OpenCloudOS-Kernel/include/linux/spi/spi.h

543 lines
18 KiB
C
Raw Normal View History

[PATCH] spi: simple SPI framework This is the core of a small SPI framework, implementing the model of a queue of messages which complete asynchronously (with thin synchronous wrappers on top). - It's still less than 2KB of ".text" (ARM). If there's got to be a mid-layer for something so simple, that's the right size budget. :) - The guts use board-specific SPI device tables to build the driver model tree. (Hardware probing is rarely an option.) - This version of Kconfig includes no drivers. At this writing there are two known master controller drivers (PXA/SSP, OMAP MicroWire) and three protocol drivers (CS8415a, ADS7846, DataFlash) with LKML mentions of other drivers in development. - No userspace API. There are several implementations to compare. Implement them like any other driver, and bind them with sysfs. The changes from last version posted to LKML (on 11-Nov-2005) are minor, and include: - One bugfix (removes a FIXME), with the visible effect of making device names be "spiB.C" where B is the bus number and C is the chipselect. - The "caller provides DMA mappings" mechanism now has kerneldoc, for DMA drivers that want to be fancy. - Hey, the framework init can be subsys_init. Even though board init logic fires earlier, at arch_init ... since the framework init is for driver support, and the board init support uses static init. - Various additional spec/doc clarifications based on discussions with other folk. It adds a brief "thank you" at the end, for folk who've helped nudge this framework into existence. As I've said before, I think that "protocol tweaking" is the main support that this driver framework will need to evolve. From: Mark Underwood <basicmark@yahoo.com> Update the SPI framework to remove a potential priority inversion case by reverting to kmalloc if the pre-allocated DMA-safe buffer isn't available. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-01-09 05:34:19 +08:00
/*
* Copyright (C) 2005 David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __LINUX_SPI_H
#define __LINUX_SPI_H
/*
* INTERFACES between SPI master drivers and infrastructure
* (There's no SPI slave support for Linux yet...)
*
* A "struct device_driver" for an spi_device uses "spi_bus_type" and
* needs no special API wrappers (much like platform_bus). These drivers
* are bound to devices based on their names (much like platform_bus),
* and are available in dev->driver.
*/
extern struct bus_type spi_bus_type;
/**
* struct spi_device - Master side proxy for an SPI slave device
* @dev: Driver model representation of the device.
* @master: SPI controller used with the device.
* @max_speed_hz: Maximum clock rate to be used with this chip
* (on this board); may be changed by the device's driver.
* @chip-select: Chipselect, distinguishing chips handled by "master".
* @mode: The spi mode defines how data is clocked out and in.
* This may be changed by the device's driver.
* @bits_per_word: Data transfers involve one or more words; word sizes
* like eight or 12 bits are common. In-memory wordsizes are
* powers of two bytes (e.g. 20 bit samples use 32 bits).
* This may be changed by the device's driver.
* @irq: Negative, or the number passed to request_irq() to receive
* interrupts from this device.
* @controller_state: Controller's runtime state
* @controller_data: Static board-specific definitions for controller, such
* as FIFO initialization parameters; from board_info.controller_data
*
* An spi_device is used to interchange data between an SPI slave
* (usually a discrete chip) and CPU memory.
*
* In "dev", the platform_data is used to hold information about this
* device that's meaningful to the device's protocol driver, but not
* to its controller. One example might be an identifier for a chip
* variant with slightly different functionality.
*/
struct spi_device {
struct device dev;
struct spi_master *master;
u32 max_speed_hz;
u8 chip_select;
u8 mode;
#define SPI_CPHA 0x01 /* clock phase */
#define SPI_CPOL 0x02 /* clock polarity */
#define SPI_MODE_0 (0|0)
#define SPI_MODE_1 (0|SPI_CPHA)
#define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
#define SPI_CS_HIGH 0x04 /* chipselect active high? */
u8 bits_per_word;
int irq;
void *controller_state;
const void *controller_data;
const char *modalias;
// likely need more hooks for more protocol options affecting how
// the controller talks to its chips, like:
// - bit order (default is wordwise msb-first)
// - memory packing (12 bit samples into low bits, others zeroed)
// - priority
// - chipselect delays
// - ...
