2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* linux/mm/slab.c
|
|
|
|
* Written by Mark Hemment, 1996/97.
|
|
|
|
* (markhe@nextd.demon.co.uk)
|
|
|
|
*
|
|
|
|
* kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
|
|
|
|
*
|
|
|
|
* Major cleanup, different bufctl logic, per-cpu arrays
|
|
|
|
* (c) 2000 Manfred Spraul
|
|
|
|
*
|
|
|
|
* Cleanup, make the head arrays unconditional, preparation for NUMA
|
|
|
|
* (c) 2002 Manfred Spraul
|
|
|
|
*
|
|
|
|
* An implementation of the Slab Allocator as described in outline in;
|
|
|
|
* UNIX Internals: The New Frontiers by Uresh Vahalia
|
|
|
|
* Pub: Prentice Hall ISBN 0-13-101908-2
|
|
|
|
* or with a little more detail in;
|
|
|
|
* The Slab Allocator: An Object-Caching Kernel Memory Allocator
|
|
|
|
* Jeff Bonwick (Sun Microsystems).
|
|
|
|
* Presented at: USENIX Summer 1994 Technical Conference
|
|
|
|
*
|
|
|
|
* The memory is organized in caches, one cache for each object type.
|
|
|
|
* (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
|
|
|
|
* Each cache consists out of many slabs (they are small (usually one
|
|
|
|
* page long) and always contiguous), and each slab contains multiple
|
|
|
|
* initialized objects.
|
|
|
|
*
|
|
|
|
* This means, that your constructor is used only for newly allocated
|
|
|
|
* slabs and you must pass objects with the same intializations to
|
|
|
|
* kmem_cache_free.
|
|
|
|
*
|
|
|
|
* Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
|
|
|
|
* normal). If you need a special memory type, then must create a new
|
|
|
|
* cache for that memory type.
|
|
|
|
*
|
|
|
|
* In order to reduce fragmentation, the slabs are sorted in 3 groups:
|
|
|
|
* full slabs with 0 free objects
|
|
|
|
* partial slabs
|
|
|
|
* empty slabs with no allocated objects
|
|
|
|
*
|
|
|
|
* If partial slabs exist, then new allocations come from these slabs,
|
|
|
|
* otherwise from empty slabs or new slabs are allocated.
|
|
|
|
*
|
|
|
|
* kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
|
|
|
|
* during kmem_cache_destroy(). The caller must prevent concurrent allocs.
|
|
|
|
*
|
|
|
|
* Each cache has a short per-cpu head array, most allocs
|
|
|
|
* and frees go into that array, and if that array overflows, then 1/2
|
|
|
|
* of the entries in the array are given back into the global cache.
|
|
|
|
* The head array is strictly LIFO and should improve the cache hit rates.
|
|
|
|
* On SMP, it additionally reduces the spinlock operations.
|
|
|
|
*
|
|
|
|
* The c_cpuarray may not be read with enabled local interrupts -
|
|
|
|
* it's changed with a smp_call_function().
|
|
|
|
*
|
|
|
|
* SMP synchronization:
|
|
|
|
* constructors and destructors are called without any locking.
|
|
|
|
* Several members in kmem_cache_t and struct slab never change, they
|
|
|
|
* are accessed without any locking.
|
|
|
|
* The per-cpu arrays are never accessed from the wrong cpu, no locking,
|
|
|
|
* and local interrupts are disabled so slab code is preempt-safe.
|
|
|
|
* The non-constant members are protected with a per-cache irq spinlock.
|
|
|
|
*
|
|
|
|
* Many thanks to Mark Hemment, who wrote another per-cpu slab patch
|
|
|
|
* in 2000 - many ideas in the current implementation are derived from
|
|
|
|
* his patch.
|
|
|
|
*
|
|
|
|
* Further notes from the original documentation:
|
|
|
|
*
|
|
|
|
* 11 April '97. Started multi-threading - markhe
|
|
|
|
* The global cache-chain is protected by the semaphore 'cache_chain_sem'.
|
|
|
|
* The sem is only needed when accessing/extending the cache-chain, which
|
|
|
|
* can never happen inside an interrupt (kmem_cache_create(),
|
|
|
|
* kmem_cache_shrink() and kmem_cache_reap()).
|
|
|
|
*
|
|
|
|
* At present, each engine can be growing a cache. This should be blocked.
|
|
|
|
*
|
2005-09-10 04:03:32 +08:00
|
|
|
* 15 March 2005. NUMA slab allocator.
|
|
|
|
* Shai Fultheim <shai@scalex86.org>.
|
|
|
|
* Shobhit Dayal <shobhit@calsoftinc.com>
|
|
|
|
* Alok N Kataria <alokk@calsoftinc.com>
|
|
|
|
* Christoph Lameter <christoph@lameter.com>
|
|
|
|
*
|
|
|
|
* Modified the slab allocator to be node aware on NUMA systems.
|
|
|
|
* Each node has its own list of partial, free and full slabs.
|
|
|
|
* All object allocations for a node occur from node specific slab lists.
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/config.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/swap.h>
|
|
|
|
#include <linux/cache.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
#include <linux/seq_file.h>
|
|
|
|
#include <linux/notifier.h>
|
|
|
|
#include <linux/kallsyms.h>
|
|
|
|
#include <linux/cpu.h>
|
|
|
|
#include <linux/sysctl.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/rcupdate.h>
|
2005-06-23 15:09:02 +08:00
|
|
|
#include <linux/string.h>
|
2005-09-10 04:03:32 +08:00
|
|
|
#include <linux/nodemask.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include <asm/page.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
|
|
|
|
* SLAB_RED_ZONE & SLAB_POISON.
|
|
|
|
* 0 for faster, smaller code (especially in the critical paths).
|
|
|
|
*
|
|
|
|
* STATS - 1 to collect stats for /proc/slabinfo.
|
|
|
|
* 0 for faster, smaller code (especially in the critical paths).
|
|
|
|
*
|
|
|
|
* FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_SLAB
|
|
|
|
#define DEBUG 1
|
|
|
|
#define STATS 1
|
|
|
|
#define FORCED_DEBUG 1
|
|
|
|
#else
|
|
|
|
#define DEBUG 0
|
|
|
|
#define STATS 0
|
|
|
|
#define FORCED_DEBUG 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/* Shouldn't this be in a header file somewhere? */
|
|
|
|
#define BYTES_PER_WORD sizeof(void *)
|
|
|
|
|
|
|
|
#ifndef cache_line_size
|
|
|
|
#define cache_line_size() L1_CACHE_BYTES
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef ARCH_KMALLOC_MINALIGN
|
|
|
|
/*
|
|
|
|
* Enforce a minimum alignment for the kmalloc caches.
|
|
|
|
* Usually, the kmalloc caches are cache_line_size() aligned, except when
|
|
|
|
* DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
|
|
|
|
* Some archs want to perform DMA into kmalloc caches and need a guaranteed
|
|
|
|
* alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
|
|
|
|
* Note that this flag disables some debug features.
|
|
|
|
*/
|
|
|
|
#define ARCH_KMALLOC_MINALIGN 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef ARCH_SLAB_MINALIGN
|
|
|
|
/*
|
|
|
|
* Enforce a minimum alignment for all caches.
|
|
|
|
* Intended for archs that get misalignment faults even for BYTES_PER_WORD
|
|
|
|
* aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
|
|
|
|
* If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
|
|
|
|
* some debug features.
|
|
|
|
*/
|
|
|
|
#define ARCH_SLAB_MINALIGN 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef ARCH_KMALLOC_FLAGS
|
|
|
|
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Legal flag mask for kmem_cache_create(). */
|
|
|
|
#if DEBUG
|
|
|
|
# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
|
|
|
|
SLAB_POISON | SLAB_HWCACHE_ALIGN | \
|
|
|
|
SLAB_NO_REAP | SLAB_CACHE_DMA | \
|
|
|
|
SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
|
|
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
|
|
|
|
SLAB_DESTROY_BY_RCU)
|
|
|
|
#else
|
|
|
|
# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
|
|
|
|
SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
|
|
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
|
|
|
|
SLAB_DESTROY_BY_RCU)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* kmem_bufctl_t:
|
|
|
|
*
|
|
|
|
* Bufctl's are used for linking objs within a slab
|
|
|
|
* linked offsets.
|
|
|
|
*
|
|
|
|
* This implementation relies on "struct page" for locating the cache &
|
|
|
|
* slab an object belongs to.
|
|
|
|
* This allows the bufctl structure to be small (one int), but limits
|
|
|
|
* the number of objects a slab (not a cache) can contain when off-slab
|
|
|
|
* bufctls are used. The limit is the size of the largest general cache
|
|
|
|
* that does not use off-slab slabs.
|
|
|
|
* For 32bit archs with 4 kB pages, is this 56.
|
|
|
|
* This is not serious, as it is only for large objects, when it is unwise
|
|
|
|
* to have too many per slab.
|
|
|
|
* Note: This limit can be raised by introducing a general cache whose size
|
|
|
|
* is less than 512 (PAGE_SIZE<<3), but greater than 256.
|
|
|
|
*/
|
|
|
|
|
2005-09-04 06:55:03 +08:00
|
|
|
typedef unsigned int kmem_bufctl_t;
|
2005-04-17 06:20:36 +08:00
|
|
|
#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
|
|
|
|
#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
|
|
|
|
#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
|
|
|
|
|
|
|
|
/* Max number of objs-per-slab for caches which use off-slab slabs.
|
|
|
|
* Needed to avoid a possible looping condition in cache_grow().
|
|
|
|
*/
|
|
|
|
static unsigned long offslab_limit;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* struct slab
|
|
|
|
*
|
|
|
|
* Manages the objs in a slab. Placed either at the beginning of mem allocated
|
|
|
|
* for a slab, or allocated from an general cache.
|
|
|
|
* Slabs are chained into three list: fully used, partial, fully free slabs.
|
|
|
|
*/
|
|
|
|
struct slab {
|
|
|
|
struct list_head list;
|
|
|
|
unsigned long colouroff;
|
|
|
|
void *s_mem; /* including colour offset */
|
|
|
|
unsigned int inuse; /* num of objs active in slab */
|
|
|
|
kmem_bufctl_t free;
|
2005-09-10 04:03:32 +08:00
|
|
|
unsigned short nodeid;
|
2005-04-17 06:20:36 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* struct slab_rcu
|
|
|
|
*
|
|
|
|
* slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
|
|
|
|
* arrange for kmem_freepages to be called via RCU. This is useful if
|
|
|
|
* we need to approach a kernel structure obliquely, from its address
|
|
|
|
* obtained without the usual locking. We can lock the structure to
|
|
|
|
* stabilize it and check it's still at the given address, only if we
|
|
|
|
* can be sure that the memory has not been meanwhile reused for some
|
|
|
|
* other kind of object (which our subsystem's lock might corrupt).
|
|
|
|
*
|
|
|
|
* rcu_read_lock before reading the address, then rcu_read_unlock after
|
|
|
|
* taking the spinlock within the structure expected at that address.
|
|
|
|
*
|
|
|
|
* We assume struct slab_rcu can overlay struct slab when destroying.
|
|
|
|
*/
|
|
|
|
struct slab_rcu {
|
|
|
|
struct rcu_head head;
|
|
|
|
kmem_cache_t *cachep;
|
|
|
|
void *addr;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* struct array_cache
|
|
|
|
*
|
|
|
|
* Purpose:
|
|
|
|
* - LIFO ordering, to hand out cache-warm objects from _alloc
|
|
|
|
* - reduce the number of linked list operations
|
|
|
|
* - reduce spinlock operations
|
|
|
|
*
|
|
|
|
* The limit is stored in the per-cpu structure to reduce the data cache
|
|
|
|
* footprint.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
struct array_cache {
|
|
|
|
unsigned int avail;
|
|
|
|
unsigned int limit;
|
|
|
|
unsigned int batchcount;
|
|
|
|
unsigned int touched;
|
2005-09-10 04:03:32 +08:00
|
|
|
spinlock_t lock;
|
|
|
|
void *entry[0]; /*
|
|
|
|
* Must have this definition in here for the proper
|
|
|
|
* alignment of array_cache. Also simplifies accessing
|
|
|
|
* the entries.
|
|
|
|
* [0] is for gcc 2.95. It should really be [].
|
|
|
|
*/
|
2005-04-17 06:20:36 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
/* bootstrap: The caches do not work without cpuarrays anymore,
|
|
|
|
* but the cpuarrays are allocated from the generic caches...
|
|
|
|
*/
|
|
|
|
#define BOOT_CPUCACHE_ENTRIES 1
|
|
|
|
struct arraycache_init {
|
|
|
|
struct array_cache cache;
|
|
|
|
void * entries[BOOT_CPUCACHE_ENTRIES];
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
2005-09-10 04:03:32 +08:00
|
|
|
* The slab lists for all objects.
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
|
|
|
struct kmem_list3 {
|
|
|
|
struct list_head slabs_partial; /* partial list first, better asm code */
|
|
|
|
struct list_head slabs_full;
|
|
|
|
struct list_head slabs_free;
|
|
|
|
unsigned long free_objects;
|
|
|
|
unsigned long next_reap;
|
2005-09-10 04:03:32 +08:00
|
|
|
int free_touched;
|
|
|
|
unsigned int free_limit;
|
|
|
|
spinlock_t list_lock;
|
|
|
|
struct array_cache *shared; /* shared per node */
|
|
|
|
struct array_cache **alien; /* on other nodes */
|
2005-04-17 06:20:36 +08:00
|
|
|
};
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
/*
|
|
|
|
* Need this for bootstrapping a per node allocator.
|
|
|
|
*/
|
|
|
|
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
|
|
|
|
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
|
|
|
|
#define CACHE_CACHE 0
|
|
|
|
#define SIZE_AC 1
|
|
|
|
#define SIZE_L3 (1 + MAX_NUMNODES)
|
|
|
|
|
|
|
|
/*
|
2005-09-23 12:43:58 +08:00
|
|
|
* This function must be completely optimized away if
|
2005-09-10 04:03:32 +08:00
|
|
|
* a constant is passed to it. Mostly the same as
|
|
|
|
* what is in linux/slab.h except it returns an
|
|
|
|
* index.
|
|
|
|
*/
|
2005-09-23 12:43:58 +08:00
|
|
|
static __always_inline int index_of(const size_t size)
|
2005-09-10 04:03:32 +08:00
|
|
|
{
|
|
|
|
if (__builtin_constant_p(size)) {
|
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
#define CACHE(x) \
|
|
|
|
if (size <=x) \
|
|
|
|
return i; \
|
|
|
|
else \
|
|
|
|
i++;
|
|
|
|
#include "linux/kmalloc_sizes.h"
|
|
|
|
#undef CACHE
|
|
|
|
{
|
|
|
|
extern void __bad_size(void);
|
|
|
|
__bad_size();
|
|
|
|
}
|
2005-09-23 12:43:58 +08:00
|
|
|
} else
|
|
|
|
BUG();
|
2005-09-10 04:03:32 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define INDEX_AC index_of(sizeof(struct arraycache_init))
|
|
|
|
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
static inline void kmem_list3_init(struct kmem_list3 *parent)
|
|
|
|
{
|
|
|
|
INIT_LIST_HEAD(&parent->slabs_full);
|
|
|
|
INIT_LIST_HEAD(&parent->slabs_partial);
|
|
|
|
INIT_LIST_HEAD(&parent->slabs_free);
|
|
|
|
parent->shared = NULL;
|
|
|
|
parent->alien = NULL;
|
|
|
|
spin_lock_init(&parent->list_lock);
|
|
|
|
parent->free_objects = 0;
|
|
|
|
parent->free_touched = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define MAKE_LIST(cachep, listp, slab, nodeid) \
|
|
|
|
do { \
|
|
|
|
INIT_LIST_HEAD(listp); \
|
|
|
|
list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
|
|
|
|
do { \
|
|
|
|
MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
|
|
|
|
MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
|
|
|
|
MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
|
|
|
|
} while (0)
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* kmem_cache_t
|
|
|
|
*
|
|
|
|
* manages a cache.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct kmem_cache_s {
|
|
|
|
/* 1) per-cpu data, touched during every alloc/free */
|
|
|
|
struct array_cache *array[NR_CPUS];
|
|
|
|
unsigned int batchcount;
|
|
|
|
unsigned int limit;
|
2005-09-10 04:03:32 +08:00
|
|
|
unsigned int shared;
|
2005-04-17 06:20:36 +08:00
|
|
|
unsigned int objsize;
|
2005-09-10 04:03:32 +08:00
|
|
|
/* 2) touched by every alloc & free from the backend */
|
|
|
|
struct kmem_list3 *nodelists[MAX_NUMNODES];
|
2005-04-17 06:20:36 +08:00
|
|
|
unsigned int flags; /* constant flags */
|
|
|
|
unsigned int num; /* # of objs per slab */
|
|
|
|
spinlock_t spinlock;
|
|
|
|
|
|
|
|
/* 3) cache_grow/shrink */
|
|
|
|
/* order of pgs per slab (2^n) */
|
|
|
|
unsigned int gfporder;
|
|
|
|
|
|
|
|
/* force GFP flags, e.g. GFP_DMA */
|
|
|
|
unsigned int gfpflags;
|
|
|
|
|
|
|
|
size_t colour; /* cache colouring range */
|
|
|
|
unsigned int colour_off; /* colour offset */
|
|
|
|
unsigned int colour_next; /* cache colouring */
|
|
|
|
kmem_cache_t *slabp_cache;
|
|
|
|
unsigned int slab_size;
|
|
|
|
unsigned int dflags; /* dynamic flags */
|
|
|
|
|
|
|
|
/* constructor func */
|
|
|
|
void (*ctor)(void *, kmem_cache_t *, unsigned long);
|
|
|
|
|
|
|
|
/* de-constructor func */
|
|
|
|
void (*dtor)(void *, kmem_cache_t *, unsigned long);
|
|
|
|
|
|
|
|
/* 4) cache creation/removal */
|
|
|
|
const char *name;
|
|
|
|
struct list_head next;
|
|
|
|
|
|
|
|
/* 5) statistics */
|
|
|
|
#if STATS
|
|
|
|
unsigned long num_active;
|
|
|
|
unsigned long num_allocations;
|
|
|
|
unsigned long high_mark;
|
|
|
|
unsigned long grown;
|
|
|
|
unsigned long reaped;
|
|
|
|
unsigned long errors;
|
|
|
|
unsigned long max_freeable;
|
|
|
|
unsigned long node_allocs;
|
2005-09-10 04:03:32 +08:00
|
|
|
unsigned long node_frees;
|
2005-04-17 06:20:36 +08:00
|
|
|
atomic_t allochit;
|
|
|
|
atomic_t allocmiss;
|
|
|
|
atomic_t freehit;
|
|
|
|
atomic_t freemiss;
|
|
|
|
#endif
|
|
|
|
#if DEBUG
|
|
|
|
int dbghead;
|
|
|
|
int reallen;
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
#define CFLGS_OFF_SLAB (0x80000000UL)
|
|
|
|
#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
|
|
|
|
|
|
|
|
#define BATCHREFILL_LIMIT 16
|
|
|
|
/* Optimization question: fewer reaps means less
|
|
|
|
* probability for unnessary cpucache drain/refill cycles.
