int optional;
enum domain dom;
};
struct pci_id_table {
const struct pci_id_descr *descr;
int n_devs_per_imc;
int n_devs_per_sock;
int n_imcs_per_sock;
enum type type;
};
struct sbridge_dev {
struct list_head list;
int seg;
u8 bus, mc;
u8 node_id, source_id;
struct pci_dev **pdev;
enum domain dom;
int n_devs;
int i_devs;
struct mem_ctl_info *mci;
};
struct knl_pvt {
struct pci_dev *pci_cha[KNL_MAX_CHAS];
struct pci_dev *pci_channel[KNL_MAX_CHANNELS];
struct pci_dev *pci_mc0;
struct pci_dev *pci_mc1;
struct pci_dev *pci_mc0_misc;
struct pci_dev *pci_mc1_misc;
struct pci_dev *pci_mc_info; /* tolm, tohm */
};
struct sbridge_pvt {
/* Devices per socket */
struct pci_dev *pci_ddrio;
struct pci_dev *pci_sad0, *pci_sad1;
struct pci_dev *pci_br0, *pci_br1;
/* Devices per memory controller */
struct pci_dev *pci_ha, *pci_ta, *pci_ras;
struct pci_dev *pci_tad[NUM_CHANNELS];
struct sbridge_dev *sbridge_dev;
struct sbridge_info info;
struct sbridge_channel channel[NUM_CHANNELS];
/* Memory type detection */
EDAC, sb_edac: Classify memory mirroring modes Basically, there are full memory mirroring and address range partial memory mirroring (supported by Haswell EX and Broadwell EX) modes. a) In full memory mirroring, the memory behind each memory controller is mirrored, i.e. the memory is split into two identical mirrors (primary and secondary), half of the memory is reserved for redundancy. b) In address range partial memory mirroring, the memory size (range) of primary and secondary behind each memory controller can be user defined by the TAD0 register. The rest of memory ranges defined by TAD1/TAD2/... in that memory controller are non-mirrored. For more detail on memory mirroring, see the following link written by Tony Luck: https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux Currently the sb_edac driver only supports address decoding in full memory mirroring and non-mirroring modes. In address range partial memory mirroring mode, it may fail to decode an address that falls in a non-mirroring area (the following was one of this kind of failed logs). mce: Uncorrected hardware memory error in user-access at 566d53a400 Memory failure: 0x566d53a: Killing einj_mem_uc:4647 due to hardware memory corruption Memory failure: 0x566d53a: recovery action for dirty LRU page: Recovered mce: [Hardware Error]: Machine check events logged EDAC sbridge MC1: HANDLING MCE MEMORY ERROR EDAC sbridge MC1: CPU 48: Machine Check Event: 0 Bank 7: ec00000000010090 EDAC sbridge MC1: TSC 4b914aa5a99dab EDAC sbridge MC1: ADDR 566d53a400 EDAC sbridge MC1: MISC 1443a0c86 EDAC sbridge MC1: PROCESSOR 0:406f1 TIME 1499712764 SOCKET 2 APIC 80 EDAC MC1: 0 UE Can't discover the memory rank for ch addr 0x7fb54e900 on any memory ( page:0x0 offset:0x0 grain:32) mce: [Hardware Error]: Machine check events logged Therefore, classify memory mirroring modes and make the address decoding in address range partial memory mode correct. Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170730180651.30060-1-qiuxu.zhuo@intel.com Signed-off-by: Borislav Petkov <bp@suse.de>
2017-07-31 02:06:51 +08:00
bool is_cur_addr_mirrored, is_lockstep, is_close_pg;
bool is_chan_hash;
EDAC, sb_edac: Classify memory mirroring modes Basically, there are full memory mirroring and address range partial memory mirroring (supported by Haswell EX and Broadwell EX) modes. a) In full memory mirroring, the memory behind each memory controller is mirrored, i.e. the memory is split into two identical mirrors (primary and secondary), half of the memory is reserved for redundancy. b) In address range partial memory mirroring, the memory size (range) of primary and secondary behind each memory controller can be user defined by the TAD0 register. The rest of memory ranges defined by TAD1/TAD2/... in that memory controller are non-mirrored. For more detail on memory mirroring, see the following link written by Tony Luck: https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux Currently the sb_edac driver only supports address decoding in full memory mirroring and non-mirroring modes. In address range partial memory mirroring mode, it may fail to decode an address that falls in a non-mirroring area (the following was one of this kind of failed logs). mce: Uncorrected hardware memory error in user-access at 566d53a400 Memory failure: 0x566d53a: Killing einj_mem_uc:4647 due to hardware memory corruption Memory failure: 0x566d53a: recovery action for dirty LRU page: Recovered mce: [Hardware Error]: Machine check events logged EDAC sbridge MC1: HANDLING MCE MEMORY ERROR EDAC sbridge MC1: CPU 48: Machine Check Event: 0 Bank 7: ec00000000010090 EDAC sbridge MC1: TSC 4b914aa5a99dab EDAC sbridge MC1: ADDR 566d53a400 EDAC sbridge MC1: MISC 1443a0c86 EDAC sbridge MC1: PROCESSOR 0:406f1 TIME 1499712764 SOCKET 2 APIC 80 EDAC MC1: 0 UE Can't discover the memory rank for ch addr 0x7fb54e900 on any memory ( page:0x0 offset:0x0 grain:32) mce: [Hardware Error]: Machine check events logged Therefore, classify memory mirroring modes and make the address decoding in address range partial memory mode correct. Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170730180651.30060-1-qiuxu.zhuo@intel.com Signed-off-by: Borislav Petkov <bp@suse.de>
2017-07-31 02:06:51 +08:00
enum mirroring_mode mirror_mode;
/* Memory description */
u64 tolm, tohm;
struct knl_pvt knl;
};
#define PCI_DESCR(device_id, opt, domain) \
.dev_id = (device_id), \
.optional = opt, \
.dom = domain
static const struct pci_id_descr pci_dev_descr_sbridge[] = {
/* Processor Home Agent */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0, IMC0) },
/* Memory controller */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
/* System Address Decoder */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0, SOCK) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0, SOCK) },
/* Broadcast Registers */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0, SOCK) },
};
#define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
.descr = A, \
.n_devs_per_imc = N, \
.n_devs_per_sock = ARRAY_SIZE(A), \
.n_imcs_per_sock = M, \
.type = T \
}
static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
{0,} /* 0 terminated list. */
};
/* This changes depending if 1HA or 2HA:
* 1HA:
* 0x0eb8 (17.0) is DDRIO0
* 2HA:
* 0x0ebc (17.4) is DDRIO0
*/
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
/* pci ids */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
static const struct pci_id_descr pci_dev_descr_ibridge[] = {
/* Processor Home Agent */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0, IMC0) },
EDAC, sb_edac: Don't create a second memory controller if HA1 is not present Yi Zhang reported the following failure on a 2-socket Haswell (E5-2603v3) server (DELL PowerEdge 730xd): EDAC sbridge: Some needed devices are missing EDAC MC: Removed device 0 for sb_edac.c Haswell SrcID#0_Ha#0: DEV 0000:7f:12.0 EDAC MC: Removed device 1 for sb_edac.c Haswell SrcID#1_Ha#0: DEV 0000:ff:12.0 EDAC sbridge: Couldn't find mci handler EDAC sbridge: Couldn't find mci handler EDAC sbridge: Failed to register device with error -19. The refactored sb_edac driver creates the IMC1 (the 2nd memory controller) if any IMC1 device is present. In this case only HA1_TA of IMC1 was present, but the driver expected to find HA1/HA1_TM/HA1_TAD[0-3] devices too, leading to the above failure. The document [1] says the 'E5-2603 v3' CPU has 4 memory channels max. Yi Zhang inserted one DIMM per channel for each CPU, and did random error address injection test with this patch: 4024 addresses fell in TOLM hole area 12715 addresses fell in CPU_SrcID#0_Ha#0_Chan#0_DIMM#0 12774 addresses fell in CPU_SrcID#0_Ha#0_Chan#1_DIMM#0 12798 addresses fell in CPU_SrcID#0_Ha#0_Chan#2_DIMM#0 12913 addresses fell in CPU_SrcID#0_Ha#0_Chan#3_DIMM#0 12674 addresses fell in CPU_SrcID#1_Ha#0_Chan#0_DIMM#0 12686 addresses fell in CPU_SrcID#1_Ha#0_Chan#1_DIMM#0 12882 addresses fell in CPU_SrcID#1_Ha#0_Chan#2_DIMM#0 12934 addresses fell in CPU_SrcID#1_Ha#0_Chan#3_DIMM#0 106400 addresses were injected totally. The test result shows that all the 4 channels belong to IMC0 per CPU, so the server really only has one IMC per CPU. In the 1st page of chapter 2 in datasheet [2], it also says 'E5-2600 v3' implements either one or two IMCs. For CPUs with one IMC, IMC1 is not used and should be ignored. Thus, do not create a second memory controller if the key HA1 is absent. [1] http://ark.intel.com/products/83349/Intel-Xeon-Processor-E5-2603-v3-15M-Cache-1_60-GHz [2] https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v3-datasheet-vol-2.pdf Reported-and-tested-by: Yi Zhang <yizhan@redhat.com> Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Fixes: e2f747b1f42a ("EDAC, sb_edac: Assign EDAC memory controller per h/w controller") Link: http://lkml.kernel.org/r/20170913104214.7325-1-qiuxu.zhuo@intel.com [ Massage commit message. ] Signed-off-by: Borislav Petkov <bp@suse.de>
2017-09-13 18:42:14 +08:00
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1, IMC1) },
/* Memory controller */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0, IMC0) },
/* Optional, mode 2HA */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
/* System Address Decoder */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0, SOCK) },
/* Broadcast Registers */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1, SOCK) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0, SOCK) },
};
static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
{0,} /* 0 terminated list. */
};
/* Haswell support */
/* EN processor:
* - 1 IMC
* - 3 DDR3 channels, 2 DPC per channel
* EP processor:
* - 1 or 2 IMC
* - 4 DDR4 channels, 3 DPC per channel
* EP 4S processor:
* - 2 IMC
* - 4 DDR4 channels, 3 DPC per channel
* EX processor:
* - 2 IMC
* - each IMC interfaces with a SMI 2 channel
* - each SMI channel interfaces with a scalable memory buffer
* - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
*/
#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
#define HASWELL_HASYSDEFEATURE2 0x84
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
static const struct pci_id_descr pci_dev_descr_haswell[] = {
/* first item must be the HA */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1, SOCK) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1, SOCK) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1, SOCK) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1, SOCK) },
};
static const struct pci_id_table pci_dev_descr_haswell_table[] = {
PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
{0,} /* 0 terminated list. */
};
/* Knight's Landing Support */
/*
* KNL's memory channels are swizzled between memory controllers.
* MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
*/
#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
/* SAD target - 1-29-1 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
/* Caching / Home Agent */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
/*
* KNL differs from SB, IB, and Haswell in that it has multiple
* instances of the same device with the same device ID, so we handle that
* by creating as many copies in the table as we expect to find.
* (Like device ID must be grouped together.)
*/
static const struct pci_id_descr pci_dev_descr_knl[] = {
[0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0, IMC0)},
[2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN, 0, IMC0) },
[8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0, IMC0) },
[9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
[10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0, SOCK) },
[11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0, SOCK) },
[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0, SOCK) },
};
static const struct pci_id_table pci_dev_descr_knl_table[] = {
PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
{0,}
};
/*
* Broadwell support
*
* DE processor:
* - 1 IMC
* - 2 DDR3 channels, 2 DPC per channel
* EP processor:
* - 1 or 2 IMC
* - 4 DDR4 channels, 3 DPC per channel
* EP 4S processor:
* - 2 IMC
* - 4 DDR4 channels, 3 DPC per channel
* EX processor:
* - 2 IMC
* - each IMC interfaces with a SMI 2 channel
* - each SMI channel interfaces with a scalable memory buffer
* - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
*/
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
static const struct pci_id_descr pci_dev_descr_broadwell[] = {
/* first item must be the HA */
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1, SOCK) },
};
static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
{0,} /* 0 terminated list. */
};
/****************************************************************************
Ancillary status routines
****************************************************************************/
static inline int numrank(enum type type, u32 mtr)
{
int ranks = (1 << RANK_CNT_BITS(mtr));
int max = 4;
if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
max = 8;
if (ranks > max) {
edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
return -EINVAL;
}
return ranks;
}
static inline int numrow(u32 mtr)
{
int rows = (RANK_WIDTH_BITS(mtr) + 12);
if (rows < 13 || rows > 18) {
edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
return -EINVAL;
}
return 1 << rows;
}
static inline int numcol(u32 mtr)
{
int cols = (COL_WIDTH_BITS(mtr) + 10);
if (cols > 12) {
edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
return -EINVAL;
}
return 1 << cols;
}
static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
int multi_bus,
struct sbridge_dev *prev)
{
struct sbridge_dev *sbridge_dev;
/*
* If we have devices scattered across several busses that pertain
* to the same memory controller, we'll lump them all together.
