OpenCloudOS-Kernel/drivers/crypto/marvell/hash.c

1447 lines
36 KiB
C
Raw Normal View History

/*
* Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
*
* Author: Boris Brezillon <boris.brezillon@free-electrons.com>
* Author: Arnaud Ebalard <arno@natisbad.org>
*
* This work is based on an initial version written by
* Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <crypto/hmac.h>
#include <crypto/md5.h>
#include <crypto/sha.h>
#include "cesa.h"
struct mv_cesa_ahash_dma_iter {
struct mv_cesa_dma_iter base;
struct mv_cesa_sg_dma_iter src;
};
static inline void
mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
unsigned int len = req->nbytes + creq->cache_ptr;
if (!creq->last_req)
len &= ~CESA_HASH_BLOCK_SIZE_MSK;
mv_cesa_req_dma_iter_init(&iter->base, len);
mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
iter->src.op_offset = creq->cache_ptr;
}
static inline bool
mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
{
iter->src.op_offset = 0;
return mv_cesa_req_dma_iter_next_op(&iter->base);
}
static inline int
mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags)
{
req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
&req->cache_dma);
if (!req->cache)
return -ENOMEM;
return 0;
}
static inline void
mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req)
{
if (!req->cache)
return;
dma_pool_free(cesa_dev->dma->cache_pool, req->cache,
req->cache_dma);
}
static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
gfp_t flags)
{
if (req->padding)
return 0;
req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
&req->padding_dma);
if (!req->padding)
return -ENOMEM;
return 0;
}
static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
{
if (!req->padding)
return;
dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
req->padding_dma);
req->padding = NULL;
}
static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
mv_cesa_ahash_dma_free_padding(&creq->req.dma);
}
static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
mv_cesa_ahash_dma_free_cache(&creq->req.dma);
mv_cesa_dma_cleanup(&creq->base);
}
static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
mv_cesa_ahash_dma_cleanup(req);
}
static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
mv_cesa_ahash_dma_last_cleanup(req);
}
static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
{
unsigned int index, padlen;
index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
return padlen;
}
static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
{
unsigned int padlen;
buf[0] = 0x80;
/* Pad out to 56 mod 64 */
padlen = mv_cesa_ahash_pad_len(creq);
memset(buf + 1, 0, padlen - 1);
if (creq->algo_le) {
__le64 bits = cpu_to_le64(creq->len << 3);
memcpy(buf + padlen, &bits, sizeof(bits));
} else {
__be64 bits = cpu_to_be64(creq->len << 3);
memcpy(buf + padlen, &bits, sizeof(bits));
}
return padlen + 8;
}
static void mv_cesa_ahash_std_step(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
struct mv_cesa_engine *engine = creq->base.engine;
struct mv_cesa_op_ctx *op;
unsigned int new_cache_ptr = 0;
u32 frag_mode;
size_t len;
unsigned int digsize;
int i;
mv_cesa_adjust_op(engine, &creq->op_tmpl);
memcpy_toio(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));
if (!sreq->offset) {
digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
for (i = 0; i < digsize / 4; i++)
writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i));
}
if (creq->cache_ptr)
memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
creq->cache, creq->cache_ptr);
len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
CESA_SA_SRAM_PAYLOAD_SIZE);
if (!creq->last_req) {
new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
len &= ~CESA_HASH_BLOCK_SIZE_MSK;
}
if (len - creq->cache_ptr)
sreq->offset += sg_pcopy_to_buffer(req->src, creq->src_nents,
engine->sram +
CESA_SA_DATA_SRAM_OFFSET +
creq->cache_ptr,
len - creq->cache_ptr,
sreq->offset);
op = &creq->op_tmpl;
frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