|
|
|
|
*
|
|
|
|
* OTHO the cpuarrays can contain lots of objects,
|
|
|
|
* which could lock up otherwise freeable slabs.
|
|
|
|
*/
|
|
|
|
#define REAPTIMEOUT_CPUC (2*HZ)
|
|
|
|
#define REAPTIMEOUT_LIST3 (4*HZ)
|
|
|
|
|
|
|
|
#if STATS
|
|
|
|
#define STATS_INC_ACTIVE(x) ((x)->num_active++)
|
|
|
|
#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
|
|
|
|
#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
|
|
|
|
#define STATS_INC_GROWN(x) ((x)->grown++)
|
|
|
|
#define STATS_INC_REAPED(x) ((x)->reaped++)
|
|
|
|
#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
|
|
|
|
(x)->high_mark = (x)->num_active; \
|
|
|
|
} while (0)
|
|
|
|
#define STATS_INC_ERR(x) ((x)->errors++)
|
|
|
|
#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
|
2005-09-10 04:03:32 +08:00
|
|
|
#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
|
2005-04-17 06:20:36 +08:00
|
|
|
#define STATS_SET_FREEABLE(x, i) \
|
|
|
|
do { if ((x)->max_freeable < i) \
|
|
|
|
(x)->max_freeable = i; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
|
|
|
|
#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
|
|
|
|
#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
|
|
|
|
#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
|
|
|
|
#else
|
|
|
|
#define STATS_INC_ACTIVE(x) do { } while (0)
|
|
|
|
#define STATS_DEC_ACTIVE(x) do { } while (0)
|
|
|
|
#define STATS_INC_ALLOCED(x) do { } while (0)
|
|
|
|
#define STATS_INC_GROWN(x) do { } while (0)
|
|
|
|
#define STATS_INC_REAPED(x) do { } while (0)
|
|
|
|
#define STATS_SET_HIGH(x) do { } while (0)
|
|
|
|
#define STATS_INC_ERR(x) do { } while (0)
|
|
|
|
#define STATS_INC_NODEALLOCS(x) do { } while (0)
|
2005-09-10 04:03:32 +08:00
|
|
|
#define STATS_INC_NODEFREES(x) do { } while (0)
|
2005-04-17 06:20:36 +08:00
|
|
|
#define STATS_SET_FREEABLE(x, i) \
|
|
|
|
do { } while (0)
|
|
|
|
|
|
|
|
#define STATS_INC_ALLOCHIT(x) do { } while (0)
|
|
|
|
#define STATS_INC_ALLOCMISS(x) do { } while (0)
|
|
|
|
#define STATS_INC_FREEHIT(x) do { } while (0)
|
|
|
|
#define STATS_INC_FREEMISS(x) do { } while (0)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if DEBUG
|
|
|
|
/* Magic nums for obj red zoning.
|
|
|
|
* Placed in the first word before and the first word after an obj.
|
|
|
|
*/
|
|
|
|
#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
|
|
|
|
#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
|
|
|
|
|
|
|
|
/* ...and for poisoning */
|
|
|
|
#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
|
|
|
|
#define POISON_FREE 0x6b /* for use-after-free poisoning */
|
|
|
|
#define POISON_END 0xa5 /* end-byte of poisoning */
|
|
|
|
|
|
|
|
/* memory layout of objects:
|
|
|
|
* 0 : objp
|
|
|
|
* 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
|
|
|
|
* the end of an object is aligned with the end of the real
|
|
|
|
* allocation. Catches writes behind the end of the allocation.
|
|
|
|
* cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
|
|
|
|
* redzone word.
|
|
|
|
* cachep->dbghead: The real object.
|
|
|
|
* cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
|
|
|
|
* cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
|
|
|
|
*/
|
|
|
|
static int obj_dbghead(kmem_cache_t *cachep)
|
|
|
|
{
|
|
|
|
return cachep->dbghead;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int obj_reallen(kmem_cache_t *cachep)
|
|
|
|
{
|
|
|
|
return cachep->reallen;
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
|
|
|
|
{
|
|
|
|
BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
|
|
|
|
return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
|
|
|
|
{
|
|
|
|
BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
|
|
|
|
if (cachep->flags & SLAB_STORE_USER)
|
|
|
|
return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD);
|
|
|
|
return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void **dbg_userword(kmem_cache_t *cachep, void *objp)
|
|
|
|
{
|
|
|
|
BUG_ON(!(cachep->flags & SLAB_STORE_USER));
|
|
|
|
return (void**)(objp+cachep->objsize-BYTES_PER_WORD);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
#define obj_dbghead(x) 0
|
|
|
|
#define obj_reallen(cachep) (cachep->objsize)
|
|
|
|
#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
|
|
|
|
#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
|
|
|
|
#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Maximum size of an obj (in 2^order pages)
|
|
|
|
* and absolute limit for the gfp order.
|
|
|
|
*/
|
|
|
|
#if defined(CONFIG_LARGE_ALLOCS)
|
|
|
|
#define MAX_OBJ_ORDER 13 /* up to 32Mb */
|
|
|
|
#define MAX_GFP_ORDER 13 /* up to 32Mb */
|
|
|
|
#elif defined(CONFIG_MMU)
|
|
|
|
#define MAX_OBJ_ORDER 5 /* 32 pages */
|
|
|
|
#define MAX_GFP_ORDER 5 /* 32 pages */
|
|
|
|
#else
|
|
|
|
#define MAX_OBJ_ORDER 8 /* up to 1Mb */
|
|
|
|
#define MAX_GFP_ORDER 8 /* up to 1Mb */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Do not go above this order unless 0 objects fit into the slab.
|
|
|
|
*/
|
|
|
|
#define BREAK_GFP_ORDER_HI 1
|
|
|
|
#define BREAK_GFP_ORDER_LO 0
|
|
|
|
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
|
|
|
|
|
|
|
|
/* Macros for storing/retrieving the cachep and or slab from the
|
|
|
|
* global 'mem_map'. These are used to find the slab an obj belongs to.
|
|
|
|
* With kfree(), these are used to find the cache which an obj belongs to.
|
|
|
|
*/
|
|
|
|
#define SET_PAGE_CACHE(pg,x) ((pg)->lru.next = (struct list_head *)(x))
|
|
|
|
#define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->lru.next)
|
|
|
|
#define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x))
|
|
|
|
#define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev)
|
|
|
|
|
|
|
|
/* These are the default caches for kmalloc. Custom caches can have other sizes. */
|
|
|
|
struct cache_sizes malloc_sizes[] = {
|
|
|
|
#define CACHE(x) { .cs_size = (x) },
|
|
|
|
#include <linux/kmalloc_sizes.h>
|
|
|
|
CACHE(ULONG_MAX)
|
|
|
|
#undef CACHE
|
|
|
|
};
|
|
|
|
EXPORT_SYMBOL(malloc_sizes);
|
|
|
|
|
|
|
|
/* Must match cache_sizes above. Out of line to keep cache footprint low. */
|
|
|
|
struct cache_names {
|
|
|
|
char *name;
|
|
|
|
char *name_dma;
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct cache_names __initdata cache_names[] = {
|
|
|
|
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
|
|
|
|
#include <linux/kmalloc_sizes.h>
|
|
|
|
{ NULL, }
|
|
|
|
#undef CACHE
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct arraycache_init initarray_cache __initdata =
|
|
|
|
{ { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
|
|
|
|
static struct arraycache_init initarray_generic =
|
|
|
|
{ { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
|
|
|
|
|
|
|
|
/* internal cache of cache description objs */
|
|
|
|
static kmem_cache_t cache_cache = {
|
|
|
|
.batchcount = 1,
|
|
|
|
.limit = BOOT_CPUCACHE_ENTRIES,
|
2005-09-10 04:03:32 +08:00
|
|
|
.shared = 1,
|
2005-04-17 06:20:36 +08:00
|
|
|
.objsize = sizeof(kmem_cache_t),
|
|
|
|
.flags = SLAB_NO_REAP,
|
|
|
|
.spinlock = SPIN_LOCK_UNLOCKED,
|
|
|
|
.name = "kmem_cache",
|
|
|
|
#if DEBUG
|
|
|
|
.reallen = sizeof(kmem_cache_t),
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Guard access to the cache-chain. */
|
|
|
|
static struct semaphore cache_chain_sem;
|
|
|
|
static struct list_head cache_chain;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* vm_enough_memory() looks at this to determine how many
|
|
|
|
* slab-allocated pages are possibly freeable under pressure
|
|
|
|
*
|
|
|
|
* SLAB_RECLAIM_ACCOUNT turns this on per-slab
|
|
|
|
*/
|
|
|
|
atomic_t slab_reclaim_pages;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* chicken and egg problem: delay the per-cpu array allocation
|
|
|
|
* until the general caches are up.
|
|
|
|
*/
|
|
|
|
static enum {
|
|
|
|
NONE,
|
2005-09-10 04:03:32 +08:00
|
|
|
PARTIAL_AC,
|
|
|
|
PARTIAL_L3,
|
2005-04-17 06:20:36 +08:00
|
|
|
FULL
|
|
|
|
} g_cpucache_up;
|
|
|
|
|
|
|
|
static DEFINE_PER_CPU(struct work_struct, reap_work);
|
|
|
|
|
2005-09-23 12:44:02 +08:00
|
|
|
static void free_block(kmem_cache_t* cachep, void** objpp, int len, int node);
|
2005-04-17 06:20:36 +08:00
|
|
|
static void enable_cpucache (kmem_cache_t *cachep);
|
|
|
|
static void cache_reap (void *unused);
|
2005-09-10 04:03:32 +08:00
|
|
|
static int __node_shrink(kmem_cache_t *cachep, int node);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
static inline struct array_cache *ac_data(kmem_cache_t *cachep)
|
|
|
|
{
|
|
|
|
return cachep->array[smp_processor_id()];
|
|
|
|
}
|
|
|
|
|
2005-10-07 14:46:04 +08:00
|
|
|
static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
struct cache_sizes *csizep = malloc_sizes;
|
|
|
|
|
|
|
|
#if DEBUG
|
|
|
|
/* This happens if someone tries to call
|
|
|
|
* kmem_cache_create(), or __kmalloc(), before
|
|
|
|
* the generic caches are initialized.
|
|
|
|
*/
|
[PATCH] Fix slab BUG_ON() triggered by change in array cache size
With the new changes that we made in the initialization of the slab
allocator, we first setup the cache from which array caches are allocated,
and then the cache, from which kmem_list3's are allocated.
Now if the array cache comes from a cache in which objsize > 32, (in this
instance size-64) then, first size-64 cache will be allocated and then the
size-128 (if this is the cache from which kmem_list3's are going to be
allocated).
So with these new changes, we are not guaranteed that we will be
initializing the malloc_sizes array in a serialized order. Thus there is
a bug in __find_general_cachep, as we are checking whether the first
cache_sizes ptr is NULL.
This is replaced by checking whether the array-cache cache is initialized.
Attached is a patch which does that. Boots fine on a x86-64, with
DEBUG_SPIN, DEBUG_SLAB, and preempt.
Attached is a patch which does that. Boots fine on a x86-64, with
DEBUG_SPIN, DEBUG_SLAB, and preempt.Thanks & Regards, Alok
Signed-off-by: Alok N Kataria <alokk@calsoftinc.com>
Signed-off-by: Shobhit Dayal <shobhitdayal.com>
Cc: Manfred Spraul <manfred@colorfullife.com>
Cc: Christoph Lameter <christoph@lameter.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-15 03:17:53 +08:00
|
|
|
BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
|
2005-04-17 06:20:36 +08:00
|
|
|
#endif
|
|
|
|
while (size > csizep->cs_size)
|
|
|
|
csizep++;
|
|
|
|
|
|
|
|
/*
|
2005-09-04 06:54:54 +08:00
|
|
|
* Really subtle: The last entry with cs->cs_size==ULONG_MAX
|
2005-04-17 06:20:36 +08:00
|
|
|
* has cs_{dma,}cachep==NULL. Thus no special case
|
|
|
|
* for large kmalloc calls required.
|
|
|
|
*/
|
|
|
|
if (unlikely(gfpflags & GFP_DMA))
|
|
|
|
return csizep->cs_dmacachep;
|
|
|
|
return csizep->cs_cachep;
|
|
|
|
}
|
|
|
|
|
2005-10-07 14:46:04 +08:00
|
|
|
kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
|
2005-05-01 23:58:38 +08:00
|
|
|
{
|
|
|
|
return __find_general_cachep(size, gfpflags);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmem_find_general_cachep);
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* Cal the num objs, wastage, and bytes left over for a given slab size. */
|
|
|
|
static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
|
|
|
|
int flags, size_t *left_over, unsigned int *num)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
size_t wastage = PAGE_SIZE<<gfporder;
|
|
|
|
size_t extra = 0;
|
|
|
|
size_t base = 0;
|
|
|
|
|
|
|
|
if (!(flags & CFLGS_OFF_SLAB)) {
|
|
|
|
base = sizeof(struct slab);
|
|
|
|
extra = sizeof(kmem_bufctl_t);
|
|
|
|
}
|
|
|
|
i = 0;
|
|
|
|
while (i*size + ALIGN(base+i*extra, align) <= wastage)
|
|
|
|
i++;
|
|
|
|
if (i > 0)
|
|
|
|
i--;
|
|
|
|
|
|
|
|
if (i > SLAB_LIMIT)
|
|
|
|
i = SLAB_LIMIT;
|
|
|
|
|
|
|
|
*num = i;
|
|
|
|
wastage -= i*size;
|
|
|
|
wastage -= ALIGN(base+i*extra, align);
|
|
|
|
*left_over = wastage;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
|
|
|
|
|
|
|
|
static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
|
|
|
|
{
|
|
|
|
printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
|
|
|
|
function, cachep->name, msg);
|
|
|
|
dump_stack();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
|
|
|
|
* via the workqueue/eventd.
|
|
|
|
* Add the CPU number into the expiration time to minimize the possibility of
|
|
|
|
* the CPUs getting into lockstep and contending for the global cache chain
|
|
|
|
* lock.
|
|
|
|
*/
|
|
|
|
static void __devinit start_cpu_timer(int cpu)
|
|
|
|
{
|
|
|
|
struct work_struct *reap_work = &per_cpu(reap_work, cpu);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When this gets called from do_initcalls via cpucache_init(),
|
|
|
|
* init_workqueues() has already run, so keventd will be setup
|
|
|
|
* at that time.
|
|
|
|
*/
|
|
|
|
if (keventd_up() && reap_work->func == NULL) {
|
|
|
|
INIT_WORK(reap_work, cache_reap, NULL);
|
|
|
|
schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
static struct array_cache *alloc_arraycache(int node, int entries,
|
2005-04-17 06:20:36 +08:00
|
|
|
int batchcount)
|
|
|
|
{
|
|
|
|
int memsize = sizeof(void*)*entries+sizeof(struct array_cache);
|
|
|
|
struct array_cache *nc = NULL;
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
nc = kmalloc_node(memsize, GFP_KERNEL, node);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (nc) {
|
|
|
|
nc->avail = 0;
|
|
|
|
nc->limit = entries;
|
|
|
|
nc->batchcount = batchcount;
|
|
|
|
nc->touched = 0;
|
2005-09-10 04:03:32 +08:00
|
|
|
spin_lock_init(&nc->lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
return nc;
|
|
|
|
}
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
static inline struct array_cache **alloc_alien_cache(int node, int limit)
|
|
|
|
{
|
|
|
|
struct array_cache **ac_ptr;
|
|
|
|
int memsize = sizeof(void*)*MAX_NUMNODES;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (limit > 1)
|
|
|
|
limit = 12;
|
|
|
|
ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
|
|
|
|
if (ac_ptr) {
|
|
|
|
for_each_node(i) {
|
|
|
|
if (i == node || !node_online(i)) {
|
|
|
|
ac_ptr[i] = NULL;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
|
|
|
|
if (!ac_ptr[i]) {
|
|
|
|
for (i--; i <=0; i--)
|
|
|
|
kfree(ac_ptr[i]);
|
|
|
|
kfree(ac_ptr);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ac_ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void free_alien_cache(struct array_cache **ac_ptr)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!ac_ptr)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for_each_node(i)
|
|
|
|
kfree(ac_ptr[i]);
|
|
|
|
|
|
|
|
kfree(ac_ptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node)
|
|
|
|
{
|
|
|
|
struct kmem_list3 *rl3 = cachep->nodelists[node];
|
|
|
|
|
|
|
|
if (ac->avail) {
|
|
|
|
spin_lock(&rl3->list_lock);
|
2005-09-23 12:44:02 +08:00
|
|
|
free_block(cachep, ac->entry, ac->avail, node);
|
2005-09-10 04:03:32 +08:00
|
|
|
ac->avail = 0;
|
|
|
|
spin_unlock(&rl3->list_lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
|
|
|
|
{
|
|
|
|
int i=0;
|
|
|
|
struct array_cache *ac;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
for_each_online_node(i) {
|
|
|
|
ac = l3->alien[i];
|
|
|
|
if (ac) {
|
|
|
|
spin_lock_irqsave(&ac->lock, flags);
|
|
|
|
__drain_alien_cache(cachep, ac, i);
|
|
|
|
spin_unlock_irqrestore(&ac->lock, flags);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define alloc_alien_cache(node, limit) do { } while (0)
|
|
|
|
#define free_alien_cache(ac_ptr) do { } while (0)
|
|
|
|
#define drain_alien_cache(cachep, l3) do { } while (0)
|
|
|
|
#endif
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
static int __devinit cpuup_callback(struct notifier_block *nfb,
|
|
|
|
unsigned long action, void *hcpu)
|
|
|
|
{
|
|
|
|
long cpu = (long)hcpu;
|
|
|
|
kmem_cache_t* cachep;
|
2005-09-10 04:03:32 +08:00
|
|
|
struct kmem_list3 *l3 = NULL;
|
|
|
|
int node = cpu_to_node(cpu);
|
|
|
|
int memsize = sizeof(struct kmem_list3);
|
|
|
|
struct array_cache *nc = NULL;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
switch (action) {
|
|
|
|
case CPU_UP_PREPARE:
|
|
|
|
down(&cache_chain_sem);
|
2005-09-10 04:03:32 +08:00
|
|
|
/* we need to do this right in the beginning since
|
|
|
|
* alloc_arraycache's are going to use this list.