};
static inline struct spi_device *to_spi_device(struct device *dev)
{
return container_of(dev, struct spi_device, dev);
}
/* most drivers won't need to care about device refcounting */
static inline struct spi_device *spi_dev_get(struct spi_device *spi)
{
return (spi && get_device(&spi->dev)) ? spi : NULL;
}
static inline void spi_dev_put(struct spi_device *spi)
{
if (spi)
put_device(&spi->dev);
}
/* ctldata is for the bus_master driver's runtime state */
static inline void *spi_get_ctldata(struct spi_device *spi)
{
return spi->controller_state;
}
static inline void spi_set_ctldata(struct spi_device *spi, void *state)
{
spi->controller_state = state;
}
struct spi_message;
/**
* struct spi_master - interface to SPI master controller
* @cdev: class interface to this driver
* @bus_num: board-specific (and often SOC-specific) identifier for a
* given SPI controller.
* @num_chipselects: chipselects are used to distinguish individual
* SPI slaves, and are numbered from zero to num_chipselects.
* each slave has a chipselect signal, but it's common that not
* every chipselect is connected to a slave.
* @setup: updates the device mode and clocking records used by a
* device's SPI controller; protocol code may call this.
* @transfer: adds a message to the controller's transfer queue.
* @cleanup: frees controller-specific state
*
* Each SPI master controller can communicate with one or more spi_device
* children. These make a small bus, sharing MOSI, MISO and SCK signals
* but not chip select signals. Each device may be configured to use a
* different clock rate, since those shared signals are ignored unless
* the chip is selected.
*
* The driver for an SPI controller manages access to those devices through
* a queue of spi_message transactions, copyin data between CPU memory and
* an SPI slave device). For each such message it queues, it calls the
* message's completion function when the transaction completes.
*/
struct spi_master {
struct class_device cdev;
/* other than zero (== assign one dynamically), bus_num is fully
* board-specific. usually that simplifies to being SOC-specific.
* example: one SOC has three SPI controllers, numbered 1..3,
* and one board's schematics might show it using SPI-2. software
* would normally use bus_num=2 for that controller.
*/
u16 bus_num;
/* chipselects will be integral to many controllers; some others
* might use board-specific GPIOs.
*/
u16 num_chipselect;
/* setup mode and clock, etc (spi driver may call many times) */
int (*setup)(struct spi_device *spi);
/* bidirectional bulk transfers
*
* + The transfer() method may not sleep; its main role is
* just to add the message to the queue.
* + For now there's no remove-from-queue operation, or
* any other request management
* + To a given spi_device, message queueing is pure fifo
*
* + The master's main job is to process its message queue,
* selecting a chip then transferring data
* + If there are multiple spi_device children, the i/o queue
* arbitration algorithm is unspecified (round robin, fifo,
* priority, reservations, preemption, etc)
*
* + Chipselect stays active during the entire message
* (unless modified by spi_transfer.cs_change != 0).
* + The message transfers use clock and SPI mode parameters
* previously established by setup() for this device
*/
int (*transfer)(struct spi_device *spi,
struct spi_message *mesg);
/* called on release() to free memory provided by spi_master */
void (*cleanup)(const struct spi_device *spi);
};
/* the spi driver core manages memory for the spi_master classdev */
extern struct spi_master *
spi_alloc_master(struct device *host, unsigned size);
extern int spi_register_master(struct spi_master *master);
extern void spi_unregister_master(struct spi_master *master);
extern struct spi_master *spi_busnum_to_master(u16 busnum);
/*---------------------------------------------------------------------------*/
/*
* I/O INTERFACE between SPI controller and protocol drivers
*
* Protocol drivers use a queue of spi_messages, each transferring data
* between the controller and memory buffers.
*
* The spi_messages themselves consist of a series of read+write transfer
* segments. Those segments always read the same number of bits as they
* write; but one or the other is easily ignored by passing a null buffer
* pointer. (This is unlike most types of I/O API, because SPI hardware
* is full duplex.)
*
* NOTE: Allocation of spi_transfer and spi_message memory is entirely
* up to the protocol driver, which guarantees the integrity of both (as
* well as the data buffers) for as long as the message is queued.
*/
/**
* struct spi_transfer - a read/write buffer pair
* @tx_buf: data to be written (dma-safe address), or NULL
* @rx_buf: data to be read (dma-safe address), or NULL
* @tx_dma: DMA address of buffer, if spi_message.is_dma_mapped
* @rx_dma: DMA address of buffer, if spi_message.is_dma_mapped
* @len: size of rx and tx buffers (in bytes)
* @cs_change: affects chipselect after this transfer completes
* @delay_usecs: microseconds to delay after this transfer before
* (optionally) changing the chipselect status, then starting
* the next transfer or completing this spi_message.