if (creq->last_req && sreq->offset == req->nbytes &&
creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
}
if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
if (len &&
creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
mv_cesa_set_mac_op_total_len(op, creq->len);
} else {
int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
len &= CESA_HASH_BLOCK_SIZE_MSK;
new_cache_ptr = 64 - trailerlen;
memcpy_fromio(creq->cache,
engine->sram +
CESA_SA_DATA_SRAM_OFFSET + len,
new_cache_ptr);
} else {
len += mv_cesa_ahash_pad_req(creq,
engine->sram + len +
CESA_SA_DATA_SRAM_OFFSET);
}
if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
else
frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
}
}
mv_cesa_set_mac_op_frag_len(op, len);
mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
/* FIXME: only update enc_len field */
memcpy_toio(engine->sram, op, sizeof(*op));
if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
CESA_SA_DESC_CFG_FRAG_MSK);
creq->cache_ptr = new_cache_ptr;
mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
BUG_ON(readl(engine->regs + CESA_SA_CMD) &
CESA_SA_CMD_EN_CESA_SA_ACCL0);
writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
}
static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
if (sreq->offset < (req->nbytes - creq->cache_ptr))
return -EINPROGRESS;
return 0;
}
static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
struct mv_cesa_req *basereq = &creq->base;
mv_cesa_dma_prepare(basereq, basereq->engine);
}
static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
sreq->offset = 0;
}
static void mv_cesa_ahash_dma_step(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
struct mv_cesa_req *base = &creq->base;
/* We must explicitly set the digest state. */
if (base->chain.first->flags & CESA_TDMA_SET_STATE) {
struct mv_cesa_engine *engine = base->engine;
int i;
/* Set the hash state in the IVDIG regs. */
for (i = 0; i < ARRAY_SIZE(creq->state); i++)
writel_relaxed(creq->state[i], engine->regs +
CESA_IVDIG(i));
}
mv_cesa_dma_step(base);
}
static void mv_cesa_ahash_step(struct crypto_async_request *req)
{
struct ahash_request *ahashreq = ahash_request_cast(req);
struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
mv_cesa_ahash_dma_step(ahashreq);
else
mv_cesa_ahash_std_step(ahashreq);
}
static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
{
struct ahash_request *ahashreq = ahash_request_cast(req);
struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
return mv_cesa_dma_process(&creq->base, status);
return mv_cesa_ahash_std_process(ahashreq, status);
}
static void mv_cesa_ahash_complete(struct crypto_async_request *req)
{
struct ahash_request *ahashreq = ahash_request_cast(req);
struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
struct mv_cesa_engine *engine = creq->base.engine;
unsigned int digsize;
int i;
digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ &&
(creq->base.chain.last->flags & CESA_TDMA_TYPE_MSK) == CESA_TDMA_RESULT) {
__le32 *data = NULL;
/*
* Result is already in the correct endianess when the SA is
* used
*/
data = creq->base.chain.last->op->ctx.hash.hash;
for (i = 0; i < digsize / 4; i++)
creq->state[i] = cpu_to_le32(data[i]);
memcpy(ahashreq->result, data, digsize);
} else {
for (i = 0; i < digsize / 4; i++)
creq->state[i] = readl_relaxed(engine->regs +
CESA_IVDIG(i));
if (creq->last_req) {
/*
* Hardware's MD5 digest is in little endian format, but
* SHA in big endian format
*/
if (creq->algo_le) {
__le32 *result = (void *)ahashreq->result;
for (i = 0; i < digsize / 4; i++)
result[i] = cpu_to_le32(creq->state[i]);
} else {
__be32 *result = (void *)ahashreq->result;
for (i = 0; i < digsize / 4; i++)
result[i] = cpu_to_be32(creq->state[i]);
}
}
}
atomic_sub(ahashreq->nbytes, &engine->load);
}
static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
struct mv_cesa_engine *engine)
{
struct ahash_request *ahashreq = ahash_request_cast(req);
struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
creq->base.engine = engine;
