OpenCloudOS-Kernel/net/core/flow_dissector.c

1963 lines
52 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/export.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>
#include <linux/filter.h>
#include <net/dsa.h>
#include <net/dst_metadata.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/gre.h>
#include <net/pptp.h>
#include <net/tipc.h>
#include <linux/igmp.h>
#include <linux/icmp.h>
#include <linux/sctp.h>
#include <linux/dccp.h>
#include <linux/if_tunnel.h>
#include <linux/if_pppox.h>
#include <linux/ppp_defs.h>
#include <linux/stddef.h>
#include <linux/if_ether.h>
#include <linux/if_hsr.h>
#include <linux/mpls.h>
#include <linux/tcp.h>
#include <linux/ptp_classify.h>
#include <net/flow_dissector.h>
#include <scsi/fc/fc_fcoe.h>
#include <uapi/linux/batadv_packet.h>
#include <linux/bpf.h>
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_labels.h>
#endif
#include <linux/bpf-netns.h>
static void dissector_set_key(struct flow_dissector *flow_dissector,
enum flow_dissector_key_id key_id)
{
flow_dissector->used_keys |= (1 << key_id);
}
void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
const struct flow_dissector_key *key,
unsigned int key_count)
{
unsigned int i;
memset(flow_dissector, 0, sizeof(*flow_dissector));
for (i = 0; i < key_count; i++, key++) {
/* User should make sure that every key target offset is within
* boundaries of unsigned short.
*/
BUG_ON(key->offset > USHRT_MAX);
BUG_ON(dissector_uses_key(flow_dissector,
key->key_id));
dissector_set_key(flow_dissector, key->key_id);
flow_dissector->offset[key->key_id] = key->offset;
}
/* Ensure that the dissector always includes control and basic key.
* That way we are able to avoid handling lack of these in fast path.
*/
BUG_ON(!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_CONTROL));
BUG_ON(!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_BASIC));
}
EXPORT_SYMBOL(skb_flow_dissector_init);
#ifdef CONFIG_BPF_SYSCALL
int flow_dissector_bpf_prog_attach_check(struct net *net,
struct bpf_prog *prog)
{
enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
if (net == &init_net) {
/* BPF flow dissector in the root namespace overrides
* any per-net-namespace one. When attaching to root,
* make sure we don't have any BPF program attached
* to the non-root namespaces.
*/
struct net *ns;
for_each_net(ns) {
if (ns == &init_net)
continue;
if (rcu_access_pointer(ns->bpf.run_array[type]))
return -EEXIST;
}
} else {
/* Make sure root flow dissector is not attached
* when attaching to the non-root namespace.
*/
if (rcu_access_pointer(init_net.bpf.run_array[type]))
return -EEXIST;
}
return 0;
}
#endif /* CONFIG_BPF_SYSCALL */
/**
* __skb_flow_get_ports - extract the upper layer ports and return them
* @skb: sk_buff to extract the ports from
* @thoff: transport header offset
* @ip_proto: protocol for which to get port offset
* @data: raw buffer pointer to the packet, if NULL use skb->data
* @hlen: packet header length, if @data is NULL use skb_headlen(skb)
*
* The function will try to retrieve the ports at offset thoff + poff where poff
* is the protocol port offset returned from proto_ports_offset
*/
__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
const void *data, int hlen)
{
int poff = proto_ports_offset(ip_proto);
if (!data) {
data = skb->data;
hlen = skb_headlen(skb);
}
if (poff >= 0) {
__be32 *ports, _ports;
ports = __skb_header_pointer(skb, thoff + poff,
sizeof(_ports), data, hlen, &_ports);
if (ports)
return *ports;
}
return 0;
}
EXPORT_SYMBOL(__skb_flow_get_ports);
static bool icmp_has_id(u8 type)
{
switch (type) {
case ICMP_ECHO:
case ICMP_ECHOREPLY:
case ICMP_TIMESTAMP:
case ICMP_TIMESTAMPREPLY:
case ICMPV6_ECHO_REQUEST:
case ICMPV6_ECHO_REPLY:
return true;
}
return false;
}
/**
* skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
* @skb: sk_buff to extract from
* @key_icmp: struct flow_dissector_key_icmp to fill
* @data: raw buffer pointer to the packet
* @thoff: offset to extract at
* @hlen: packet header length
*/
void skb_flow_get_icmp_tci(const struct sk_buff *skb,
struct flow_dissector_key_icmp *key_icmp,
const void *data, int thoff, int hlen)
{
struct icmphdr *ih, _ih;
ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
if (!ih)
return;
key_icmp->type = ih->type;
key_icmp->code = ih->code;
/* As we use 0 to signal that the Id field is not present,
* avoid confusion with packets without such field
*/
if (icmp_has_id(ih->type))
key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1;
else
key_icmp->id = 0;
}
EXPORT_SYMBOL(skb_flow_get_icmp_tci);
/* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
* using skb_flow_get_icmp_tci().
*/
static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
int thoff, int hlen)
{
struct flow_dissector_key_icmp *key_icmp;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
return;
key_icmp = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ICMP,
target_container);
skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
}
static void __skb_flow_dissect_l2tpv3(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
int nhoff, int hlen)
{
struct flow_dissector_key_l2tpv3 *key_l2tpv3;
struct {
__be32 session_id;
} *hdr, _hdr;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_L2TPV3))
return;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
if (!hdr)
return;
key_l2tpv3 = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_L2TPV3,
target_container);
key_l2tpv3->session_id = hdr->session_id;
}
void skb_flow_dissect_meta(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container)
{
struct flow_dissector_key_meta *meta;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
return;
meta = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_META,
target_container);
meta->ingress_ifindex = skb->skb_iif;
}
EXPORT_SYMBOL(skb_flow_dissect_meta);
static void
skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
struct flow_dissector *flow_dissector,
void *target_container)
{
struct flow_dissector_key_control *ctrl;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
return;
ctrl = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_CONTROL,
target_container);
ctrl->addr_type = type;
}
void
skb_flow_dissect_ct(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, u16 *ctinfo_map,
size_t mapsize, bool post_ct, u16 zone)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
struct flow_dissector_key_ct *key;
enum ip_conntrack_info ctinfo;
struct nf_conn_labels *cl;
struct nf_conn *ct;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
return;
ct = nf_ct_get(skb, &ctinfo);
if (!ct && !post_ct)
return;
key = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_CT,
target_container);
if (!ct) {
key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
TCA_FLOWER_KEY_CT_FLAGS_INVALID;
key->ct_zone = zone;
return;
}
if (ctinfo < mapsize)
key->ct_state = ctinfo_map[ctinfo];
#if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
key->ct_zone = ct->zone.id;
#endif
#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
key->ct_mark = ct->mark;
#endif
cl = nf_ct_labels_find(ct);
if (cl)
memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
#endif /* CONFIG_NF_CONNTRACK */
}
EXPORT_SYMBOL(skb_flow_dissect_ct);
void
skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container)
{
struct ip_tunnel_info *info;