*
* SPI transfers always write the same number of bytes as they read.
* Protocol drivers should always provide rx_buf and/or tx_buf.
* In some cases, they may also want to provide DMA addresses for
* the data being transferred; that may reduce overhead, when the
* underlying driver uses dma.
*
* All SPI transfers start with the relevant chipselect active. Drivers
* can change behavior of the chipselect after the transfer finishes
* (including any mandatory delay). The normal behavior is to leave it
* selected, except for the last transfer in a message. Setting cs_change
* allows two additional behavior options:
*
* (i) If the transfer isn't the last one in the message, this flag is
* used to make the chipselect briefly go inactive in the middle of the
* message. Toggling chipselect in this way may be needed to terminate
* a chip command, letting a single spi_message perform all of group of
* chip transactions together.
*
* (ii) When the transfer is the last one in the message, the chip may
* stay selected until the next transfer. This is purely a performance
* hint; the controller driver may need to select a different device
* for the next message.
*/
struct spi_transfer {
/* it's ok if tx_buf == rx_buf (right?)
* for MicroWire, one buffer must be null
* buffers must work with dma_*map_single() calls
*/
const void *tx_buf;
void *rx_buf;
unsigned len;
dma_addr_t tx_dma;
dma_addr_t rx_dma;
unsigned cs_change:1;
u16 delay_usecs;
};
/**
* struct spi_message - one multi-segment SPI transaction
* @transfers: the segements of the transaction
* @n_transfer: how many segments
* @spi: SPI device to which the transaction is queued
* @is_dma_mapped: if true, the caller provided both dma and cpu virtual
* addresses for each transfer buffer
* @complete: called to report transaction completions
* @context: the argument to complete() when it's called
* @actual_length: how many bytes were transferd
* @status: zero for success, else negative errno
* @queue: for use by whichever driver currently owns the message
* @state: for use by whichever driver currently owns the message
*/
struct spi_message {
struct spi_transfer *transfers;
unsigned n_transfer;
struct spi_device *spi;
unsigned is_dma_mapped:1;
/* REVISIT: we might want a flag affecting the behavior of the
* last transfer ... allowing things like "read 16 bit length L"
* immediately followed by "read L bytes". Basically imposing
* a specific message scheduling algorithm.
*
* Some controller drivers (message-at-a-time queue processing)
* could provide that as their default scheduling algorithm. But
* others (with multi-message pipelines) would need a flag to
* tell them about such special cases.
*/
/* completion is reported through a callback */
void FASTCALL((*complete)(void *context));
void *context;
unsigned actual_length;
int status;
/* for optional use by whatever driver currently owns the
* spi_message ... between calls to spi_async and then later
* complete(), that's the spi_master controller driver.
*/
struct list_head queue;
void *state;
};
/**
* spi_setup -- setup SPI mode and clock rate
* @spi: the device whose settings are being modified
*
* SPI protocol drivers may need to update the transfer mode if the
* device doesn't work with the mode 0 default. They may likewise need
* to update clock rates or word sizes from initial values. This function
* changes those settings, and must be called from a context that can sleep.
*/
static inline int
spi_setup(struct spi_device *spi)
{
return spi->master->setup(spi);
}
/**
* spi_async -- asynchronous SPI transfer
* @spi: device with which data will be exchanged
* @message: describes the data transfers, including completion callback
*
* This call may be used in_irq and other contexts which can't sleep,
* as well as from task contexts which can sleep.
*
* The completion callback is invoked in a context which can't sleep.
* Before that invocation, the value of message->status is undefined.
* When the callback is issued, message->status holds either zero (to
* indicate complete success) or a negative error code.
*
* Note that although all messages to a spi_device are handled in
* FIFO order, messages may go to different devices in other orders.
* Some device might be higher priority, or have various "hard" access
* time requirements, for example.
*/
static inline int
spi_async(struct spi_device *spi, struct spi_message *message)
{
message->spi = spi;
return spi->master->transfer(spi, message);
}
/*---------------------------------------------------------------------------*/
/* All these synchronous SPI transfer routines are utilities layered
* over the core async transfer primitive. Here, "synchronous" means
* they will sleep uninterruptibly until the async transfer completes.
*/
extern int spi_sync(struct spi_device *spi, struct spi_message *message);
/**
* spi_write - SPI synchronous write
* @spi: device to which data will be written
* @buf: data buffer
* @len: data buffer size
*
* This writes the buffer and returns zero or a negative error code.