if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
mv_cesa_ahash_dma_prepare(ahashreq);
else
mv_cesa_ahash_std_prepare(ahashreq);
}
static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
{
struct ahash_request *ahashreq = ahash_request_cast(req);
struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
if (creq->last_req)
mv_cesa_ahash_last_cleanup(ahashreq);
mv_cesa_ahash_cleanup(ahashreq);
if (creq->cache_ptr)
sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
creq->cache,
creq->cache_ptr,
ahashreq->nbytes - creq->cache_ptr);
}
static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
.step = mv_cesa_ahash_step,
.process = mv_cesa_ahash_process,
.cleanup = mv_cesa_ahash_req_cleanup,
.complete = mv_cesa_ahash_complete,
};
static void mv_cesa_ahash_init(struct ahash_request *req,
struct mv_cesa_op_ctx *tmpl, bool algo_le)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
memset(creq, 0, sizeof(*creq));
mv_cesa_update_op_cfg(tmpl,
CESA_SA_DESC_CFG_OP_MAC_ONLY |
CESA_SA_DESC_CFG_FIRST_FRAG,
CESA_SA_DESC_CFG_OP_MSK |
CESA_SA_DESC_CFG_FRAG_MSK);
mv_cesa_set_mac_op_total_len(tmpl, 0);
mv_cesa_set_mac_op_frag_len(tmpl, 0);
creq->op_tmpl = *tmpl;
creq->len = 0;
creq->algo_le = algo_le;
}
static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
{
struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
ctx->base.ops = &mv_cesa_ahash_req_ops;
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct mv_cesa_ahash_req));
return 0;
}
static bool mv_cesa_ahash_cache_req(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
bool cached = false;
if (creq->cache_ptr + req->nbytes < CESA_MAX_HASH_BLOCK_SIZE && !creq->last_req) {
cached = true;
if (!req->nbytes)
return cached;
sg_pcopy_to_buffer(req->src, creq->src_nents,
creq->cache + creq->cache_ptr,
req->nbytes, 0);
creq->cache_ptr += req->nbytes;
}
return cached;
}
static struct mv_cesa_op_ctx *
mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
gfp_t flags)
{
struct mv_cesa_op_ctx *op;
int ret;
op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
if (IS_ERR(op))
return op;
/* Set the operation block fragment length. */
mv_cesa_set_mac_op_frag_len(op, frag_len);
/* Append dummy desc to launch operation */
ret = mv_cesa_dma_add_dummy_launch(chain, flags);
if (ret)
return ERR_PTR(ret);
if (mv_cesa_mac_op_is_first_frag(tmpl))
mv_cesa_update_op_cfg(tmpl,
CESA_SA_DESC_CFG_MID_FRAG,
CESA_SA_DESC_CFG_FRAG_MSK);
return op;
}
static int
mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
struct mv_cesa_ahash_req *creq,
gfp_t flags)
{
struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
int ret;
if (!creq->cache_ptr)
return 0;
ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags);
if (ret)
return ret;
memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr);
return mv_cesa_dma_add_data_transfer(chain,
CESA_SA_DATA_SRAM_OFFSET,
ahashdreq->cache_dma,
creq->cache_ptr,
CESA_TDMA_DST_IN_SRAM,
flags);
}
static struct mv_cesa_op_ctx *
mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
struct mv_cesa_ahash_dma_iter *dma_iter,
struct mv_cesa_ahash_req *creq,
unsigned int frag_len, gfp_t flags)
{
struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
unsigned int len, trailerlen, padoff = 0;
struct mv_cesa_op_ctx *op;
int ret;
/*
* If the transfer is smaller than our maximum length, and we have
* some data outstanding, we can ask the engine to finish the hash.
*/
if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
flags);
if (IS_ERR(op))
return op;
mv_cesa_set_mac_op_total_len(op, creq->len);
mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
CESA_SA_DESC_CFG_NOT_FRAG :
CESA_SA_DESC_CFG_LAST_FRAG,
CESA_SA_DESC_CFG_FRAG_MSK);
ret = mv_cesa_dma_add_result_op(chain,
CESA_SA_CFG_SRAM_OFFSET,
CESA_SA_DATA_SRAM_OFFSET,
CESA_TDMA_SRC_IN_SRAM, flags);
if (ret)
return ERR_PTR(-ENOMEM);
return op;
}
/*
* The request is longer than the engine can handle, or we have
* no data outstanding. Manually generate the padding, adding it
* as a "mid" fragment.