|
|
|
|
* kmalloc_node allows us to add the slab to the right
|
|
|
|
* kmem_list3 and not this cpu's kmem_list3
|
|
|
|
*/
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
list_for_each_entry(cachep, &cache_chain, next) {
|
2005-09-10 04:03:32 +08:00
|
|
|
/* setup the size64 kmemlist for cpu before we can
|
|
|
|
* begin anything. Make sure some other cpu on this
|
|
|
|
* node has not already allocated this
|
|
|
|
*/
|
|
|
|
if (!cachep->nodelists[node]) {
|
|
|
|
if (!(l3 = kmalloc_node(memsize,
|
|
|
|
GFP_KERNEL, node)))
|
|
|
|
goto bad;
|
|
|
|
kmem_list3_init(l3);
|
|
|
|
l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
|
|
|
|
((unsigned long)cachep)%REAPTIMEOUT_LIST3;
|
|
|
|
|
|
|
|
cachep->nodelists[node] = l3;
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
spin_lock_irq(&cachep->nodelists[node]->list_lock);
|
|
|
|
cachep->nodelists[node]->free_limit =
|
|
|
|
(1 + nr_cpus_node(node)) *
|
|
|
|
cachep->batchcount + cachep->num;
|
|
|
|
spin_unlock_irq(&cachep->nodelists[node]->list_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now we can go ahead with allocating the shared array's
|
|
|
|
& array cache's */
|
|
|
|
list_for_each_entry(cachep, &cache_chain, next) {
|
|
|
|
nc = alloc_arraycache(node, cachep->limit,
|
|
|
|
cachep->batchcount);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (!nc)
|
|
|
|
goto bad;
|
|
|
|
cachep->array[cpu] = nc;
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
l3 = cachep->nodelists[node];
|
|
|
|
BUG_ON(!l3);
|
|
|
|
if (!l3->shared) {
|
|
|
|
if (!(nc = alloc_arraycache(node,
|
|
|
|
cachep->shared*cachep->batchcount,
|
|
|
|
0xbaadf00d)))
|
|
|
|
goto bad;
|
|
|
|
|
|
|
|
/* we are serialised from CPU_DEAD or
|
|
|
|
CPU_UP_CANCELLED by the cpucontrol lock */
|
|
|
|
l3->shared = nc;
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
up(&cache_chain_sem);
|
|
|
|
break;
|
|
|
|
case CPU_ONLINE:
|
|
|
|
start_cpu_timer(cpu);
|
|
|
|
break;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
case CPU_DEAD:
|
|
|
|
/* fall thru */
|
|
|
|
case CPU_UP_CANCELED:
|
|
|
|
down(&cache_chain_sem);
|
|
|
|
|
|
|
|
list_for_each_entry(cachep, &cache_chain, next) {
|
|
|
|
struct array_cache *nc;
|
2005-09-10 04:03:32 +08:00
|
|
|
cpumask_t mask;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
mask = node_to_cpumask(node);
|
2005-04-17 06:20:36 +08:00
|
|
|
spin_lock_irq(&cachep->spinlock);
|
|
|
|
/* cpu is dead; no one can alloc from it. */
|
|
|
|
nc = cachep->array[cpu];
|
|
|
|
cachep->array[cpu] = NULL;
|
2005-09-10 04:03:32 +08:00
|
|
|
l3 = cachep->nodelists[node];
|
|
|
|
|
|
|
|
if (!l3)
|
|
|
|
goto unlock_cache;
|
|
|
|
|
|
|
|
spin_lock(&l3->list_lock);
|
|
|
|
|
|
|
|
/* Free limit for this kmem_list3 */
|
|
|
|
l3->free_limit -= cachep->batchcount;
|
|
|
|
if (nc)
|
2005-09-23 12:44:02 +08:00
|
|
|
free_block(cachep, nc->entry, nc->avail, node);
|
2005-09-10 04:03:32 +08:00
|
|
|
|
|
|
|
if (!cpus_empty(mask)) {
|
|
|
|
spin_unlock(&l3->list_lock);
|
|
|
|
goto unlock_cache;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (l3->shared) {
|
|
|
|
free_block(cachep, l3->shared->entry,
|
2005-09-23 12:44:02 +08:00
|
|
|
l3->shared->avail, node);
|
2005-09-10 04:03:32 +08:00
|
|
|
kfree(l3->shared);
|
|
|
|
l3->shared = NULL;
|
|
|
|
}
|
|
|
|
if (l3->alien) {
|
|
|
|
drain_alien_cache(cachep, l3);
|
|
|
|
free_alien_cache(l3->alien);
|
|
|
|
l3->alien = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* free slabs belonging to this node */
|
|
|
|
if (__node_shrink(cachep, node)) {
|
|
|
|
cachep->nodelists[node] = NULL;
|
|
|
|
spin_unlock(&l3->list_lock);
|
|
|
|
kfree(l3);
|
|
|
|
} else {
|
|
|
|
spin_unlock(&l3->list_lock);
|
|
|
|
}
|
|
|
|
unlock_cache:
|
2005-04-17 06:20:36 +08:00
|
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
|
|
kfree(nc);
|
|
|
|
}
|
|
|
|
up(&cache_chain_sem);
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
|
|
bad:
|
|
|
|
up(&cache_chain_sem);
|
|
|
|
return NOTIFY_BAD;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
/*
|
|
|
|
* swap the static kmem_list3 with kmalloced memory
|
|
|
|
*/
|
|
|
|
static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list,
|
|
|
|
int nodeid)
|
|
|
|
{
|
|
|
|
struct kmem_list3 *ptr;
|
|
|
|
|
|
|
|
BUG_ON(cachep->nodelists[nodeid] != list);
|
|
|
|
ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
|
|
|
|
BUG_ON(!ptr);
|
|
|
|
|
|
|
|
local_irq_disable();
|
|
|
|
memcpy(ptr, list, sizeof(struct kmem_list3));
|
|
|
|
MAKE_ALL_LISTS(cachep, ptr, nodeid);
|
|
|
|
cachep->nodelists[nodeid] = ptr;
|
|
|
|
local_irq_enable();
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* Initialisation.
|
|
|
|
* Called after the gfp() functions have been enabled, and before smp_init().
|
|
|
|
*/
|
|
|
|
void __init kmem_cache_init(void)
|
|
|
|
{
|
|
|
|
size_t left_over;
|
|
|
|
struct cache_sizes *sizes;
|
|
|
|
struct cache_names *names;
|
2005-09-10 04:03:32 +08:00
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < NUM_INIT_LISTS; i++) {
|
|
|
|
kmem_list3_init(&initkmem_list3[i]);
|
|
|
|
if (i < MAX_NUMNODES)
|
|
|
|
cache_cache.nodelists[i] = NULL;
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Fragmentation resistance on low memory - only use bigger
|
|
|
|
* page orders on machines with more than 32MB of memory.
|
|
|
|
*/
|
|
|
|
if (num_physpages > (32 << 20) >> PAGE_SHIFT)
|
|
|
|
slab_break_gfp_order = BREAK_GFP_ORDER_HI;
|
|
|
|
|
|
|
|
/* Bootstrap is tricky, because several objects are allocated
|
|
|
|
* from caches that do not exist yet:
|
|
|
|
* 1) initialize the cache_cache cache: it contains the kmem_cache_t
|
|
|
|
* structures of all caches, except cache_cache itself: cache_cache
|
|
|
|
* is statically allocated.
|
2005-09-10 04:03:32 +08:00
|
|
|
* Initially an __init data area is used for the head array and the
|
|
|
|
* kmem_list3 structures, it's replaced with a kmalloc allocated
|
|
|
|
* array at the end of the bootstrap.
|
2005-04-17 06:20:36 +08:00
|
|
|
* 2) Create the first kmalloc cache.
|
2005-09-10 04:03:32 +08:00
|
|
|
* The kmem_cache_t for the new cache is allocated normally.
|
|
|
|
* An __init data area is used for the head array.
|
|
|
|
* 3) Create the remaining kmalloc caches, with minimally sized
|
|
|
|
* head arrays.
|
2005-04-17 06:20:36 +08:00
|
|
|
* 4) Replace the __init data head arrays for cache_cache and the first
|
|
|
|
* kmalloc cache with kmalloc allocated arrays.
|
2005-09-10 04:03:32 +08:00
|
|
|
* 5) Replace the __init data for kmem_list3 for cache_cache and
|
|
|
|
* the other cache's with kmalloc allocated memory.
|
|
|
|
* 6) Resize the head arrays of the kmalloc caches to their final sizes.
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
/* 1) create the cache_cache */
|
|
|
|
init_MUTEX(&cache_chain_sem);
|
|
|
|
INIT_LIST_HEAD(&cache_chain);
|
|
|
|
list_add(&cache_cache.next, &cache_chain);
|
|
|
|
cache_cache.colour_off = cache_line_size();
|
|
|
|
cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
|
2005-09-10 04:03:32 +08:00
|
|
|
cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
|
|
|
|
|
|
|
|
cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
|
|
|
|
&left_over, &cache_cache.num);
|
|
|
|
if (!cache_cache.num)
|
|
|
|
BUG();
|
|
|
|
|
|
|
|
cache_cache.colour = left_over/cache_cache.colour_off;
|
|
|
|
cache_cache.colour_next = 0;
|
|
|
|
cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) +
|
|
|
|
sizeof(struct slab), cache_line_size());
|
|
|
|
|
|
|
|
/* 2+3) create the kmalloc caches */
|
|
|
|
sizes = malloc_sizes;
|
|
|
|
names = cache_names;
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
/* Initialize the caches that provide memory for the array cache
|
|
|
|
* and the kmem_list3 structures first.
|
|
|
|
* Without this, further allocations will bug
|
|
|
|
*/
|
|
|
|
|
|
|
|
sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
|
|
|
|
sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN,
|
|
|
|
(ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
|
|
|
|
|
|
|
|
if (INDEX_AC != INDEX_L3)
|
|
|
|
sizes[INDEX_L3].cs_cachep =
|
|
|
|
kmem_cache_create(names[INDEX_L3].name,
|
|
|
|
sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN,
|
|
|
|
(ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
while (sizes->cs_size != ULONG_MAX) {
|
2005-09-10 04:03:32 +08:00
|
|
|
/*
|
|
|
|
* For performance, all the general caches are L1 aligned.
|
2005-04-17 06:20:36 +08:00
|
|
|
* This should be particularly beneficial on SMP boxes, as it
|
|
|
|
* eliminates "false sharing".
|
|
|
|
* Note for systems short on memory removing the alignment will
|
2005-09-10 04:03:32 +08:00
|
|
|
* allow tighter packing of the smaller caches.
|
|
|
|
*/
|
|
|
|
if(!sizes->cs_cachep)
|
|
|
|
sizes->cs_cachep = kmem_cache_create(names->name,
|
|
|
|
sizes->cs_size, ARCH_KMALLOC_MINALIGN,
|
|
|
|
(ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/* Inc off-slab bufctl limit until the ceiling is hit. */
|
|
|
|
if (!(OFF_SLAB(sizes->cs_cachep))) {
|
|
|
|
offslab_limit = sizes->cs_size-sizeof(struct slab);
|
|
|
|
offslab_limit /= sizeof(kmem_bufctl_t);
|
|
|
|
}
|
|
|
|
|
|
|
|
sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
|
|
|
|
sizes->cs_size, ARCH_KMALLOC_MINALIGN,
|
|
|
|
(ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC),
|
|
|
|
NULL, NULL);
|
|
|
|
|
|
|
|
sizes++;
|
|
|
|
names++;
|
|
|
|
}
|
|
|
|
/* 4) Replace the bootstrap head arrays */
|
|
|
|
{
|
|
|
|
void * ptr;
|
2005-09-10 04:03:32 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
|
2005-09-10 04:03:32 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
local_irq_disable();
|
|
|
|
BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
|
2005-09-10 04:03:32 +08:00
|
|
|
memcpy(ptr, ac_data(&cache_cache),
|
|
|
|
sizeof(struct arraycache_init));
|
2005-04-17 06:20:36 +08:00
|
|
|
cache_cache.array[smp_processor_id()] = ptr;
|
|
|
|
local_irq_enable();
|
2005-09-10 04:03:32 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
|
2005-09-10 04:03:32 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
local_irq_disable();
|
2005-09-10 04:03:32 +08:00
|
|
|
BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
|
|
|
|
!= &initarray_generic.cache);
|
|
|
|
memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
|
2005-04-17 06:20:36 +08:00
|
|
|
sizeof(struct arraycache_init));
|
2005-09-10 04:03:32 +08:00
|
|
|
malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
|
|
|
|
ptr;
|
2005-04-17 06:20:36 +08:00
|
|
|
local_irq_enable();
|
|
|
|
}
|
2005-09-10 04:03:32 +08:00
|
|
|
/* 5) Replace the bootstrap kmem_list3's */
|
|
|
|
{
|
|
|
|
int node;
|
|
|
|
/* Replace the static kmem_list3 structures for the boot cpu */
|
|
|
|
init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
|
|
|
|
numa_node_id());
|
|
|
|
|
|
|
|
for_each_online_node(node) {
|
|
|
|
init_list(malloc_sizes[INDEX_AC].cs_cachep,
|
|
|
|
&initkmem_list3[SIZE_AC+node], node);
|
|
|
|
|
|
|
|
if (INDEX_AC != INDEX_L3) {
|
|
|
|
init_list(malloc_sizes[INDEX_L3].cs_cachep,
|
|
|
|
&initkmem_list3[SIZE_L3+node],
|
|
|
|
node);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
/* 6) resize the head arrays to their final sizes */
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
kmem_cache_t *cachep;
|
|
|
|
down(&cache_chain_sem);
|
|
|
|
list_for_each_entry(cachep, &cache_chain, next)
|
|
|
|
enable_cpucache(cachep);
|
|
|
|
up(&cache_chain_sem);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Done! */
|
|
|
|
g_cpucache_up = FULL;
|
|
|
|
|
|
|
|
/* Register a cpu startup notifier callback
|
|
|
|
* that initializes ac_data for all new cpus
|
|
|
|
*/
|
|
|
|
register_cpu_notifier(&cpucache_notifier);
|
|
|
|
|
|
|
|
/* The reap timers are started later, with a module init call:
|
|
|
|
* That part of the kernel is not yet operational.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init cpucache_init(void)
|
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Register the timers that return unneeded
|
|
|
|
* pages to gfp.
|
|
|
|
*/
|
2005-09-10 04:03:32 +08:00
|
|
|
for_each_online_cpu(cpu)
|
|
|
|
start_cpu_timer(cpu);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
__initcall(cpucache_init);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Interface to system's page allocator. No need to hold the cache-lock.
|
|
|
|
*
|
|
|
|
* If we requested dmaable memory, we will get it. Even if we
|
|
|
|
* did not request dmaable memory, we might get it, but that
|
|
|
|
* would be relatively rare and ignorable.
|
|
|
|
*/
|
2005-10-07 14:46:04 +08:00
|
|
|
static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
void *addr;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
flags |= cachep->gfpflags;
|
|
|
|
if (likely(nodeid == -1)) {
|
|
|
|
page = alloc_pages(flags, cachep->gfporder);
|
|
|
|
} else {
|
|
|
|
page = alloc_pages_node(nodeid, flags, cachep->gfporder);
|
|
|
|
}
|
|
|
|
if (!page)
|
|
|
|
return NULL;
|
|
|
|
addr = page_address(page);
|
|
|
|
|
|
|
|
i = (1 << cachep->gfporder);
|
|
|
|
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
|
|
|
|
atomic_add(i, &slab_reclaim_pages);
|
|
|
|
add_page_state(nr_slab, i);
|
|
|
|
while (i--) {
|
|
|
|
SetPageSlab(page);
|
|
|
|
page++;
|
|
|
|
}
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Interface to system's page release.
|
|
|
|
*/
|
|
|
|
static void kmem_freepages(kmem_cache_t *cachep, void *addr)
|
|
|
|
{
|
|
|
|
unsigned long i = (1<<cachep->gfporder);
|
|
|
|
struct page *page = virt_to_page(addr);
|
|
|
|
const unsigned long nr_freed = i;
|
|
|
|
|
|
|
|
while (i--) {
|
|
|
|
if (!TestClearPageSlab(page))
|
|
|
|
BUG();
|
|
|
|
page++;
|
|
|
|
}
|
|
|
|
sub_page_state(nr_slab, nr_freed);
|
|
|
|
if (current->reclaim_state)
|
|
|
|
current->reclaim_state->reclaimed_slab += nr_freed;
|
|
|
|
free_pages((unsigned long)addr, cachep->gfporder);
|
|
|
|
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
|
|
|
|
atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kmem_rcu_free(struct rcu_head *head)
|
|
|
|
{
|
|
|
|
struct slab_rcu *slab_rcu = (struct slab_rcu *) head;
|
|
|
|
kmem_cache_t *cachep = slab_rcu->cachep;
|
|
|
|
|
|
|
|
kmem_freepages(cachep, slab_rcu->addr);
|
|
|
|
if (OFF_SLAB(cachep))
|
|
|
|
kmem_cache_free(cachep->slabp_cache, slab_rcu);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if DEBUG
|
|
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
|
|
static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
|
|
|
|
unsigned long caller)
|
|
|
|
{
|
|
|
|
int size = obj_reallen(cachep);
|
|
|
|
|
|
|
|
addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
|
|
|
|
|
|
|
|
if (size < 5*sizeof(unsigned long))
|
|
|
|
return;
|
|
|
|
|
|
|
|
*addr++=0x12345678;
|
|
|
|
*addr++=caller;
|
|
|
|
*addr++=smp_processor_id();
|
|
|
|
size -= 3*sizeof(unsigned long);
|
|
|
|
{
|
|
|
|
unsigned long *sptr = &caller;
|
|
|
|
unsigned long svalue;
|
|
|
|
|
|
|
|
while (!kstack_end(sptr)) {
|
|
|
|
svalue = *sptr++;
|
|
|
|
if (kernel_text_address(svalue)) {
|
|
|
|
*addr++=svalue;
|
|
|
|
size -= sizeof(unsigned long);
|
|
|
|
if (size <= sizeof(unsigned long))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
*addr++=0x87654321;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
|
|
|
|
{
|
|
|
|
int size = obj_reallen(cachep);
|
|
|
|
addr = &((char*)addr)[obj_dbghead(cachep)];
|
|
|
|
|
|
|
|
memset(addr, val, size);
|
|
|
|
*(unsigned char *)(addr+size-1) = POISON_END;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dump_line(char *data, int offset, int limit)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
printk(KERN_ERR "%03x:", offset);
|
|
|
|
for (i=0;i<limit;i++) {
|
|
|
|
printk(" %02x", (unsigned char)data[offset+i]);
|
|
|
|
}
|
|
|
|
printk("\n");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if DEBUG
|
|
|
|
|
|
|
|
static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
|
|
|
|
{
|
|
|
|
int i, size;
|
|
|
|
char *realobj;
|
|
|
|
|
|
|
|
if (cachep->flags & SLAB_RED_ZONE) {
|
|
|
|
printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
|
|
|
|
*dbg_redzone1(cachep, objp),
|
|
|
|
*dbg_redzone2(cachep, objp));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cachep->flags & SLAB_STORE_USER) {
|
|
|
|
printk(KERN_ERR "Last user: [<%p>]",
|
|
|
|
*dbg_userword(cachep, objp));
|
|
|
|
print_symbol("(%s)",
|
|
|
|
(unsigned long)*dbg_userword(cachep, objp));
|
|
|
|
printk("\n");
|
|
|
|
}
|
|
|
|
realobj = (char*)objp+obj_dbghead(cachep);
|
|
|
|
size = obj_reallen(cachep);
|
|
|
|
for (i=0; i<size && lines;i+=16, lines--) {
|
|
|
|
int limit;
|
|
|
|
limit = 16;
|
|
|
|
if (i+limit > size)
|
|
|
|
limit = size-i;
|
|
|
|
dump_line(realobj, i, limit);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_poison_obj(kmem_cache_t *cachep, void *objp)
|
|
|
|
{
|
|
|
|
char *realobj;
|
|
|
|
int size, i;
|
|
|
|
int lines = 0;
|
|
|
|
|
|
|
|
realobj = (char*)objp+obj_dbghead(cachep);
|
|
|
|
size = obj_reallen(cachep);
|
|
|
|
|
|
|
|
for (i=0;i<size;i++) {
|
|
|
|
char exp = POISON_FREE;
|
|
|
|
if (i == size-1)
|
|
|
|
exp = POISON_END;
|
|
|
|
if (realobj[i] != exp) {
|
|
|
|
int limit;
|
|
|
|
/* Mismatch ! */
|
|
|
|
/* Print header */
|
|
|
|
if (lines == 0) {
|
|
|
|
printk(KERN_ERR "Slab corruption: start=%p, len=%d\n",
|
|
|
|
realobj, size);
|
|
|
|
print_objinfo(cachep, objp, 0);
|
|
|
|
}
|
|
|
|
/* Hexdump the affected line */
|
|
|
|
i = (i/16)*16;
|
|
|
|
limit = 16;
|
|
|
|
if (i+limit > size)
|
|
|
|
limit = size-i;
|
|
|
|
dump_line(realobj, i, limit);
|
|
|
|
i += 16;
|
|
|
|
lines++;
|
|
|
|
/* Limit to 5 lines */
|
|
|
|
if (lines > 5)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (lines != 0) {
|
|
|
|
/* Print some data about the neighboring objects, if they
|
|
|
|
* exist:
|
|
|
|
*/
|
|
|
|
struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp));
|
|
|
|
int objnr;
|
|
|
|
|
|
|
|
objnr = (objp-slabp->s_mem)/cachep->objsize;
|
|
|
|
if (objnr) {
|
|
|
|
objp = slabp->s_mem+(objnr-1)*cachep->objsize;
|
|
|
|
realobj = (char*)objp+obj_dbghead(cachep);
|
|
|
|
printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
|
|
|
|
realobj, size);
|
|
|
|
print_objinfo(cachep, objp, 2);
|
|
|
|
}
|
|
|
|
if (objnr+1 < cachep->num) {
|
|
|
|
objp = slabp->s_mem+(objnr+1)*cachep->objsize;
|
|
|
|
realobj = (char*)objp+obj_dbghead(cachep);
|
|
|
|
printk(KERN_ERR "Next obj: start=%p, len=%d\n",
|
|
|
|
realobj, size);
|
|
|
|
print_objinfo(cachep, objp, 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Destroy all the objs in a slab, and release the mem back to the system.