*/
if (multi_bus) {
return list_first_entry_or_null(&sbridge_edac_list,
struct sbridge_dev, list);
}
sbridge_dev = list_entry(prev ? prev->list.next
: sbridge_edac_list.next, struct sbridge_dev, list);
list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
(dom == SOCK || dom == sbridge_dev->dom))
return sbridge_dev;
}
return NULL;
}
static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
const struct pci_id_table *table)
{
struct sbridge_dev *sbridge_dev;
sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
if (!sbridge_dev)
return NULL;
sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
sizeof(*sbridge_dev->pdev),
GFP_KERNEL);
if (!sbridge_dev->pdev) {
kfree(sbridge_dev);
return NULL;
}
sbridge_dev->seg = seg;
sbridge_dev->bus = bus;
sbridge_dev->dom = dom;
sbridge_dev->n_devs = table->n_devs_per_imc;
list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
return sbridge_dev;
}
static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
{
list_del(&sbridge_dev->list);
kfree(sbridge_dev->pdev);
kfree(sbridge_dev);
}
static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
{
u32 reg;
/* Address range is 32:28 */
pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
return GET_TOLM(reg);
}
static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
{
u32 reg;
pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
return GET_TOHM(reg);
}
static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
{
u32 reg;
pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
return GET_TOLM(reg);
}
static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
{
u32 reg;
pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
return GET_TOHM(reg);
}
static u64 rir_limit(u32 reg)
{
return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff;
}
static u64 sad_limit(u32 reg)
{
return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
}
static u32 interleave_mode(u32 reg)
{
return GET_BITFIELD(reg, 1, 1);
}
static u32 dram_attr(u32 reg)
{
return GET_BITFIELD(reg, 2, 3);
}
static u64 knl_sad_limit(u32 reg)
{
return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
}
static u32 knl_interleave_mode(u32 reg)
{
return GET_BITFIELD(reg, 1, 2);
}
static const char * const knl_intlv_mode[] = {
"[8:6]", "[10:8]", "[14:12]", "[32:30]"
};
static const char *get_intlv_mode_str(u32 reg, enum type t)
{
if (t == KNIGHTS_LANDING)
return knl_intlv_mode[knl_interleave_mode(reg)];
else
return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
}
static u32 dram_attr_knl(u32 reg)
{
return GET_BITFIELD(reg, 3, 4);
}
static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
{
u32 reg;
enum mem_type mtype;
if (pvt->pci_ddrio) {
pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
&reg);
if (GET_BITFIELD(reg, 11, 11))
/* FIXME: Can also be LRDIMM */
mtype = MEM_RDDR3;
else
mtype = MEM_DDR3;
} else
mtype = MEM_UNKNOWN;
return mtype;
}
static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
{
u32 reg;
bool registered = false;
enum mem_type mtype = MEM_UNKNOWN;
if (!pvt->pci_ddrio)
goto out;
pci_read_config_dword(pvt->pci_ddrio,
HASWELL_DDRCRCLKCONTROLS, &reg);
/* Is_Rdimm */
if (GET_BITFIELD(reg, 16, 16))
registered = true;
pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
if (GET_BITFIELD(reg, 14, 14)) {
if (registered)
mtype = MEM_RDDR4;
else
mtype = MEM_DDR4;
} else {
if (registered)
mtype = MEM_RDDR3;
else
mtype = MEM_DDR3;
}
out:
return mtype;
}
static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
/* for KNL value is fixed */
return DEV_X16;
}
static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
/* there's no way to figure out */
return DEV_UNKNOWN;
}
static enum dev_type __ibridge_get_width(u32 mtr)
{
enum dev_type type = DEV_UNKNOWN;
switch (mtr) {
case 2:
type = DEV_X16;
break;
case 1:
type = DEV_X8;
break;
case 0:
type = DEV_X4;
break;
}
return type;
}
static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
/*
* ddr3_width on the documentation but also valid for DDR4 on
* Haswell
*/
return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
}
static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
/* ddr3_width on the documentation but also valid for DDR4 */
return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
}
static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
{
/* DDR4 RDIMMS and LRDIMMS are supported */
return MEM_RDDR4;
}
static u8 get_node_id(struct sbridge_pvt *pvt)
{
u32 reg;
pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
return GET_BITFIELD(reg, 0, 2);
}
static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
{
u32 reg;
pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
return GET_BITFIELD(reg, 0, 3);
}
static u8 knl_get_node_id(struct sbridge_pvt *pvt)
{
u32 reg;
pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
return GET_BITFIELD(reg, 0, 2);
}
/*
* Use the reporting bank number to determine which memory
* controller (also known as "ha" for "home agent"). Sandy
* Bridge only has one memory controller per socket, so the
* answer is always zero.
*/
static u8 sbridge_get_ha(u8 bank)
{
return 0;
}
/*
* On Ivy Bridge, Haswell and Broadwell the error may be in a
* home agent bank (7, 8), or one of the per-channel memory
* controller banks (9 .. 16).
*/
static u8 ibridge_get_ha(u8 bank)
{
switch (bank) {
case 7 ... 8:
return bank - 7;
case 9 ... 16:
return (bank - 9) / 4;
default:
return 0xff;
}
}
/* Not used, but included for safety/symmetry */
static u8 knl_get_ha(u8 bank)
{
return 0xff;
}
static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
{
u32 reg;
sb_edac: Fix discovery of top-of-low-memory for Haswell Haswell moved the TOLM/TOHM registers to a different device and offset. The sb_edac driver accounted for the change of device, but not for the new offset. There was also a typo in the constant to fill in the low 26 bits (was 0x1ffffff, should be 0x3ffffff). This resulted in a bogus value for the top of low memory: EDAC DEBUG: get_memory_layout: TOLM: 0.032 GB (0x0000000001ffffff) which would result in EDAC refusing to translate addresses for errors above the bogus value and below 4GB: sbridge MC3: HANDLING MCE MEMORY ERROR sbridge MC3: CPU 0: Machine Check Event: 0 Bank 7: 8c00004000010090 sbridge MC3: TSC 0 sbridge MC3: ADDR 2000000 sbridge MC3: MISC 523eac86 sbridge MC3: PROCESSOR 0:306f3 TIME 1414600951 SOCKET 0 APIC 0 MC3: 1 CE Error at TOLM area, on addr 0x02000000 on any memory ( page:0x0 offset:0x0 grain:32 syndrome:0x0) With the fix we see the correct TOLM value: DEBUG: get_memory_layout: TOLM: 2.048 GB (0x000000007fffffff) and we decode address 2000000 correctly: sbridge MC3: HANDLING MCE MEMORY ERROR sbridge MC3: CPU 0: Machine Check Event: 0 Bank 7: 8c00004000010090 sbridge MC3: TSC 0 sbridge MC3: ADDR 2000000 sbridge MC3: MISC 523e1086 sbridge MC3: PROCESSOR 0:306f3 TIME 1414601319 SOCKET 0 APIC 0 DEBUG: get_memory_error_data: SAD interleave package: 0 = CPU socket 0, HA 0, shiftup: 0 DEBUG: get_memory_error_data: TAD#0: address 0x0000000002000000 < 0x000000007fffffff, socket interleave 1, channel interleave 4 (offset 0x00000000), index 0, base ch: 0, ch mask: 0x01 DEBUG: get_memory_error_data: RIR#0, limit: 4.095 GB (0x00000000ffffffff), way: 1 DEBUG: get_memory_error_data: RIR#0: channel address 0x00200000 < 0xffffffff, RIR interleave 0, index 0 DEBUG: sbridge_mce_output_error: area:DRAM err_code:0001:0090 socket:0 channel_mask:1 rank:0 MC3: 1 CE memory read error on CPU_SrcID#0_Channel#0_DIMM#0 (channel:0 slot:0 page:0x2000 offset:0x0 grain:32 syndrome:0x0 - area:DRAM err_code:0001:0090 socket:0 channel_mask:1 rank:0) Signed-off-by: Tony Luck <tony.luck@intel.com> Acked-by: Aristeu Rozanski <aris@redhat.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2014-10-30 01:36:50 +08:00
pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
}
static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
{
u64 rc;
u32 reg;
pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
rc = GET_BITFIELD(reg, 26, 31);
pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
rc = ((reg << 6) | rc) << 26;
return rc | 0x1ffffff;
}
static u64 knl_get_tolm(struct sbridge_pvt *pvt)
{
u32 reg;
pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
}
static u64 knl_get_tohm(struct sbridge_pvt *pvt)
{
u64 rc;
u32 reg_lo, reg_hi;
pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
rc = ((u64)reg_hi << 32) | reg_lo;
return rc | 0x3ffffff;
}
static u64 haswell_rir_limit(u32 reg)
{
return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1;
}
static inline u8 sad_pkg_socket(u8 pkg)
{
/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
return ((pkg >> 3) << 2) | (pkg & 0x3);
}
static inline u8 sad_pkg_ha(u8 pkg)
{
return (pkg >> 2) & 0x1;
}
static int haswell_chan_hash(int idx, u64 addr)
{
int i;
/*
* XOR even bits from 12:26 to bit0 of idx,
* odd bits from 13:27 to bit1
*/
for (i = 12; i < 28; i += 2)
idx ^= (addr >> i) & 3;
return idx;
}
/* Low bits of TAD limit, and some metadata. */
static const u32 knl_tad_dram_limit_lo[] = {
0x400, 0x500, 0x600, 0x700,
0x800, 0x900, 0xa00, 0xb00,
};
/* Low bits of TAD offset. */
static const u32 knl_tad_dram_offset_lo[] = {
0x404, 0x504, 0x604, 0x704,
0x804, 0x904, 0xa04, 0xb04,
};
/* High 16 bits of TAD limit and offset. */
static const u32 knl_tad_dram_hi[] = {
0x408, 0x508, 0x608, 0x708,
0x808, 0x908, 0xa08, 0xb08,
};
/* Number of ways a tad entry is interleaved. */
static const u32 knl_tad_ways[] = {
8, 6, 4, 3, 2, 1,
};
/*
* Retrieve the n'th Target Address Decode table entry
* from the memory controller's TAD table.
*
* @pvt: driver private data
* @entry: which entry you want to retrieve
* @mc: which memory controller (0 or 1)
* @offset: output tad range offset
* @limit: output address of first byte above tad range
* @ways: output number of interleave ways
*
* The offset value has curious semantics. It's a sort of running total
* of the sizes of all the memory regions that aren't mapped in this
* tad table.
*/
static int knl_get_tad(const struct sbridge_pvt *pvt,
const int entry,
const int mc,
u64 *offset,
u64 *limit,
int *ways)
{
u32 reg_limit_lo, reg_offset_lo, reg_hi;
struct pci_dev *pci_mc;
int way_id;
switch (mc) {
case 0:
pci_mc = pvt->knl.pci_mc0;
break;
case 1:
pci_mc = pvt->knl.pci_mc1;
break;
default:
WARN_ON(1);
return -EINVAL;
}
pci_read_config_dword(pci_mc,
knl_tad_dram_limit_lo[entry], &reg_limit_lo);
pci_read_config_dword(pci_mc,
knl_tad_dram_offset_lo[entry], &reg_offset_lo);
pci_read_config_dword(pci_mc,
knl_tad_dram_hi[entry], &reg_hi);
/* Is this TAD entry enabled? */
if (!GET_BITFIELD(reg_limit_lo, 0, 0))
return -ENODEV;
way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
if (way_id < ARRAY_SIZE(knl_tad_ways)) {
*ways = knl_tad_ways[way_id];
} else {
*ways = 0;
sbridge_printk(KERN_ERR,
"Unexpected value %d in mc_tad_limit_lo wayness field\n",
way_id);
return -ENODEV;
}
/*
* The least significant 6 bits of base and limit are truncated.
* For limit, we fill the missing bits with 1s.
*/
*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
((u64) GET_BITFIELD(reg_hi, 0, 15) << 32);
*limit = ((u64) GET_BITFIELD(reg_limit_lo, 6, 31) << 6) | 63 |
((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
return 0;
}
/* Determine which memory controller is responsible for a given channel. */
static int knl_channel_mc(int channel)
{
WARN_ON(channel < 0 || channel >= 6);
return channel < 3 ? 1 : 0;
}
/*
* Get the Nth entry from EDC_ROUTE_TABLE register.
* (This is the per-tile mapping of logical interleave targets to
* physical EDC modules.)
*
* entry 0: 0:2
* 1: 3:5
* 2: 6:8
* 3: 9:11
* 4: 12:14
* 5: 15:17
* 6: 18:20
* 7: 21:23
* reserved: 24:31
*/
static u32 knl_get_edc_route(int entry, u32 reg)
{
WARN_ON(entry >= KNL_MAX_EDCS);
return GET_BITFIELD(reg, entry*3, (entry*3)+2);
}
/*
* Get the Nth entry from MC_ROUTE_TABLE register.
* (This is the per-tile mapping of logical interleave targets to
* physical DRAM channels modules.)
*
* entry 0: mc 0:2 channel 18:19
* 1: mc 3:5 channel 20:21
* 2: mc 6:8 channel 22:23
* 3: mc 9:11 channel 24:25
* 4: mc 12:14 channel 26:27
* 5: mc 15:17 channel 28:29
* reserved: 30:31
*
* Though we have 3 bits to identify the MC, we should only see
* the values 0 or 1.
*/
static u32 knl_get_mc_route(int entry, u32 reg)
{
int mc, chan;
WARN_ON(entry >= KNL_MAX_CHANNELS);
mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
return knl_channel_remap(mc, chan);
}
/*
* Render the EDC_ROUTE register in human-readable form.
* Output string s should be at least KNL_MAX_EDCS*2 bytes.
*/
static void knl_show_edc_route(u32 reg, char *s)
{
int i;
for (i = 0; i < KNL_MAX_EDCS; i++) {
s[i*2] = knl_get_edc_route(i, reg) + '0';
s[i*2+1] = '-';
}
s[KNL_MAX_EDCS*2 - 1] = '\0';
}
/*
* Render the MC_ROUTE register in human-readable form.
* Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
*/
static void knl_show_mc_route(u32 reg, char *s)
{
int i;
for (i = 0; i < KNL_MAX_CHANNELS; i++) {
s[i*2] = knl_get_mc_route(i, reg) + '0';
s[i*2+1] = '-';
}
s[KNL_MAX_CHANNELS*2 - 1] = '\0';
}
#define KNL_EDC_ROUTE 0xb8
#define KNL_MC_ROUTE 0xb4
/* Is this dram rule backed by regular DRAM in flat mode? */
#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
/* Is this dram rule cached? */
#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
/* Is this rule backed by edc ? */
#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
/* Is this rule backed by DRAM, cacheable in EDRAM? */
#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
/* Is this rule mod3? */
#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
/*
* Figure out how big our RAM modules are.
*
* The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
* have to figure this out from the SAD rules, interleave lists, route tables,
* and TAD rules.
*
* SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
* inspect the TAD rules to figure out how large the SAD regions really are.
*
* When we know the real size of a SAD region and how many ways it's
* interleaved, we know the individual contribution of each channel to
* TAD is size/ways.
*
* Finally, we have to check whether each channel participates in each SAD
* region.
*
* Fortunately, KNL only supports one DIMM per channel, so once we know how
* much memory the channel uses, we know the DIMM is at least that large.
* (The BIOS might possibly choose not to map all available memory, in which
* case we will underreport the size of the DIMM.)
*
* In theory, we could try to determine the EDC sizes as well, but that would
* only work in flat mode, not in cache mode.