*/
ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
if (ret)
return ERR_PTR(ret);
trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
if (len) {
ret = mv_cesa_dma_add_data_transfer(chain,
CESA_SA_DATA_SRAM_OFFSET +
frag_len,
ahashdreq->padding_dma,
len, CESA_TDMA_DST_IN_SRAM,
flags);
if (ret)
return ERR_PTR(ret);
op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
flags);
if (IS_ERR(op))
return op;
if (len == trailerlen)
return op;
padoff += len;
}
ret = mv_cesa_dma_add_data_transfer(chain,
CESA_SA_DATA_SRAM_OFFSET,
ahashdreq->padding_dma +
padoff,
trailerlen - padoff,
CESA_TDMA_DST_IN_SRAM,
flags);
if (ret)
return ERR_PTR(ret);
return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
flags);
}
static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
struct mv_cesa_req *basereq = &creq->base;
struct mv_cesa_ahash_dma_iter iter;
struct mv_cesa_op_ctx *op = NULL;
unsigned int frag_len;
bool set_state = false;
int ret;
u32 type;
basereq->chain.first = NULL;
basereq->chain.last = NULL;
if (!mv_cesa_mac_op_is_first_frag(&creq->op_tmpl))
set_state = true;
if (creq->src_nents) {
ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
DMA_TO_DEVICE);
if (!ret) {
ret = -ENOMEM;
goto err;
}
}
mv_cesa_tdma_desc_iter_init(&basereq->chain);
mv_cesa_ahash_req_iter_init(&iter, req);
/*
* Add the cache (left-over data from a previous block) first.
* This will never overflow the SRAM size.
*/
ret = mv_cesa_ahash_dma_add_cache(&basereq->chain, creq, flags);
if (ret)
goto err_free_tdma;
if (iter.src.sg) {
/*
* Add all the new data, inserting an operation block and
* launch command between each full SRAM block-worth of
* data. We intentionally do not add the final op block.
*/
while (true) {
ret = mv_cesa_dma_add_op_transfers(&basereq->chain,
&iter.base,
&iter.src, flags);
if (ret)
goto err_free_tdma;
frag_len = iter.base.op_len;
if (!mv_cesa_ahash_req_iter_next_op(&iter))
break;
op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
frag_len, flags);
if (IS_ERR(op)) {
ret = PTR_ERR(op);
goto err_free_tdma;
}
}
} else {
/* Account for the data that was in the cache. */
frag_len = iter.base.op_len;
}
/*
* At this point, frag_len indicates whether we have any data
* outstanding which needs an operation. Queue up the final
* operation, which depends whether this is the final request.
*/
if (creq->last_req)
op = mv_cesa_ahash_dma_last_req(&basereq->chain, &iter, creq,
frag_len, flags);
else if (frag_len)
op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
frag_len, flags);
if (IS_ERR(op)) {
ret = PTR_ERR(op);
goto err_free_tdma;
}
/*
* If results are copied via DMA, this means that this
* request can be directly processed by the engine,
* without partial updates. So we can chain it at the
* DMA level with other requests.
*/
type = basereq->chain.last->flags & CESA_TDMA_TYPE_MSK;
if (op && type != CESA_TDMA_RESULT) {
/* Add dummy desc to wait for crypto operation end */
ret = mv_cesa_dma_add_dummy_end(&basereq->chain, flags);
if (ret)
goto err_free_tdma;
}
if (!creq->last_req)
creq->cache_ptr = req->nbytes + creq->cache_ptr -
iter.base.len;
else
creq->cache_ptr = 0;
basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ;
if (type != CESA_TDMA_RESULT)
basereq->chain.last->flags |= CESA_TDMA_BREAK_CHAIN;
if (set_state) {
/*
* Put the CESA_TDMA_SET_STATE flag on the first tdma desc to
* let the step logic know that the IVDIG registers should be
* explicitly set before launching a TDMA chain.