|
|
|
|
* Before calling the slab must have been unlinked from the cache.
|
|
|
|
* The cache-lock is not held/needed.
|
|
|
|
*/
|
|
|
|
static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
|
|
|
|
{
|
|
|
|
void *addr = slabp->s_mem - slabp->colouroff;
|
|
|
|
|
|
|
|
#if DEBUG
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < cachep->num; i++) {
|
|
|
|
void *objp = slabp->s_mem + cachep->objsize * i;
|
|
|
|
|
|
|
|
if (cachep->flags & SLAB_POISON) {
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
|
|
if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
|
|
|
|
kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
|
|
|
|
else
|
|
|
|
check_poison_obj(cachep, objp);
|
|
|
|
#else
|
|
|
|
check_poison_obj(cachep, objp);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
if (cachep->flags & SLAB_RED_ZONE) {
|
|
|
|
if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
|
|
|
|
slab_error(cachep, "start of a freed object "
|
|
|
|
"was overwritten");
|
|
|
|
if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
|
|
|
|
slab_error(cachep, "end of a freed object "
|
|
|
|
"was overwritten");
|
|
|
|
}
|
|
|
|
if (cachep->dtor && !(cachep->flags & SLAB_POISON))
|
|
|
|
(cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
if (cachep->dtor) {
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < cachep->num; i++) {
|
|
|
|
void* objp = slabp->s_mem+cachep->objsize*i;
|
|
|
|
(cachep->dtor)(objp, cachep, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
|
|
|
|
struct slab_rcu *slab_rcu;
|
|
|
|
|
|
|
|
slab_rcu = (struct slab_rcu *) slabp;
|
|
|
|
slab_rcu->cachep = cachep;
|
|
|
|
slab_rcu->addr = addr;
|
|
|
|
call_rcu(&slab_rcu->head, kmem_rcu_free);
|
|
|
|
} else {
|
|
|
|
kmem_freepages(cachep, addr);
|
|
|
|
if (OFF_SLAB(cachep))
|
|
|
|
kmem_cache_free(cachep->slabp_cache, slabp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
/* For setting up all the kmem_list3s for cache whose objsize is same
|
|
|
|
as size of kmem_list3. */
|
|
|
|
static inline void set_up_list3s(kmem_cache_t *cachep, int index)
|
|
|
|
{
|
|
|
|
int node;
|
|
|
|
|
|
|
|
for_each_online_node(node) {
|
|
|
|
cachep->nodelists[node] = &initkmem_list3[index+node];
|
|
|
|
cachep->nodelists[node]->next_reap = jiffies +
|
|
|
|
REAPTIMEOUT_LIST3 +
|
|
|
|
((unsigned long)cachep)%REAPTIMEOUT_LIST3;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/**
|
|
|
|
* kmem_cache_create - Create a cache.
|
|
|
|
* @name: A string which is used in /proc/slabinfo to identify this cache.
|
|
|
|
* @size: The size of objects to be created in this cache.
|
|
|
|
* @align: The required alignment for the objects.
|
|
|
|
* @flags: SLAB flags
|
|
|
|
* @ctor: A constructor for the objects.
|
|
|
|
* @dtor: A destructor for the objects.
|
|
|
|
*
|
|
|
|
* Returns a ptr to the cache on success, NULL on failure.
|
|
|
|
* Cannot be called within a int, but can be interrupted.
|
|
|
|
* The @ctor is run when new pages are allocated by the cache
|
|
|
|
* and the @dtor is run before the pages are handed back.
|
|
|
|
*
|
|
|
|
* @name must be valid until the cache is destroyed. This implies that
|
|
|
|
* the module calling this has to destroy the cache before getting
|
|
|
|
* unloaded.
|
|
|
|
*
|
|
|
|
* The flags are
|
|
|
|
*
|
|
|
|
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
|
|
|
|
* to catch references to uninitialised memory.
|
|
|
|
*
|
|
|
|
* %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
|
|
|
|
* for buffer overruns.
|
|
|
|
*
|
|
|
|
* %SLAB_NO_REAP - Don't automatically reap this cache when we're under
|
|
|
|
* memory pressure.
|
|
|
|
*
|
|
|
|
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
|
|
|
|
* cacheline. This can be beneficial if you're counting cycles as closely
|
|
|
|
* as davem.
|
|
|
|
*/
|
|
|
|
kmem_cache_t *
|
|
|
|
kmem_cache_create (const char *name, size_t size, size_t align,
|
|
|
|
unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
|
|
|
|
void (*dtor)(void*, kmem_cache_t *, unsigned long))
|
|
|
|
{
|
|
|
|
size_t left_over, slab_size, ralign;
|
|
|
|
kmem_cache_t *cachep = NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Sanity checks... these are all serious usage bugs.
|
|
|
|
*/
|
|
|
|
if ((!name) ||
|
|
|
|
in_interrupt() ||
|
|
|
|
(size < BYTES_PER_WORD) ||
|
|
|
|
(size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
|
|
|
|
(dtor && !ctor)) {
|
|
|
|
printk(KERN_ERR "%s: Early error in slab %s\n",
|
|
|
|
__FUNCTION__, name);
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
#if DEBUG
|
|
|
|
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
|
|
|
|
if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
|
|
|
|
/* No constructor, but inital state check requested */
|
|
|
|
printk(KERN_ERR "%s: No con, but init state check "
|
|
|
|
"requested - %s\n", __FUNCTION__, name);
|
|
|
|
flags &= ~SLAB_DEBUG_INITIAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if FORCED_DEBUG
|
|
|
|
/*
|
|
|
|
* Enable redzoning and last user accounting, except for caches with
|
|
|
|
* large objects, if the increased size would increase the object size
|
|
|
|
* above the next power of two: caches with object sizes just above a
|
|
|
|
* power of two have a significant amount of internal fragmentation.
|
|
|
|
*/
|
|
|
|
if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD)))
|
|
|
|
flags |= SLAB_RED_ZONE|SLAB_STORE_USER;
|
|
|
|
if (!(flags & SLAB_DESTROY_BY_RCU))
|
|
|
|
flags |= SLAB_POISON;
|
|
|
|
#endif
|
|
|
|
if (flags & SLAB_DESTROY_BY_RCU)
|
|
|
|
BUG_ON(flags & SLAB_POISON);
|
|
|
|
#endif
|
|
|
|
if (flags & SLAB_DESTROY_BY_RCU)
|
|
|
|
BUG_ON(dtor);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Always checks flags, a caller might be expecting debug
|
|
|
|
* support which isn't available.
|
|
|
|
*/
|
|
|
|
if (flags & ~CREATE_MASK)
|
|
|
|
BUG();
|
|
|
|
|
|
|
|
/* Check that size is in terms of words. This is needed to avoid
|
|
|
|
* unaligned accesses for some archs when redzoning is used, and makes
|
|
|
|
* sure any on-slab bufctl's are also correctly aligned.
|
|
|
|
*/
|
|
|
|
if (size & (BYTES_PER_WORD-1)) {
|
|
|
|
size += (BYTES_PER_WORD-1);
|
|
|
|
size &= ~(BYTES_PER_WORD-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* calculate out the final buffer alignment: */
|
|
|
|
/* 1) arch recommendation: can be overridden for debug */
|
|
|
|
if (flags & SLAB_HWCACHE_ALIGN) {
|
|
|
|
/* Default alignment: as specified by the arch code.
|
|
|
|
* Except if an object is really small, then squeeze multiple
|
|
|
|
* objects into one cacheline.
|
|
|
|
*/
|
|
|
|
ralign = cache_line_size();
|
|
|
|
while (size <= ralign/2)
|
|
|
|
ralign /= 2;
|
|
|
|
} else {
|
|
|
|
ralign = BYTES_PER_WORD;
|
|
|
|
}
|
|
|
|
/* 2) arch mandated alignment: disables debug if necessary */
|
|
|
|
if (ralign < ARCH_SLAB_MINALIGN) {
|
|
|
|
ralign = ARCH_SLAB_MINALIGN;
|
|
|
|
if (ralign > BYTES_PER_WORD)
|
|
|
|
flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
|
|
|
|
}
|
|
|
|
/* 3) caller mandated alignment: disables debug if necessary */
|
|
|
|
if (ralign < align) {
|
|
|
|
ralign = align;
|
|
|
|
if (ralign > BYTES_PER_WORD)
|
|
|
|
flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
|
|
|
|
}
|
|
|
|
/* 4) Store it. Note that the debug code below can reduce
|
|
|
|
* the alignment to BYTES_PER_WORD.
|
|
|
|
*/
|
|
|
|
align = ralign;
|
|
|
|
|
|
|
|
/* Get cache's description obj. */
|
|
|
|
cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
|
|
|
|
if (!cachep)
|
|
|
|
goto opps;
|
|
|
|
memset(cachep, 0, sizeof(kmem_cache_t));
|
|
|
|
|
|
|
|
#if DEBUG
|
|
|
|
cachep->reallen = size;
|
|
|
|
|
|
|
|
if (flags & SLAB_RED_ZONE) {
|
|
|
|
/* redzoning only works with word aligned caches */
|
|
|
|
align = BYTES_PER_WORD;
|
|
|
|
|
|
|
|
/* add space for red zone words */
|
|
|
|
cachep->dbghead += BYTES_PER_WORD;
|
|
|
|
size += 2*BYTES_PER_WORD;
|
|
|
|
}
|
|
|
|
if (flags & SLAB_STORE_USER) {
|
|
|
|
/* user store requires word alignment and
|
|
|
|
* one word storage behind the end of the real
|
|
|
|
* object.
|
|
|
|
*/
|
|
|
|
align = BYTES_PER_WORD;
|
|
|
|
size += BYTES_PER_WORD;
|
|
|
|
}
|
|
|
|
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
|
2005-09-10 04:03:32 +08:00
|
|
|
if (size >= malloc_sizes[INDEX_L3+1].cs_size && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
|
2005-04-17 06:20:36 +08:00
|
|
|
cachep->dbghead += PAGE_SIZE - size;
|
|
|
|
size = PAGE_SIZE;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Determine if the slab management is 'on' or 'off' slab. */
|
|
|
|
if (size >= (PAGE_SIZE>>3))
|
|
|
|
/*
|
|
|
|
* Size is large, assume best to place the slab management obj
|
|
|
|
* off-slab (should allow better packing of objs).
|
|
|
|
*/
|
|
|
|
flags |= CFLGS_OFF_SLAB;
|
|
|
|
|
|
|
|
size = ALIGN(size, align);
|
|
|
|
|
|
|
|
if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
|
|
|
|
/*
|
|
|
|
* A VFS-reclaimable slab tends to have most allocations
|
|
|
|
* as GFP_NOFS and we really don't want to have to be allocating
|
|
|
|
* higher-order pages when we are unable to shrink dcache.
|
|
|
|
*/
|
|
|
|
cachep->gfporder = 0;
|
|
|
|
cache_estimate(cachep->gfporder, size, align, flags,
|
|
|
|
&left_over, &cachep->num);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Calculate size (in pages) of slabs, and the num of objs per
|
|
|
|
* slab. This could be made much more intelligent. For now,
|
|
|
|
* try to avoid using high page-orders for slabs. When the
|
|
|
|
* gfp() funcs are more friendly towards high-order requests,
|
|
|
|
* this should be changed.
|
|
|
|
*/
|
|
|
|
do {
|
|
|
|
unsigned int break_flag = 0;
|
|
|
|
cal_wastage:
|
|
|
|
cache_estimate(cachep->gfporder, size, align, flags,
|
|
|
|
&left_over, &cachep->num);
|
|
|
|
if (break_flag)
|
|
|
|
break;
|
|
|
|
if (cachep->gfporder >= MAX_GFP_ORDER)
|
|
|
|
break;
|
|
|
|
if (!cachep->num)
|
|
|
|
goto next;
|
|
|
|
if (flags & CFLGS_OFF_SLAB &&
|
|
|
|
cachep->num > offslab_limit) {
|
|
|
|
/* This num of objs will cause problems. */
|
|
|
|
cachep->gfporder--;
|
|
|
|
break_flag++;
|
|
|
|
goto cal_wastage;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Large num of objs is good, but v. large slabs are
|
|
|
|
* currently bad for the gfp()s.
|
|
|
|
*/
|
|
|
|
if (cachep->gfporder >= slab_break_gfp_order)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
|
|
|
|
break; /* Acceptable internal fragmentation. */
|
|
|
|
next:
|
|
|
|
cachep->gfporder++;
|
|
|
|
} while (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!cachep->num) {
|
|
|
|
printk("kmem_cache_create: couldn't create cache %s.\n", name);
|
|
|
|
kmem_cache_free(&cache_cache, cachep);
|
|
|
|
cachep = NULL;
|
|
|
|
goto opps;
|
|
|
|
}
|
|
|
|
slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t)
|
|
|
|
+ sizeof(struct slab), align);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the slab has been placed off-slab, and we have enough space then
|
|
|
|
* move it on-slab. This is at the expense of any extra colouring.
|
|
|
|
*/
|
|
|
|
if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
|
|
|
|
flags &= ~CFLGS_OFF_SLAB;
|
|
|
|
left_over -= slab_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (flags & CFLGS_OFF_SLAB) {
|
|
|
|
/* really off slab. No need for manual alignment */
|
|
|
|
slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab);
|
|
|
|
}
|
|
|
|
|
|
|
|
cachep->colour_off = cache_line_size();
|
|
|
|
/* Offset must be a multiple of the alignment. */
|
|
|
|
if (cachep->colour_off < align)
|
|
|
|
cachep->colour_off = align;
|
|
|
|
cachep->colour = left_over/cachep->colour_off;
|
|
|
|
cachep->slab_size = slab_size;
|
|
|
|
cachep->flags = flags;
|
|
|
|
cachep->gfpflags = 0;
|
|
|
|
if (flags & SLAB_CACHE_DMA)
|
|
|
|
cachep->gfpflags |= GFP_DMA;
|
|
|
|
spin_lock_init(&cachep->spinlock);
|
|
|
|
cachep->objsize = size;
|
|
|
|
|
|
|
|
if (flags & CFLGS_OFF_SLAB)
|
2005-09-10 15:26:36 +08:00
|
|
|
cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
|
2005-04-17 06:20:36 +08:00
|
|
|
cachep->ctor = ctor;
|
|
|
|
cachep->dtor = dtor;
|
|
|
|
cachep->name = name;
|
|
|
|
|
|
|
|
/* Don't let CPUs to come and go */
|
|
|
|
lock_cpu_hotplug();
|
|
|
|
|
|
|
|
if (g_cpucache_up == FULL) {
|
|
|
|
enable_cpucache(cachep);
|
|
|
|
} else {
|
|
|
|
if (g_cpucache_up == NONE) {
|
|
|
|
/* Note: the first kmem_cache_create must create
|
|
|
|
* the cache that's used by kmalloc(24), otherwise
|
|
|
|
* the creation of further caches will BUG().
|
|
|
|
*/
|
2005-09-10 04:03:32 +08:00
|
|
|
cachep->array[smp_processor_id()] =
|
|
|
|
&initarray_generic.cache;
|
|
|
|
|
|
|
|
/* If the cache that's used by
|
|
|
|
* kmalloc(sizeof(kmem_list3)) is the first cache,
|
|
|
|
* then we need to set up all its list3s, otherwise
|
|
|
|
* the creation of further caches will BUG().