*
* @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
* elements)
*/
static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
{
u64 sad_base, sad_limit = 0;
u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
int sad_rule = 0;
int tad_rule = 0;
int intrlv_ways, tad_ways;
u32 first_pkg, pkg;
int i;
u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
u32 dram_rule, interleave_reg;
u32 mc_route_reg[KNL_MAX_CHAS];
u32 edc_route_reg[KNL_MAX_CHAS];
int edram_only;
char edc_route_string[KNL_MAX_EDCS*2];
char mc_route_string[KNL_MAX_CHANNELS*2];
int cur_reg_start;
int mc;
int channel;
int participants[KNL_MAX_CHANNELS];
for (i = 0; i < KNL_MAX_CHANNELS; i++)
mc_sizes[i] = 0;
/* Read the EDC route table in each CHA. */
cur_reg_start = 0;
for (i = 0; i < KNL_MAX_CHAS; i++) {
pci_read_config_dword(pvt->knl.pci_cha[i],
KNL_EDC_ROUTE, &edc_route_reg[i]);
if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
knl_show_edc_route(edc_route_reg[i-1],
edc_route_string);
if (cur_reg_start == i-1)
edac_dbg(0, "edc route table for CHA %d: %s\n",
cur_reg_start, edc_route_string);
else
edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
cur_reg_start, i-1, edc_route_string);
cur_reg_start = i;
}
}
knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
if (cur_reg_start == i-1)
edac_dbg(0, "edc route table for CHA %d: %s\n",
cur_reg_start, edc_route_string);
else
edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
cur_reg_start, i-1, edc_route_string);
/* Read the MC route table in each CHA. */
cur_reg_start = 0;
for (i = 0; i < KNL_MAX_CHAS; i++) {
pci_read_config_dword(pvt->knl.pci_cha[i],
KNL_MC_ROUTE, &mc_route_reg[i]);
if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
if (cur_reg_start == i-1)
edac_dbg(0, "mc route table for CHA %d: %s\n",
cur_reg_start, mc_route_string);
else
edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
cur_reg_start, i-1, mc_route_string);
cur_reg_start = i;
}
}
knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
if (cur_reg_start == i-1)
edac_dbg(0, "mc route table for CHA %d: %s\n",
cur_reg_start, mc_route_string);
else
edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
cur_reg_start, i-1, mc_route_string);
/* Process DRAM rules */
for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
/* previous limit becomes the new base */
sad_base = sad_limit;
pci_read_config_dword(pvt->pci_sad0,
pvt->info.dram_rule[sad_rule], &dram_rule);
if (!DRAM_RULE_ENABLE(dram_rule))
break;
edram_only = KNL_EDRAM_ONLY(dram_rule);
sad_limit = pvt->info.sad_limit(dram_rule)+1;
pci_read_config_dword(pvt->pci_sad0,
pvt->info.interleave_list[sad_rule], &interleave_reg);
/*
* Find out how many ways this dram rule is interleaved.
* We stop when we see the first channel again.
*/
first_pkg = sad_pkg(pvt->info.interleave_pkg,
interleave_reg, 0);
for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
pkg = sad_pkg(pvt->info.interleave_pkg,
interleave_reg, intrlv_ways);
if ((pkg & 0x8) == 0) {
/*
* 0 bit means memory is non-local,
* which KNL doesn't support
*/
edac_dbg(0, "Unexpected interleave target %d\n",
pkg);
return -1;
}
if (pkg == first_pkg)
break;
}
if (KNL_MOD3(dram_rule))
intrlv_ways *= 3;
edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
sad_rule,
sad_base,
sad_limit,
intrlv_ways,
edram_only ? ", EDRAM" : "");
/*
* Find out how big the SAD region really is by iterating
* over TAD tables (SAD regions may contain holes).
* Each memory controller might have a different TAD table, so
* we have to look at both.
*
* Livespace is the memory that's mapped in this TAD table,
* deadspace is the holes (this could be the MMIO hole, or it
* could be memory that's mapped by the other TAD table but
* not this one).
*/
for (mc = 0; mc < 2; mc++) {
sad_actual_size[mc] = 0;
tad_livespace = 0;
for (tad_rule = 0;
tad_rule < ARRAY_SIZE(
knl_tad_dram_limit_lo);
tad_rule++) {
if (knl_get_tad(pvt,
tad_rule,
mc,
&tad_deadspace,
&tad_limit,
&tad_ways))
break;
tad_size = (tad_limit+1) -
(tad_livespace + tad_deadspace);
tad_livespace += tad_size;
tad_base = (tad_limit+1) - tad_size;
if (tad_base < sad_base) {
if (tad_limit > sad_base)
edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
} else if (tad_base < sad_limit) {
if (tad_limit+1 > sad_limit) {
edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
} else {
/* TAD region is completely inside SAD region */
edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
tad_rule, tad_base,
tad_limit, tad_size,
mc);
sad_actual_size[mc] += tad_size;
}
}
}
}
for (mc = 0; mc < 2; mc++) {
edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
mc, sad_actual_size[mc], sad_actual_size[mc]);
}
/* Ignore EDRAM rule */
if (edram_only)
continue;
/* Figure out which channels participate in interleave. */
for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
participants[channel] = 0;
/* For each channel, does at least one CHA have
* this channel mapped to the given target?
*/
for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
int target;
int cha;
for (target = 0; target < KNL_MAX_CHANNELS; target++) {
for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
if (knl_get_mc_route(target,
mc_route_reg[cha]) == channel
&& !participants[channel]) {
participants[channel] = 1;
break;
}
}
}
}
for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
mc = knl_channel_mc(channel);
if (participants[channel]) {
edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
channel,
sad_actual_size[mc]/intrlv_ways,
sad_rule);
mc_sizes[channel] +=
sad_actual_size[mc]/intrlv_ways;
}
}
}
return 0;
}
static void get_source_id(struct mem_ctl_info *mci)
{
struct sbridge_pvt *pvt = mci->pvt_info;
u32 reg;
if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
pvt->info.type == KNIGHTS_LANDING)
pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
else
pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
if (pvt->info.type == KNIGHTS_LANDING)
pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
else
pvt->sbridge_dev->source_id = SOURCE_ID(reg);
}
static int __populate_dimms(struct mem_ctl_info *mci,
u64 knl_mc_sizes[KNL_MAX_CHANNELS],
enum edac_type mode)
{
struct sbridge_pvt *pvt = mci->pvt_info;
int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
: NUM_CHANNELS;
unsigned int i, j, banks, ranks, rows, cols, npages;
struct dimm_info *dimm;
enum mem_type mtype;
u64 size;
mtype = pvt->info.get_memory_type(pvt);
if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
edac_dbg(0, "Memory is registered\n");
else if (mtype == MEM_UNKNOWN)
edac_dbg(0, "Cannot determine memory type\n");
else
edac_dbg(0, "Memory is unregistered\n");
if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
banks = 16;
else
banks = 8;
for (i = 0; i < channels; i++) {
u32 mtr;
int max_dimms_per_channel;
if (pvt->info.type == KNIGHTS_LANDING) {
max_dimms_per_channel = 1;
if (!pvt->knl.pci_channel[i])
continue;
} else {
max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
if (!pvt->pci_tad[i])
continue;
}
for (j = 0; j < max_dimms_per_channel; j++) {
dimm = edac_get_dimm(mci, i, j, 0);
if (pvt->info.type == KNIGHTS_LANDING) {
pci_read_config_dword(pvt->knl.pci_channel[i],
knl_mtr_reg, &mtr);
} else {
pci_read_config_dword(pvt->pci_tad[i],
mtr_regs[j], &mtr);
}
edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
if (IS_DIMM_PRESENT(mtr)) {
if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
pvt->sbridge_dev->source_id,
pvt->sbridge_dev->dom, i);
return -ENODEV;
}
pvt->channel[i].dimms++;
ranks = numrank(pvt->info.type, mtr);
if (pvt->info.type == KNIGHTS_LANDING) {
/* For DDR4, this is fixed. */
cols = 1 << 10;
rows = knl_mc_sizes[i] /
((u64) cols * ranks * banks * 8);
} else {
rows = numrow(mtr);
cols = numcol(mtr);
}
size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
npages = MiB_TO_PAGES(size);
edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
size, npages,
banks, ranks, rows, cols);
dimm->nr_pages = npages;
edac: move dimm properties to struct dimm_info On systems based on chip select rows, all channels need to use memories with the same properties, otherwise the memories on channels A and B won't be recognized. However, such assumption is not true for all types of memory controllers. Controllers for FB-DIMM's don't have such requirements. Also, modern Intel controllers seem to be capable of handling such differences. So, we need to get rid of storing the DIMM information into a per-csrow data, storing it, instead at the right place. The first step is to move grain, mtype, dtype and edac_mode to the per-dimm struct. Reviewed-by: Aristeu Rozanski <arozansk@redhat.com> Reviewed-by: Borislav Petkov <borislav.petkov@amd.com> Acked-by: Chris Metcalf <cmetcalf@tilera.com> Cc: Doug Thompson <norsk5@yahoo.com> Cc: Borislav Petkov <borislav.petkov@amd.com> Cc: Mark Gross <mark.gross@intel.com> Cc: Jason Uhlenkott <juhlenko@akamai.com> Cc: Tim Small <tim@buttersideup.com> Cc: Ranganathan Desikan <ravi@jetztechnologies.com> Cc: "Arvind R." <arvino55@gmail.com> Cc: Olof Johansson <olof@lixom.net> Cc: Egor Martovetsky <egor@pasemi.com> Cc: Michal Marek <mmarek@suse.cz> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Hitoshi Mitake <h.mitake@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: James Bottomley <James.Bottomley@parallels.com> Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com> Cc: Shaohui Xie <Shaohui.Xie@freescale.com> Cc: Josh Boyer <jwboyer@gmail.com> Cc: Mike Williams <mike@mikebwilliams.com> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2012-01-28 05:38:08 +08:00
dimm->grain = 32;
dimm->dtype = pvt->info.get_width(pvt, mtr);
edac: move dimm properties to struct dimm_info On systems based on chip select rows, all channels need to use memories with the same properties, otherwise the memories on channels A and B won't be recognized. However, such assumption is not true for all types of memory controllers. Controllers for FB-DIMM's don't have such requirements. Also, modern Intel controllers seem to be capable of handling such differences. So, we need to get rid of storing the DIMM information into a per-csrow data, storing it, instead at the right place. The first step is to move grain, mtype, dtype and edac_mode to the per-dimm struct. Reviewed-by: Aristeu Rozanski <arozansk@redhat.com> Reviewed-by: Borislav Petkov <borislav.petkov@amd.com> Acked-by: Chris Metcalf <cmetcalf@tilera.com> Cc: Doug Thompson <norsk5@yahoo.com> Cc: Borislav Petkov <borislav.petkov@amd.com> Cc: Mark Gross <mark.gross@intel.com> Cc: Jason Uhlenkott <juhlenko@akamai.com> Cc: Tim Small <tim@buttersideup.com> Cc: Ranganathan Desikan <ravi@jetztechnologies.com> Cc: "Arvind R." <arvino55@gmail.com> Cc: Olof Johansson <olof@lixom.net> Cc: Egor Martovetsky <egor@pasemi.com> Cc: Michal Marek <mmarek@suse.cz> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Joe Perches <joe@perches.com> Cc: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Hitoshi Mitake <h.mitake@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: James Bottomley <James.Bottomley@parallels.com> Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com> Cc: Shaohui Xie <Shaohui.Xie@freescale.com> Cc: Josh Boyer <jwboyer@gmail.com> Cc: Mike Williams <mike@mikebwilliams.com> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2012-01-28 05:38:08 +08:00
dimm->mtype = mtype;
dimm->edac_mode = mode;
snprintf(dimm->label, sizeof(dimm->label),
"CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
}
}
}
return 0;
}
static int get_dimm_config(struct mem_ctl_info *mci)
{
struct sbridge_pvt *pvt = mci->pvt_info;
u64 knl_mc_sizes[KNL_MAX_CHANNELS];
enum edac_type mode;
u32 reg;
pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
pvt->sbridge_dev->mc,
pvt->sbridge_dev->node_id,
pvt->sbridge_dev->source_id);
/* KNL doesn't support mirroring or lockstep,
* and is always closed page
*/
if (pvt->info.type == KNIGHTS_LANDING) {
mode = EDAC_S4ECD4ED;
EDAC, sb_edac: Classify memory mirroring modes Basically, there are full memory mirroring and address range partial memory mirroring (supported by Haswell EX and Broadwell EX) modes. a) In full memory mirroring, the memory behind each memory controller is mirrored, i.e. the memory is split into two identical mirrors (primary and secondary), half of the memory is reserved for redundancy. b) In address range partial memory mirroring, the memory size (range) of primary and secondary behind each memory controller can be user defined by the TAD0 register. The rest of memory ranges defined by TAD1/TAD2/... in that memory controller are non-mirrored. For more detail on memory mirroring, see the following link written by Tony Luck: https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux Currently the sb_edac driver only supports address decoding in full memory mirroring and non-mirroring modes. In address range partial memory mirroring mode, it may fail to decode an address that falls in a non-mirroring area (the following was one of this kind of failed logs). mce: Uncorrected hardware memory error in user-access at 566d53a400 Memory failure: 0x566d53a: Killing einj_mem_uc:4647 due to hardware memory corruption Memory failure: 0x566d53a: recovery action for dirty LRU page: Recovered mce: [Hardware Error]: Machine check events logged EDAC sbridge MC1: HANDLING MCE MEMORY ERROR EDAC sbridge MC1: CPU 48: Machine Check Event: 0 Bank 7: ec00000000010090 EDAC sbridge MC1: TSC 4b914aa5a99dab EDAC sbridge MC1: ADDR 566d53a400 EDAC sbridge MC1: MISC 1443a0c86 EDAC sbridge MC1: PROCESSOR 0:406f1 TIME 1499712764 SOCKET 2 APIC 80 EDAC MC1: 0 UE Can't discover the memory rank for ch addr 0x7fb54e900 on any memory ( page:0x0 offset:0x0 grain:32) mce: [Hardware Error]: Machine check events logged Therefore, classify memory mirroring modes and make the address decoding in address range partial memory mode correct. Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170730180651.30060-1-qiuxu.zhuo@intel.com Signed-off-by: Borislav Petkov <bp@suse.de>
2017-07-31 02:06:51 +08:00
pvt->mirror_mode = NON_MIRRORING;
pvt->is_cur_addr_mirrored = false;
if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
return -1;