*/
basereq->chain.first->flags |= CESA_TDMA_SET_STATE;
}
return 0;
err_free_tdma:
mv_cesa_dma_cleanup(basereq);
dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
err:
mv_cesa_ahash_last_cleanup(req);
return ret;
}
static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
if (creq->src_nents < 0) {
dev_err(cesa_dev->dev, "Invalid number of src SG");
return creq->src_nents;
}
*cached = mv_cesa_ahash_cache_req(req);
if (*cached)
return 0;
if (cesa_dev->caps->has_tdma)
return mv_cesa_ahash_dma_req_init(req);
else
return 0;
}
static int mv_cesa_ahash_queue_req(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
struct mv_cesa_engine *engine;
bool cached = false;
int ret;
ret = mv_cesa_ahash_req_init(req, &cached);
if (ret)
return ret;
if (cached)
return 0;
engine = mv_cesa_select_engine(req->nbytes);
mv_cesa_ahash_prepare(&req->base, engine);
ret = mv_cesa_queue_req(&req->base, &creq->base);
crypto: marvell - properly handle CRYPTO_TFM_REQ_MAY_BACKLOG-flagged requests The mv_cesa_queue_req() function calls crypto_enqueue_request() to enqueue a request. In the normal case (i.e the queue isn't full), this function returns -EINPROGRESS. The current Marvell CESA crypto driver takes this into account and cleans up the request only if an error occured, i.e if the return value is not -EINPROGRESS. Unfortunately this causes problems with CRYPTO_TFM_REQ_MAY_BACKLOG-flagged requests. When such a request is passed to crypto_enqueue_request() and the queue is full, crypto_enqueue_request() will return -EBUSY, but will keep the request enqueued nonetheless. This situation was not properly handled by the Marvell CESA driver, which was anyway cleaning up the request in such a situation. When later on the request was taken out of the backlog and actually processed, a kernel crash occured due to the internal driver data structures for this structure having been cleaned up. To avoid this situation, this commit adds a mv_cesa_req_needs_cleanup() helper function which indicates if the request needs to be cleaned up or not after a call to crypto_enqueue_request(). This helper allows to do the cleanup only in the appropriate cases, and all call sites of mv_cesa_queue_req() are fixed to use this new helper function. Reported-by: Vincent Donnefort <vdonnefort@gmail.com> Fixes: db509a45339fd ("crypto: marvell/cesa - add TDMA support") Cc: <stable@vger.kernel.org> # v4.2+ Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com> Tested-by: Vincent Donnefort <vdonnefort@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-09-18 23:25:36 +08:00
if (mv_cesa_req_needs_cleanup(&req->base, ret))
mv_cesa_ahash_cleanup(req);
return ret;
}
static int mv_cesa_ahash_update(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
creq->len += req->nbytes;
return mv_cesa_ahash_queue_req(req);
}
static int mv_cesa_ahash_final(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
mv_cesa_set_mac_op_total_len(tmpl, creq->len);
creq->last_req = true;
req->nbytes = 0;
return mv_cesa_ahash_queue_req(req);
}
static int mv_cesa_ahash_finup(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
creq->len += req->nbytes;
mv_cesa_set_mac_op_total_len(tmpl, creq->len);
creq->last_req = true;
return mv_cesa_ahash_queue_req(req);
}
static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
u64 *len, void *cache)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
unsigned int digsize = crypto_ahash_digestsize(ahash);
unsigned int blocksize;
blocksize = crypto_ahash_blocksize(ahash);
*len = creq->len;
memcpy(hash, creq->state, digsize);
memset(cache, 0, blocksize);
memcpy(cache, creq->cache, creq->cache_ptr);
return 0;
}
static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
u64 len, const void *cache)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
unsigned int digsize = crypto_ahash_digestsize(ahash);