|
|
|
|
*/
|
|
|
|
set_up_list3s(cachep, SIZE_AC);
|
|
|
|
if (INDEX_AC == INDEX_L3)
|
|
|
|
g_cpucache_up = PARTIAL_L3;
|
|
|
|
else
|
|
|
|
g_cpucache_up = PARTIAL_AC;
|
2005-04-17 06:20:36 +08:00
|
|
|
} else {
|
2005-09-10 04:03:32 +08:00
|
|
|
cachep->array[smp_processor_id()] =
|
|
|
|
kmalloc(sizeof(struct arraycache_init),
|
|
|
|
GFP_KERNEL);
|
|
|
|
|
|
|
|
if (g_cpucache_up == PARTIAL_AC) {
|
|
|
|
set_up_list3s(cachep, SIZE_L3);
|
|
|
|
g_cpucache_up = PARTIAL_L3;
|
|
|
|
} else {
|
|
|
|
int node;
|
|
|
|
for_each_online_node(node) {
|
|
|
|
|
|
|
|
cachep->nodelists[node] =
|
|
|
|
kmalloc_node(sizeof(struct kmem_list3),
|
|
|
|
GFP_KERNEL, node);
|
|
|
|
BUG_ON(!cachep->nodelists[node]);
|
|
|
|
kmem_list3_init(cachep->nodelists[node]);
|
|
|
|
}
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2005-09-10 04:03:32 +08:00
|
|
|
cachep->nodelists[numa_node_id()]->next_reap =
|
|
|
|
jiffies + REAPTIMEOUT_LIST3 +
|
|
|
|
((unsigned long)cachep)%REAPTIMEOUT_LIST3;
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
BUG_ON(!ac_data(cachep));
|
|
|
|
ac_data(cachep)->avail = 0;
|
|
|
|
ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
|
|
|
|
ac_data(cachep)->batchcount = 1;
|
|
|
|
ac_data(cachep)->touched = 0;
|
|
|
|
cachep->batchcount = 1;
|
|
|
|
cachep->limit = BOOT_CPUCACHE_ENTRIES;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Need the semaphore to access the chain. */
|
|
|
|
down(&cache_chain_sem);
|
|
|
|
{
|
|
|
|
struct list_head *p;
|
|
|
|
mm_segment_t old_fs;
|
|
|
|
|
|
|
|
old_fs = get_fs();
|
|
|
|
set_fs(KERNEL_DS);
|
|
|
|
list_for_each(p, &cache_chain) {
|
|
|
|
kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
|
|
|
|
char tmp;
|
|
|
|
/* This happens when the module gets unloaded and doesn't
|
|
|
|
destroy its slab cache and noone else reuses the vmalloc
|
|
|
|
area of the module. Print a warning. */
|
|
|
|
if (__get_user(tmp,pc->name)) {
|
|
|
|
printk("SLAB: cache with size %d has lost its name\n",
|
|
|
|
pc->objsize);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (!strcmp(pc->name,name)) {
|
|
|
|
printk("kmem_cache_create: duplicate cache %s\n",name);
|
|
|
|
up(&cache_chain_sem);
|
|
|
|
unlock_cpu_hotplug();
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
set_fs(old_fs);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* cache setup completed, link it into the list */
|
|
|
|
list_add(&cachep->next, &cache_chain);
|
|
|
|
up(&cache_chain_sem);
|
|
|
|
unlock_cpu_hotplug();
|
|
|
|
opps:
|
|
|
|
if (!cachep && (flags & SLAB_PANIC))
|
|
|
|
panic("kmem_cache_create(): failed to create slab `%s'\n",
|
|
|
|
name);
|
|
|
|
return cachep;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmem_cache_create);
|
|
|
|
|
|
|
|
#if DEBUG
|
|
|
|
static void check_irq_off(void)
|
|
|
|
{
|
|
|
|
BUG_ON(!irqs_disabled());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_irq_on(void)
|
|
|
|
{
|
|
|
|
BUG_ON(irqs_disabled());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_spinlock_acquired(kmem_cache_t *cachep)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
check_irq_off();
|
2005-09-10 04:03:32 +08:00
|
|
|
assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
#endif
|
|
|
|
}
|
2005-09-10 04:03:32 +08:00
|
|
|
|
|
|
|
static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
check_irq_off();
|
|
|
|
assert_spin_locked(&cachep->nodelists[node]->list_lock);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
#else
|
|
|
|
#define check_irq_off() do { } while(0)
|
|
|
|
#define check_irq_on() do { } while(0)
|
|
|
|
#define check_spinlock_acquired(x) do { } while(0)
|
2005-09-10 04:03:32 +08:00
|
|
|
#define check_spinlock_acquired_node(x, y) do { } while(0)
|
2005-04-17 06:20:36 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Waits for all CPUs to execute func().
|
|
|
|
*/
|
|
|
|
static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
|
|
|
|
{
|
|
|
|
check_irq_on();
|
|
|
|
preempt_disable();
|
|
|
|
|
|
|
|
local_irq_disable();
|
|
|
|
func(arg);
|
|
|
|
local_irq_enable();
|
|
|
|
|
|
|
|
if (smp_call_function(func, arg, 1, 1))
|
|
|
|
BUG();
|
|
|
|
|
|
|
|
preempt_enable();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void drain_array_locked(kmem_cache_t* cachep,
|
2005-09-10 04:03:32 +08:00
|
|
|
struct array_cache *ac, int force, int node);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
static void do_drain(void *arg)
|
|
|
|
{
|
|
|
|
kmem_cache_t *cachep = (kmem_cache_t*)arg;
|
|
|
|
struct array_cache *ac;
|
2005-09-23 12:44:02 +08:00
|
|
|
int node = numa_node_id();
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
check_irq_off();
|
|
|
|
ac = ac_data(cachep);
|
2005-09-23 12:44:02 +08:00
|
|
|
spin_lock(&cachep->nodelists[node]->list_lock);
|
|
|
|
free_block(cachep, ac->entry, ac->avail, node);
|
|
|
|
spin_unlock(&cachep->nodelists[node]->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
ac->avail = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void drain_cpu_caches(kmem_cache_t *cachep)
|
|
|
|
{
|
2005-09-10 04:03:32 +08:00
|
|
|
struct kmem_list3 *l3;
|
|
|
|
int node;
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
smp_call_function_all_cpus(do_drain, cachep);
|
|
|
|
check_irq_on();
|
|
|
|
spin_lock_irq(&cachep->spinlock);
|
2005-09-10 04:03:32 +08:00
|
|
|
for_each_online_node(node) {
|
|
|
|
l3 = cachep->nodelists[node];
|
|
|
|
if (l3) {
|
|
|
|
spin_lock(&l3->list_lock);
|
|
|
|
drain_array_locked(cachep, l3->shared, 1, node);
|
|
|
|
spin_unlock(&l3->list_lock);
|
|
|
|
if (l3->alien)
|
|
|
|
drain_alien_cache(cachep, l3);
|
|
|
|
}
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
|
|
}
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
static int __node_shrink(kmem_cache_t *cachep, int node)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
struct slab *slabp;
|
2005-09-10 04:03:32 +08:00
|
|
|
struct kmem_list3 *l3 = cachep->nodelists[node];
|
2005-04-17 06:20:36 +08:00
|
|
|
int ret;
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
for (;;) {
|
2005-04-17 06:20:36 +08:00
|
|
|
struct list_head *p;
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
p = l3->slabs_free.prev;
|
|
|
|
if (p == &l3->slabs_free)
|
2005-04-17 06:20:36 +08:00
|
|
|
break;
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
slabp = list_entry(l3->slabs_free.prev, struct slab, list);
|
2005-04-17 06:20:36 +08:00
|
|
|
#if DEBUG
|
|
|
|
if (slabp->inuse)
|
|
|
|
BUG();
|
|
|
|
#endif
|
|
|
|
list_del(&slabp->list);
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
l3->free_objects -= cachep->num;
|
|
|
|
spin_unlock_irq(&l3->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
slab_destroy(cachep, slabp);
|
2005-09-10 04:03:32 +08:00
|
|
|
spin_lock_irq(&l3->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2005-09-10 04:03:32 +08:00
|
|
|
ret = !list_empty(&l3->slabs_full) ||
|
|
|
|
!list_empty(&l3->slabs_partial);
|
2005-04-17 06:20:36 +08:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
static int __cache_shrink(kmem_cache_t *cachep)
|
|
|
|
{
|
|
|
|
int ret = 0, i = 0;
|
|
|
|
struct kmem_list3 *l3;
|
|
|
|
|
|
|
|
drain_cpu_caches(cachep);
|
|
|
|
|
|
|
|
check_irq_on();
|
|
|
|
for_each_online_node(i) {
|
|
|
|
l3 = cachep->nodelists[i];
|
|
|
|
if (l3) {
|
|
|
|
spin_lock_irq(&l3->list_lock);
|
|
|
|
ret += __node_shrink(cachep, i);
|
|
|
|
spin_unlock_irq(&l3->list_lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return (ret ? 1 : 0);
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/**
|
|
|
|
* kmem_cache_shrink - Shrink a cache.
|
|
|
|
* @cachep: The cache to shrink.
|
|
|
|
*
|
|
|
|
* Releases as many slabs as possible for a cache.
|
|
|
|
* To help debugging, a zero exit status indicates all slabs were released.
|
|
|
|
*/
|
|
|
|
int kmem_cache_shrink(kmem_cache_t *cachep)
|
|
|
|
{
|
|
|
|
if (!cachep || in_interrupt())
|
|
|
|
BUG();
|
|
|
|
|
|
|
|
return __cache_shrink(cachep);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmem_cache_shrink);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kmem_cache_destroy - delete a cache
|
|
|
|
* @cachep: the cache to destroy
|
|
|
|
*
|
|
|
|
* Remove a kmem_cache_t object from the slab cache.
|
|
|
|
* Returns 0 on success.
|
|
|
|
*
|
|
|
|
* It is expected this function will be called by a module when it is
|
|
|
|
* unloaded. This will remove the cache completely, and avoid a duplicate
|
|
|
|
* cache being allocated each time a module is loaded and unloaded, if the
|
|
|
|
* module doesn't have persistent in-kernel storage across loads and unloads.
|
|
|
|
*
|
|
|
|
* The cache must be empty before calling this function.
|
|
|
|
*
|
|
|
|
* The caller must guarantee that noone will allocate memory from the cache
|
|
|
|
* during the kmem_cache_destroy().
|
|
|
|
*/
|
|
|
|
int kmem_cache_destroy(kmem_cache_t * cachep)
|
|
|
|
{
|
|
|
|
int i;
|
2005-09-10 04:03:32 +08:00
|
|
|
struct kmem_list3 *l3;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
if (!cachep || in_interrupt())
|
|
|
|
BUG();
|
|
|
|
|
|
|
|
/* Don't let CPUs to come and go */
|
|
|
|
lock_cpu_hotplug();
|
|
|
|
|
|
|
|
/* Find the cache in the chain of caches. */
|
|
|
|
down(&cache_chain_sem);
|
|
|
|
/*
|
|
|
|
* the chain is never empty, cache_cache is never destroyed
|
|
|
|
*/
|
|
|
|
list_del(&cachep->next);
|
|
|
|
up(&cache_chain_sem);
|
|
|
|
|
|
|
|
if (__cache_shrink(cachep)) {
|
|
|
|
slab_error(cachep, "Can't free all objects");
|
|
|
|
down(&cache_chain_sem);
|
|
|
|
list_add(&cachep->next,&cache_chain);
|
|
|
|
up(&cache_chain_sem);
|
|
|
|
unlock_cpu_hotplug();
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
|
2005-05-01 23:59:04 +08:00
|
|
|
synchronize_rcu();
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
for_each_online_cpu(i)
|
2005-04-17 06:20:36 +08:00
|
|
|
kfree(cachep->array[i]);
|
|
|
|
|
|
|
|
/* NUMA: free the list3 structures */
|
2005-09-10 04:03:32 +08:00
|
|
|
for_each_online_node(i) {
|
|
|
|
if ((l3 = cachep->nodelists[i])) {
|
|
|
|
kfree(l3->shared);
|
|
|
|
free_alien_cache(l3->alien);
|
|
|
|
kfree(l3);
|
|
|
|
}
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
kmem_cache_free(&cache_cache, cachep);
|
|
|
|
|
|
|
|
unlock_cpu_hotplug();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmem_cache_destroy);
|
|
|
|
|
|
|
|
/* Get the memory for a slab management obj. */
|
2005-09-10 04:03:32 +08:00
|
|
|
static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
|
2005-10-07 14:46:04 +08:00
|
|
|
int colour_off, gfp_t local_flags)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
struct slab *slabp;
|
|
|
|
|
|
|
|
if (OFF_SLAB(cachep)) {
|
|
|
|
/* Slab management obj is off-slab. */
|
|
|
|
slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
|
|
|
|
if (!slabp)
|
|
|
|
return NULL;
|
|
|
|
} else {
|
|
|
|
slabp = objp+colour_off;
|
|
|
|
colour_off += cachep->slab_size;
|
|
|
|
}
|
|
|
|
slabp->inuse = 0;
|
|
|
|
slabp->colouroff = colour_off;
|
|
|
|
slabp->s_mem = objp+colour_off;
|
|
|
|
|
|
|
|
return slabp;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
|
|
|
|
{
|
|
|
|
return (kmem_bufctl_t *)(slabp+1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void cache_init_objs(kmem_cache_t *cachep,
|
|
|
|
struct slab *slabp, unsigned long ctor_flags)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < cachep->num; i++) {
|
2005-09-10 04:03:32 +08:00
|
|
|
void *objp = slabp->s_mem+cachep->objsize*i;
|
2005-04-17 06:20:36 +08:00
|
|
|
#if DEBUG
|
|
|
|
/* need to poison the objs? */
|
|
|
|
if (cachep->flags & SLAB_POISON)
|
|
|
|
poison_obj(cachep, objp, POISON_FREE);
|
|
|
|
if (cachep->flags & SLAB_STORE_USER)
|
|
|
|
*dbg_userword(cachep, objp) = NULL;
|
|
|
|
|
|
|
|
if (cachep->flags & SLAB_RED_ZONE) {
|
|
|
|
*dbg_redzone1(cachep, objp) = RED_INACTIVE;
|
|
|
|
*dbg_redzone2(cachep, objp) = RED_INACTIVE;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Constructors are not allowed to allocate memory from
|
|
|
|
* the same cache which they are a constructor for.
|
|
|
|
* Otherwise, deadlock. They must also be threaded.
|
|
|
|
*/
|
|
|
|
if (cachep->ctor && !(cachep->flags & SLAB_POISON))
|
|
|
|
cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags);
|
|
|
|
|
|
|
|
if (cachep->flags & SLAB_RED_ZONE) {
|
|
|
|
if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
|
|
|
|
slab_error(cachep, "constructor overwrote the"
|
|
|
|
" end of an object");
|
|
|
|
if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
|
|
|
|
slab_error(cachep, "constructor overwrote the"
|
|
|
|
" start of an object");
|
|
|
|
}
|
|
|
|
if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
|
|
|
|
kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
|
|
|
|
#else
|
|
|
|
if (cachep->ctor)
|
|
|
|
cachep->ctor(objp, cachep, ctor_flags);
|
|
|
|
#endif
|
|
|
|
slab_bufctl(slabp)[i] = i+1;
|
|
|
|
}
|
|
|
|
slab_bufctl(slabp)[i-1] = BUFCTL_END;
|
|
|
|
slabp->free = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kmem_flagcheck(kmem_cache_t *cachep, unsigned int flags)
|
|
|
|
{
|
|
|
|
if (flags & SLAB_DMA) {
|
|
|
|
if (!(cachep->gfpflags & GFP_DMA))
|
|
|
|
BUG();
|
|
|
|
} else {
|
|
|
|
if (cachep->gfpflags & GFP_DMA)
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
/* Nasty!!!!!! I hope this is OK. */
|
|
|
|
i = 1 << cachep->gfporder;
|
|
|
|
page = virt_to_page(objp);
|
|
|
|
do {
|
|
|
|
SET_PAGE_CACHE(page, cachep);
|
|
|
|
SET_PAGE_SLAB(page, slabp);
|
|
|
|
page++;
|
|
|
|
} while (--i);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Grow (by 1) the number of slabs within a cache. This is called by
|
|
|
|
* kmem_cache_alloc() when there are no active objs left in a cache.
|
|
|
|
*/
|
2005-10-07 14:46:04 +08:00
|
|
|
static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
struct slab *slabp;
|
|
|
|
void *objp;
|
|
|
|
size_t offset;
|
|
|
|
unsigned int local_flags;
|
|
|
|
unsigned long ctor_flags;
|
2005-09-10 04:03:32 +08:00
|
|
|
struct kmem_list3 *l3;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/* Be lazy and only check for valid flags here,
|
|
|
|
* keeping it out of the critical path in kmem_cache_alloc().
|
|
|
|
*/
|
|
|
|
if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
|
|
|
|
BUG();
|
|
|
|
if (flags & SLAB_NO_GROW)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
ctor_flags = SLAB_CTOR_CONSTRUCTOR;
|
|
|
|
local_flags = (flags & SLAB_LEVEL_MASK);
|
|
|
|
if (!(local_flags & __GFP_WAIT))
|
|
|
|
/*
|
|
|
|
* Not allowed to sleep. Need to tell a constructor about
|
|
|
|
* this - it might need to know...
|
|
|
|
*/
|
|
|
|
ctor_flags |= SLAB_CTOR_ATOMIC;
|
|
|
|
|
|
|
|
/* About to mess with non-constant members - lock. */
|
|
|
|
check_irq_off();
|
|
|
|
spin_lock(&cachep->spinlock);
|
|
|
|
|
|
|
|
/* Get colour for the slab, and cal the next value. */
|
|
|
|
offset = cachep->colour_next;
|
|
|
|
cachep->colour_next++;
|
|
|
|
if (cachep->colour_next >= cachep->colour)
|
|
|
|
cachep->colour_next = 0;
|
|
|
|
offset *= cachep->colour_off;
|
|
|
|
|
|
|
|
spin_unlock(&cachep->spinlock);
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
check_irq_off();
|
2005-04-17 06:20:36 +08:00
|
|
|
if (local_flags & __GFP_WAIT)
|
|
|
|
local_irq_enable();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The test for missing atomic flag is performed here, rather than
|
|
|
|
* the more obvious place, simply to reduce the critical path length
|
|
|
|
* in kmem_cache_alloc(). If a caller is seriously mis-behaving they
|
|
|
|
* will eventually be caught here (where it matters).
|
|
|
|
*/
|
|
|
|
kmem_flagcheck(cachep, flags);
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
/* Get mem for the objs.
|
|
|
|
* Attempt to allocate a physical page from 'nodeid',
|
|
|
|
*/
|
2005-04-17 06:20:36 +08:00
|
|
|
if (!(objp = kmem_getpages(cachep, flags, nodeid)))
|
|
|
|
goto failed;
|
|
|
|
|
|
|
|
/* Get slab management. */
|
|
|
|
if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
|
|
|
|
goto opps1;
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
slabp->nodeid = nodeid;
|
2005-04-17 06:20:36 +08:00
|
|
|
set_slab_attr(cachep, slabp, objp);
|
|
|
|
|
|
|
|
cache_init_objs(cachep, slabp, ctor_flags);
|
|
|
|
|
|
|
|
if (local_flags & __GFP_WAIT)
|
|
|
|
local_irq_disable();
|
|
|
|
check_irq_off();
|
2005-09-10 04:03:32 +08:00
|
|
|
l3 = cachep->nodelists[nodeid];
|
|
|
|
spin_lock(&l3->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/* Make slab active. */
|
2005-09-10 04:03:32 +08:00
|
|
|
list_add_tail(&slabp->list, &(l3->slabs_free));
|
2005-04-17 06:20:36 +08:00
|
|
|
STATS_INC_GROWN(cachep);
|
2005-09-10 04:03:32 +08:00
|
|
|
l3->free_objects += cachep->num;
|
|
|
|
spin_unlock(&l3->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
return 1;
|
|
|
|
opps1:
|
|
|
|
kmem_freepages(cachep, objp);
|
|
|
|
failed:
|
|
|
|
if (local_flags & __GFP_WAIT)
|
|
|
|
local_irq_disable();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if DEBUG
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Perform extra freeing checks:
|
|
|
|
* - detect bad pointers.