struct ip_tunnel_key *key;
/* A quick check to see if there might be something to do. */
if (!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_KEYID) &&
!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_PORTS) &&
!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IP) &&
!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_OPTS))
return;
info = skb_tunnel_info(skb);
if (!info)
return;
key = &info->key;
switch (ip_tunnel_info_af(info)) {
case AF_INET:
skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
flow_dissector,
target_container);
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
struct flow_dissector_key_ipv4_addrs *ipv4;
ipv4 = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
target_container);
ipv4->src = key->u.ipv4.src;
ipv4->dst = key->u.ipv4.dst;
}
break;
case AF_INET6:
skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
flow_dissector,
target_container);
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
struct flow_dissector_key_ipv6_addrs *ipv6;
ipv6 = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
target_container);
ipv6->src = key->u.ipv6.src;
ipv6->dst = key->u.ipv6.dst;
}
break;
}
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
struct flow_dissector_key_keyid *keyid;
keyid = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_KEYID,
target_container);
keyid->keyid = tunnel_id_to_key32(key->tun_id);
}
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
struct flow_dissector_key_ports *tp;
tp = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_PORTS,
target_container);
tp->src = key->tp_src;
tp->dst = key->tp_dst;
}
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
struct flow_dissector_key_ip *ip;
ip = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IP,
target_container);
ip->tos = key->tos;
ip->ttl = key->ttl;
}
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
struct flow_dissector_key_enc_opts *enc_opt;
enc_opt = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_OPTS,
target_container);
if (info->options_len) {
enc_opt->len = info->options_len;
ip_tunnel_info_opts_get(enc_opt->data, info);
enc_opt->dst_opt_type = info->key.tun_flags &
TUNNEL_OPTIONS_PRESENT;
}
}
}
EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
void skb_flow_dissect_hash(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container)
{
struct flow_dissector_key_hash *key;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH))
return;
key = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_HASH,
target_container);
key->hash = skb_get_hash_raw(skb);
}
EXPORT_SYMBOL(skb_flow_dissect_hash);
static enum flow_dissect_ret
__skb_flow_dissect_mpls(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data, int nhoff,
int hlen, int lse_index, bool *entropy_label)
{
flow_dissector: Parse multiple MPLS Label Stack Entries The current MPLS dissector only parses the first MPLS Label Stack Entry (second LSE can be parsed too, but only to set a key_id). This patch adds the possibility to parse several LSEs by making __skb_flow_dissect_mpls() return FLOW_DISSECT_RET_PROTO_AGAIN as long as the Bottom Of Stack bit hasn't been seen, up to a maximum of FLOW_DIS_MPLS_MAX entries. FLOW_DIS_MPLS_MAX is arbitrarily set to 7. This should be enough for many practical purposes, without wasting too much space. To record the parsed values, flow_dissector_key_mpls is modified to store an array of stack entries, instead of just the values of the first one. A bit field, "used_lses", is also added to keep track of the LSEs that have been set. The objective is to avoid defining a new FLOW_DISSECTOR_KEY_MPLS_XX for each level of the MPLS stack. TC flower is adapted for the new struct flow_dissector_key_mpls layout. Matching on several MPLS Label Stack Entries will be added in the next patch. The NFP and MLX5 drivers are also adapted: nfp_flower_compile_mac() and mlx5's parse_tunnel() now verify that the rule only uses the first LSE and fail if it doesn't. Finally, the behaviour of the FLOW_DISSECTOR_KEY_MPLS_ENTROPY key is slightly modified. Instead of recording the first Entropy Label, it now records the last one. This shouldn't have any consequences since there doesn't seem to have any user of FLOW_DISSECTOR_KEY_MPLS_ENTROPY in the tree. We'd probably better do a hash of all parsed MPLS labels instead (excluding reserved labels) anyway. That'd give better entropy and would probably also simplify the code. But that's not the purpose of this patch, so I'm keeping that as a future possible improvement. Signed-off-by: Guillaume Nault <gnault@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-26 20:29:00 +08:00
struct mpls_label *hdr, _hdr;
u32 entry, label, bos;
if (!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
return FLOW_DISSECT_RET_OUT_GOOD;
flow_dissector: Parse multiple MPLS Label Stack Entries The current MPLS dissector only parses the first MPLS Label Stack Entry (second LSE can be parsed too, but only to set a key_id). This patch adds the possibility to parse several LSEs by making __skb_flow_dissect_mpls() return FLOW_DISSECT_RET_PROTO_AGAIN as long as the Bottom Of Stack bit hasn't been seen, up to a maximum of FLOW_DIS_MPLS_MAX entries. FLOW_DIS_MPLS_MAX is arbitrarily set to 7. This should be enough for many practical purposes, without wasting too much space. To record the parsed values, flow_dissector_key_mpls is modified to store an array of stack entries, instead of just the values of the first one. A bit field, "used_lses", is also added to keep track of the LSEs that have been set. The objective is to avoid defining a new FLOW_DISSECTOR_KEY_MPLS_XX for each level of the MPLS stack. TC flower is adapted for the new struct flow_dissector_key_mpls layout. Matching on several MPLS Label Stack Entries will be added in the next patch. The NFP and MLX5 drivers are also adapted: nfp_flower_compile_mac() and mlx5's parse_tunnel() now verify that the rule only uses the first LSE and fail if it doesn't. Finally, the behaviour of the FLOW_DISSECTOR_KEY_MPLS_ENTROPY key is slightly modified. Instead of recording the first Entropy Label, it now records the last one. This shouldn't have any consequences since there doesn't seem to have any user of FLOW_DISSECTOR_KEY_MPLS_ENTROPY in the tree. We'd probably better do a hash of all parsed MPLS labels instead (excluding reserved labels) anyway. That'd give better entropy and would probably also simplify the code. But that's not the purpose of this patch, so I'm keeping that as a future possible improvement. Signed-off-by: Guillaume Nault <gnault@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-26 20:29:00 +08:00
if (lse_index >= FLOW_DIS_MPLS_MAX)
return FLOW_DISSECT_RET_OUT_GOOD;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
hlen, &_hdr);
if (!hdr)
return FLOW_DISSECT_RET_OUT_BAD;