EDAC, sb_edac: Classify memory mirroring modes Basically, there are full memory mirroring and address range partial memory mirroring (supported by Haswell EX and Broadwell EX) modes. a) In full memory mirroring, the memory behind each memory controller is mirrored, i.e. the memory is split into two identical mirrors (primary and secondary), half of the memory is reserved for redundancy. b) In address range partial memory mirroring, the memory size (range) of primary and secondary behind each memory controller can be user defined by the TAD0 register. The rest of memory ranges defined by TAD1/TAD2/... in that memory controller are non-mirrored. For more detail on memory mirroring, see the following link written by Tony Luck: https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux Currently the sb_edac driver only supports address decoding in full memory mirroring and non-mirroring modes. In address range partial memory mirroring mode, it may fail to decode an address that falls in a non-mirroring area (the following was one of this kind of failed logs). mce: Uncorrected hardware memory error in user-access at 566d53a400 Memory failure: 0x566d53a: Killing einj_mem_uc:4647 due to hardware memory corruption Memory failure: 0x566d53a: recovery action for dirty LRU page: Recovered mce: [Hardware Error]: Machine check events logged EDAC sbridge MC1: HANDLING MCE MEMORY ERROR EDAC sbridge MC1: CPU 48: Machine Check Event: 0 Bank 7: ec00000000010090 EDAC sbridge MC1: TSC 4b914aa5a99dab EDAC sbridge MC1: ADDR 566d53a400 EDAC sbridge MC1: MISC 1443a0c86 EDAC sbridge MC1: PROCESSOR 0:406f1 TIME 1499712764 SOCKET 2 APIC 80 EDAC MC1: 0 UE Can't discover the memory rank for ch addr 0x7fb54e900 on any memory ( page:0x0 offset:0x0 grain:32) mce: [Hardware Error]: Machine check events logged Therefore, classify memory mirroring modes and make the address decoding in address range partial memory mode correct. Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170730180651.30060-1-qiuxu.zhuo@intel.com Signed-off-by: Borislav Petkov <bp@suse.de>
2017-07-31 02:06:51 +08:00
if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
edac_dbg(0, "Failed to read KNL_MCMTR register\n");
return -ENODEV;
}
} else {
EDAC, sb_edac: Classify memory mirroring modes Basically, there are full memory mirroring and address range partial memory mirroring (supported by Haswell EX and Broadwell EX) modes. a) In full memory mirroring, the memory behind each memory controller is mirrored, i.e. the memory is split into two identical mirrors (primary and secondary), half of the memory is reserved for redundancy. b) In address range partial memory mirroring, the memory size (range) of primary and secondary behind each memory controller can be user defined by the TAD0 register. The rest of memory ranges defined by TAD1/TAD2/... in that memory controller are non-mirrored. For more detail on memory mirroring, see the following link written by Tony Luck: https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux Currently the sb_edac driver only supports address decoding in full memory mirroring and non-mirroring modes. In address range partial memory mirroring mode, it may fail to decode an address that falls in a non-mirroring area (the following was one of this kind of failed logs). mce: Uncorrected hardware memory error in user-access at 566d53a400 Memory failure: 0x566d53a: Killing einj_mem_uc:4647 due to hardware memory corruption Memory failure: 0x566d53a: recovery action for dirty LRU page: Recovered mce: [Hardware Error]: Machine check events logged EDAC sbridge MC1: HANDLING MCE MEMORY ERROR EDAC sbridge MC1: CPU 48: Machine Check Event: 0 Bank 7: ec00000000010090 EDAC sbridge MC1: TSC 4b914aa5a99dab EDAC sbridge MC1: ADDR 566d53a400 EDAC sbridge MC1: MISC 1443a0c86 EDAC sbridge MC1: PROCESSOR 0:406f1 TIME 1499712764 SOCKET 2 APIC 80 EDAC MC1: 0 UE Can't discover the memory rank for ch addr 0x7fb54e900 on any memory ( page:0x0 offset:0x0 grain:32) mce: [Hardware Error]: Machine check events logged Therefore, classify memory mirroring modes and make the address decoding in address range partial memory mode correct. Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170730180651.30060-1-qiuxu.zhuo@intel.com Signed-off-by: Borislav Petkov <bp@suse.de>
2017-07-31 02:06:51 +08:00
if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
return -ENODEV;
}
pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
if (GET_BITFIELD(reg, 28, 28)) {
pvt->mirror_mode = ADDR_RANGE_MIRRORING;
edac_dbg(0, "Address range partial memory mirroring is enabled\n");
goto next;
}
}
if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
edac_dbg(0, "Failed to read RASENABLES register\n");
return -ENODEV;
}
if (IS_MIRROR_ENABLED(reg)) {
EDAC, sb_edac: Classify memory mirroring modes Basically, there are full memory mirroring and address range partial memory mirroring (supported by Haswell EX and Broadwell EX) modes. a) In full memory mirroring, the memory behind each memory controller is mirrored, i.e. the memory is split into two identical mirrors (primary and secondary), half of the memory is reserved for redundancy. b) In address range partial memory mirroring, the memory size (range) of primary and secondary behind each memory controller can be user defined by the TAD0 register. The rest of memory ranges defined by TAD1/TAD2/... in that memory controller are non-mirrored. For more detail on memory mirroring, see the following link written by Tony Luck: https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux Currently the sb_edac driver only supports address decoding in full memory mirroring and non-mirroring modes. In address range partial memory mirroring mode, it may fail to decode an address that falls in a non-mirroring area (the following was one of this kind of failed logs). mce: Uncorrected hardware memory error in user-access at 566d53a400 Memory failure: 0x566d53a: Killing einj_mem_uc:4647 due to hardware memory corruption Memory failure: 0x566d53a: recovery action for dirty LRU page: Recovered mce: [Hardware Error]: Machine check events logged EDAC sbridge MC1: HANDLING MCE MEMORY ERROR EDAC sbridge MC1: CPU 48: Machine Check Event: 0 Bank 7: ec00000000010090 EDAC sbridge MC1: TSC 4b914aa5a99dab EDAC sbridge MC1: ADDR 566d53a400 EDAC sbridge MC1: MISC 1443a0c86 EDAC sbridge MC1: PROCESSOR 0:406f1 TIME 1499712764 SOCKET 2 APIC 80 EDAC MC1: 0 UE Can't discover the memory rank for ch addr 0x7fb54e900 on any memory ( page:0x0 offset:0x0 grain:32) mce: [Hardware Error]: Machine check events logged Therefore, classify memory mirroring modes and make the address decoding in address range partial memory mode correct. Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170730180651.30060-1-qiuxu.zhuo@intel.com Signed-off-by: Borislav Petkov <bp@suse.de>
2017-07-31 02:06:51 +08:00
pvt->mirror_mode = FULL_MIRRORING;
edac_dbg(0, "Full memory mirroring is enabled\n");
} else {
EDAC, sb_edac: Classify memory mirroring modes Basically, there are full memory mirroring and address range partial memory mirroring (supported by Haswell EX and Broadwell EX) modes. a) In full memory mirroring, the memory behind each memory controller is mirrored, i.e. the memory is split into two identical mirrors (primary and secondary), half of the memory is reserved for redundancy. b) In address range partial memory mirroring, the memory size (range) of primary and secondary behind each memory controller can be user defined by the TAD0 register. The rest of memory ranges defined by TAD1/TAD2/... in that memory controller are non-mirrored. For more detail on memory mirroring, see the following link written by Tony Luck: https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux Currently the sb_edac driver only supports address decoding in full memory mirroring and non-mirroring modes. In address range partial memory mirroring mode, it may fail to decode an address that falls in a non-mirroring area (the following was one of this kind of failed logs). mce: Uncorrected hardware memory error in user-access at 566d53a400 Memory failure: 0x566d53a: Killing einj_mem_uc:4647 due to hardware memory corruption Memory failure: 0x566d53a: recovery action for dirty LRU page: Recovered mce: [Hardware Error]: Machine check events logged EDAC sbridge MC1: HANDLING MCE MEMORY ERROR EDAC sbridge MC1: CPU 48: Machine Check Event: 0 Bank 7: ec00000000010090 EDAC sbridge MC1: TSC 4b914aa5a99dab EDAC sbridge MC1: ADDR 566d53a400 EDAC sbridge MC1: MISC 1443a0c86 EDAC sbridge MC1: PROCESSOR 0:406f1 TIME 1499712764 SOCKET 2 APIC 80 EDAC MC1: 0 UE Can't discover the memory rank for ch addr 0x7fb54e900 on any memory ( page:0x0 offset:0x0 grain:32) mce: [Hardware Error]: Machine check events logged Therefore, classify memory mirroring modes and make the address decoding in address range partial memory mode correct. Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170730180651.30060-1-qiuxu.zhuo@intel.com Signed-off-by: Borislav Petkov <bp@suse.de>
2017-07-31 02:06:51 +08:00
pvt->mirror_mode = NON_MIRRORING;
edac_dbg(0, "Memory mirroring is disabled\n");
}
EDAC, sb_edac: Classify memory mirroring modes Basically, there are full memory mirroring and address range partial memory mirroring (supported by Haswell EX and Broadwell EX) modes. a) In full memory mirroring, the memory behind each memory controller is mirrored, i.e. the memory is split into two identical mirrors (primary and secondary), half of the memory is reserved for redundancy. b) In address range partial memory mirroring, the memory size (range) of primary and secondary behind each memory controller can be user defined by the TAD0 register. The rest of memory ranges defined by TAD1/TAD2/... in that memory controller are non-mirrored. For more detail on memory mirroring, see the following link written by Tony Luck: https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux Currently the sb_edac driver only supports address decoding in full memory mirroring and non-mirroring modes. In address range partial memory mirroring mode, it may fail to decode an address that falls in a non-mirroring area (the following was one of this kind of failed logs). mce: Uncorrected hardware memory error in user-access at 566d53a400 Memory failure: 0x566d53a: Killing einj_mem_uc:4647 due to hardware memory corruption Memory failure: 0x566d53a: recovery action for dirty LRU page: Recovered mce: [Hardware Error]: Machine check events logged EDAC sbridge MC1: HANDLING MCE MEMORY ERROR EDAC sbridge MC1: CPU 48: Machine Check Event: 0 Bank 7: ec00000000010090 EDAC sbridge MC1: TSC 4b914aa5a99dab EDAC sbridge MC1: ADDR 566d53a400 EDAC sbridge MC1: MISC 1443a0c86 EDAC sbridge MC1: PROCESSOR 0:406f1 TIME 1499712764 SOCKET 2 APIC 80 EDAC MC1: 0 UE Can't discover the memory rank for ch addr 0x7fb54e900 on any memory ( page:0x0 offset:0x0 grain:32) mce: [Hardware Error]: Machine check events logged Therefore, classify memory mirroring modes and make the address decoding in address range partial memory mode correct. Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170730180651.30060-1-qiuxu.zhuo@intel.com Signed-off-by: Borislav Petkov <bp@suse.de>
2017-07-31 02:06:51 +08:00
next:
if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
edac_dbg(0, "Failed to read MCMTR register\n");
return -ENODEV;
}
if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
edac_dbg(0, "Lockstep is enabled\n");
mode = EDAC_S8ECD8ED;
pvt->is_lockstep = true;
} else {
edac_dbg(0, "Lockstep is disabled\n");
mode = EDAC_S4ECD4ED;
pvt->is_lockstep = false;
}
if (IS_CLOSE_PG(pvt->info.mcmtr)) {
edac_dbg(0, "address map is on closed page mode\n");
pvt->is_close_pg = true;
} else {
edac_dbg(0, "address map is on open page mode\n");
pvt->is_close_pg = false;
}
}
return __populate_dimms(mci, knl_mc_sizes, mode);
}
static void get_memory_layout(const struct mem_ctl_info *mci)
{
struct sbridge_pvt *pvt = mci->pvt_info;
int i, j, k, n_sads, n_tads, sad_interl;
u32 reg;
u64 limit, prv = 0;
u64 tmp_mb;
u32 gb, mb;
u32 rir_way;
/*
* Step 1) Get TOLM/TOHM ranges
*/
pvt->tolm = pvt->info.get_tolm(pvt);
tmp_mb = (1 + pvt->tolm) >> 20;
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
gb, (mb*1000)/1024, (u64)pvt->tolm);
/* Address range is already 45:25 */
pvt->tohm = pvt->info.get_tohm(pvt);
tmp_mb = (1 + pvt->tohm) >> 20;
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
gb, (mb*1000)/1024, (u64)pvt->tohm);
/*
* Step 2) Get SAD range and SAD Interleave list
* TAD registers contain the interleave wayness. However, it
* seems simpler to just discover it indirectly, with the
* algorithm bellow.
*/
prv = 0;
for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
/* SAD_LIMIT Address range is 45:26 */
pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
&reg);
limit = pvt->info.sad_limit(reg);
if (!DRAM_RULE_ENABLE(reg))
continue;
if (limit <= prv)
break;
tmp_mb = (limit + 1) >> 20;
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
n_sads,
show_dram_attr(pvt->info.dram_attr(reg)),
gb, (mb*1000)/1024,
((u64)tmp_mb) << 20L,
get_intlv_mode_str(reg, pvt->info.type),
reg);
prv = limit;
pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
&reg);
sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
for (j = 0; j < 8; j++) {
u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
if (j > 0 && sad_interl == pkg)
break;
edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
n_sads, j, pkg);
}
}
if (pvt->info.type == KNIGHTS_LANDING)
return;
/*
* Step 3) Get TAD range
*/
prv = 0;
for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
limit = TAD_LIMIT(reg);
if (limit <= prv)
break;
tmp_mb = (limit + 1) >> 20;
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
n_tads, gb, (mb*1000)/1024,
((u64)tmp_mb) << 20L,
(u32)(1 << TAD_SOCK(reg)),
(u32)TAD_CH(reg) + 1,
(u32)TAD_TGT0(reg),
(u32)TAD_TGT1(reg),
(u32)TAD_TGT2(reg),
(u32)TAD_TGT3(reg),
reg);
prv = limit;
}
/*
* Step 4) Get TAD offsets, per each channel
*/
for (i = 0; i < NUM_CHANNELS; i++) {
if (!pvt->channel[i].dimms)
continue;
for (j = 0; j < n_tads; j++) {
pci_read_config_dword(pvt->pci_tad[i],
tad_ch_nilv_offset[j],
&reg);
tmp_mb = TAD_OFFSET(reg) >> 20;
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
i, j,
gb, (mb*1000)/1024,
((u64)tmp_mb) << 20L,
reg);
}
}
/*
* Step 6) Get RIR Wayness/Limit, per each channel
*/
for (i = 0; i < NUM_CHANNELS; i++) {
if (!pvt->channel[i].dimms)
continue;
for (j = 0; j < MAX_RIR_RANGES; j++) {
pci_read_config_dword(pvt->pci_tad[i],
rir_way_limit[j],
&reg);
if (!IS_RIR_VALID(reg))
continue;
tmp_mb = pvt->info.rir_limit(reg) >> 20;
rir_way = 1 << RIR_WAY(reg);
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
i, j,
gb, (mb*1000)/1024,
((u64)tmp_mb) << 20L,
rir_way,
reg);
for (k = 0; k < rir_way; k++) {
pci_read_config_dword(pvt->pci_tad[i],
rir_offset[j][k],
&reg);
tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
gb = div_u64_rem(tmp_mb, 1024, &mb);
edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
i, j, k,
gb, (mb*1000)/1024,
((u64)tmp_mb) << 20L,
(u32)RIR_RNK_TGT(pvt->info.type, reg),
reg);
}
}
}
}
static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
{
struct sbridge_dev *sbridge_dev;
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
return sbridge_dev->mci;
}
return NULL;
}
static int get_memory_error_data(struct mem_ctl_info *mci,
u64 addr,
u8 *socket, u8 *ha,
long *channel_mask,
u8 *rank,
char **area_type, char *msg)
{
struct mem_ctl_info *new_mci;
struct sbridge_pvt *pvt = mci->pvt_info;
struct pci_dev *pci_ha;
int n_rir, n_sads, n_tads, sad_way, sck_xch;
int sad_interl, idx, base_ch;
int interleave_mode, shiftup = 0;
unsigned int sad_interleave[MAX_INTERLEAVE];
u32 reg, dram_rule;
u8 ch_way, sck_way, pkg, sad_ha = 0;
u32 tad_offset;
u32 rir_way;
u32 mb, gb;
u64 ch_addr, offset, limit = 0, prv = 0;
/*
* Step 0) Check if the address is at special memory ranges
* The check bellow is probably enough to fill all cases where
* the error is not inside a memory, except for the legacy
* range (e. g. VGA addresses). It is unlikely, however, that the
* memory controller would generate an error on that range.