unsigned int blocksize;
unsigned int cache_ptr;
int ret;
ret = crypto_ahash_init(req);
if (ret)
return ret;
blocksize = crypto_ahash_blocksize(ahash);
if (len >= blocksize)
mv_cesa_update_op_cfg(&creq->op_tmpl,
CESA_SA_DESC_CFG_MID_FRAG,
CESA_SA_DESC_CFG_FRAG_MSK);
creq->len = len;
memcpy(creq->state, hash, digsize);
creq->cache_ptr = 0;
cache_ptr = do_div(len, blocksize);
if (!cache_ptr)
return 0;
memcpy(creq->cache, cache, cache_ptr);
creq->cache_ptr = cache_ptr;
return 0;
}
static int mv_cesa_md5_init(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
struct mv_cesa_op_ctx tmpl = { };
mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
mv_cesa_ahash_init(req, &tmpl, true);
creq->state[0] = MD5_H0;
creq->state[1] = MD5_H1;
creq->state[2] = MD5_H2;
creq->state[3] = MD5_H3;
return 0;
}
static int mv_cesa_md5_export(struct ahash_request *req, void *out)
{
struct md5_state *out_state = out;
return mv_cesa_ahash_export(req, out_state->hash,
&out_state->byte_count, out_state->block);
}
static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
{
const struct md5_state *in_state = in;
return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
in_state->block);
}
static int mv_cesa_md5_digest(struct ahash_request *req)
{
int ret;
ret = mv_cesa_md5_init(req);
if (ret)
return ret;
return mv_cesa_ahash_finup(req);
}
struct ahash_alg mv_md5_alg = {
.init = mv_cesa_md5_init,
.update = mv_cesa_ahash_update,
.final = mv_cesa_ahash_final,
.finup = mv_cesa_ahash_finup,
.digest = mv_cesa_md5_digest,
.export = mv_cesa_md5_export,
.import = mv_cesa_md5_import,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct md5_state),
.base = {
.cra_name = "md5",
.cra_driver_name = "mv-md5",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
.cra_init = mv_cesa_ahash_cra_init,
.cra_module = THIS_MODULE,
}
}
};
static int mv_cesa_sha1_init(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
struct mv_cesa_op_ctx tmpl = { };
mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
mv_cesa_ahash_init(req, &tmpl, false);
creq->state[0] = SHA1_H0;
creq->state[1] = SHA1_H1;
creq->state[2] = SHA1_H2;
creq->state[3] = SHA1_H3;
creq->state[4] = SHA1_H4;
return 0;
}
static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
{
struct sha1_state *out_state = out;
return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
out_state->buffer);
}
static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
{
const struct sha1_state *in_state = in;
return mv_cesa_ahash_import(req, in_state->state, in_state->count,
in_state->buffer);
}
static int mv_cesa_sha1_digest(struct ahash_request *req)
{
int ret;
ret = mv_cesa_sha1_init(req);
if (ret)
return ret;
return mv_cesa_ahash_finup(req);
}
struct ahash_alg mv_sha1_alg = {
.init = mv_cesa_sha1_init,
.update = mv_cesa_ahash_update,
.final = mv_cesa_ahash_final,
.finup = mv_cesa_ahash_finup,
.digest = mv_cesa_sha1_digest,
.export = mv_cesa_sha1_export,
.import = mv_cesa_sha1_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "mv-sha1",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
.cra_init = mv_cesa_ahash_cra_init,
.cra_module = THIS_MODULE,
}
}
};
static int mv_cesa_sha256_init(struct ahash_request *req)
{
struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
struct mv_cesa_op_ctx tmpl = { };
mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
mv_cesa_ahash_init(req, &tmpl, false);
creq->state[0] = SHA256_H0;
creq->state[1] = SHA256_H1;
creq->state[2] = SHA256_H2;
creq->state[3] = SHA256_H3;
creq->state[4] = SHA256_H4;
creq->state[5] = SHA256_H5;
creq->state[6] = SHA256_H6;
creq->state[7] = SHA256_H7;
return 0;
}
static int mv_cesa_sha256_digest(struct ahash_request *req)
{
int ret;
ret = mv_cesa_sha256_init(req);
if (ret)
return ret;
return mv_cesa_ahash_finup(req);
}
static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