flow_dissector: Parse multiple MPLS Label Stack Entries The current MPLS dissector only parses the first MPLS Label Stack Entry (second LSE can be parsed too, but only to set a key_id). This patch adds the possibility to parse several LSEs by making __skb_flow_dissect_mpls() return FLOW_DISSECT_RET_PROTO_AGAIN as long as the Bottom Of Stack bit hasn't been seen, up to a maximum of FLOW_DIS_MPLS_MAX entries. FLOW_DIS_MPLS_MAX is arbitrarily set to 7. This should be enough for many practical purposes, without wasting too much space. To record the parsed values, flow_dissector_key_mpls is modified to store an array of stack entries, instead of just the values of the first one. A bit field, "used_lses", is also added to keep track of the LSEs that have been set. The objective is to avoid defining a new FLOW_DISSECTOR_KEY_MPLS_XX for each level of the MPLS stack. TC flower is adapted for the new struct flow_dissector_key_mpls layout. Matching on several MPLS Label Stack Entries will be added in the next patch. The NFP and MLX5 drivers are also adapted: nfp_flower_compile_mac() and mlx5's parse_tunnel() now verify that the rule only uses the first LSE and fail if it doesn't. Finally, the behaviour of the FLOW_DISSECTOR_KEY_MPLS_ENTROPY key is slightly modified. Instead of recording the first Entropy Label, it now records the last one. This shouldn't have any consequences since there doesn't seem to have any user of FLOW_DISSECTOR_KEY_MPLS_ENTROPY in the tree. We'd probably better do a hash of all parsed MPLS labels instead (excluding reserved labels) anyway. That'd give better entropy and would probably also simplify the code. But that's not the purpose of this patch, so I'm keeping that as a future possible improvement. Signed-off-by: Guillaume Nault <gnault@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-26 20:29:00 +08:00
entry = ntohl(hdr->entry);
label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
flow_dissector: Parse multiple MPLS Label Stack Entries The current MPLS dissector only parses the first MPLS Label Stack Entry (second LSE can be parsed too, but only to set a key_id). This patch adds the possibility to parse several LSEs by making __skb_flow_dissect_mpls() return FLOW_DISSECT_RET_PROTO_AGAIN as long as the Bottom Of Stack bit hasn't been seen, up to a maximum of FLOW_DIS_MPLS_MAX entries. FLOW_DIS_MPLS_MAX is arbitrarily set to 7. This should be enough for many practical purposes, without wasting too much space. To record the parsed values, flow_dissector_key_mpls is modified to store an array of stack entries, instead of just the values of the first one. A bit field, "used_lses", is also added to keep track of the LSEs that have been set. The objective is to avoid defining a new FLOW_DISSECTOR_KEY_MPLS_XX for each level of the MPLS stack. TC flower is adapted for the new struct flow_dissector_key_mpls layout. Matching on several MPLS Label Stack Entries will be added in the next patch. The NFP and MLX5 drivers are also adapted: nfp_flower_compile_mac() and mlx5's parse_tunnel() now verify that the rule only uses the first LSE and fail if it doesn't. Finally, the behaviour of the FLOW_DISSECTOR_KEY_MPLS_ENTROPY key is slightly modified. Instead of recording the first Entropy Label, it now records the last one. This shouldn't have any consequences since there doesn't seem to have any user of FLOW_DISSECTOR_KEY_MPLS_ENTROPY in the tree. We'd probably better do a hash of all parsed MPLS labels instead (excluding reserved labels) anyway. That'd give better entropy and would probably also simplify the code. But that's not the purpose of this patch, so I'm keeping that as a future possible improvement. Signed-off-by: Guillaume Nault <gnault@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-26 20:29:00 +08:00
bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
struct flow_dissector_key_mpls *key_mpls;
flow_dissector: Parse multiple MPLS Label Stack Entries The current MPLS dissector only parses the first MPLS Label Stack Entry (second LSE can be parsed too, but only to set a key_id). This patch adds the possibility to parse several LSEs by making __skb_flow_dissect_mpls() return FLOW_DISSECT_RET_PROTO_AGAIN as long as the Bottom Of Stack bit hasn't been seen, up to a maximum of FLOW_DIS_MPLS_MAX entries. FLOW_DIS_MPLS_MAX is arbitrarily set to 7. This should be enough for many practical purposes, without wasting too much space. To record the parsed values, flow_dissector_key_mpls is modified to store an array of stack entries, instead of just the values of the first one. A bit field, "used_lses", is also added to keep track of the LSEs that have been set. The objective is to avoid defining a new FLOW_DISSECTOR_KEY_MPLS_XX for each level of the MPLS stack. TC flower is adapted for the new struct flow_dissector_key_mpls layout. Matching on several MPLS Label Stack Entries will be added in the next patch. The NFP and MLX5 drivers are also adapted: nfp_flower_compile_mac() and mlx5's parse_tunnel() now verify that the rule only uses the first LSE and fail if it doesn't. Finally, the behaviour of the FLOW_DISSECTOR_KEY_MPLS_ENTROPY key is slightly modified. Instead of recording the first Entropy Label, it now records the last one. This shouldn't have any consequences since there doesn't seem to have any user of FLOW_DISSECTOR_KEY_MPLS_ENTROPY in the tree. We'd probably better do a hash of all parsed MPLS labels instead (excluding reserved labels) anyway. That'd give better entropy and would probably also simplify the code. But that's not the purpose of this patch, so I'm keeping that as a future possible improvement. Signed-off-by: Guillaume Nault <gnault@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-26 20:29:00 +08:00
struct flow_dissector_mpls_lse *lse;
key_mpls = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_MPLS,
target_container);
flow_dissector: Parse multiple MPLS Label Stack Entries The current MPLS dissector only parses the first MPLS Label Stack Entry (second LSE can be parsed too, but only to set a key_id). This patch adds the possibility to parse several LSEs by making __skb_flow_dissect_mpls() return FLOW_DISSECT_RET_PROTO_AGAIN as long as the Bottom Of Stack bit hasn't been seen, up to a maximum of FLOW_DIS_MPLS_MAX entries. FLOW_DIS_MPLS_MAX is arbitrarily set to 7. This should be enough for many practical purposes, without wasting too much space. To record the parsed values, flow_dissector_key_mpls is modified to store an array of stack entries, instead of just the values of the first one. A bit field, "used_lses", is also added to keep track of the LSEs that have been set. The objective is to avoid defining a new FLOW_DISSECTOR_KEY_MPLS_XX for each level of the MPLS stack. TC flower is adapted for the new struct flow_dissector_key_mpls layout. Matching on several MPLS Label Stack Entries will be added in the next patch. The NFP and MLX5 drivers are also adapted: nfp_flower_compile_mac() and mlx5's parse_tunnel() now verify that the rule only uses the first LSE and fail if it doesn't. Finally, the behaviour of the FLOW_DISSECTOR_KEY_MPLS_ENTROPY key is slightly modified. Instead of recording the first Entropy Label, it now records the last one. This shouldn't have any consequences since there doesn't seem to have any user of FLOW_DISSECTOR_KEY_MPLS_ENTROPY in the tree. We'd probably better do a hash of all parsed MPLS labels instead (excluding reserved labels) anyway. That'd give better entropy and would probably also simplify the code. But that's not the purpose of this patch, so I'm keeping that as a future possible improvement. Signed-off-by: Guillaume Nault <gnault@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-26 20:29:00 +08:00
lse = &key_mpls->ls[lse_index];
lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
lse->mpls_bos = bos;
lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
lse->mpls_label = label;
dissector_set_mpls_lse(key_mpls, lse_index);
}
flow_dissector: Parse multiple MPLS Label Stack Entries The current MPLS dissector only parses the first MPLS Label Stack Entry (second LSE can be parsed too, but only to set a key_id). This patch adds the possibility to parse several LSEs by making __skb_flow_dissect_mpls() return FLOW_DISSECT_RET_PROTO_AGAIN as long as the Bottom Of Stack bit hasn't been seen, up to a maximum of FLOW_DIS_MPLS_MAX entries. FLOW_DIS_MPLS_MAX is arbitrarily set to 7. This should be enough for many practical purposes, without wasting too much space. To record the parsed values, flow_dissector_key_mpls is modified to store an array of stack entries, instead of just the values of the first one. A bit field, "used_lses", is also added to keep track of the LSEs that have been set. The objective is to avoid defining a new FLOW_DISSECTOR_KEY_MPLS_XX for each level of the MPLS stack. TC flower is adapted for the new struct flow_dissector_key_mpls layout. Matching on several MPLS Label Stack Entries will be added in the next patch. The NFP and MLX5 drivers are also adapted: nfp_flower_compile_mac() and mlx5's parse_tunnel() now verify that the rule only uses the first LSE and fail if it doesn't. Finally, the behaviour of the FLOW_DISSECTOR_KEY_MPLS_ENTROPY key is slightly modified. Instead of recording the first Entropy Label, it now records the last one. This shouldn't have any consequences since there doesn't seem to have any user of FLOW_DISSECTOR_KEY_MPLS_ENTROPY in the tree. We'd probably better do a hash of all parsed MPLS labels instead (excluding reserved labels) anyway. That'd give better entropy and would probably also simplify the code. But that's not the purpose of this patch, so I'm keeping that as a future possible improvement. Signed-off-by: Guillaume Nault <gnault@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-26 20:29:00 +08:00
if (*entropy_label &&
dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
struct flow_dissector_key_keyid *key_keyid;
key_keyid = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
target_container);
flow_dissector: Parse multiple MPLS Label Stack Entries The current MPLS dissector only parses the first MPLS Label Stack Entry (second LSE can be parsed too, but only to set a key_id). This patch adds the possibility to parse several LSEs by making __skb_flow_dissect_mpls() return FLOW_DISSECT_RET_PROTO_AGAIN as long as the Bottom Of Stack bit hasn't been seen, up to a maximum of FLOW_DIS_MPLS_MAX entries. FLOW_DIS_MPLS_MAX is arbitrarily set to 7. This should be enough for many practical purposes, without wasting too much space. To record the parsed values, flow_dissector_key_mpls is modified to store an array of stack entries, instead of just the values of the first one. A bit field, "used_lses", is also added to keep track of the LSEs that have been set. The objective is to avoid defining a new FLOW_DISSECTOR_KEY_MPLS_XX for each level of the MPLS stack. TC flower is adapted for the new struct flow_dissector_key_mpls layout. Matching on several MPLS Label Stack Entries will be added in the next patch. The NFP and MLX5 drivers are also adapted: nfp_flower_compile_mac() and mlx5's parse_tunnel() now verify that the rule only uses the first LSE and fail if it doesn't. Finally, the behaviour of the FLOW_DISSECTOR_KEY_MPLS_ENTROPY key is slightly modified. Instead of recording the first Entropy Label, it now records the last one. This shouldn't have any consequences since there doesn't seem to have any user of FLOW_DISSECTOR_KEY_MPLS_ENTROPY in the tree. We'd probably better do a hash of all parsed MPLS labels instead (excluding reserved labels) anyway. That'd give better entropy and would probably also simplify the code. But that's not the purpose of this patch, so I'm keeping that as a future possible improvement. Signed-off-by: Guillaume Nault <gnault@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-26 20:29:00 +08:00
key_keyid->keyid = cpu_to_be32(label);
}
flow_dissector: Parse multiple MPLS Label Stack Entries The current MPLS dissector only parses the first MPLS Label Stack Entry (second LSE can be parsed too, but only to set a key_id). This patch adds the possibility to parse several LSEs by making __skb_flow_dissect_mpls() return FLOW_DISSECT_RET_PROTO_AGAIN as long as the Bottom Of Stack bit hasn't been seen, up to a maximum of FLOW_DIS_MPLS_MAX entries. FLOW_DIS_MPLS_MAX is arbitrarily set to 7. This should be enough for many practical purposes, without wasting too much space. To record the parsed values, flow_dissector_key_mpls is modified to store an array of stack entries, instead of just the values of the first one. A bit field, "used_lses", is also added to keep track of the LSEs that have been set. The objective is to avoid defining a new FLOW_DISSECTOR_KEY_MPLS_XX for each level of the MPLS stack. TC flower is adapted for the new struct flow_dissector_key_mpls layout. Matching on several MPLS Label Stack Entries will be added in the next patch. The NFP and MLX5 drivers are also adapted: nfp_flower_compile_mac() and mlx5's parse_tunnel() now verify that the rule only uses the first LSE and fail if it doesn't. Finally, the behaviour of the FLOW_DISSECTOR_KEY_MPLS_ENTROPY key is slightly modified. Instead of recording the first Entropy Label, it now records the last one. This shouldn't have any consequences since there doesn't seem to have any user of FLOW_DISSECTOR_KEY_MPLS_ENTROPY in the tree. We'd probably better do a hash of all parsed MPLS labels instead (excluding reserved labels) anyway. That'd give better entropy and would probably also simplify the code. But that's not the purpose of this patch, so I'm keeping that as a future possible improvement. Signed-off-by: Guillaume Nault <gnault@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-26 20:29:00 +08:00
*entropy_label = label == MPLS_LABEL_ENTROPY;
return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
}
static enum flow_dissect_ret
__skb_flow_dissect_arp(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
int nhoff, int hlen)
{
struct flow_dissector_key_arp *key_arp;
struct {
unsigned char ar_sha[ETH_ALEN];
unsigned char ar_sip[4];
unsigned char ar_tha[ETH_ALEN];
unsigned char ar_tip[4];
} *arp_eth, _arp_eth;
const struct arphdr *arp;
struct arphdr _arp;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
return FLOW_DISSECT_RET_OUT_GOOD;
arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
hlen, &_arp);
if (!arp)
return FLOW_DISSECT_RET_OUT_BAD;
if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
arp->ar_pro != htons(ETH_P_IP) ||
arp->ar_hln != ETH_ALEN ||
arp->ar_pln != 4 ||
(arp->ar_op != htons(ARPOP_REPLY) &&
arp->ar_op != htons(ARPOP_REQUEST)))
return FLOW_DISSECT_RET_OUT_BAD;
arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
sizeof(_arp_eth), data,
hlen, &_arp_eth);
if (!arp_eth)
return FLOW_DISSECT_RET_OUT_BAD;
key_arp = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ARP,
target_container);
memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
/* Only store the lower byte of the opcode;
* this covers ARPOP_REPLY and ARPOP_REQUEST.