*/
if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
return -EINVAL;
}
if (addr >= (u64)pvt->tohm) {
sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
return -EINVAL;
}
/*
* Step 1) Get socket
*/
for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
&reg);
if (!DRAM_RULE_ENABLE(reg))
continue;
limit = pvt->info.sad_limit(reg);
if (limit <= prv) {
sprintf(msg, "Can't discover the memory socket");
return -EINVAL;
}
if (addr <= limit)
break;
prv = limit;
}
if (n_sads == pvt->info.max_sad) {
sprintf(msg, "Can't discover the memory socket");
return -EINVAL;
}
dram_rule = reg;
*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
interleave_mode = pvt->info.interleave_mode(dram_rule);
pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
&reg);
if (pvt->info.type == SANDY_BRIDGE) {
sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
for (sad_way = 0; sad_way < 8; sad_way++) {
u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
if (sad_way > 0 && sad_interl == pkg)
break;
sad_interleave[sad_way] = pkg;
edac_dbg(0, "SAD interleave #%d: %d\n",
sad_way, sad_interleave[sad_way]);
}
edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
pvt->sbridge_dev->mc,
n_sads,
addr,
limit,
sad_way + 7,
!interleave_mode ? "" : "XOR[18:16]");
if (interleave_mode)
idx = ((addr >> 6) ^ (addr >> 16)) & 7;
else
idx = (addr >> 6) & 7;
switch (sad_way) {
case 1:
idx = 0;
break;
case 2:
idx = idx & 1;
break;
case 4:
idx = idx & 3;
break;
case 8:
break;
default:
sprintf(msg, "Can't discover socket interleave");
return -EINVAL;
}
*socket = sad_interleave[idx];
edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
idx, sad_way, *socket);
} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
int bits, a7mode = A7MODE(dram_rule);
if (a7mode) {
/* A7 mode swaps P9 with P6 */
bits = GET_BITFIELD(addr, 7, 8) << 1;
bits |= GET_BITFIELD(addr, 9, 9);
} else
bits = GET_BITFIELD(addr, 6, 8);
if (interleave_mode == 0) {
/* interleave mode will XOR {8,7,6} with {18,17,16} */
idx = GET_BITFIELD(addr, 16, 18);
idx ^= bits;
} else
idx = bits;
pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
*socket = sad_pkg_socket(pkg);
sad_ha = sad_pkg_ha(pkg);
if (a7mode) {
/* MCChanShiftUpEnable */
pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
shiftup = GET_BITFIELD(reg, 22, 22);
}
edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
idx, *socket, sad_ha, shiftup);
} else {
/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
idx = (addr >> 6) & 7;
pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
*socket = sad_pkg_socket(pkg);
sad_ha = sad_pkg_ha(pkg);
edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
idx, *socket, sad_ha);
}
*ha = sad_ha;
/*
* Move to the proper node structure, in order to access the
* right PCI registers
*/
new_mci = get_mci_for_node_id(*socket, sad_ha);
if (!new_mci) {
sprintf(msg, "Struct for socket #%u wasn't initialized",
*socket);
return -EINVAL;
}
mci = new_mci;
pvt = mci->pvt_info;
/*
* Step 2) Get memory channel
*/
prv = 0;
pci_ha = pvt->pci_ha;
for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
limit = TAD_LIMIT(reg);
if (limit <= prv) {
sprintf(msg, "Can't discover the memory channel");
return -EINVAL;
}
if (addr <= limit)
break;
prv = limit;
}
if (n_tads == MAX_TAD) {
sprintf(msg, "Can't discover the memory channel");
return -EINVAL;
}
ch_way = TAD_CH(reg) + 1;
sck_way = TAD_SOCK(reg);
if (ch_way == 3)
idx = addr >> 6;
else {
idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
if (pvt->is_chan_hash)
idx = haswell_chan_hash(idx, addr);
}
idx = idx % ch_way;
/*
* FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
*/
switch (idx) {
case 0:
base_ch = TAD_TGT0(reg);
break;
case 1:
base_ch = TAD_TGT1(reg);
break;
case 2:
base_ch = TAD_TGT2(reg);
break;
case 3:
base_ch = TAD_TGT3(reg);
break;
default:
sprintf(msg, "Can't discover the TAD target");
return -EINVAL;
}
*channel_mask = 1 << base_ch;
pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
EDAC, sb_edac: Classify memory mirroring modes Basically, there are full memory mirroring and address range partial memory mirroring (supported by Haswell EX and Broadwell EX) modes. a) In full memory mirroring, the memory behind each memory controller is mirrored, i.e. the memory is split into two identical mirrors (primary and secondary), half of the memory is reserved for redundancy. b) In address range partial memory mirroring, the memory size (range) of primary and secondary behind each memory controller can be user defined by the TAD0 register. The rest of memory ranges defined by TAD1/TAD2/... in that memory controller are non-mirrored. For more detail on memory mirroring, see the following link written by Tony Luck: https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux Currently the sb_edac driver only supports address decoding in full memory mirroring and non-mirroring modes. In address range partial memory mirroring mode, it may fail to decode an address that falls in a non-mirroring area (the following was one of this kind of failed logs). mce: Uncorrected hardware memory error in user-access at 566d53a400 Memory failure: 0x566d53a: Killing einj_mem_uc:4647 due to hardware memory corruption Memory failure: 0x566d53a: recovery action for dirty LRU page: Recovered mce: [Hardware Error]: Machine check events logged EDAC sbridge MC1: HANDLING MCE MEMORY ERROR EDAC sbridge MC1: CPU 48: Machine Check Event: 0 Bank 7: ec00000000010090 EDAC sbridge MC1: TSC 4b914aa5a99dab EDAC sbridge MC1: ADDR 566d53a400 EDAC sbridge MC1: MISC 1443a0c86 EDAC sbridge MC1: PROCESSOR 0:406f1 TIME 1499712764 SOCKET 2 APIC 80 EDAC MC1: 0 UE Can't discover the memory rank for ch addr 0x7fb54e900 on any memory ( page:0x0 offset:0x0 grain:32) mce: [Hardware Error]: Machine check events logged Therefore, classify memory mirroring modes and make the address decoding in address range partial memory mode correct. Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170730180651.30060-1-qiuxu.zhuo@intel.com Signed-off-by: Borislav Petkov <bp@suse.de>
2017-07-31 02:06:51 +08:00
if (pvt->mirror_mode == FULL_MIRRORING ||
(pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
*channel_mask |= 1 << ((base_ch + 2) % 4);
switch(ch_way) {
case 2:
case 4:
sck_xch = (1 << sck_way) * (ch_way >> 1);
break;
default:
sprintf(msg, "Invalid mirror set. Can't decode addr");
return -EINVAL;
}
EDAC, sb_edac: Classify memory mirroring modes Basically, there are full memory mirroring and address range partial memory mirroring (supported by Haswell EX and Broadwell EX) modes. a) In full memory mirroring, the memory behind each memory controller is mirrored, i.e. the memory is split into two identical mirrors (primary and secondary), half of the memory is reserved for redundancy. b) In address range partial memory mirroring, the memory size (range) of primary and secondary behind each memory controller can be user defined by the TAD0 register. The rest of memory ranges defined by TAD1/TAD2/... in that memory controller are non-mirrored. For more detail on memory mirroring, see the following link written by Tony Luck: https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux Currently the sb_edac driver only supports address decoding in full memory mirroring and non-mirroring modes. In address range partial memory mirroring mode, it may fail to decode an address that falls in a non-mirroring area (the following was one of this kind of failed logs). mce: Uncorrected hardware memory error in user-access at 566d53a400 Memory failure: 0x566d53a: Killing einj_mem_uc:4647 due to hardware memory corruption Memory failure: 0x566d53a: recovery action for dirty LRU page: Recovered mce: [Hardware Error]: Machine check events logged EDAC sbridge MC1: HANDLING MCE MEMORY ERROR EDAC sbridge MC1: CPU 48: Machine Check Event: 0 Bank 7: ec00000000010090 EDAC sbridge MC1: TSC 4b914aa5a99dab EDAC sbridge MC1: ADDR 566d53a400 EDAC sbridge MC1: MISC 1443a0c86 EDAC sbridge MC1: PROCESSOR 0:406f1 TIME 1499712764 SOCKET 2 APIC 80 EDAC MC1: 0 UE Can't discover the memory rank for ch addr 0x7fb54e900 on any memory ( page:0x0 offset:0x0 grain:32) mce: [Hardware Error]: Machine check events logged Therefore, classify memory mirroring modes and make the address decoding in address range partial memory mode correct. Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170730180651.30060-1-qiuxu.zhuo@intel.com Signed-off-by: Borislav Petkov <bp@suse.de>
2017-07-31 02:06:51 +08:00
pvt->is_cur_addr_mirrored = true;
} else {
sck_xch = (1 << sck_way) * ch_way;
EDAC, sb_edac: Classify memory mirroring modes Basically, there are full memory mirroring and address range partial memory mirroring (supported by Haswell EX and Broadwell EX) modes. a) In full memory mirroring, the memory behind each memory controller is mirrored, i.e. the memory is split into two identical mirrors (primary and secondary), half of the memory is reserved for redundancy. b) In address range partial memory mirroring, the memory size (range) of primary and secondary behind each memory controller can be user defined by the TAD0 register. The rest of memory ranges defined by TAD1/TAD2/... in that memory controller are non-mirrored. For more detail on memory mirroring, see the following link written by Tony Luck: https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux Currently the sb_edac driver only supports address decoding in full memory mirroring and non-mirroring modes. In address range partial memory mirroring mode, it may fail to decode an address that falls in a non-mirroring area (the following was one of this kind of failed logs). mce: Uncorrected hardware memory error in user-access at 566d53a400 Memory failure: 0x566d53a: Killing einj_mem_uc:4647 due to hardware memory corruption Memory failure: 0x566d53a: recovery action for dirty LRU page: Recovered mce: [Hardware Error]: Machine check events logged EDAC sbridge MC1: HANDLING MCE MEMORY ERROR EDAC sbridge MC1: CPU 48: Machine Check Event: 0 Bank 7: ec00000000010090 EDAC sbridge MC1: TSC 4b914aa5a99dab EDAC sbridge MC1: ADDR 566d53a400 EDAC sbridge MC1: MISC 1443a0c86 EDAC sbridge MC1: PROCESSOR 0:406f1 TIME 1499712764 SOCKET 2 APIC 80 EDAC MC1: 0 UE Can't discover the memory rank for ch addr 0x7fb54e900 on any memory ( page:0x0 offset:0x0 grain:32) mce: [Hardware Error]: Machine check events logged Therefore, classify memory mirroring modes and make the address decoding in address range partial memory mode correct. Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170730180651.30060-1-qiuxu.zhuo@intel.com Signed-off-by: Borislav Petkov <bp@suse.de>
2017-07-31 02:06:51 +08:00
pvt->is_cur_addr_mirrored = false;
}
if (pvt->is_lockstep)
*channel_mask |= 1 << ((base_ch + 1) % 4);
offset = TAD_OFFSET(tad_offset);
edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
n_tads,
addr,
limit,
sck_way,
ch_way,
offset,
idx,
base_ch,
*channel_mask);
/* Calculate channel address */
/* Remove the TAD offset */
if (offset > addr) {
sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
offset, addr);
return -EINVAL;
}
ch_addr = addr - offset;
ch_addr >>= (6 + shiftup);
ch_addr /= sck_xch;
ch_addr <<= (6 + shiftup);
ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
/*
* Step 3) Decode rank
*/
for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
if (!IS_RIR_VALID(reg))
continue;
limit = pvt->info.rir_limit(reg);
gb = div_u64_rem(limit >> 20, 1024, &mb);
edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
n_rir,
gb, (mb*1000)/1024,
limit,
1 << RIR_WAY(reg));
if (ch_addr <= limit)
break;
}
if (n_rir == MAX_RIR_RANGES) {
sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
ch_addr);
return -EINVAL;
}
rir_way = RIR_WAY(reg);
if (pvt->is_close_pg)
idx = (ch_addr >> 6);
else
idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
idx %= 1 << rir_way;
pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
*rank = RIR_RNK_TGT(pvt->info.type, reg);
edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
n_rir,
ch_addr,
limit,
rir_way,
idx);
return 0;
}
static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
const struct mce *m, u8 *socket,
u8 *ha, long *channel_mask,
char *msg)
{
u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
struct mem_ctl_info *new_mci;
struct sbridge_pvt *pvt;
struct pci_dev *pci_ha;
bool tad0;
if (channel >= NUM_CHANNELS) {
sprintf(msg, "Invalid channel 0x%x", channel);
return -EINVAL;
}
pvt = mci->pvt_info;
if (!pvt->info.get_ha) {
sprintf(msg, "No get_ha()");
return -EINVAL;
}
*ha = pvt->info.get_ha(m->bank);
if (*ha != 0 && *ha != 1) {
sprintf(msg, "Impossible bank %d", m->bank);
return -EINVAL;
}
*socket = m->socketid;
new_mci = get_mci_for_node_id(*socket, *ha);
if (!new_mci) {
strcpy(msg, "mci socket got corrupted!");
return -EINVAL;
}
pvt = new_mci->pvt_info;
pci_ha = pvt->pci_ha;
pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
tad0 = m->addr <= TAD_LIMIT(reg);
*channel_mask = 1 << channel;
if (pvt->mirror_mode == FULL_MIRRORING ||
(pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
*channel_mask |= 1 << ((channel + 2) % 4);
pvt->is_cur_addr_mirrored = true;
} else {
pvt->is_cur_addr_mirrored = false;
}
if (pvt->is_lockstep)
*channel_mask |= 1 << ((channel + 1) % 4);
return 0;
}
/****************************************************************************
Device initialization routines: put/get, init/exit
****************************************************************************/
/*
* sbridge_put_all_devices 'put' all the devices that we have
* reserved via 'get'
*/
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
{
int i;
edac_dbg(0, "\n");
for (i = 0; i < sbridge_dev->n_devs; i++) {
struct pci_dev *pdev = sbridge_dev->pdev[i];
if (!pdev)
continue;
edac_dbg(0, "Removing dev %02x:%02x.%d\n",
pdev->bus->number,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