{
struct sha256_state *out_state = out;
return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
out_state->buf);
}
static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
{
const struct sha256_state *in_state = in;
return mv_cesa_ahash_import(req, in_state->state, in_state->count,
in_state->buf);
}
struct ahash_alg mv_sha256_alg = {
.init = mv_cesa_sha256_init,
.update = mv_cesa_ahash_update,
.final = mv_cesa_ahash_final,
.finup = mv_cesa_ahash_finup,
.digest = mv_cesa_sha256_digest,
.export = mv_cesa_sha256_export,
.import = mv_cesa_sha256_import,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "mv-sha256",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
.cra_init = mv_cesa_ahash_cra_init,
.cra_module = THIS_MODULE,
}
}
};
struct mv_cesa_ahash_result {
struct completion completion;
int error;
};
static void mv_cesa_hmac_ahash_complete(struct crypto_async_request *req,
int error)
{
struct mv_cesa_ahash_result *result = req->data;
if (error == -EINPROGRESS)
return;
result->error = error;
complete(&result->completion);
}
static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
void *state, unsigned int blocksize)
{
struct mv_cesa_ahash_result result;
struct scatterlist sg;
int ret;
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
mv_cesa_hmac_ahash_complete, &result);
sg_init_one(&sg, pad, blocksize);
ahash_request_set_crypt(req, &sg, pad, blocksize);
init_completion(&result.completion);
ret = crypto_ahash_init(req);
if (ret)
return ret;
ret = crypto_ahash_update(req);
if (ret && ret != -EINPROGRESS)
return ret;
wait_for_completion_interruptible(&result.completion);
if (result.error)
return result.error;
ret = crypto_ahash_export(req, state);
if (ret)
return ret;
return 0;
}
static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
const u8 *key, unsigned int keylen,
u8 *ipad, u8 *opad,
unsigned int blocksize)
{
struct mv_cesa_ahash_result result;
struct scatterlist sg;
int ret;
int i;
if (keylen <= blocksize) {
memcpy(ipad, key, keylen);
} else {
u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
if (!keydup)
return -ENOMEM;
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
mv_cesa_hmac_ahash_complete,
&result);
sg_init_one(&sg, keydup, keylen);
ahash_request_set_crypt(req, &sg, ipad, keylen);
init_completion(&result.completion);
ret = crypto_ahash_digest(req);
if (ret == -EINPROGRESS) {
wait_for_completion_interruptible(&result.completion);
ret = result.error;
}
/* Set the memory region to 0 to avoid any leak. */
memset(keydup, 0, keylen);
kfree(keydup);
if (ret)
return ret;
keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
}
memset(ipad + keylen, 0, blocksize - keylen);
memcpy(opad, ipad, blocksize);
for (i = 0; i < blocksize; i++) {
ipad[i] ^= HMAC_IPAD_VALUE;
opad[i] ^= HMAC_OPAD_VALUE;
}
return 0;
}
static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
const u8 *key, unsigned int keylen,
void *istate, void *ostate)
{
struct ahash_request *req;
struct crypto_ahash *tfm;
unsigned int blocksize;
u8 *ipad = NULL;
u8 *opad;
int ret;
tfm = crypto_alloc_ahash(hash_alg_name, 0, 0);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!req) {
ret = -ENOMEM;
goto free_ahash;
}
crypto_ahash_clear_flags(tfm, ~0);
blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
ipad = kcalloc(2, blocksize, GFP_KERNEL);
if (!ipad) {
ret = -ENOMEM;
goto free_req;
}
opad = ipad + blocksize;
ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
if (ret)
goto free_ipad;
ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
if (ret)
goto free_ipad;
ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
free_ipad:
kfree(ipad);
free_req:
ahash_request_free(req);
free_ahash:
crypto_free_ahash(tfm);
return ret;
}
static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
{
struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