*/
key_arp->op = ntohs(arp->ar_op) & 0xff;
ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
return FLOW_DISSECT_RET_OUT_GOOD;
}
static enum flow_dissect_ret
__skb_flow_dissect_gre(const struct sk_buff *skb,
struct flow_dissector_key_control *key_control,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
__be16 *p_proto, int *p_nhoff, int *p_hlen,
unsigned int flags)
{
struct flow_dissector_key_keyid *key_keyid;
struct gre_base_hdr *hdr, _hdr;
int offset = 0;
u16 gre_ver;
hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
data, *p_hlen, &_hdr);
if (!hdr)
return FLOW_DISSECT_RET_OUT_BAD;
/* Only look inside GRE without routing */
if (hdr->flags & GRE_ROUTING)
return FLOW_DISSECT_RET_OUT_GOOD;
/* Only look inside GRE for version 0 and 1 */
gre_ver = ntohs(hdr->flags & GRE_VERSION);
if (gre_ver > 1)
return FLOW_DISSECT_RET_OUT_GOOD;
*p_proto = hdr->protocol;
if (gre_ver) {
/* Version1 must be PPTP, and check the flags */
if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
return FLOW_DISSECT_RET_OUT_GOOD;
}
offset += sizeof(struct gre_base_hdr);
if (hdr->flags & GRE_CSUM)
offset += sizeof_field(struct gre_full_hdr, csum) +
sizeof_field(struct gre_full_hdr, reserved1);
if (hdr->flags & GRE_KEY) {
const __be32 *keyid;
__be32 _keyid;
keyid = __skb_header_pointer(skb, *p_nhoff + offset,
sizeof(_keyid),
data, *p_hlen, &_keyid);
if (!keyid)
return FLOW_DISSECT_RET_OUT_BAD;
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_GRE_KEYID)) {
key_keyid = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_GRE_KEYID,
target_container);
if (gre_ver == 0)
key_keyid->keyid = *keyid;
else
key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
}
offset += sizeof_field(struct gre_full_hdr, key);
}
if (hdr->flags & GRE_SEQ)
offset += sizeof_field(struct pptp_gre_header, seq);
if (gre_ver == 0) {
if (*p_proto == htons(ETH_P_TEB)) {
const struct ethhdr *eth;
struct ethhdr _eth;
eth = __skb_header_pointer(skb, *p_nhoff + offset,
sizeof(_eth),
data, *p_hlen, &_eth);
if (!eth)
return FLOW_DISSECT_RET_OUT_BAD;
*p_proto = eth->h_proto;
offset += sizeof(*eth);
/* Cap headers that we access via pointers at the
* end of the Ethernet header as our maximum alignment
* at that point is only 2 bytes.
*/
if (NET_IP_ALIGN)
*p_hlen = *p_nhoff + offset;
}
} else { /* version 1, must be PPTP */
u8 _ppp_hdr[PPP_HDRLEN];
u8 *ppp_hdr;
if (hdr->flags & GRE_ACK)
offset += sizeof_field(struct pptp_gre_header, ack);
ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
sizeof(_ppp_hdr),
data, *p_hlen, _ppp_hdr);
if (!ppp_hdr)
return FLOW_DISSECT_RET_OUT_BAD;
switch (PPP_PROTOCOL(ppp_hdr)) {
case PPP_IP:
*p_proto = htons(ETH_P_IP);
break;
case PPP_IPV6:
*p_proto = htons(ETH_P_IPV6);
break;
default:
/* Could probably catch some more like MPLS */
break;
}
offset += PPP_HDRLEN;
}
*p_nhoff += offset;
key_control->flags |= FLOW_DIS_ENCAPSULATION;
if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
return FLOW_DISSECT_RET_OUT_GOOD;
return FLOW_DISSECT_RET_PROTO_AGAIN;
}
/**
* __skb_flow_dissect_batadv() - dissect batman-adv header
* @skb: sk_buff to with the batman-adv header
* @key_control: flow dissectors control key
* @data: raw buffer pointer to the packet, if NULL use skb->data
* @p_proto: pointer used to update the protocol to process next
* @p_nhoff: pointer used to update inner network header offset
* @hlen: packet header length
* @flags: any combination of FLOW_DISSECTOR_F_*
*
* ETH_P_BATMAN packets are tried to be dissected. Only
* &struct batadv_unicast packets are actually processed because they contain an
* inner ethernet header and are usually followed by actual network header. This
* allows the flow dissector to continue processing the packet.
*
* Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
* FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
* otherwise FLOW_DISSECT_RET_OUT_BAD
*/
static enum flow_dissect_ret
__skb_flow_dissect_batadv(const struct sk_buff *skb,
struct flow_dissector_key_control *key_control,
const void *data, __be16 *p_proto, int *p_nhoff,
int hlen, unsigned int flags)
{
struct {
struct batadv_unicast_packet batadv_unicast;
struct ethhdr eth;
} *hdr, _hdr;
hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
&_hdr);
if (!hdr)
return FLOW_DISSECT_RET_OUT_BAD;
if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
return FLOW_DISSECT_RET_OUT_BAD;
if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
return FLOW_DISSECT_RET_OUT_BAD;
*p_proto = hdr->eth.h_proto;
*p_nhoff += sizeof(*hdr);
key_control->flags |= FLOW_DIS_ENCAPSULATION;
if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
return FLOW_DISSECT_RET_OUT_GOOD;
return FLOW_DISSECT_RET_PROTO_AGAIN;
}
static void
__skb_flow_dissect_tcp(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
int thoff, int hlen)
{
struct flow_dissector_key_tcp *key_tcp;
struct tcphdr *th, _th;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
return;
th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
if (!th)
return;
if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
return;
key_tcp = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_TCP,
target_container);
key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
}
cls_flower: Fix the behavior using port ranges with hw-offload The recent commit 5c72299fba9d ("net: sched: cls_flower: Classify packets using port ranges") had added filtering based on port ranges to tc flower. However the commit missed necessary changes in hw-offload code, so the feature gave rise to generating incorrect offloaded flow keys in NIC. One more detailed example is below: $ tc qdisc add dev eth0 ingress $ tc filter add dev eth0 ingress protocol ip flower ip_proto tcp \ dst_port 100-200 action drop With the setup above, an exact match filter with dst_port == 0 will be installed in NIC by hw-offload. IOW, the NIC will have a rule which is equivalent to the following one. $ tc qdisc add dev eth0 ingress $ tc filter add dev eth0 ingress protocol ip flower ip_proto tcp \ dst_port 0 action drop The behavior was caused by the flow dissector which extracts packet data into the flow key in the tc flower. More specifically, regardless of exact match or specified port ranges, fl_init_dissector() set the FLOW_DISSECTOR_KEY_PORTS flag in struct flow_dissector to extract port numbers from skb in skb_flow_dissect() called by fl_classify(). Note that device drivers received the same struct flow_dissector object as used in skb_flow_dissect(). Thus, offloaded drivers could not identify which of these is used because the FLOW_DISSECTOR_KEY_PORTS flag was set to struct flow_dissector in either case. This patch adds the new FLOW_DISSECTOR_KEY_PORTS_RANGE flag and the new tp_range field in struct fl_flow_key to recognize which filters are applied to offloaded drivers. At this point, when filters based on port ranges passed to drivers, drivers return the EOPNOTSUPP error because they do not support the feature (the newly created FLOW_DISSECTOR_KEY_PORTS_RANGE flag). Fixes: 5c72299fba9d ("net: sched: cls_flower: Classify packets using port ranges") Signed-off-by: Yoshiki Komachi <komachi.yoshiki@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-03 18:40:12 +08:00
static void
__skb_flow_dissect_ports(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
int nhoff, u8 ip_proto, int hlen)