pci_dev_put(pdev);
}
}
static void sbridge_put_all_devices(void)
{
struct sbridge_dev *sbridge_dev, *tmp;
list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
sbridge_put_devices(sbridge_dev);
free_sbridge_dev(sbridge_dev);
}
}
static int sbridge_get_onedevice(struct pci_dev **prev,
u8 *num_mc,
const struct pci_id_table *table,
const unsigned devno,
const int multi_bus)
{
struct sbridge_dev *sbridge_dev = NULL;
const struct pci_id_descr *dev_descr = &table->descr[devno];
struct pci_dev *pdev = NULL;
int seg = 0;
u8 bus = 0;
int i = 0;
sbridge_printk(KERN_DEBUG,
"Seeking for: PCI ID %04x:%04x\n",
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
dev_descr->dev_id, *prev);
if (!pdev) {
if (*prev) {
*prev = pdev;
return 0;
}
if (dev_descr->optional)
return 0;
/* if the HA wasn't found */
if (devno == 0)
return -ENODEV;
sbridge_printk(KERN_INFO,
"Device not found: %04x:%04x\n",
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
/* End of list, leave */
return -ENODEV;
}
seg = pci_domain_nr(pdev->bus);
bus = pdev->bus->number;
next_imc:
sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
multi_bus, sbridge_dev);
if (!sbridge_dev) {
EDAC, sb_edac: Don't create a second memory controller if HA1 is not present Yi Zhang reported the following failure on a 2-socket Haswell (E5-2603v3) server (DELL PowerEdge 730xd): EDAC sbridge: Some needed devices are missing EDAC MC: Removed device 0 for sb_edac.c Haswell SrcID#0_Ha#0: DEV 0000:7f:12.0 EDAC MC: Removed device 1 for sb_edac.c Haswell SrcID#1_Ha#0: DEV 0000:ff:12.0 EDAC sbridge: Couldn't find mci handler EDAC sbridge: Couldn't find mci handler EDAC sbridge: Failed to register device with error -19. The refactored sb_edac driver creates the IMC1 (the 2nd memory controller) if any IMC1 device is present. In this case only HA1_TA of IMC1 was present, but the driver expected to find HA1/HA1_TM/HA1_TAD[0-3] devices too, leading to the above failure. The document [1] says the 'E5-2603 v3' CPU has 4 memory channels max. Yi Zhang inserted one DIMM per channel for each CPU, and did random error address injection test with this patch: 4024 addresses fell in TOLM hole area 12715 addresses fell in CPU_SrcID#0_Ha#0_Chan#0_DIMM#0 12774 addresses fell in CPU_SrcID#0_Ha#0_Chan#1_DIMM#0 12798 addresses fell in CPU_SrcID#0_Ha#0_Chan#2_DIMM#0 12913 addresses fell in CPU_SrcID#0_Ha#0_Chan#3_DIMM#0 12674 addresses fell in CPU_SrcID#1_Ha#0_Chan#0_DIMM#0 12686 addresses fell in CPU_SrcID#1_Ha#0_Chan#1_DIMM#0 12882 addresses fell in CPU_SrcID#1_Ha#0_Chan#2_DIMM#0 12934 addresses fell in CPU_SrcID#1_Ha#0_Chan#3_DIMM#0 106400 addresses were injected totally. The test result shows that all the 4 channels belong to IMC0 per CPU, so the server really only has one IMC per CPU. In the 1st page of chapter 2 in datasheet [2], it also says 'E5-2600 v3' implements either one or two IMCs. For CPUs with one IMC, IMC1 is not used and should be ignored. Thus, do not create a second memory controller if the key HA1 is absent. [1] http://ark.intel.com/products/83349/Intel-Xeon-Processor-E5-2603-v3-15M-Cache-1_60-GHz [2] https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v3-datasheet-vol-2.pdf Reported-and-tested-by: Yi Zhang <yizhan@redhat.com> Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Fixes: e2f747b1f42a ("EDAC, sb_edac: Assign EDAC memory controller per h/w controller") Link: http://lkml.kernel.org/r/20170913104214.7325-1-qiuxu.zhuo@intel.com [ Massage commit message. ] Signed-off-by: Borislav Petkov <bp@suse.de>
2017-09-13 18:42:14 +08:00
/* If the HA1 wasn't found, don't create EDAC second memory controller */
if (dev_descr->dom == IMC1 && devno != 1) {
edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
pci_dev_put(pdev);
return 0;
}
if (dev_descr->dom == SOCK)
goto out_imc;
sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
if (!sbridge_dev) {
pci_dev_put(pdev);
return -ENOMEM;
}
(*num_mc)++;
}
if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
sbridge_printk(KERN_ERR,
"Duplicated device for %04x:%04x\n",
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
pci_dev_put(pdev);
return -ENODEV;
}
sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
/* pdev belongs to more than one IMC, do extra gets */
if (++i > 1)
pci_dev_get(pdev);
if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
goto next_imc;
out_imc:
/* Be sure that the device is enabled */
if (unlikely(pci_enable_device(pdev) < 0)) {
sbridge_printk(KERN_ERR,
"Couldn't enable %04x:%04x\n",
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
return -ENODEV;
}
edac_dbg(0, "Detected %04x:%04x\n",
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
/*
* As stated on drivers/pci/search.c, the reference count for
* @from is always decremented if it is not %NULL. So, as we need
* to get all devices up to null, we need to do a get for the device
*/
pci_dev_get(pdev);
*prev = pdev;
return 0;
}
/*
* sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
* devices we want to reference for this driver.
* @num_mc: pointer to the memory controllers count, to be incremented in case
* of success.
* @table: model specific table
*
* returns 0 in case of success or error code
*/
static int sbridge_get_all_devices(u8 *num_mc,
const struct pci_id_table *table)
{
int i, rc;
struct pci_dev *pdev = NULL;
int allow_dups = 0;
int multi_bus = 0;
if (table->type == KNIGHTS_LANDING)
allow_dups = multi_bus = 1;
while (table && table->descr) {
for (i = 0; i < table->n_devs_per_sock; i++) {
if (!allow_dups || i == 0 ||
table->descr[i].dev_id !=
table->descr[i-1].dev_id) {
pdev = NULL;
}
do {
rc = sbridge_get_onedevice(&pdev, num_mc,
table, i, multi_bus);
if (rc < 0) {
if (i == 0) {
i = table->n_devs_per_sock;
break;
}
sbridge_put_all_devices();
return -ENODEV;
}
} while (pdev && !allow_dups);
}
table++;
}
return 0;
}
/*
* Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
* the format: XXXa. So we can convert from a device to the corresponding
* channel like this
*/
#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
struct sbridge_dev *sbridge_dev)
{
struct sbridge_pvt *pvt = mci->pvt_info;
struct pci_dev *pdev;
2015-08-06 02:16:01 +08:00
u8 saw_chan_mask = 0;
int i;
for (i = 0; i < sbridge_dev->n_devs; i++) {
pdev = sbridge_dev->pdev[i];
if (!pdev)
continue;
switch (pdev->device) {
case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
pvt->pci_sad0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
pvt->pci_sad1 = pdev;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
pvt->pci_br0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
pvt->pci_ha = pdev;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
pvt->pci_ta = pdev;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
pvt->pci_ras = pdev;
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
{
int id = TAD_DEV_TO_CHAN(pdev->device);
pvt->pci_tad[id] = pdev;
2015-08-06 02:16:01 +08:00
saw_chan_mask |= 1 << id;
}
break;
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
pvt->pci_ddrio = pdev;
break;
default:
goto error;
}
edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
pdev->vendor, pdev->device,
sbridge_dev->bus,
pdev);
}
/* Check if everything were registered */
if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
!pvt->pci_ras || !pvt->pci_ta)
goto enodev;
2015-08-06 02:16:01 +08:00
if (saw_chan_mask != 0x0f)
goto enodev;
return 0;
enodev:
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
return -ENODEV;
error:
sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
PCI_VENDOR_ID_INTEL, pdev->device);
return -EINVAL;
}
static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
struct sbridge_dev *sbridge_dev)
{
struct sbridge_pvt *pvt = mci->pvt_info;
struct pci_dev *pdev;
u8 saw_chan_mask = 0;
int i;
for (i = 0; i < sbridge_dev->n_devs; i++) {
pdev = sbridge_dev->pdev[i];
if (!pdev)
continue;
switch (pdev->device) {
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
pvt->pci_ha = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
pvt->pci_ta = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
pvt->pci_ras = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
{
int id = TAD_DEV_TO_CHAN(pdev->device);
pvt->pci_tad[id] = pdev;
saw_chan_mask |= 1 << id;
}
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
pvt->pci_ddrio = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
pvt->pci_ddrio = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
pvt->pci_sad0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
pvt->pci_br0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
pvt->pci_br1 = pdev;
break;
default:
goto error;
}
edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
sbridge_dev->bus,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
pdev);
}
/* Check if everything were registered */
if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
!pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
goto enodev;
if (saw_chan_mask != 0x0f && /* -EN/-EX */
saw_chan_mask != 0x03) /* -EP */
goto enodev;
return 0;
enodev:
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
return -ENODEV;
error:
sbridge_printk(KERN_ERR,
"Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
pdev->device);
return -EINVAL;
}
static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
struct sbridge_dev *sbridge_dev)
{
struct sbridge_pvt *pvt = mci->pvt_info;
struct pci_dev *pdev;
u8 saw_chan_mask = 0;
int i;
/* there's only one device per system; not tied to any bus */
if (pvt->info.pci_vtd == NULL)
/* result will be checked later */
pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
NULL);
for (i = 0; i < sbridge_dev->n_devs; i++) {
pdev = sbridge_dev->pdev[i];
if (!pdev)
continue;
switch (pdev->device) {
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
pvt->pci_sad0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
pvt->pci_sad1 = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
pvt->pci_ha = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
pvt->pci_ta = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
pvt->pci_ras = pdev;
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
{
int id = TAD_DEV_TO_CHAN(pdev->device);
pvt->pci_tad[id] = pdev;
saw_chan_mask |= 1 << id;
}
break;
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
if (!pvt->pci_ddrio)
pvt->pci_ddrio = pdev;
break;
default:
break;
}
edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
sbridge_dev->bus,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
pdev);
}
/* Check if everything were registered */
if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
!pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
goto enodev;
if (saw_chan_mask != 0x0f && /* -EN/-EX */
saw_chan_mask != 0x03) /* -EP */
goto enodev;
return 0;
enodev:
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
return -ENODEV;
}
static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
struct sbridge_dev *sbridge_dev)
{
struct sbridge_pvt *pvt = mci->pvt_info;
struct pci_dev *pdev;
u8 saw_chan_mask = 0;
int i;
/* there's only one device per system; not tied to any bus */
if (pvt->info.pci_vtd == NULL)
/* result will be checked later */
pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
NULL);
for (i = 0; i < sbridge_dev->n_devs; i++) {
pdev = sbridge_dev->pdev[i];
if (!pdev)
continue;
switch (pdev->device) {
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
pvt->pci_sad0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
pvt->pci_sad1 = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
pvt->pci_ha = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
pvt->pci_ta = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
pvt->pci_ras = pdev;
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
{
int id = TAD_DEV_TO_CHAN(pdev->device);
pvt->pci_tad[id] = pdev;
saw_chan_mask |= 1 << id;
}
break;
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
pvt->pci_ddrio = pdev;
break;
default:
break;
}
edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
sbridge_dev->bus,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
pdev);
}
/* Check if everything were registered */
if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
!pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
goto enodev;
if (saw_chan_mask != 0x0f && /* -EN/-EX */
saw_chan_mask != 0x03) /* -EP */
goto enodev;
return 0;
enodev:
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
return -ENODEV;
}
static int knl_mci_bind_devs(struct mem_ctl_info *mci,
struct sbridge_dev *sbridge_dev)
{
struct sbridge_pvt *pvt = mci->pvt_info;
struct pci_dev *pdev;
int dev, func;
int i;
int devidx;
for (i = 0; i < sbridge_dev->n_devs; i++) {
pdev = sbridge_dev->pdev[i];
if (!pdev)
continue;
/* Extract PCI device and function. */
dev = (pdev->devfn >> 3) & 0x1f;
func = pdev->devfn & 0x7;
switch (pdev->device) {
case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
if (dev == 8)
pvt->knl.pci_mc0 = pdev;
else if (dev == 9)
pvt->knl.pci_mc1 = pdev;
else {
sbridge_printk(KERN_ERR,
"Memory controller in unexpected place! (dev %d, fn %d)\n",
dev, func);
continue;
}
break;
case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
pvt->pci_sad0 = pdev;
break;
case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
pvt->pci_sad1 = pdev;
break;
case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
/* There are one of these per tile, and range from
* 1.14.0 to 1.18.5.
*/
devidx = ((dev-14)*8)+func;
if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
sbridge_printk(KERN_ERR,
"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
dev, func);
continue;
}
WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
pvt->knl.pci_cha[devidx] = pdev;
break;
case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
devidx = -1;
/*
* MC0 channels 0-2 are device 9 function 2-4,
* MC1 channels 3-5 are device 8 function 2-4.