|
|
|
|
* - POISON/RED_ZONE checking
|
|
|
|
* - destructor calls, for caches with POISON+dtor
|
|
|
|
*/
|
|
|
|
static void kfree_debugcheck(const void *objp)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
if (!virt_addr_valid(objp)) {
|
|
|
|
printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
|
|
|
|
(unsigned long)objp);
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
page = virt_to_page(objp);
|
|
|
|
if (!PageSlab(page)) {
|
|
|
|
printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
|
|
|
|
void *caller)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
unsigned int objnr;
|
|
|
|
struct slab *slabp;
|
|
|
|
|
|
|
|
objp -= obj_dbghead(cachep);
|
|
|
|
kfree_debugcheck(objp);
|
|
|
|
page = virt_to_page(objp);
|
|
|
|
|
|
|
|
if (GET_PAGE_CACHE(page) != cachep) {
|
|
|
|
printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n",
|
|
|
|
GET_PAGE_CACHE(page),cachep);
|
|
|
|
printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
|
|
|
|
printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name);
|
|
|
|
WARN_ON(1);
|
|
|
|
}
|
|
|
|
slabp = GET_PAGE_SLAB(page);
|
|
|
|
|
|
|
|
if (cachep->flags & SLAB_RED_ZONE) {
|
|
|
|
if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
|
|
|
|
slab_error(cachep, "double free, or memory outside"
|
|
|
|
" object was overwritten");
|
|
|
|
printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
|
|
|
|
objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
|
|
|
|
}
|
|
|
|
*dbg_redzone1(cachep, objp) = RED_INACTIVE;
|
|
|
|
*dbg_redzone2(cachep, objp) = RED_INACTIVE;
|
|
|
|
}
|
|
|
|
if (cachep->flags & SLAB_STORE_USER)
|
|
|
|
*dbg_userword(cachep, objp) = caller;
|
|
|
|
|
|
|
|
objnr = (objp-slabp->s_mem)/cachep->objsize;
|
|
|
|
|
|
|
|
BUG_ON(objnr >= cachep->num);
|
|
|
|
BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
|
|
|
|
|
|
|
|
if (cachep->flags & SLAB_DEBUG_INITIAL) {
|
|
|
|
/* Need to call the slab's constructor so the
|
|
|
|
* caller can perform a verify of its state (debugging).
|
|
|
|
* Called without the cache-lock held.
|
|
|
|
*/
|
|
|
|
cachep->ctor(objp+obj_dbghead(cachep),
|
|
|
|
cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
|
|
|
|
}
|
|
|
|
if (cachep->flags & SLAB_POISON && cachep->dtor) {
|
|
|
|
/* we want to cache poison the object,
|
|
|
|
* call the destruction callback
|
|
|
|
*/
|
|
|
|
cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
|
|
|
|
}
|
|
|
|
if (cachep->flags & SLAB_POISON) {
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
|
|
if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
|
|
|
|
store_stackinfo(cachep, objp, (unsigned long)caller);
|
|
|
|
kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
|
|
|
|
} else {
|
|
|
|
poison_obj(cachep, objp, POISON_FREE);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
poison_obj(cachep, objp, POISON_FREE);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
return objp;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
|
|
|
|
{
|
|
|
|
kmem_bufctl_t i;
|
|
|
|
int entries = 0;
|
|
|
|
|
|
|
|
/* Check slab's freelist to see if this obj is there. */
|
|
|
|
for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
|
|
|
|
entries++;
|
|
|
|
if (entries > cachep->num || i >= cachep->num)
|
|
|
|
goto bad;
|
|
|
|
}
|
|
|
|
if (entries != cachep->num - slabp->inuse) {
|
|
|
|
bad:
|
|
|
|
printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
|
|
|
|
cachep->name, cachep->num, slabp, slabp->inuse);
|
|
|
|
for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) {
|
|
|
|
if ((i%16)==0)
|
|
|
|
printk("\n%03x:", i);
|
|
|
|
printk(" %02x", ((unsigned char*)slabp)[i]);
|
|
|
|
}
|
|
|
|
printk("\n");
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define kfree_debugcheck(x) do { } while(0)
|
|
|
|
#define cache_free_debugcheck(x,objp,z) (objp)
|
|
|
|
#define check_slabp(x,y) do { } while(0)
|
|
|
|
#endif
|
|
|
|
|
2005-10-07 14:46:04 +08:00
|
|
|
static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
int batchcount;
|
|
|
|
struct kmem_list3 *l3;
|
|
|
|
struct array_cache *ac;
|
|
|
|
|
|
|
|
check_irq_off();
|
|
|
|
ac = ac_data(cachep);
|
|
|
|
retry:
|
|
|
|
batchcount = ac->batchcount;
|
|
|
|
if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
|
|
|
|
/* if there was little recent activity on this
|
|
|
|
* cache, then perform only a partial refill.
|
|
|
|
* Otherwise we could generate refill bouncing.
|
|
|
|
*/
|
|
|
|
batchcount = BATCHREFILL_LIMIT;
|
|
|
|
}
|
2005-09-10 04:03:32 +08:00
|
|
|
l3 = cachep->nodelists[numa_node_id()];
|
|
|
|
|
|
|
|
BUG_ON(ac->avail > 0 || !l3);
|
|
|
|
spin_lock(&l3->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
if (l3->shared) {
|
|
|
|
struct array_cache *shared_array = l3->shared;
|
|
|
|
if (shared_array->avail) {
|
|
|
|
if (batchcount > shared_array->avail)
|
|
|
|
batchcount = shared_array->avail;
|
|
|
|
shared_array->avail -= batchcount;
|
|
|
|
ac->avail = batchcount;
|
2005-09-10 04:03:32 +08:00
|
|
|
memcpy(ac->entry,
|
|
|
|
&(shared_array->entry[shared_array->avail]),
|
|
|
|
sizeof(void*)*batchcount);
|
2005-04-17 06:20:36 +08:00
|
|
|
shared_array->touched = 1;
|
|
|
|
goto alloc_done;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while (batchcount > 0) {
|
|
|
|
struct list_head *entry;
|
|
|
|
struct slab *slabp;
|
|
|
|
/* Get slab alloc is to come from. */
|
|
|
|
entry = l3->slabs_partial.next;
|
|
|
|
if (entry == &l3->slabs_partial) {
|
|
|
|
l3->free_touched = 1;
|
|
|
|
entry = l3->slabs_free.next;
|
|
|
|
if (entry == &l3->slabs_free)
|
|
|
|
goto must_grow;
|
|
|
|
}
|
|
|
|
|
|
|
|
slabp = list_entry(entry, struct slab, list);
|
|
|
|
check_slabp(cachep, slabp);
|
|
|
|
check_spinlock_acquired(cachep);
|
|
|
|
while (slabp->inuse < cachep->num && batchcount--) {
|
|
|
|
kmem_bufctl_t next;
|
|
|
|
STATS_INC_ALLOCED(cachep);
|
|
|
|
STATS_INC_ACTIVE(cachep);
|
|
|
|
STATS_SET_HIGH(cachep);
|
|
|
|
|
|
|
|
/* get obj pointer */
|
2005-09-10 04:03:32 +08:00
|
|
|
ac->entry[ac->avail++] = slabp->s_mem +
|
|
|
|
slabp->free*cachep->objsize;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
slabp->inuse++;
|
|
|
|
next = slab_bufctl(slabp)[slabp->free];
|
|
|
|
#if DEBUG
|
|
|
|
slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
|
|
|
|
#endif
|
|
|
|
slabp->free = next;
|
|
|
|
}
|
|
|
|
check_slabp(cachep, slabp);
|
|
|
|
|
|
|
|
/* move slabp to correct slabp list: */
|
|
|
|
list_del(&slabp->list);
|
|
|
|
if (slabp->free == BUFCTL_END)
|
|
|
|
list_add(&slabp->list, &l3->slabs_full);
|
|
|
|
else
|
|
|
|
list_add(&slabp->list, &l3->slabs_partial);
|
|
|
|
}
|
|
|
|
|
|
|
|
must_grow:
|
|
|
|
l3->free_objects -= ac->avail;
|
|
|
|
alloc_done:
|
2005-09-10 04:03:32 +08:00
|
|
|
spin_unlock(&l3->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
if (unlikely(!ac->avail)) {
|
|
|
|
int x;
|
2005-09-10 04:03:32 +08:00
|
|
|
x = cache_grow(cachep, flags, numa_node_id());
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
// cache_grow can reenable interrupts, then ac could change.
|
|
|
|
ac = ac_data(cachep);
|
|
|
|
if (!x && ac->avail == 0) // no objects in sight? abort
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
if (!ac->avail) // objects refilled by interrupt?
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
ac->touched = 1;
|
2005-09-10 04:03:32 +08:00
|
|
|
return ac->entry[--ac->avail];
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
2005-10-07 14:46:04 +08:00
|
|
|
cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
might_sleep_if(flags & __GFP_WAIT);
|
|
|
|
#if DEBUG
|
|
|
|
kmem_flagcheck(cachep, flags);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#if DEBUG
|
|
|
|
static void *
|
|
|
|
cache_alloc_debugcheck_after(kmem_cache_t *cachep,
|
2005-10-07 14:46:04 +08:00
|
|
|
gfp_t flags, void *objp, void *caller)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
if (!objp)
|
|
|
|
return objp;
|
|
|
|
if (cachep->flags & SLAB_POISON) {
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
|
|
if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
|
|
|
|
kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
|
|
|
|
else
|
|
|
|
check_poison_obj(cachep, objp);
|
|
|
|
#else
|
|
|
|
check_poison_obj(cachep, objp);
|
|
|
|
#endif
|
|
|
|
poison_obj(cachep, objp, POISON_INUSE);
|
|
|
|
}
|
|
|
|
if (cachep->flags & SLAB_STORE_USER)
|
|
|
|
*dbg_userword(cachep, objp) = caller;
|
|
|
|
|
|
|
|
if (cachep->flags & SLAB_RED_ZONE) {
|
|
|
|
if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
|
|
|
|
slab_error(cachep, "double free, or memory outside"
|
|
|
|
" object was overwritten");
|
|
|
|
printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
|
|
|
|
objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
|
|
|
|
}
|
|
|
|
*dbg_redzone1(cachep, objp) = RED_ACTIVE;
|
|
|
|
*dbg_redzone2(cachep, objp) = RED_ACTIVE;
|
|
|
|
}
|
|
|
|
objp += obj_dbghead(cachep);
|
|
|
|
if (cachep->ctor && cachep->flags & SLAB_POISON) {
|
|
|
|
unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
|
|
|
|
|
|
|
|
if (!(flags & __GFP_WAIT))
|
|
|
|
ctor_flags |= SLAB_CTOR_ATOMIC;
|
|
|
|
|
|
|
|
cachep->ctor(objp, cachep, ctor_flags);
|
|
|
|
}
|
|
|
|
return objp;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
|
|
|
|
#endif
|
|
|
|
|
2005-10-07 14:46:04 +08:00
|
|
|
static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
void* objp;
|
|
|
|
struct array_cache *ac;
|
|
|
|
|
2005-09-28 12:45:46 +08:00
|
|
|
check_irq_off();
|
2005-04-17 06:20:36 +08:00
|
|
|
ac = ac_data(cachep);
|
|
|
|
if (likely(ac->avail)) {
|
|
|
|
STATS_INC_ALLOCHIT(cachep);
|
|
|
|
ac->touched = 1;
|
2005-09-10 04:03:32 +08:00
|
|
|
objp = ac->entry[--ac->avail];
|
2005-04-17 06:20:36 +08:00
|
|
|
} else {
|
|
|
|
STATS_INC_ALLOCMISS(cachep);
|
|
|
|
objp = cache_alloc_refill(cachep, flags);
|
|
|
|
}
|
2005-09-28 12:45:46 +08:00
|
|
|
return objp;
|
|
|
|
}
|
|
|
|
|
2005-10-07 14:46:04 +08:00
|
|
|
static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
|
2005-09-28 12:45:46 +08:00
|
|
|
{
|
|
|
|
unsigned long save_flags;
|
|
|
|
void* objp;
|
|
|
|
|
|
|
|
cache_alloc_debugcheck_before(cachep, flags);
|
|
|
|
|
|
|
|
local_irq_save(save_flags);
|
|
|
|
objp = ____cache_alloc(cachep, flags);
|
2005-04-17 06:20:36 +08:00
|
|
|
local_irq_restore(save_flags);
|
2005-09-04 06:55:06 +08:00
|
|
|
objp = cache_alloc_debugcheck_after(cachep, flags, objp,
|
|
|
|
__builtin_return_address(0));
|
|
|
|
prefetchw(objp);
|
2005-04-17 06:20:36 +08:00
|
|
|
return objp;
|
|
|
|
}
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
/*
|
|
|
|
* A interface to enable slab creation on nodeid
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
2005-09-10 04:03:32 +08:00
|
|
|
static void *__cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid)
|
|
|
|
{
|
|
|
|
struct list_head *entry;
|
|
|
|
struct slab *slabp;
|
|
|
|
struct kmem_list3 *l3;
|
|
|
|
void *obj;
|
|
|
|
kmem_bufctl_t next;
|
|
|
|
int x;
|
|
|
|
|
|
|
|
l3 = cachep->nodelists[nodeid];
|
|
|
|
BUG_ON(!l3);
|
|
|
|
|
|
|
|
retry:
|
|
|
|
spin_lock(&l3->list_lock);
|
|
|
|
entry = l3->slabs_partial.next;
|
|
|
|
if (entry == &l3->slabs_partial) {
|
|
|
|
l3->free_touched = 1;
|
|
|
|
entry = l3->slabs_free.next;
|
|
|
|
if (entry == &l3->slabs_free)
|
|
|
|
goto must_grow;
|
|
|
|
}
|
|
|
|
|
|
|
|
slabp = list_entry(entry, struct slab, list);
|
|
|
|
check_spinlock_acquired_node(cachep, nodeid);
|
|
|
|
check_slabp(cachep, slabp);
|
|
|
|
|
|
|
|
STATS_INC_NODEALLOCS(cachep);
|
|
|
|
STATS_INC_ACTIVE(cachep);
|
|
|
|
STATS_SET_HIGH(cachep);
|
|
|
|
|
|
|
|
BUG_ON(slabp->inuse == cachep->num);
|
|
|
|
|
|
|
|
/* get obj pointer */
|
|
|
|
obj = slabp->s_mem + slabp->free*cachep->objsize;
|
|
|
|
slabp->inuse++;
|
|
|
|
next = slab_bufctl(slabp)[slabp->free];
|
|
|
|
#if DEBUG
|
|
|
|
slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
|
|
|
|
#endif
|
|
|
|
slabp->free = next;
|
|
|
|
check_slabp(cachep, slabp);
|
|
|
|
l3->free_objects--;
|
|
|
|
/* move slabp to correct slabp list: */
|
|
|
|
list_del(&slabp->list);
|
|
|
|
|
|
|
|
if (slabp->free == BUFCTL_END) {
|
|
|
|
list_add(&slabp->list, &l3->slabs_full);
|
|
|
|
} else {
|
|
|
|
list_add(&slabp->list, &l3->slabs_partial);
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock(&l3->list_lock);
|
|
|
|
goto done;
|
|
|
|
|
|
|
|
must_grow:
|
|
|
|
spin_unlock(&l3->list_lock);
|
|
|
|
x = cache_grow(cachep, flags, nodeid);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
if (!x)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
goto retry;
|
|
|
|
done:
|
|
|
|
return obj;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Caller needs to acquire correct kmem_list's list_lock
|
|
|
|
*/
|
2005-09-23 12:44:02 +08:00
|
|
|
static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, int node)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
int i;
|
2005-09-10 04:03:32 +08:00
|
|
|
struct kmem_list3 *l3;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
for (i = 0; i < nr_objects; i++) {
|
|
|
|
void *objp = objpp[i];
|
|
|
|
struct slab *slabp;
|
|
|
|
unsigned int objnr;
|
|
|
|
|
|
|
|
slabp = GET_PAGE_SLAB(virt_to_page(objp));
|
2005-09-23 12:44:02 +08:00
|
|
|
l3 = cachep->nodelists[node];
|
2005-04-17 06:20:36 +08:00
|
|
|
list_del(&slabp->list);
|
|
|
|
objnr = (objp - slabp->s_mem) / cachep->objsize;
|
2005-09-23 12:44:02 +08:00
|
|
|
check_spinlock_acquired_node(cachep, node);
|
2005-04-17 06:20:36 +08:00
|
|
|
check_slabp(cachep, slabp);
|
2005-09-10 04:03:32 +08:00
|
|
|
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
#if DEBUG
|
|
|
|
if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
|
2005-09-10 04:03:32 +08:00
|
|
|
printk(KERN_ERR "slab: double free detected in cache "
|
|
|
|
"'%s', objp %p\n", cachep->name, objp);
|
2005-04-17 06:20:36 +08:00
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
slab_bufctl(slabp)[objnr] = slabp->free;
|
|
|
|
slabp->free = objnr;
|
|
|
|
STATS_DEC_ACTIVE(cachep);
|
|
|
|
slabp->inuse--;
|
2005-09-10 04:03:32 +08:00
|
|
|
l3->free_objects++;
|
2005-04-17 06:20:36 +08:00
|
|
|
check_slabp(cachep, slabp);
|
|
|
|
|
|
|
|
/* fixup slab chains */
|
|
|
|
if (slabp->inuse == 0) {
|
2005-09-10 04:03:32 +08:00
|
|
|
if (l3->free_objects > l3->free_limit) {
|
|
|
|
l3->free_objects -= cachep->num;
|
2005-04-17 06:20:36 +08:00
|
|
|
slab_destroy(cachep, slabp);
|
|
|
|
} else {
|
2005-09-10 04:03:32 +08:00
|
|
|
list_add(&slabp->list, &l3->slabs_free);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Unconditionally move a slab to the end of the
|
|
|
|
* partial list on free - maximum time for the
|
|
|
|
* other objects to be freed, too.