cls_flower: Fix the behavior using port ranges with hw-offload The recent commit 5c72299fba9d ("net: sched: cls_flower: Classify packets using port ranges") had added filtering based on port ranges to tc flower. However the commit missed necessary changes in hw-offload code, so the feature gave rise to generating incorrect offloaded flow keys in NIC. One more detailed example is below: $ tc qdisc add dev eth0 ingress $ tc filter add dev eth0 ingress protocol ip flower ip_proto tcp \ dst_port 100-200 action drop With the setup above, an exact match filter with dst_port == 0 will be installed in NIC by hw-offload. IOW, the NIC will have a rule which is equivalent to the following one. $ tc qdisc add dev eth0 ingress $ tc filter add dev eth0 ingress protocol ip flower ip_proto tcp \ dst_port 0 action drop The behavior was caused by the flow dissector which extracts packet data into the flow key in the tc flower. More specifically, regardless of exact match or specified port ranges, fl_init_dissector() set the FLOW_DISSECTOR_KEY_PORTS flag in struct flow_dissector to extract port numbers from skb in skb_flow_dissect() called by fl_classify(). Note that device drivers received the same struct flow_dissector object as used in skb_flow_dissect(). Thus, offloaded drivers could not identify which of these is used because the FLOW_DISSECTOR_KEY_PORTS flag was set to struct flow_dissector in either case. This patch adds the new FLOW_DISSECTOR_KEY_PORTS_RANGE flag and the new tp_range field in struct fl_flow_key to recognize which filters are applied to offloaded drivers. At this point, when filters based on port ranges passed to drivers, drivers return the EOPNOTSUPP error because they do not support the feature (the newly created FLOW_DISSECTOR_KEY_PORTS_RANGE flag). Fixes: 5c72299fba9d ("net: sched: cls_flower: Classify packets using port ranges") Signed-off-by: Yoshiki Komachi <komachi.yoshiki@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-03 18:40:12 +08:00
{
enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
struct flow_dissector_key_ports *key_ports;
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
else if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_PORTS_RANGE))
dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
return;
key_ports = skb_flow_dissector_target(flow_dissector,
dissector_ports,
target_container);
key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
data, hlen);
}
static void
__skb_flow_dissect_ipv4(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
const struct iphdr *iph)
{
struct flow_dissector_key_ip *key_ip;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
return;
key_ip = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IP,
target_container);
key_ip->tos = iph->tos;
key_ip->ttl = iph->ttl;
}
static void
__skb_flow_dissect_ipv6(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
const struct ipv6hdr *iph)
{
struct flow_dissector_key_ip *key_ip;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
return;
key_ip = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IP,
target_container);
key_ip->tos = ipv6_get_dsfield(iph);
key_ip->ttl = iph->hop_limit;
}
/* Maximum number of protocol headers that can be parsed in
* __skb_flow_dissect
*/
#define MAX_FLOW_DISSECT_HDRS 15
static bool skb_flow_dissect_allowed(int *num_hdrs)
{
++*num_hdrs;
return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
}
static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
struct flow_dissector *flow_dissector,
void *target_container)
{
struct flow_dissector_key_ports *key_ports = NULL;
struct flow_dissector_key_control *key_control;
struct flow_dissector_key_basic *key_basic;
struct flow_dissector_key_addrs *key_addrs;
struct flow_dissector_key_tags *key_tags;
key_control = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_CONTROL,
target_container);
key_control->thoff = flow_keys->thoff;
if (flow_keys->is_frag)
key_control->flags |= FLOW_DIS_IS_FRAGMENT;
if (flow_keys->is_first_frag)
key_control->flags |= FLOW_DIS_FIRST_FRAG;
if (flow_keys->is_encap)
key_control->flags |= FLOW_DIS_ENCAPSULATION;
key_basic = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_BASIC,
target_container);
key_basic->n_proto = flow_keys->n_proto;
key_basic->ip_proto = flow_keys->ip_proto;
if (flow_keys->addr_proto == ETH_P_IP &&
dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
key_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IPV4_ADDRS,
target_container);
key_addrs->v4addrs.src = flow_keys->ipv4_src;
key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
key_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IPV6_ADDRS,
target_container);
memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src,
sizeof(key_addrs->v6addrs.src));
memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst,
sizeof(key_addrs->v6addrs.dst));
key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
}
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
key_ports = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_PORTS,
target_container);
else if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_PORTS_RANGE))
key_ports = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_PORTS_RANGE,
target_container);
if (key_ports) {
key_ports->src = flow_keys->sport;
key_ports->dst = flow_keys->dport;
}
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
key_tags = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_FLOW_LABEL,
target_container);
key_tags->flow_label = ntohl(flow_keys->flow_label);
}
}
u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
__be16 proto, int nhoff, int hlen, unsigned int flags)
{
struct bpf_flow_keys *flow_keys = ctx->flow_keys;
u32 result;
/* Pass parameters to the BPF program */
memset(flow_keys, 0, sizeof(*flow_keys));
flow_keys->n_proto = proto;
flow_keys->nhoff = nhoff;
flow_keys->thoff = flow_keys->nhoff;
BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
(int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
(int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
(int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
flow_keys->flags = flags;
result = bpf_prog_run_pin_on_cpu(prog, ctx);
flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
flow_keys->nhoff, hlen);
return result;
}
Networking changes for 6.0. Core ---- - Refactor the forward memory allocation to better cope with memory pressure with many open sockets, moving from a per socket cache to a per-CPU one - Replace rwlocks with RCU for better fairness in ping, raw sockets and IP multicast router. - Network-side support for IO uring zero-copy send. - A few skb drop reason improvements, including codegen the source file with string mapping instead of using macro magic. - Rename reference tracking helpers to a more consistent netdev_* schema. - Adapt u64_stats_t type to address load/store tearing issues. - Refine debug helper usage to reduce the log noise caused by bots. BPF --- - Improve socket map performance, avoiding skb cloning on read operation. - Add support for 64 bits enum, to match types exposed by kernel. - Introduce support for sleepable uprobes program. - Introduce support for enum textual representation in libbpf. - New helpers to implement synproxy with eBPF/XDP. - Improve loop performances, inlining indirect calls when possible. - Removed all the deprecated libbpf APIs. - Implement new eBPF-based LSM flavor. - Add type match support, which allow accurate queries to the eBPF used types. - A few TCP congetsion control framework usability improvements. - Add new infrastructure to manipulate CT entries via eBPF programs. - Allow for livepatch (KLP) and BPF trampolines to attach to the same kernel function. Protocols --------- - Introduce