* Callable only from contexts that can sleep.
*/
static inline int
spi_write(struct spi_device *spi, const u8 *buf, size_t len)
{
struct spi_transfer t = {
.tx_buf = buf,
.rx_buf = NULL,
.len = len,
.cs_change = 0,
};
struct spi_message m = {
.transfers = &t,
.n_transfer = 1,
};
return spi_sync(spi, &m);
}
/**
* spi_read - SPI synchronous read
* @spi: device from which data will be read
* @buf: data buffer
* @len: data buffer size
*
* This writes the buffer and returns zero or a negative error code.
* Callable only from contexts that can sleep.
*/
static inline int
spi_read(struct spi_device *spi, u8 *buf, size_t len)
{
struct spi_transfer t = {
.tx_buf = NULL,
.rx_buf = buf,
.len = len,
.cs_change = 0,
};
struct spi_message m = {
.transfers = &t,
.n_transfer = 1,
};
return spi_sync(spi, &m);
}
extern int spi_write_then_read(struct spi_device *spi,
const u8 *txbuf, unsigned n_tx,
u8 *rxbuf, unsigned n_rx);
/**
* spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
* @spi: device with which data will be exchanged
* @cmd: command to be written before data is read back
*
* This returns the (unsigned) eight bit number returned by the
* device, or else a negative error code. Callable only from
* contexts that can sleep.
*/
static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
{
ssize_t status;
u8 result;
status = spi_write_then_read(spi, &cmd, 1, &result, 1);
/* return negative errno or unsigned value */
return (status < 0) ? status : result;
}
/**
* spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
* @spi: device with which data will be exchanged
* @cmd: command to be written before data is read back
*
* This returns the (unsigned) sixteen bit number returned by the
* device, or else a negative error code. Callable only from
* contexts that can sleep.
*
* The number is returned in wire-order, which is at least sometimes
* big-endian.
*/
static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
{
ssize_t status;
u16 result;
status = spi_write_then_read(spi, &cmd, 1, (u8 *) &result, 2);
/* return negative errno or unsigned value */
return (status < 0) ? status : result;
}
/*---------------------------------------------------------------------------*/
/*
* INTERFACE between board init code and SPI infrastructure.
*
* No SPI driver ever sees these SPI device table segments, but
* it's how the SPI core (or adapters that get hotplugged) grows
* the driver model tree.
*
* As a rule, SPI devices can't be probed. Instead, board init code
* provides a table listing the devices which are present, with enough
* information to bind and set up the device's driver. There's basic
* support for nonstatic configurations too; enough to handle adding
* parport adapters, or microcontrollers acting as USB-to-SPI bridges.
*/
/* board-specific information about each SPI device */
struct spi_board_info {
/* the device name and module name are coupled, like platform_bus;
* "modalias" is normally the driver name.
*
* platform_data goes to spi_device.dev.platform_data,
* controller_data goes to spi_device.platform_data,
* irq is copied too
*/
char modalias[KOBJ_NAME_LEN];
const void *platform_data;
const void *controller_data;
int irq;
/* slower signaling on noisy or low voltage boards */
u32 max_speed_hz;
/* bus_num is board specific and matches the bus_num of some
* spi_master that will probably be registered later.
*
* chip_select reflects how this chip is wired to that master;
* it's less than num_chipselect.
*/
u16 bus_num;
u16 chip_select;
/* ... may need additional spi_device chip config data here.
* avoid stuff protocol drivers can set; but include stuff
* needed to behave without being bound to a driver:
* - chipselect polarity
* - quirks like clock rate mattering when not selected
*/
};
#ifdef CONFIG_SPI
extern int
spi_register_board_info(struct spi_board_info const *info, unsigned n);
#else
/* board init code may ignore whether SPI is configured or not */
static inline int
spi_register_board_info(struct spi_board_info const *info, unsigned n)
{ return 0; }
#endif
/* If you're hotplugging an adapter with devices (parport, usb, etc)
* use spi_new_device() to describe each device. You can also call
* spi_unregister_device() to get start making that device vanish,
* but normally that would be handled by spi_unregister_master().
*/
extern struct spi_device *
spi_new_device(struct spi_master *, struct spi_board_info *);
static inline void
spi_unregister_device(struct spi_device *spi)
{
if (spi)
device_unregister(&spi->dev);
}
#endif /* __LINUX_SPI_H */