|
|
|
|
*/
|
2005-09-10 04:03:32 +08:00
|
|
|
list_add_tail(&slabp->list, &l3->slabs_partial);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
|
|
|
|
{
|
|
|
|
int batchcount;
|
2005-09-10 04:03:32 +08:00
|
|
|
struct kmem_list3 *l3;
|
2005-09-23 12:44:02 +08:00
|
|
|
int node = numa_node_id();
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
batchcount = ac->batchcount;
|
|
|
|
#if DEBUG
|
|
|
|
BUG_ON(!batchcount || batchcount > ac->avail);
|
|
|
|
#endif
|
|
|
|
check_irq_off();
|
2005-09-23 12:44:02 +08:00
|
|
|
l3 = cachep->nodelists[node];
|
2005-09-10 04:03:32 +08:00
|
|
|
spin_lock(&l3->list_lock);
|
|
|
|
if (l3->shared) {
|
|
|
|
struct array_cache *shared_array = l3->shared;
|
2005-04-17 06:20:36 +08:00
|
|
|
int max = shared_array->limit-shared_array->avail;
|
|
|
|
if (max) {
|
|
|
|
if (batchcount > max)
|
|
|
|
batchcount = max;
|
2005-09-10 04:03:32 +08:00
|
|
|
memcpy(&(shared_array->entry[shared_array->avail]),
|
|
|
|
ac->entry,
|
2005-04-17 06:20:36 +08:00
|
|
|
sizeof(void*)*batchcount);
|
|
|
|
shared_array->avail += batchcount;
|
|
|
|
goto free_done;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-09-23 12:44:02 +08:00
|
|
|
free_block(cachep, ac->entry, batchcount, node);
|
2005-04-17 06:20:36 +08:00
|
|
|
free_done:
|
|
|
|
#if STATS
|
|
|
|
{
|
|
|
|
int i = 0;
|
|
|
|
struct list_head *p;
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
p = l3->slabs_free.next;
|
|
|
|
while (p != &(l3->slabs_free)) {
|
2005-04-17 06:20:36 +08:00
|
|
|
struct slab *slabp;
|
|
|
|
|
|
|
|
slabp = list_entry(p, struct slab, list);
|
|
|
|
BUG_ON(slabp->inuse);
|
|
|
|
|
|
|
|
i++;
|
|
|
|
p = p->next;
|
|
|
|
}
|
|
|
|
STATS_SET_FREEABLE(cachep, i);
|
|
|
|
}
|
|
|
|
#endif
|
2005-09-10 04:03:32 +08:00
|
|
|
spin_unlock(&l3->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
ac->avail -= batchcount;
|
2005-09-10 04:03:32 +08:00
|
|
|
memmove(ac->entry, &(ac->entry[batchcount]),
|
2005-04-17 06:20:36 +08:00
|
|
|
sizeof(void*)*ac->avail);
|
|
|
|
}
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* __cache_free
|
|
|
|
* Release an obj back to its cache. If the obj has a constructed
|
|
|
|
* state, it must be in this state _before_ it is released.
|
|
|
|
*
|
|
|
|
* Called with disabled ints.
|
|
|
|
*/
|
|
|
|
static inline void __cache_free(kmem_cache_t *cachep, void *objp)
|
|
|
|
{
|
|
|
|
struct array_cache *ac = ac_data(cachep);
|
|
|
|
|
|
|
|
check_irq_off();
|
|
|
|
objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
/* Make sure we are not freeing a object from another
|
|
|
|
* node to the array cache on this cpu.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
{
|
|
|
|
struct slab *slabp;
|
|
|
|
slabp = GET_PAGE_SLAB(virt_to_page(objp));
|
|
|
|
if (unlikely(slabp->nodeid != numa_node_id())) {
|
|
|
|
struct array_cache *alien = NULL;
|
|
|
|
int nodeid = slabp->nodeid;
|
|
|
|
struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()];
|
|
|
|
|
|
|
|
STATS_INC_NODEFREES(cachep);
|
|
|
|
if (l3->alien && l3->alien[nodeid]) {
|
|
|
|
alien = l3->alien[nodeid];
|
|
|
|
spin_lock(&alien->lock);
|
|
|
|
if (unlikely(alien->avail == alien->limit))
|
|
|
|
__drain_alien_cache(cachep,
|
|
|
|
alien, nodeid);
|
|
|
|
alien->entry[alien->avail++] = objp;
|
|
|
|
spin_unlock(&alien->lock);
|
|
|
|
} else {
|
|
|
|
spin_lock(&(cachep->nodelists[nodeid])->
|
|
|
|
list_lock);
|
2005-09-23 12:44:02 +08:00
|
|
|
free_block(cachep, &objp, 1, nodeid);
|
2005-09-10 04:03:32 +08:00
|
|
|
spin_unlock(&(cachep->nodelists[nodeid])->
|
|
|
|
list_lock);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
2005-04-17 06:20:36 +08:00
|
|
|
if (likely(ac->avail < ac->limit)) {
|
|
|
|
STATS_INC_FREEHIT(cachep);
|
2005-09-10 04:03:32 +08:00
|
|
|
ac->entry[ac->avail++] = objp;
|
2005-04-17 06:20:36 +08:00
|
|
|
return;
|
|
|
|
} else {
|
|
|
|
STATS_INC_FREEMISS(cachep);
|
|
|
|
cache_flusharray(cachep, ac);
|
2005-09-10 04:03:32 +08:00
|
|
|
ac->entry[ac->avail++] = objp;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kmem_cache_alloc - Allocate an object
|
|
|
|
* @cachep: The cache to allocate from.
|
|
|
|
* @flags: See kmalloc().
|
|
|
|
*
|
|
|
|
* Allocate an object from this cache. The flags are only relevant
|
|
|
|
* if the cache has no available objects.
|
|
|
|
*/
|
2005-10-07 14:46:04 +08:00
|
|
|
void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
return __cache_alloc(cachep, flags);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmem_cache_alloc);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kmem_ptr_validate - check if an untrusted pointer might
|
|
|
|
* be a slab entry.
|
|
|
|
* @cachep: the cache we're checking against
|
|
|
|
* @ptr: pointer to validate
|
|
|
|
*
|
|
|
|
* This verifies that the untrusted pointer looks sane:
|
|
|
|
* it is _not_ a guarantee that the pointer is actually
|
|
|
|
* part of the slab cache in question, but it at least
|
|
|
|
* validates that the pointer can be dereferenced and
|
|
|
|
* looks half-way sane.
|
|
|
|
*
|
|
|
|
* Currently only used for dentry validation.
|
|
|
|
*/
|
|
|
|
int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
|
|
|
|
{
|
|
|
|
unsigned long addr = (unsigned long) ptr;
|
|
|
|
unsigned long min_addr = PAGE_OFFSET;
|
|
|
|
unsigned long align_mask = BYTES_PER_WORD-1;
|
|
|
|
unsigned long size = cachep->objsize;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
if (unlikely(addr < min_addr))
|
|
|
|
goto out;
|
|
|
|
if (unlikely(addr > (unsigned long)high_memory - size))
|
|
|
|
goto out;
|
|
|
|
if (unlikely(addr & align_mask))
|
|
|
|
goto out;
|
|
|
|
if (unlikely(!kern_addr_valid(addr)))
|
|
|
|
goto out;
|
|
|
|
if (unlikely(!kern_addr_valid(addr + size - 1)))
|
|
|
|
goto out;
|
|
|
|
page = virt_to_page(ptr);
|
|
|
|
if (unlikely(!PageSlab(page)))
|
|
|
|
goto out;
|
|
|
|
if (unlikely(GET_PAGE_CACHE(page) != cachep))
|
|
|
|
goto out;
|
|
|
|
return 1;
|
|
|
|
out:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
/**
|
|
|
|
* kmem_cache_alloc_node - Allocate an object on the specified node
|
|
|
|
* @cachep: The cache to allocate from.
|
|
|
|
* @flags: See kmalloc().
|
|
|
|
* @nodeid: node number of the target node.
|
|
|
|
*
|
|
|
|
* Identical to kmem_cache_alloc, except that this function is slow
|
|
|
|
* and can sleep. And it will allocate memory on the given node, which
|
|
|
|
* can improve the performance for cpu bound structures.
|
2005-09-10 04:03:32 +08:00
|
|
|
* New and improved: it will now make sure that the object gets
|
|
|
|
* put on the correct node list so that there is no false sharing.
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
2005-10-07 14:46:04 +08:00
|
|
|
void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2005-09-10 04:03:32 +08:00
|
|
|
unsigned long save_flags;
|
|
|
|
void *ptr;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-23 12:44:02 +08:00
|
|
|
if (nodeid == -1)
|
2005-09-10 04:03:32 +08:00
|
|
|
return __cache_alloc(cachep, flags);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
if (unlikely(!cachep->nodelists[nodeid])) {
|
|
|
|
/* Fall back to __cache_alloc if we run into trouble */
|
|
|
|
printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name);
|
|
|
|
return __cache_alloc(cachep,flags);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
cache_alloc_debugcheck_before(cachep, flags);
|
|
|
|
local_irq_save(save_flags);
|
2005-09-28 12:45:46 +08:00
|
|
|
if (nodeid == numa_node_id())
|
|
|
|
ptr = ____cache_alloc(cachep, flags);
|
|
|
|
else
|
|
|
|
ptr = __cache_alloc_node(cachep, flags, nodeid);
|
2005-09-10 04:03:32 +08:00
|
|
|
local_irq_restore(save_flags);
|
|
|
|
ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0));
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
return ptr;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmem_cache_alloc_node);
|
|
|
|
|
2005-10-07 14:46:04 +08:00
|
|
|
void *kmalloc_node(size_t size, gfp_t flags, int node)
|
2005-05-01 23:58:38 +08:00
|
|
|
{
|
|
|
|
kmem_cache_t *cachep;
|
|
|
|
|
|
|
|
cachep = kmem_find_general_cachep(size, flags);
|
|
|
|
if (unlikely(cachep == NULL))
|
|
|
|
return NULL;
|
|
|
|
return kmem_cache_alloc_node(cachep, flags, node);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmalloc_node);
|
2005-04-17 06:20:36 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kmalloc - allocate memory
|
|
|
|
* @size: how many bytes of memory are required.
|
|
|
|
* @flags: the type of memory to allocate.
|
|
|
|
*
|
|
|
|
* kmalloc is the normal method of allocating memory
|
|
|
|
* in the kernel.
|
|
|
|
*
|
|
|
|
* The @flags argument may be one of:
|
|
|
|
*
|
|
|
|
* %GFP_USER - Allocate memory on behalf of user. May sleep.
|
|
|
|
*
|
|
|
|
* %GFP_KERNEL - Allocate normal kernel ram. May sleep.
|
|
|
|
*
|
|
|
|
* %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
|
|
|
|
*
|
|
|
|
* Additionally, the %GFP_DMA flag may be set to indicate the memory
|
|
|
|
* must be suitable for DMA. This can mean different things on different
|
|
|
|
* platforms. For example, on i386, it means that the memory must come
|
|
|
|
* from the first 16MB.
|
|
|
|
*/
|
2005-10-07 14:46:04 +08:00
|
|
|
void *__kmalloc(size_t size, gfp_t flags)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
kmem_cache_t *cachep;
|
|
|
|
|
2005-05-01 23:58:38 +08:00
|
|
|
/* If you want to save a few bytes .text space: replace
|
|
|
|
* __ with kmem_.
|
|
|
|
* Then kmalloc uses the uninlined functions instead of the inline
|
|
|
|
* functions.
|
|
|
|
*/
|
|
|
|
cachep = __find_general_cachep(size, flags);
|
2005-09-24 04:24:10 +08:00
|
|
|
if (unlikely(cachep == NULL))
|
|
|
|
return NULL;
|
2005-04-17 06:20:36 +08:00
|
|
|
return __cache_alloc(cachep, flags);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__kmalloc);
|
|
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/**
|
|
|
|
* __alloc_percpu - allocate one copy of the object for every present
|
|
|
|
* cpu in the system, zeroing them.
|
|
|
|
* Objects should be dereferenced using the per_cpu_ptr macro only.
|
|
|
|
*
|
|
|
|
* @size: how many bytes of memory are required.
|
|
|
|
* @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
|
|
|
|
*/
|
|
|
|
void *__alloc_percpu(size_t size, size_t align)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
|
|
|
|
|
|
|
|
if (!pdata)
|
|
|
|
return NULL;
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
/*
|
|
|
|
* Cannot use for_each_online_cpu since a cpu may come online
|
|
|
|
* and we have no way of figuring out how to fix the array
|
|
|
|
* that we have allocated then....
|
|
|
|
*/
|
|
|
|
for_each_cpu(i) {
|
|
|
|
int node = cpu_to_node(i);
|
|
|
|
|
|
|
|
if (node_online(node))
|
|
|
|
pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
|
|
|
|
else
|
|
|
|
pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
if (!pdata->ptrs[i])
|
|
|
|
goto unwind_oom;
|
|
|
|
memset(pdata->ptrs[i], 0, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Catch derefs w/o wrappers */
|
|
|
|
return (void *) (~(unsigned long) pdata);
|
|
|
|
|
|
|
|
unwind_oom:
|
|
|
|
while (--i >= 0) {
|
|
|
|
if (!cpu_possible(i))
|
|
|
|
continue;
|
|
|
|
kfree(pdata->ptrs[i]);
|
|
|
|
}
|
|
|
|
kfree(pdata);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__alloc_percpu);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kmem_cache_free - Deallocate an object
|
|
|
|
* @cachep: The cache the allocation was from.
|
|
|
|
* @objp: The previously allocated object.
|
|
|
|
*
|
|
|
|
* Free an object which was previously allocated from this
|
|
|
|
* cache.
|
|
|
|
*/
|
|
|
|
void kmem_cache_free(kmem_cache_t *cachep, void *objp)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
__cache_free(cachep, objp);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmem_cache_free);
|
|
|
|
|
|
|
|
/**
|
2005-09-07 06:18:31 +08:00
|
|
|
* kzalloc - allocate memory. The memory is set to zero.
|
|
|
|
* @size: how many bytes of memory are required.
|
2005-04-17 06:20:36 +08:00
|
|
|
* @flags: the type of memory to allocate.
|
|
|
|
*/
|
2005-10-07 14:46:04 +08:00
|
|
|
void *kzalloc(size_t size, gfp_t flags)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2005-09-07 06:18:31 +08:00
|
|
|
void *ret = kmalloc(size, flags);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (ret)
|
2005-09-07 06:18:31 +08:00
|
|
|
memset(ret, 0, size);
|
2005-04-17 06:20:36 +08:00
|
|
|
return ret;
|
|
|
|
}
|
2005-09-07 06:18:31 +08:00
|
|
|
EXPORT_SYMBOL(kzalloc);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* kfree - free previously allocated memory
|
|
|
|
* @objp: pointer returned by kmalloc.
|
|
|
|
*
|
2005-09-10 04:10:16 +08:00
|
|
|
* If @objp is NULL, no operation is performed.
|
|
|
|
*
|
2005-04-17 06:20:36 +08:00
|
|
|
* Don't free memory not originally allocated by kmalloc()
|
|
|
|
* or you will run into trouble.
|
|
|
|
*/
|
|
|
|
void kfree(const void *objp)
|
|
|
|
{
|
|
|
|
kmem_cache_t *c;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (unlikely(!objp))
|
|
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
|
|
kfree_debugcheck(objp);
|
|
|
|
c = GET_PAGE_CACHE(virt_to_page(objp));
|
|
|
|
__cache_free(c, (void*)objp);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kfree);
|
|
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/**
|
|
|
|
* free_percpu - free previously allocated percpu memory
|
|
|
|
* @objp: pointer returned by alloc_percpu.
|
|
|
|
*
|
|
|
|
* Don't free memory not originally allocated by alloc_percpu()
|
|
|
|
* The complemented objp is to check for that.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
free_percpu(const void *objp)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
/*
|
|
|
|
* We allocate for all cpus so we cannot use for online cpu here.
|
|
|
|
*/
|
|
|
|
for_each_cpu(i)
|
2005-04-17 06:20:36 +08:00
|
|
|
kfree(p->ptrs[i]);
|
|
|
|
kfree(p);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(free_percpu);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
unsigned int kmem_cache_size(kmem_cache_t *cachep)
|
|
|
|
{
|
|
|
|
return obj_reallen(cachep);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kmem_cache_size);
|
|
|
|
|
2005-06-19 13:46:19 +08:00
|
|
|
const char *kmem_cache_name(kmem_cache_t *cachep)
|
|
|
|
{
|
|
|
|
return cachep->name;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kmem_cache_name);
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
/*
|
|
|
|
* This initializes kmem_list3 for all nodes.
|
|
|
|
*/
|
|
|
|
static int alloc_kmemlist(kmem_cache_t *cachep)
|
|
|
|
{
|
|
|
|
int node;
|
|
|
|
struct kmem_list3 *l3;
|
|
|
|
int err = 0;
|
|
|
|
|
|
|
|
for_each_online_node(node) {
|
|
|
|
struct array_cache *nc = NULL, *new;
|
|
|
|
struct array_cache **new_alien = NULL;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
|
|
|
|
goto fail;
|
|
|
|
#endif
|
|
|
|
if (!(new = alloc_arraycache(node, (cachep->shared*
|
|
|
|
cachep->batchcount), 0xbaadf00d)))
|
|
|
|
goto fail;
|
|
|
|
if ((l3 = cachep->nodelists[node])) {
|
|
|
|
|
|
|
|
spin_lock_irq(&l3->list_lock);
|
|
|
|
|
|
|
|
if ((nc = cachep->nodelists[node]->shared))
|
|
|
|
free_block(cachep, nc->entry,
|
2005-09-23 12:44:02 +08:00
|
|
|
nc->avail, node);
|
2005-09-10 04:03:32 +08:00
|
|
|
|
|
|
|
l3->shared = new;
|
|
|
|
if (!cachep->nodelists[node]->alien) {
|
|
|
|
l3->alien = new_alien;
|
|
|
|
new_alien = NULL;
|
|
|
|
}
|
|
|
|
l3->free_limit = (1 + nr_cpus_node(node))*
|
|
|
|
cachep->batchcount + cachep->num;
|
|
|
|
spin_unlock_irq(&l3->list_lock);
|
|
|
|
kfree(nc);
|
|
|
|
free_alien_cache(new_alien);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
|
|
|
|
GFP_KERNEL, node)))
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
kmem_list3_init(l3);
|
|
|
|
l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
|
|
|
|
((unsigned long)cachep)%REAPTIMEOUT_LIST3;
|
|
|
|
l3->shared = new;
|
|
|
|
l3->alien = new_alien;
|
|
|
|
l3->free_limit = (1 + nr_cpus_node(node))*
|
|
|
|
cachep->batchcount + cachep->num;
|
|
|
|
cachep->nodelists[node] = l3;
|
|
|
|
}
|
|
|
|
return err;
|
|
|
|
fail:
|
|
|
|
err = -ENOMEM;
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
struct ccupdate_struct {
|
|
|
|
kmem_cache_t *cachep;
|
|
|
|
struct array_cache *new[NR_CPUS];
|
|
|
|
};
|
|
|
|
|
|
|
|
static void do_ccupdate_local(void *info)
|
|
|
|
{
|
|
|
|
struct ccupdate_struct *new = (struct ccupdate_struct *)info;
|
|
|
|
struct array_cache *old;
|
|
|
|
|
|
|
|
check_irq_off();
|
|
|
|
old = ac_data(new->cachep);
|
2005-09-10 04:03:32 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
|
|
|
|
new->new[smp_processor_id()] = old;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
|
|
|
|
int shared)
|
|
|
|
{
|
|
|
|
struct ccupdate_struct new;
|
2005-09-10 04:03:32 +08:00
|
|
|
int i, err;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
memset(&new.new,0,sizeof(new.new));
|
2005-09-10 04:03:32 +08:00
|
|
|
for_each_online_cpu(i) {
|
|
|
|
new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount);
|
|
|
|
if (!new.new[i]) {
|
|
|
|
for (i--; i >= 0; i--) kfree(new.new[i]);
|
|
|
|
return -ENOMEM;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
new.cachep = cachep;
|
|
|
|
|
|
|
|
smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
|
2005-09-10 04:03:32 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
check_irq_on();
|
|
|
|
spin_lock_irq(&cachep->spinlock);
|
|
|
|
cachep->batchcount = batchcount;
|
|
|
|
cachep->limit = limit;
|
2005-09-10 04:03:32 +08:00
|
|
|
cachep->shared = shared;
|
2005-04-17 06:20:36 +08:00
|
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
for_each_online_cpu(i) {
|
2005-04-17 06:20:36 +08:00
|
|
|
struct array_cache *ccold = new.new[i];
|
|
|
|
if (!ccold)
|
|
|
|
continue;
|
2005-09-10 04:03:32 +08:00
|
|
|
spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
|
2005-09-23 12:44:02 +08:00
|
|
|
free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
|
2005-09-10 04:03:32 +08:00
|
|
|
spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
kfree(ccold);
|
|
|
|
}
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
err = alloc_kmemlist(cachep);
|
|
|
|
if (err) {
|
|
|
|
printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
|
|
|
|
cachep->name, -err);
|
|
|
|
BUG();
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void enable_cpucache(kmem_cache_t *cachep)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
int limit, shared;
|
|
|
|
|
|
|
|
/* The head array serves three purposes:
|
|
|
|
* - create a LIFO ordering, i.e. return objects that are cache-warm
|
|
|
|
* - reduce the number of spinlock operations.