per network namespace lookup tables for unix sockets, increasing scalability and reducing contention. - Preparation work for Wi-Fi 7 Multi-Link Operation (MLO) support. - Add support to forciby close TIME_WAIT TCP sockets via user-space tools. - Significant performance improvement for the TLS 1.3 receive path, both for zero-copy and not-zero-copy. - Support for changing the initial MTPCP subflow priority/backup status - Introduce virtually contingus buffers for sockets over RDMA, to cope better with memory pressure. - Extend CAN ethtool support with timestamping capabilities - Refactor CAN build infrastructure to allow building only the needed features. Driver API ---------- - Remove devlink mutex to allow parallel commands on multiple links. - Add support for pause stats in distributed switch. - Implement devlink helpers to query and flash line cards. - New helper for phy mode to register conversion. New hardware / drivers ---------------------- - Ethernet DSA driver for the rockchip mt7531 on BPI-R2 Pro. - Ethernet DSA driver for the Renesas RZ/N1 A5PSW switch. - Ethernet DSA driver for the Microchip LAN937x switch. - Ethernet PHY driver for the Aquantia AQR113C EPHY. - CAN driver for the OBD-II ELM327 interface. - CAN driver for RZ/N1 SJA1000 CAN controller. - Bluetooth: Infineon CYW55572 Wi-Fi plus Bluetooth combo device. Drivers ------- - Intel Ethernet NICs: - i40e: add support for vlan pruning - i40e: add support for XDP framented packets - ice: improved vlan offload support - ice: add support for PPPoE offload - Mellanox Ethernet (mlx5) - refactor packet steering offload for performance and scalability - extend support for TC offload - refactor devlink code to clean-up the locking schema - support stacked vlans for bridge offloads - use TLS objects pool to improve connection rate - Netronome Ethernet NICs (nfp): - extend support for IPv6 fields mangling offload - add support for vepa mode in HW bridge - better support for virtio data path acceleration (VDPA) - enable TSO by default - Microsoft vNIC driver (mana) - add support for XDP redirect - Others Ethernet drivers: - bonding: add per-port priority support - microchip lan743x: extend phy support - Fungible funeth: support UDP segmentation offload and XDP xmit - Solarflare EF100: add support for virtual function representors - MediaTek SoC: add XDP support - Mellanox Ethernet/IB switch (mlxsw): - dropped support for unreleased H/W (XM router). - improved stats accuracy - unified bridge model coversion improving scalability (parts 1-6) - support for PTP in Spectrum-2 asics - Broadcom PHYs - add PTP support for BCM54210E - add support for the BCM53128 internal PHY - Marvell Ethernet switches (prestera): - implement support for multicast forwarding offload - Embedded Ethernet switches: - refactor OcteonTx MAC filter for better scalability - improve TC H/W offload for the Felix driver - refactor the Microchip ksz8 and ksz9477 drivers to share the probe code (parts 1, 2), add support for phylink mac configuration - Other WiFi: - Microchip wilc1000: diable WEP support and enable WPA3 - Atheros ath10k: encapsulation offload support Old code removal: - Neterion vxge ethernet driver: this is untouched since more than 10 years. Signed-off-by: Paolo Abeni <pabeni@redhat.com> -----BEGIN PGP SIGNATURE----- iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmLqN+oSHHBhYmVuaUBy ZWRoYXQuY29tAAoJECkkeY3MjxOkB9kQAI9VqW0c3SfiTJnkVBEIovZ6Tnh5stD2 UYFkh1BdchLsYxi7W4XMpVPSzRztiTP87mIx5c/KvIzj+QNeWL1XWRJSPdI9HhTD pTAA/tM2OG7bqrbyQiKDNfpQdNl7+kk1RwnYd+f9RFl1QVuIJaYhmjVwrsN5xF/+ jUsotpROarM2dGFWiFwJbKhP2zMDT+6qEEahM8pEPggKhv8wRLYjany2cZVEe4e0 WGUpbINAS8gEKm0Ob922WaDfDrcK/N1Z0jNz/kMaENkK18Vvc7F6bCO0DzAawKX9 QZMMwm6mHp3EThflJAMAzCGIYiIcwLhykgdyj8rrjPhFrWbMD2Sdsbo21HOXU/8j u4aAhVl+d+h7emmbgBoJ8sycVJ7BQlXz7lX20sTgADv9xI4/dPhQ17CMRuwX6fXX JSrn6P6e1LTV5CEg6vrlSPnKPY6uhFn/cPw47FxCjRwJ9phVnp+8uZWQmf9Pz3yf Ok/tcj+juFbsmuOshHy2cbRkuNZNS0oRWlSTBo5795ZwOLSakMonR3L+ev2aOvzz DVrFp2Y/iIVwMSFdCbouYdYnhArPRhOAtCmZc2afY8aBN7aaMgrdTy3+mzUoHy3I FG3K+VuKpfi0vY4zn6ZoLZDIpyXIoJJ93RcSGltD32t3Dp1RaQMVEI4s45k05PVm 1nYpXKHA8qML =hxEG -----END PGP SIGNATURE----- Merge tag 'net-next-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking changes from Paolo Abeni: "Core: - Refactor the forward memory allocation to better cope with memory pressure with many open sockets, moving from a per socket cache to a per-CPU one - Replace rwlocks with RCU for better fairness in ping, raw sockets and IP multicast router. - Network-side support for IO uring zero-copy send. - A few skb drop reason improvements, including codegen the source file with string mapping instead of using macro magic. - Rename reference tracking helpers to a more consistent netdev_* schema. - Adapt u64_stats_t type to address load/store tearing issues. - Refine debug helper usage to reduce the log noise caused by bots. BPF: - Improve socket map performance, avoiding skb cloning on read operation. - Add support for 64 bits enum, to match types exposed by kernel. - Introduce support for sleepable uprobes program. - Introduce support for enum textual representation in libbpf. - New helpers to implement synproxy with eBPF/XDP. - Improve loop performances, inlining indirect calls when possible. - Removed all the deprecated libbpf APIs. - Implement new eBPF-based LSM flavor. - Add type match support, which allow accurate queries to the eBPF used types. - A few TCP congetsion control framework usability improvements. - Add new infrastructure to manipulate CT entries via eBPF programs. - Allow for livepatch (KLP) and BPF trampolines to attach to the same kernel function. Protocols: - Introduce per network namespace lookup tables for unix sockets, increasing scalability and reducing contention. - Preparation work for Wi-Fi 7 Multi-Link Operation (MLO) support. - Add support to forciby close TIME_WAIT TCP sockets via user-space tools. - Significant performance improvement for the TLS 1.3 receive path, both for zero-copy and not-zero-copy. - Support for changing the initial MTPCP subflow priority/backup status - Introduce virtually contingus buffers for sockets over RDMA, to cope better with memory pressure. - Extend CAN ethtool support with timestamping capabilities - Refactor CAN build infrastructure to allow building only the needed features. Driver API: - Remove devlink mutex to allow parallel commands on multiple links. - Add support for pause stats in distributed switch. - Implement devlink helpers to query and flash line cards. - New helper for phy mode to register conversion. New hardware / drivers: - Ethernet DSA driver for the rockchip mt7531 on BPI-R2 Pro. - Ethernet DSA driver for the Renesas RZ/N1 A5PSW switch. - Ethernet DSA driver for the Microchip LAN937x switch. - Ethernet PHY driver for the Aquantia AQR113C EPHY. - CAN driver for the OBD-II ELM327 interface. - CAN driver for RZ/N1 SJA1000 CAN controller. - Bluetooth: Infineon CYW55572 Wi-Fi plus Bluetooth combo device. Drivers: - Intel Ethernet NICs: - i40e: add support for vlan pruning - i40e: add support for XDP framented packets - ice: improved vlan offload support - ice: add support for PPPoE offload - Mellanox Ethernet (mlx5) - refactor packet steering offload for performance and scalability - extend support for TC offload - refactor devlink code to clean-up the locking schema - support stacked vlans for bridge offloads - use TLS objects pool to improve connection rate - Netronome Ethernet NICs (nfp): - extend support for