ctx->base.ops = &mv_cesa_ahash_req_ops;
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct mv_cesa_ahash_req));
return 0;
}
static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
{
struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct mv_cesa_op_ctx tmpl = { };
mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
mv_cesa_ahash_init(req, &tmpl, true);
return 0;
}
static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct md5_state istate, ostate;
int ret, i;
ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
ctx->iv[i] = be32_to_cpu(istate.hash[i]);
for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
ctx->iv[i + 8] = be32_to_cpu(ostate.hash[i]);
return 0;
}
static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
{
int ret;
ret = mv_cesa_ahmac_md5_init(req);
if (ret)
return ret;
return mv_cesa_ahash_finup(req);
}
struct ahash_alg mv_ahmac_md5_alg = {
.init = mv_cesa_ahmac_md5_init,
.update = mv_cesa_ahash_update,
.final = mv_cesa_ahash_final,
.finup = mv_cesa_ahash_finup,
.digest = mv_cesa_ahmac_md5_digest,
.setkey = mv_cesa_ahmac_md5_setkey,
.export = mv_cesa_md5_export,
.import = mv_cesa_md5_import,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct md5_state),
.base = {
.cra_name = "hmac(md5)",
.cra_driver_name = "mv-hmac-md5",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
.cra_init = mv_cesa_ahmac_cra_init,
.cra_module = THIS_MODULE,
}
}
};
static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
{
struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct mv_cesa_op_ctx tmpl = { };
mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
mv_cesa_ahash_init(req, &tmpl, false);
return 0;
}
static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct sha1_state istate, ostate;
int ret, i;
ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(istate.state); i++)
ctx->iv[i] = be32_to_cpu(istate.state[i]);
for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
return 0;
}
static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
{
int ret;
ret = mv_cesa_ahmac_sha1_init(req);
if (ret)
return ret;
return mv_cesa_ahash_finup(req);
}
struct ahash_alg mv_ahmac_sha1_alg = {
.init = mv_cesa_ahmac_sha1_init,
.update = mv_cesa_ahash_update,
.final = mv_cesa_ahash_final,
.finup = mv_cesa_ahash_finup,
.digest = mv_cesa_ahmac_sha1_digest,
.setkey = mv_cesa_ahmac_sha1_setkey,
.export = mv_cesa_sha1_export,
.import = mv_cesa_sha1_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "mv-hmac-sha1",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
.cra_init = mv_cesa_ahmac_cra_init,
.cra_module = THIS_MODULE,
}
}
};
static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct sha256_state istate, ostate;
int ret, i;
ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(istate.state); i++)
ctx->iv[i] = be32_to_cpu(istate.state[i]);
for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
return 0;
}
static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
{
struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct mv_cesa_op_ctx tmpl = { };
mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
mv_cesa_ahash_init(req, &tmpl, false);
return 0;
}
static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
{
int ret;
ret = mv_cesa_ahmac_sha256_init(req);
if (ret)
return ret;
return mv_cesa_ahash_finup(req);
}
struct ahash_alg mv_ahmac_sha256_alg = {
.init = mv_cesa_ahmac_sha256_init,
.update = mv_cesa_ahash_update,
.final = mv_cesa_ahash_final,
.finup = mv_cesa_ahash_finup,
.digest = mv_cesa_ahmac_sha256_digest,
.setkey = mv_cesa_ahmac_sha256_setkey,
.export = mv_cesa_sha256_export,
.import = mv_cesa_sha256_import,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "mv-hmac-sha256",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
.cra_init = mv_cesa_ahmac_cra_init,
.cra_module = THIS_MODULE,
}
}
};