|
|
|
|
* - reduce the number of linked list operations on the slab and
|
|
|
|
* bufctl chains: array operations are cheaper.
|
|
|
|
* The numbers are guessed, we should auto-tune as described by
|
|
|
|
* Bonwick.
|
|
|
|
*/
|
|
|
|
if (cachep->objsize > 131072)
|
|
|
|
limit = 1;
|
|
|
|
else if (cachep->objsize > PAGE_SIZE)
|
|
|
|
limit = 8;
|
|
|
|
else if (cachep->objsize > 1024)
|
|
|
|
limit = 24;
|
|
|
|
else if (cachep->objsize > 256)
|
|
|
|
limit = 54;
|
|
|
|
else
|
|
|
|
limit = 120;
|
|
|
|
|
|
|
|
/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
|
|
|
|
* allocation behaviour: Most allocs on one cpu, most free operations
|
|
|
|
* on another cpu. For these cases, an efficient object passing between
|
|
|
|
* cpus is necessary. This is provided by a shared array. The array
|
|
|
|
* replaces Bonwick's magazine layer.
|
|
|
|
* On uniprocessor, it's functionally equivalent (but less efficient)
|
|
|
|
* to a larger limit. Thus disabled by default.
|
|
|
|
*/
|
|
|
|
shared = 0;
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
if (cachep->objsize <= PAGE_SIZE)
|
|
|
|
shared = 8;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if DEBUG
|
|
|
|
/* With debugging enabled, large batchcount lead to excessively
|
|
|
|
* long periods with disabled local interrupts. Limit the
|
|
|
|
* batchcount
|
|
|
|
*/
|
|
|
|
if (limit > 32)
|
|
|
|
limit = 32;
|
|
|
|
#endif
|
|
|
|
err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
|
|
|
|
if (err)
|
|
|
|
printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
|
|
|
|
cachep->name, -err);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void drain_array_locked(kmem_cache_t *cachep,
|
2005-09-10 04:03:32 +08:00
|
|
|
struct array_cache *ac, int force, int node)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
int tofree;
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
check_spinlock_acquired_node(cachep, node);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (ac->touched && !force) {
|
|
|
|
ac->touched = 0;
|
|
|
|
} else if (ac->avail) {
|
|
|
|
tofree = force ? ac->avail : (ac->limit+4)/5;
|
|
|
|
if (tofree > ac->avail) {
|
|
|
|
tofree = (ac->avail+1)/2;
|
|
|
|
}
|
2005-09-23 12:44:02 +08:00
|
|
|
free_block(cachep, ac->entry, tofree, node);
|
2005-04-17 06:20:36 +08:00
|
|
|
ac->avail -= tofree;
|
2005-09-10 04:03:32 +08:00
|
|
|
memmove(ac->entry, &(ac->entry[tofree]),
|
2005-04-17 06:20:36 +08:00
|
|
|
sizeof(void*)*ac->avail);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cache_reap - Reclaim memory from caches.
|
|
|
|
*
|
|
|
|
* Called from workqueue/eventd every few seconds.
|
|
|
|
* Purpose:
|
|
|
|
* - clear the per-cpu caches for this CPU.
|
|
|
|
* - return freeable pages to the main free memory pool.
|
|
|
|
*
|
|
|
|
* If we cannot acquire the cache chain semaphore then just give up - we'll
|
|
|
|
* try again on the next iteration.
|
|
|
|
*/
|
|
|
|
static void cache_reap(void *unused)
|
|
|
|
{
|
|
|
|
struct list_head *walk;
|
2005-09-10 04:03:32 +08:00
|
|
|
struct kmem_list3 *l3;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
if (down_trylock(&cache_chain_sem)) {
|
|
|
|
/* Give up. Setup the next iteration. */
|
|
|
|
schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_for_each(walk, &cache_chain) {
|
|
|
|
kmem_cache_t *searchp;
|
|
|
|
struct list_head* p;
|
|
|
|
int tofree;
|
|
|
|
struct slab *slabp;
|
|
|
|
|
|
|
|
searchp = list_entry(walk, kmem_cache_t, next);
|
|
|
|
|
|
|
|
if (searchp->flags & SLAB_NO_REAP)
|
|
|
|
goto next;
|
|
|
|
|
|
|
|
check_irq_on();
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
l3 = searchp->nodelists[numa_node_id()];
|
|
|
|
if (l3->alien)
|
|
|
|
drain_alien_cache(searchp, l3);
|
|
|
|
spin_lock_irq(&l3->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
drain_array_locked(searchp, ac_data(searchp), 0,
|
|
|
|
numa_node_id());
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
if (time_after(l3->next_reap, jiffies))
|
2005-04-17 06:20:36 +08:00
|
|
|
goto next_unlock;
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
if (l3->shared)
|
|
|
|
drain_array_locked(searchp, l3->shared, 0,
|
|
|
|
numa_node_id());
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
if (l3->free_touched) {
|
|
|
|
l3->free_touched = 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
goto next_unlock;
|
|
|
|
}
|
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num);
|
2005-04-17 06:20:36 +08:00
|
|
|
do {
|
2005-09-10 04:03:32 +08:00
|
|
|
p = l3->slabs_free.next;
|
|
|
|
if (p == &(l3->slabs_free))
|
2005-04-17 06:20:36 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
slabp = list_entry(p, struct slab, list);
|
|
|
|
BUG_ON(slabp->inuse);
|
|
|
|
list_del(&slabp->list);
|
|
|
|
STATS_INC_REAPED(searchp);
|
|
|
|
|
|
|
|
/* Safe to drop the lock. The slab is no longer
|
|
|
|
* linked to the cache.
|
|
|
|
* searchp cannot disappear, we hold
|
|
|
|
* cache_chain_lock
|
|
|
|
*/
|
2005-09-10 04:03:32 +08:00
|
|
|
l3->free_objects -= searchp->num;
|
|
|
|
spin_unlock_irq(&l3->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
slab_destroy(searchp, slabp);
|
2005-09-10 04:03:32 +08:00
|
|
|
spin_lock_irq(&l3->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
} while(--tofree > 0);
|
|
|
|
next_unlock:
|
2005-09-10 04:03:32 +08:00
|
|
|
spin_unlock_irq(&l3->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
next:
|
|
|
|
cond_resched();
|
|
|
|
}
|
|
|
|
check_irq_on();
|
|
|
|
up(&cache_chain_sem);
|
2005-06-22 08:14:57 +08:00
|
|
|
drain_remote_pages();
|
2005-04-17 06:20:36 +08:00
|
|
|
/* Setup the next iteration */
|
|
|
|
schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
|
|
|
|
static void *s_start(struct seq_file *m, loff_t *pos)
|
|
|
|
{
|
|
|
|
loff_t n = *pos;
|
|
|
|
struct list_head *p;
|
|
|
|
|
|
|
|
down(&cache_chain_sem);
|
|
|
|
if (!n) {
|
|
|
|
/*
|
|
|
|
* Output format version, so at least we can change it
|
|
|
|
* without _too_ many complaints.
|
|
|
|
*/
|
|
|
|
#if STATS
|
|
|
|
seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
|
|
|
|
#else
|
|
|
|
seq_puts(m, "slabinfo - version: 2.1\n");
|
|
|
|
#endif
|
|
|
|
seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
|
|
|
|
seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
|
|
|
|
seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
|
|
|
|
#if STATS
|
|
|
|
seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>"
|
2005-09-10 04:03:32 +08:00
|
|
|
" <error> <maxfreeable> <nodeallocs> <remotefrees>");
|
2005-04-17 06:20:36 +08:00
|
|
|
seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
|
|
|
|
#endif
|
|
|
|
seq_putc(m, '\n');
|
|
|
|
}
|
|
|
|
p = cache_chain.next;
|
|
|
|
while (n--) {
|
|
|
|
p = p->next;
|
|
|
|
if (p == &cache_chain)
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
return list_entry(p, kmem_cache_t, next);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
|
|
|
|
{
|
|
|
|
kmem_cache_t *cachep = p;
|
|
|
|
++*pos;
|
|
|
|
return cachep->next.next == &cache_chain ? NULL
|
|
|
|
: list_entry(cachep->next.next, kmem_cache_t, next);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void s_stop(struct seq_file *m, void *p)
|
|
|
|
{
|
|
|
|
up(&cache_chain_sem);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int s_show(struct seq_file *m, void *p)
|
|
|
|
{
|
|
|
|
kmem_cache_t *cachep = p;
|
|
|
|
struct list_head *q;
|
|
|
|
struct slab *slabp;
|
|
|
|
unsigned long active_objs;
|
|
|
|
unsigned long num_objs;
|
|
|
|
unsigned long active_slabs = 0;
|
2005-09-10 04:03:32 +08:00
|
|
|
unsigned long num_slabs, free_objects = 0, shared_avail = 0;
|
|
|
|
const char *name;
|
2005-04-17 06:20:36 +08:00
|
|
|
char *error = NULL;
|
2005-09-10 04:03:32 +08:00
|
|
|
int node;
|
|
|
|
struct kmem_list3 *l3;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
check_irq_on();
|
|
|
|
spin_lock_irq(&cachep->spinlock);
|
|
|
|
active_objs = 0;
|
|
|
|
num_slabs = 0;
|
2005-09-10 04:03:32 +08:00
|
|
|
for_each_online_node(node) {
|
|
|
|
l3 = cachep->nodelists[node];
|
|
|
|
if (!l3)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
spin_lock(&l3->list_lock);
|
|
|
|
|
|
|
|
list_for_each(q,&l3->slabs_full) {
|
|
|
|
slabp = list_entry(q, struct slab, list);
|
|
|
|
if (slabp->inuse != cachep->num && !error)
|
|
|
|
error = "slabs_full accounting error";
|
|
|
|
active_objs += cachep->num;
|
|
|
|
active_slabs++;
|
|
|
|
}
|
|
|
|
list_for_each(q,&l3->slabs_partial) {
|
|
|
|
slabp = list_entry(q, struct slab, list);
|
|
|
|
if (slabp->inuse == cachep->num && !error)
|
|
|
|
error = "slabs_partial inuse accounting error";
|
|
|
|
if (!slabp->inuse && !error)
|
|
|
|
error = "slabs_partial/inuse accounting error";
|
|
|
|
active_objs += slabp->inuse;
|
|
|
|
active_slabs++;
|
|
|
|
}
|
|
|
|
list_for_each(q,&l3->slabs_free) {
|
|
|
|
slabp = list_entry(q, struct slab, list);
|
|
|
|
if (slabp->inuse && !error)
|
|
|
|
error = "slabs_free/inuse accounting error";
|
|
|
|
num_slabs++;
|
|
|
|
}
|
|
|
|
free_objects += l3->free_objects;
|
|
|
|
shared_avail += l3->shared->avail;
|
|
|
|
|
|
|
|
spin_unlock(&l3->list_lock);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
num_slabs+=active_slabs;
|
|
|
|
num_objs = num_slabs*cachep->num;
|
2005-09-10 04:03:32 +08:00
|
|
|
if (num_objs - active_objs != free_objects && !error)
|
2005-04-17 06:20:36 +08:00
|
|
|
error = "free_objects accounting error";
|
|
|
|
|
|
|
|
name = cachep->name;
|
|
|
|
if (error)
|
|
|
|
printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
|
|
|
|
|
|
|
|
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
|
|
|
|
name, active_objs, num_objs, cachep->objsize,
|
|
|
|
cachep->num, (1<<cachep->gfporder));
|
|
|
|
seq_printf(m, " : tunables %4u %4u %4u",
|
|
|
|
cachep->limit, cachep->batchcount,
|
2005-09-10 04:03:32 +08:00
|
|
|
cachep->shared);
|
|
|
|
seq_printf(m, " : slabdata %6lu %6lu %6lu",
|
|
|
|
active_slabs, num_slabs, shared_avail);
|
2005-04-17 06:20:36 +08:00
|
|
|
#if STATS
|
|
|
|
{ /* list3 stats */
|
|
|
|
unsigned long high = cachep->high_mark;
|
|
|
|
unsigned long allocs = cachep->num_allocations;
|
|
|
|
unsigned long grown = cachep->grown;
|
|
|
|
unsigned long reaped = cachep->reaped;
|
|
|
|
unsigned long errors = cachep->errors;
|
|
|
|
unsigned long max_freeable = cachep->max_freeable;
|
|
|
|
unsigned long node_allocs = cachep->node_allocs;
|
2005-09-10 04:03:32 +08:00
|
|
|
unsigned long node_frees = cachep->node_frees;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-10 04:03:32 +08:00
|
|
|
seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
|
|
|
|
%4lu %4lu %4lu %4lu",
|
|
|
|
allocs, high, grown, reaped, errors,
|
|
|
|
max_freeable, node_allocs, node_frees);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
/* cpu stats */
|
|
|
|
{
|
|
|
|
unsigned long allochit = atomic_read(&cachep->allochit);
|
|
|
|
unsigned long allocmiss = atomic_read(&cachep->allocmiss);
|
|
|
|
unsigned long freehit = atomic_read(&cachep->freehit);
|
|
|
|
unsigned long freemiss = atomic_read(&cachep->freemiss);
|
|
|
|
|
|
|
|
seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
|
|
|
|
allochit, allocmiss, freehit, freemiss);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
seq_putc(m, '\n');
|
|
|
|
spin_unlock_irq(&cachep->spinlock);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* slabinfo_op - iterator that generates /proc/slabinfo
|
|
|
|
*
|
|
|
|
* Output layout:
|
|
|
|
* cache-name
|
|
|
|
* num-active-objs
|
|
|
|
* total-objs
|
|
|
|
* object size
|
|
|
|
* num-active-slabs
|
|
|
|
* total-slabs
|
|
|
|
* num-pages-per-slab
|
|
|
|
* + further values on SMP and with statistics enabled
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct seq_operations slabinfo_op = {
|
|
|
|
.start = s_start,
|
|
|
|
.next = s_next,
|
|
|
|
.stop = s_stop,
|
|
|
|
.show = s_show,
|
|
|
|
};
|
|
|
|
|
|
|
|
#define MAX_SLABINFO_WRITE 128
|
|
|
|
/**
|
|
|
|
* slabinfo_write - Tuning for the slab allocator
|
|
|
|
* @file: unused
|
|
|
|
* @buffer: user buffer
|
|
|
|
* @count: data length
|
|
|
|
* @ppos: unused
|
|
|
|
*/
|
|
|
|
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
|
|
|
|
size_t count, loff_t *ppos)
|
|
|
|
{
|
|
|
|
char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
|
|
|
|
int limit, batchcount, shared, res;
|
|
|
|
struct list_head *p;
|
|
|
|
|
|
|
|
if (count > MAX_SLABINFO_WRITE)
|
|
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&kbuf, buffer, count))
|
|
|
|
return -EFAULT;
|
|
|
|
kbuf[MAX_SLABINFO_WRITE] = '\0';
|
|
|
|
|
|
|
|
tmp = strchr(kbuf, ' ');
|
|
|
|
if (!tmp)
|
|
|
|
return -EINVAL;
|
|
|
|
*tmp = '\0';
|
|
|
|
tmp++;
|
|
|
|
if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* Find the cache in the chain of caches. */
|
|
|
|
down(&cache_chain_sem);
|
|
|
|
res = -EINVAL;
|
|
|
|
list_for_each(p,&cache_chain) {
|
|
|
|
kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
|
|
|
|
|
|
|
|
if (!strcmp(cachep->name, kbuf)) {
|
|
|
|
if (limit < 1 ||
|
|
|
|
batchcount < 1 ||
|
|
|
|
batchcount > limit ||
|
|
|
|
shared < 0) {
|
2005-09-10 04:03:32 +08:00
|
|
|
res = 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
} else {
|
2005-09-10 04:03:32 +08:00
|
|
|
res = do_tune_cpucache(cachep, limit,
|
|
|
|
batchcount, shared);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
up(&cache_chain_sem);
|
|
|
|
if (res >= 0)
|
|
|
|
res = count;
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2005-09-04 06:55:07 +08:00
|
|
|
/**
|
|
|
|
* ksize - get the actual amount of memory allocated for a given object
|
|
|
|
* @objp: Pointer to the object
|
|
|
|
*
|
|
|
|
* kmalloc may internally round up allocations and return more memory
|
|
|
|
* than requested. ksize() can be used to determine the actual amount of
|
|
|
|
* memory allocated. The caller may use this additional memory, even though
|
|
|
|
* a smaller amount of memory was initially specified with the kmalloc call.
|
|
|
|
* The caller must guarantee that objp points to a valid object previously
|
|
|
|
* allocated with either kmalloc() or kmem_cache_alloc(). The object
|
|
|
|
* must not be freed during the duration of the call.
|
|
|
|
*/
|
2005-04-17 06:20:36 +08:00
|
|
|
unsigned int ksize(const void *objp)
|
|
|
|
{
|
2005-09-04 06:55:07 +08:00
|
|
|
if (unlikely(objp == NULL))
|
|
|
|
return 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2005-09-04 06:55:07 +08:00
|
|
|
return obj_reallen(GET_PAGE_CACHE(virt_to_page(objp)));
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2005-06-23 15:09:02 +08:00
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* kstrdup - allocate space for and copy an existing string
|
|
|
|
*
|
|
|
|
* @s: the string to duplicate
|
|
|
|
* @gfp: the GFP mask used in the kmalloc() call when allocating memory
|
|
|
|
*/
|
2005-10-07 14:46:04 +08:00
|
|
|
char *kstrdup(const char *s, gfp_t gfp)
|
2005-06-23 15:09:02 +08:00
|
|
|
{
|
|
|
|
size_t len;
|
|
|
|
char *buf;
|
|
|
|
|
|
|
|
if (!s)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
len = strlen(s) + 1;
|
|
|
|
buf = kmalloc(len, gfp);
|
|
|
|
if (buf)
|
|
|
|
memcpy(buf, s, len);
|
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(kstrdup);
|