*/
if (dev == 9)
devidx = func-2;
else if (dev == 8)
devidx = 3 + (func-2);
if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
sbridge_printk(KERN_ERR,
"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
dev, func);
continue;
}
WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
pvt->knl.pci_channel[devidx] = pdev;
break;
case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
pvt->knl.pci_mc_info = pdev;
break;
case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
pvt->pci_ta = pdev;
break;
default:
sbridge_printk(KERN_ERR, "Unexpected device %d\n",
pdev->device);
break;
}
}
if (!pvt->knl.pci_mc0 || !pvt->knl.pci_mc1 ||
!pvt->pci_sad0 || !pvt->pci_sad1 ||
!pvt->pci_ta) {
goto enodev;
}
for (i = 0; i < KNL_MAX_CHANNELS; i++) {
if (!pvt->knl.pci_channel[i]) {
sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
goto enodev;
}
}
for (i = 0; i < KNL_MAX_CHAS; i++) {
if (!pvt->knl.pci_cha[i]) {
sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
goto enodev;
}
}
return 0;
enodev:
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
return -ENODEV;
}
/****************************************************************************
Error check routines
****************************************************************************/
/*
* While Sandy Bridge has error count registers, SMI BIOS read values from
* and resets the counters. So, they are not reliable for the OS to read
* from them. So, we have no option but to just trust on whatever MCE is
* telling us about the errors.
*/
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
const struct mce *m)
{
struct mem_ctl_info *new_mci;
struct sbridge_pvt *pvt = mci->pvt_info;
enum hw_event_mc_err_type tp_event;
char *optype, msg[256];
bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
bool overflow = GET_BITFIELD(m->status, 62, 62);
bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
bool recoverable;
u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
u32 mscod = GET_BITFIELD(m->status, 16, 31);
u32 errcode = GET_BITFIELD(m->status, 0, 15);
u32 channel = GET_BITFIELD(m->status, 0, 3);
u32 optypenum = GET_BITFIELD(m->status, 4, 6);
/*
* Bits 5-0 of MCi_MISC give the least significant bit that is valid.
* A value 6 is for cache line aligned address, a value 12 is for page
* aligned address reported by patrol scrubber.
*/
u32 lsb = GET_BITFIELD(m->misc, 0, 5);
long channel_mask, first_channel;
u8 rank = 0xff, socket, ha;
int rc, dimm;
char *area_type = "DRAM";
if (pvt->info.type != SANDY_BRIDGE)
recoverable = true;
else
recoverable = GET_BITFIELD(m->status, 56, 56);
if (uncorrected_error) {
core_err_cnt = 1;
if (ripv) {
tp_event = HW_EVENT_ERR_UNCORRECTED;
} else {
tp_event = HW_EVENT_ERR_FATAL;
}
} else {
tp_event = HW_EVENT_ERR_CORRECTED;
}
/*
* According with Table 15-9 of the Intel Architecture spec vol 3A,
* memory errors should fit in this mask:
* 000f 0000 1mmm cccc (binary)
* where:
* f = Correction Report Filtering Bit. If 1, subsequent errors
* won't be shown
* mmm = error type
* cccc = channel
* If the mask doesn't match, report an error to the parsing logic
*/
switch (optypenum) {
case 0:
optype = "generic undef request error";
break;
case 1:
optype = "memory read error";
break;
case 2:
optype = "memory write error";
break;
case 3:
optype = "addr/cmd error";
break;
case 4:
optype = "memory scrubbing error";
break;
default:
optype = "reserved";
break;
}
if (pvt->info.type == KNIGHTS_LANDING) {
if (channel == 14) {
edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
overflow ? " OVERFLOW" : "",
(uncorrected_error && recoverable)
? " recoverable" : "",
mscod, errcode,
m->bank);
} else {
char A = *("A");
/*
* Reported channel is in range 0-2, so we can't map it
* back to mc. To figure out mc we check machine check
* bank register that reported this error.
* bank15 means mc0 and bank16 means mc1.
*/
channel = knl_channel_remap(m->bank == 16, channel);
channel_mask = 1 << channel;
snprintf(msg, sizeof(msg),
"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
overflow ? " OVERFLOW" : "",
(uncorrected_error && recoverable)
? " recoverable" : " ",
mscod, errcode, channel, A + channel);
edac_mc_handle_error(tp_event, mci, core_err_cnt,
m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
channel, 0, -1,
optype, msg);
}
return;
} else if (lsb < 12) {
rc = get_memory_error_data(mci, m->addr, &socket, &ha,
&channel_mask, &rank,
&area_type, msg);
} else {
rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
&channel_mask, msg);
}
if (rc < 0)
goto err_parsing;
new_mci = get_mci_for_node_id(socket, ha);
if (!new_mci) {
strcpy(msg, "Error: socket got corrupted!");
goto err_parsing;
}
mci = new_mci;
pvt = mci->pvt_info;
first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
if (rank == 0xff)
dimm = -1;
else if (rank < 4)
dimm = 0;
else if (rank < 8)
dimm = 1;
else
dimm = 2;
/*
* FIXME: On some memory configurations (mirror, lockstep), the
* Memory Controller can't point the error to a single DIMM. The
* EDAC core should be handling the channel mask, in order to point
* to the group of dimm's where the error may be happening.
*/
EDAC, sb_edac: Classify memory mirroring modes Basically, there are full memory mirroring and address range partial memory mirroring (supported by Haswell EX and Broadwell EX) modes. a) In full memory mirroring, the memory behind each memory controller is mirrored, i.e. the memory is split into two identical mirrors (primary and secondary), half of the memory is reserved for redundancy. b) In address range partial memory mirroring, the memory size (range) of primary and secondary behind each memory controller can be user defined by the TAD0 register. The rest of memory ranges defined by TAD1/TAD2/... in that memory controller are non-mirrored. For more detail on memory mirroring, see the following link written by Tony Luck: https://01.org/lkp/blogs/tonyluck/2016/address-range-partial-memory-mirroring-linux Currently the sb_edac driver only supports address decoding in full memory mirroring and non-mirroring modes. In address range partial memory mirroring mode, it may fail to decode an address that falls in a non-mirroring area (the following was one of this kind of failed logs). mce: Uncorrected hardware memory error in user-access at 566d53a400 Memory failure: 0x566d53a: Killing einj_mem_uc:4647 due to hardware memory corruption Memory failure: 0x566d53a: recovery action for dirty LRU page: Recovered mce: [Hardware Error]: Machine check events logged EDAC sbridge MC1: HANDLING MCE MEMORY ERROR EDAC sbridge MC1: CPU 48: Machine Check Event: 0 Bank 7: ec00000000010090 EDAC sbridge MC1: TSC 4b914aa5a99dab EDAC sbridge MC1: ADDR 566d53a400 EDAC sbridge MC1: MISC 1443a0c86 EDAC sbridge MC1: PROCESSOR 0:406f1 TIME 1499712764 SOCKET 2 APIC 80 EDAC MC1: 0 UE Can't discover the memory rank for ch addr 0x7fb54e900 on any memory ( page:0x0 offset:0x0 grain:32) mce: [Hardware Error]: Machine check events logged Therefore, classify memory mirroring modes and make the address decoding in address range partial memory mode correct. Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-edac <linux-edac@vger.kernel.org> Link: http://lkml.kernel.org/r/20170730180651.30060-1-qiuxu.zhuo@intel.com Signed-off-by: Borislav Petkov <bp@suse.de>
2017-07-31 02:06:51 +08:00
if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
channel = first_channel;
snprintf(msg, sizeof(msg),
"%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
overflow ? " OVERFLOW" : "",
(uncorrected_error && recoverable) ? " recoverable" : "",
area_type,
mscod, errcode,
socket, ha,
channel_mask,
rank);
edac_dbg(0, "%s\n", msg);
/* FIXME: need support for channel mask */
if (channel == CHANNEL_UNSPECIFIED)
channel = -1;
/* Call the helper to output message */
edac_mc_handle_error(tp_event, mci, core_err_cnt,
m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
channel, dimm, -1,
optype, msg);
return;
err_parsing:
edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
-1, -1, -1,
msg, "");
}
/*
* Check that logging is enabled and that this is the right type
* of error for us to handle.
*/
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *mce = (struct mce *)data;
struct mem_ctl_info *mci;
char *type;
if (mce->kflags & MCE_HANDLED_CEC)
return NOTIFY_DONE;
/*
* Just let mcelog handle it if the error is
* outside the memory controller. A memory error
* is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
* bit 12 has an special meaning.
*/
if ((mce->status & 0xefff) >> 7 != 1)
return NOTIFY_DONE;
/* Check ADDRV bit in STATUS */
if (!GET_BITFIELD(mce->status, 58, 58))
return NOTIFY_DONE;
/* Check MISCV bit in STATUS */
if (!GET_BITFIELD(mce->status, 59, 59))
return NOTIFY_DONE;
/* Check address type in MISC (physical address only) */
if (GET_BITFIELD(mce->misc, 6, 8) != 2)
return NOTIFY_DONE;
mci = get_mci_for_node_id(mce->socketid, IMC0);
if (!mci)
return NOTIFY_DONE;
if (mce->mcgstatus & MCG_STATUS_MCIP)
type = "Exception";
else
type = "Event";
sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
"Bank %d: %016Lx\n", mce->extcpu, type,
mce->mcgstatus, mce->bank, mce->status);
sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
"%u APIC %x\n", mce->cpuvendor, mce->cpuid,
mce->time, mce->socketid, mce->apicid);
sbridge_mce_output_error(mci, mce);
/* Advice mcelog that the error were handled */
mce->kflags |= MCE_HANDLED_EDAC;
return NOTIFY_OK;
}
static struct notifier_block sbridge_mce_dec = {
.notifier_call = sbridge_mce_check_error,
.priority = MCE_PRIO_EDAC,
};
/****************************************************************************
EDAC register/unregister logic
****************************************************************************/
static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
{
struct mem_ctl_info *mci = sbridge_dev->mci;
if (unlikely(!mci || !mci->pvt_info)) {
edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
return;
}
edac_dbg(0, "MC: mci = %p, dev = %p\n",
mci, &sbridge_dev->pdev[0]->dev);
/* Remove MC sysfs nodes */
edac_mc_del_mc(mci->pdev);
edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
kfree(mci->ctl_name);
edac_mc_free(mci);
sbridge_dev->mci = NULL;
}
static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
{
struct mem_ctl_info *mci;
struct edac_mc_layer layers[2];
struct sbridge_pvt *pvt;
struct pci_dev *pdev = sbridge_dev->pdev[0];
int rc;
/* allocate a new MC control structure */
layers[0].type = EDAC_MC_LAYER_CHANNEL;
layers[0].size = type == KNIGHTS_LANDING ?
KNL_MAX_CHANNELS : NUM_CHANNELS;
layers[0].is_virt_csrow = false;
layers[1].type = EDAC_MC_LAYER_SLOT;
layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
layers[1].is_virt_csrow = true;
mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
sizeof(*pvt));
if (unlikely(!mci))
return -ENOMEM;
edac_dbg(0, "MC: mci = %p, dev = %p\n",
mci, &pdev->dev);
pvt = mci->pvt_info;
memset(pvt, 0, sizeof(*pvt));
/* Associate sbridge_dev and mci for future usage */
pvt->sbridge_dev = sbridge_dev;
sbridge_dev->mci = mci;
mci->mtype_cap = type == KNIGHTS_LANDING ?
MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = EDAC_MOD_STR;
mci->dev_name = pci_name(pdev);
mci->ctl_page_to_phys = NULL;
pvt->info.type = type;
switch (type) {
case IVY_BRIDGE:
pvt->info.rankcfgr = IB_RANK_CFG_A;
pvt->info.get_tolm = ibridge_get_tolm;
pvt->info.get_tohm = ibridge_get_tohm;
pvt->info.dram_rule = ibridge_dram_rule;
pvt->info.get_memory_type = get_memory_type;
pvt->info.get_node_id = get_node_id;
pvt->info.get_ha = ibridge_get_ha;
pvt->info.rir_limit = rir_limit;
pvt->info.sad_limit = sad_limit;
pvt->info.interleave_mode = interleave_mode;
pvt->info.dram_attr = dram_attr;
pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
pvt->info.interleave_list = ibridge_interleave_list;
pvt->info.interleave_pkg = ibridge_interleave_pkg;
pvt->info.get_width = ibridge_get_width;
/* Store pci devices at mci for faster access */
rc = ibridge_mci_bind_devs(mci, sbridge_dev);
if (unlikely(rc < 0))
goto fail0;
get_source_id(mci);
mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
break;
case SANDY_BRIDGE:
pvt->info.rankcfgr = SB_RANK_CFG_A;
pvt->info.get_tolm = sbridge_get_tolm;
pvt->info.get_tohm = sbridge_get_tohm;
pvt->info.dram_rule = sbridge_dram_rule;
pvt->info.get_memory_type = get_memory_type;
pvt->info.get_node_id = get_node_id;
pvt->info.get_ha = sbridge_get_ha;
pvt->info.rir_limit = rir_limit;
pvt->info.sad_limit = sad_limit;
pvt->info.interleave_mode = interleave_mode;
pvt->info.dram_attr = dram_attr;
pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
pvt->info.interleave_list = sbridge_interleave_list;
pvt->info.interleave_pkg = sbridge_interleave_pkg;
pvt->info.get_width = sbridge_get_width;
/* Store pci devices at mci for faster access */
rc = sbridge_mci_bind_devs(mci, sbridge_dev);
if (unlikely(rc < 0))
goto fail0;
get_source_id(mci);
mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
break;
case HASWELL:
/* rankcfgr isn't used */
pvt->info.get_tolm = haswell_get_tolm;
pvt->info.get_tohm = haswell_get_tohm;
pvt->info.dram_rule = ibridge_dram_rule;
pvt->info.get_memory_type = haswell_get_memory_type;
pvt->info.get_node_id = haswell_get_node_id;
pvt->info.get_ha = ibridge_get_ha;
pvt->info.rir_limit = haswell_rir_limit;
pvt->info.sad_limit = sad_limit;
pvt->info.interleave_mode = interleave_mode;
pvt->info.dram_attr = dram_attr;
pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
pvt->info.interleave_list = ibridge_interleave_list;
pvt->info.interleave_pkg = ibridge_interleave_pkg;
pvt->info.get_width = ibridge_get_width;
/* Store pci devices at mci for faster access */
rc = haswell_mci_bind_devs(mci, sbridge_dev);
if (unlikely(rc < 0))
goto fail0;
get_source_id(mci);
mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
break;
case BROADWELL:
/* rankcfgr isn't used */
pvt->info.get_tolm = haswell_get_tolm;
pvt->info.get_tohm = haswell_get_tohm;
pvt->info.dram_rule = ibridge_dram_rule;
pvt->info.get_memory_type = haswell_get_memory_type;
pvt->info.get_node_id = haswell_get_node_id;
pvt->info.get_ha = ibridge_get_ha;
pvt->info.rir_limit = haswell_rir_limit;
pvt->info.sad_limit = sad_limit;
pvt->info.interleave_mode = interleave_mode;
pvt->info.dram_attr = dram_attr;
pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
pvt->info.interleave_list = ibridge_interleave_list;
pvt->info.interleave_pkg = ibridge_interleave_pkg;
pvt->info.get_width = broadwell_get_width;
/* Store pci devices at mci for faster access */
rc = broadwell_mci_bind_devs(mci, sbridge_dev);
if (unlikely(rc < 0))
goto fail0;
get_source_id(mci);
mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
break;
case KNIGHTS_LANDING:
/* pvt->info.rankcfgr == ??? */
pvt->info.get_tolm = knl_get_tolm;
pvt->info.get_tohm = knl_get_tohm;
pvt->info.dram_rule = knl_dram_rule;
pvt->info.get_memory_type = knl_get_memory_type;
pvt->info.get_node_id = knl_get_node_id;
pvt->info.get_ha = knl_get_ha;
pvt->info.rir_limit = NULL;
pvt->info.sad_limit = knl_sad_limit;
pvt->info.interleave_mode = knl_interleave_mode;
pvt->info.dram_attr = dram_attr_knl;
pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
pvt->info.interleave_list = knl_interleave_list;
pvt->info.interleave_pkg = ibridge_interleave_pkg;
pvt->info.get_width = knl_get_width;
rc = knl_mci_bind_devs(mci, sbridge_dev);
if (unlikely(rc < 0))
goto fail0;
get_source_id(mci);
mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
break;
}
if (!mci->ctl_name) {
rc = -ENOMEM;
goto fail0;
}
/* Get dimm basic config and the memory layout */
rc = get_dimm_config(mci);
if (rc < 0) {
edac_dbg(0, "MC: failed to get_dimm_config()\n");
goto fail;
}
get_memory_layout(mci);
/* record ptr to the generic device */
mci->pdev = &pdev->dev;
/* add this new MC control structure to EDAC's list of MCs */
if (unlikely(edac_mc_add_mc(mci))) {
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
rc = -EINVAL;
goto fail;
}
return 0;
fail:
kfree(mci->ctl_name);
fail0:
edac_mc_free(mci);
sbridge_dev->mci = NULL;
return rc;
}
static const struct x86_cpu_id sbridge_cpuids[] = {
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &pci_dev_descr_ibridge_table),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &pci_dev_descr_haswell_table),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &pci_dev_descr_broadwell_table),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &pci_dev_descr_broadwell_table),
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &pci_dev_descr_knl_table),
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &pci_dev_descr_knl_table),
{ }
};
MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
/*
* sbridge_probe Get all devices and register memory controllers
* present.
* return:
* 0 for FOUND a device
* < 0 for error code
*/
static int sbridge_probe(const struct x86_cpu_id *id)
{
int rc = -ENODEV;
u8 mc, num_mc = 0;
struct sbridge_dev *sbridge_dev;
struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
/* get the pci devices we want to reserve for our use */
rc = sbridge_get_all_devices(&num_mc, ptable);
if (unlikely(rc < 0)) {
edac_dbg(0, "couldn't get all devices\n");
goto fail0;
}
mc = 0;
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
edac_dbg(0, "Registering MC#%d (%d of %d)\n",
mc, mc + 1, num_mc);
sbridge_dev->mc = mc++;
rc = sbridge_register_mci(sbridge_dev, ptable->type);
if (unlikely(rc < 0))
goto fail1;
}
sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
return 0;
fail1:
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
sbridge_unregister_mci(sbridge_dev);
sbridge_put_all_devices();
fail0:
return rc;
}
/*
* sbridge_remove cleanup
*
*/
static void sbridge_remove(void)
{
struct sbridge_dev *sbridge_dev;
edac_dbg(0, "\n");
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
sbridge_unregister_mci(sbridge_dev);
/* Release PCI resources */
sbridge_put_all_devices();
}
/*
* sbridge_init Module entry function
* Try to initialize this module for its devices
*/
static int __init sbridge_init(void)
{
const struct x86_cpu_id *id;
const char *owner;
int rc;
edac_dbg(2, "\n");
owner = edac_get_owner();
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
return -EBUSY;
id = x86_match_cpu(sbridge_cpuids);
if (!id)
return -ENODEV;
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init();
rc = sbridge_probe(id);
if (rc >= 0) {
edac: avoid mce decoding crash after edac driver unloaded Some edac drivers register themselves as mce decoders via notifier_chain. But in current notifier_chain implementation logic, it doesn't accept same notifier registered twice. If so, it will be wrong when adding/removing the element from the list. For example, on one SandyBridge platform, remove module sb_edac and then trigger one error, it will hit oops because it has no mce decoder registered but related notifier_chain still points to an invalid callback function. Here is an example: Call Trace: [<ffffffff8150ef6a>] atomic_notifier_call_chain+0x1a/0x20 [<ffffffff8102b936>] mce_log+0x46/0x180 [<ffffffff8102eaea>] apei_mce_report_mem_error+0x4a/0x60 [<ffffffff812e19d2>] ghes_do_proc+0x192/0x210 [<ffffffff812e2066>] ghes_proc+0x46/0x70 [<ffffffff812e20d8>] ghes_notify_sci+0x48/0x80 [<ffffffff8150ef05>] notifier_call_chain+0x55/0x80 [<ffffffff81076f1a>] __blocking_notifier_call_chain+0x5a/0x80 [<ffffffff812aea11>] ? acpi_os_wait_events_complete+0x23/0x23 [<ffffffff81076f56>] blocking_notifier_call_chain+0x16/0x20 [<ffffffff812ddc4d>] acpi_hed_notify+0x19/0x1b [<ffffffff812b16bd>] acpi_device_notify+0x19/0x1b [<ffffffff812beb38>] acpi_ev_notify_dispatch+0x67/0x7f [<ffffffff812aea3a>] acpi_os_execute_deferred+0x29/0x36 [<ffffffff81069dc2>] process_one_work+0x132/0x450 [<ffffffff8106bbcb>] worker_thread+0x17b/0x3c0 [<ffffffff8106ba50>] ? manage_workers+0x120/0x120 [<ffffffff81070aee>] kthread+0x9e/0xb0 [<ffffffff81514724>] kernel_thread_helper+0x4/0x10 [<ffffffff81070a50>] ? kthread_freezable_should_stop+0x70/0x70 [<ffffffff81514720>] ? gs_change+0x13/0x13 Code: f3 49 89 d4 45 85 ed 4d 89 c6 48 8b 0f 74 48 48 85 c9 75 17 eb 41 0f 1f 80 00 00 00 00 41 83 ed 01 4c 89 f9 74 22 4d 85 ff 74 1d <4c> 8b 79 08 4c 89 e2 48 89 de 48 89 cf ff 11 4d 85 f6 74 04 41 RIP [<ffffffff8150eef6>] notifier_call_chain+0x46/0x80 RSP <ffff88042868fb20> CR2: ffffffffa01af838 ---[ end trace 0100930068e73e6f ]--- BUG: unable to handle kernel paging request at fffffffffffffff8 IP: [<ffffffff810705b0>] kthread_data+0x10/0x20 PGD 1a0d067 PUD 1a0e067 PMD 0 Oops: 0000 [#2] SMP Only i7core_edac and sb_edac have such issues because they have more than one memory controller which means they have to register mce decoder many times. Cc: <stable@vger.kernel.org> # 3.2 and upper Signed-off-by: Chen Gong <gong.chen@linux.intel.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2012-05-09 07:40:12 +08:00
mce_register_decode_chain(&sbridge_mce_dec);
return 0;
edac: avoid mce decoding crash after edac driver unloaded Some edac drivers register themselves as mce decoders via notifier_chain. But in current notifier_chain implementation logic, it doesn't accept same notifier registered twice. If so, it will be wrong when adding/removing the element from the list. For example, on one SandyBridge platform, remove module sb_edac and then trigger one error, it will hit oops because it has no mce decoder registered but related notifier_chain still points to an invalid callback function. Here is an example: Call Trace: [<ffffffff8150ef6a>] atomic_notifier_call_chain+0x1a/0x20 [<ffffffff8102b936>] mce_log+0x46/0x180 [<ffffffff8102eaea>] apei_mce_report_mem_error+0x4a/0x60 [<ffffffff812e19d2>] ghes_do_proc+0x192/0x210 [<ffffffff812e2066>] ghes_proc+0x46/0x70 [<ffffffff812e20d8>] ghes_notify_sci+0x48/0x80 [<ffffffff8150ef05>] notifier_call_chain+0x55/0x80 [<ffffffff81076f1a>] __blocking_notifier_call_chain+0x5a/0x80 [<ffffffff812aea11>] ? acpi_os_wait_events_complete+0x23/0x23 [<ffffffff81076f56>] blocking_notifier_call_chain+0x16/0x20 [<ffffffff812ddc4d>] acpi_hed_notify+0x19/0x1b [<ffffffff812b16bd>] acpi_device_notify+0x19/0x1b [<ffffffff812beb38>] acpi_ev_notify_dispatch+0x67/0x7f [<ffffffff812aea3a>] acpi_os_execute_deferred+0x29/0x36 [<ffffffff81069dc2>] process_one_work+0x132/0x450 [<ffffffff8106bbcb>] worker_thread+0x17b/0x3c0 [<ffffffff8106ba50>] ? manage_workers+0x120/0x120 [<ffffffff81070aee>] kthread+0x9e/0xb0 [<ffffffff81514724>] kernel_thread_helper+0x4/0x10 [<ffffffff81070a50>] ? kthread_freezable_should_stop+0x70/0x70 [<ffffffff81514720>] ? gs_change+0x13/0x13 Code: f3 49 89 d4 45 85 ed 4d 89 c6 48 8b 0f 74 48 48 85 c9 75 17 eb 41 0f 1f 80 00 00 00 00 41 83 ed 01 4c 89 f9 74 22 4d 85 ff 74 1d <4c> 8b 79 08 4c 89 e2 48 89 de 48 89 cf ff 11 4d 85 f6 74 04 41 RIP [<ffffffff8150eef6>] notifier_call_chain+0x46/0x80 RSP <ffff88042868fb20> CR2: ffffffffa01af838 ---[ end trace 0100930068e73e6f ]--- BUG: unable to handle kernel paging request at fffffffffffffff8 IP: [<ffffffff810705b0>] kthread_data+0x10/0x20 PGD 1a0d067 PUD 1a0e067 PMD 0 Oops: 0000 [#2] SMP Only i7core_edac and sb_edac have such issues because they have more than one memory controller which means they have to register mce decoder many times. Cc: <stable@vger.kernel.org> # 3.2 and upper Signed-off-by: Chen Gong <gong.chen@linux.intel.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2012-05-09 07:40:12 +08:00
}
sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
rc);
return rc;
}
/*
* sbridge_exit() Module exit function
* Unregister the driver
*/
static void __exit sbridge_exit(void)
{
edac_dbg(2, "\n");
sbridge_remove();
edac: avoid mce decoding crash after edac driver unloaded Some edac drivers register themselves as mce decoders via notifier_chain. But in current notifier_chain implementation logic, it doesn't accept same notifier registered twice. If so, it will be wrong when adding/removing the element from the list. For example, on one SandyBridge platform, remove module sb_edac and then trigger one error, it will hit oops because it has no mce decoder registered but related notifier_chain still points to an invalid callback function. Here is an example: Call Trace: [<ffffffff8150ef6a>] atomic_notifier_call_chain+0x1a/0x20 [<ffffffff8102b936>] mce_log+0x46/0x180 [<ffffffff8102eaea>] apei_mce_report_mem_error+0x4a/0x60 [<ffffffff812e19d2>] ghes_do_proc+0x192/0x210 [<ffffffff812e2066>] ghes_proc+0x46/0x70 [<ffffffff812e20d8>] ghes_notify_sci+0x48/0x80 [<ffffffff8150ef05>] notifier_call_chain+0x55/0x80 [<ffffffff81076f1a>] __blocking_notifier_call_chain+0x5a/0x80 [<ffffffff812aea11>] ? acpi_os_wait_events_complete+0x23/0x23 [<ffffffff81076f56>] blocking_notifier_call_chain+0x16/0x20 [<ffffffff812ddc4d>] acpi_hed_notify+0x19/0x1b [<ffffffff812b16bd>] acpi_device_notify+0x19/0x1b [<ffffffff812beb38>] acpi_ev_notify_dispatch+0x67/0x7f [<ffffffff812aea3a>] acpi_os_execute_deferred+0x29/0x36 [<ffffffff81069dc2>] process_one_work+0x132/0x450 [<ffffffff8106bbcb>] worker_thread+0x17b/0x3c0 [<ffffffff8106ba50>] ? manage_workers+0x120/0x120 [<ffffffff81070aee>] kthread+0x9e/0xb0 [<ffffffff81514724>] kernel_thread_helper+0x4/0x10 [<ffffffff81070a50>] ? kthread_freezable_should_stop+0x70/0x70 [<ffffffff81514720>] ? gs_change+0x13/0x13 Code: f3 49 89 d4 45 85 ed 4d 89 c6 48 8b 0f 74 48 48 85 c9 75 17 eb 41 0f 1f 80 00 00 00 00 41 83 ed 01 4c 89 f9 74 22 4d 85 ff 74 1d <4c> 8b 79 08 4c 89 e2 48 89 de 48 89 cf ff 11 4d 85 f6 74 04 41 RIP [<ffffffff8150eef6>] notifier_call_chain+0x46/0x80 RSP <ffff88042868fb20> CR2: ffffffffa01af838 ---[ end trace 0100930068e73e6f ]--- BUG: unable to handle kernel paging request at fffffffffffffff8 IP: [<ffffffff810705b0>] kthread_data+0x10/0x20 PGD 1a0d067 PUD 1a0e067 PMD 0 Oops: 0000 [#2] SMP Only i7core_edac and sb_edac have such issues because they have more than one memory controller which means they have to register mce decoder many times. Cc: <stable@vger.kernel.org> # 3.2 and upper Signed-off-by: Chen Gong <gong.chen@linux.intel.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2012-05-09 07:40:12 +08:00
mce_unregister_decode_chain(&sbridge_mce_dec);
}
module_init(sbridge_init);
module_exit(sbridge_exit);
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab");
MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
SBRIDGE_REVISION);