IPv6 fields mangling offload - add support for vepa mode in HW bridge - better support for virtio data path acceleration (VDPA) - enable TSO by default - Microsoft vNIC driver (mana) - add support for XDP redirect - Others Ethernet drivers: - bonding: add per-port priority support - microchip lan743x: extend phy support - Fungible funeth: support UDP segmentation offload and XDP xmit - Solarflare EF100: add support for virtual function representors - MediaTek SoC: add XDP support - Mellanox Ethernet/IB switch (mlxsw): - dropped support for unreleased H/W (XM router). - improved stats accuracy - unified bridge model coversion improving scalability (parts 1-6) - support for PTP in Spectrum-2 asics - Broadcom PHYs - add PTP support for BCM54210E - add support for the BCM53128 internal PHY - Marvell Ethernet switches (prestera): - implement support for multicast forwarding offload - Embedded Ethernet switches: - refactor OcteonTx MAC filter for better scalability - improve TC H/W offload for the Felix driver - refactor the Microchip ksz8 and ksz9477 drivers to share the probe code (parts 1, 2), add support for phylink mac configuration - Other WiFi: - Microchip wilc1000: diable WEP support and enable WPA3 - Atheros ath10k: encapsulation offload support Old code removal: - Neterion vxge ethernet driver: this is untouched since more than 10 years" * tag 'net-next-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1890 commits) doc: sfp-phylink: Fix a broken reference wireguard: selftests: support UML wireguard: allowedips: don't corrupt stack when detecting overflow wireguard: selftests: update config fragments wireguard: ratelimiter: use hrtimer in selftest net/mlx5e: xsk: Discard unaligned XSK frames on striding RQ net: usb: ax88179_178a: Bind only to vendor-specific interface selftests: net: fix IOAM test skip return code net: usb: make USB_RTL8153_ECM non user configurable net: marvell: prestera: remove reduntant code octeontx2-pf: Reduce minimum mtu size to 60 net: devlink: Fix missing mutex_unlock() call net/tls: Remove redundant workqueue flush before destroy net: txgbe: Fix an error handling path in txgbe_probe() net: dsa: Fix spelling mistakes and cleanup code Documentation: devlink: add add devlink-selftests to the table of contents dccp: put dccp_qpolicy_full() and dccp_qpolicy_push() in the same lock net: ionic: fix error check for vlan flags in ionic_set_nic_features() net: ice: fix error NETIF_F_HW_VLAN_CTAG_FILTER check in ice_vsi_sync_fltr() nfp: flower: add support for tunnel offload without key ID ...
2022-08-04 07:29:08 +08:00
static bool is_pppoe_ses_hdr_valid(const struct pppoe_hdr *hdr)
{
Networking changes for 6.0. Core ---- - Refactor the forward memory allocation to better cope with memory pressure with many open sockets, moving from a per socket cache to a per-CPU one - Replace rwlocks with RCU for better fairness in ping, raw sockets and IP multicast router. - Network-side support for IO uring zero-copy send. - A few skb drop reason improvements, including codegen the source file with string mapping instead of using macro magic. - Rename reference tracking helpers to a more consistent netdev_* schema. - Adapt u64_stats_t type to address load/store tearing issues. - Refine debug helper usage to reduce the log noise caused by bots. BPF --- - Improve socket map performance, avoiding skb cloning on read operation. - Add support for 64 bits enum, to match types exposed by kernel. - Introduce support for sleepable uprobes program. - Introduce support for enum textual representation in libbpf. - New helpers to implement synproxy with eBPF/XDP. - Improve loop performances, inlining indirect calls when possible. - Removed all the deprecated libbpf APIs. - Implement new eBPF-based LSM flavor. - Add type match support, which allow accurate queries to the eBPF used types. - A few TCP congetsion control framework usability improvements. - Add new infrastructure to manipulate CT entries via eBPF programs. - Allow for livepatch (KLP) and BPF trampolines to attach to the same kernel function. Protocols --------- - Introduce per network namespace lookup tables for unix sockets, increasing scalability and reducing contention. - Preparation work for Wi-Fi 7 Multi-Link Operation (MLO) support. - Add support to forciby close TIME_WAIT TCP sockets via user-space tools. - Significant performance improvement for the TLS 1.3 receive path, both for zero-copy and not-zero-copy. - Support for changing the initial MTPCP subflow priority/backup status - Introduce virtually contingus buffers for sockets over RDMA, to cope better with memory pressure. - Extend CAN ethtool support with timestamping capabilities - Refactor CAN build infrastructure to allow building only the needed features. Driver API ---------- - Remove devlink mutex to allow parallel commands on multiple links. - Add support for pause stats in distributed switch. - Implement devlink helpers to query and flash line cards. - New helper for phy mode to register conversion. New hardware / drivers ---------------------- - Ethernet DSA driver for the rockchip mt7531 on BPI-R2 Pro. - Ethernet DSA driver for the Renesas RZ/N1 A5PSW switch. - Ethernet DSA driver for the Microchip LAN937x switch. - Ethernet PHY driver for the Aquantia AQR113C EPHY. - CAN driver for the OBD-II ELM327 interface. - CAN driver for RZ/N1 SJA1000 CAN controller. - Bluetooth: Infineon CYW55572 Wi-Fi plus Bluetooth combo device. Drivers ------- - Intel Ethernet NICs: - i40e: add support for vlan pruning - i40e: add support for XDP framented packets - ice: improved vlan offload support - ice: add support for PPPoE offload - Mellanox Ethernet (mlx5) - refactor packet steering offload for performance and scalability - extend support for TC offload - refactor devlink code to clean-up the locking schema - support stacked vlans for bridge offloads - use TLS objects pool to improve connection rate - Netronome Ethernet NICs (nfp): - extend support for IPv6 fields mangling offload - add support for vepa mode in HW bridge - better support for virtio data path acceleration (VDPA) - enable TSO by default - Microsoft vNIC driver (mana) - add support for XDP redirect - Others Ethernet drivers: - bonding: add per-port priority support - microchip lan743x: extend phy support - Fungible funeth: support UDP segmentation offload and XDP xmit - Solarflare EF100: add support for virtual function representors - MediaTek SoC: add XDP support - Mellanox Ethernet/IB switch (mlxsw): - dropped support for unreleased H/W (XM router). - improved stats accuracy - unified bridge model coversion improving scalability (parts 1-6) - support for PTP in Spectrum-2 asics - Broadcom PHYs - add PTP support for BCM54210E - add support for the BCM53128 internal PHY - Marvell Ethernet switches (prestera): - implement support for multicast forwarding offload - Embedded Ethernet switches: - refactor OcteonTx MAC filter for better scalability - improve TC H/W offload for the Felix driver - refactor the Microchip ksz8 and ksz9477 drivers to share the probe code (parts 1, 2), add support for phylink mac configuration - Other WiFi: - Microchip wilc1000: diable WEP support and enable WPA3 - Atheros ath10k: encapsulation offload support Old code removal: - Neterion vxge ethernet driver: this is untouched since more than 10 years. Signed-off-by: Paolo Abeni <pabeni@redhat.com> -----BEGIN PGP SIGNATURE----- iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmLqN+oSHHBhYmVuaUBy ZWRoYXQuY29tAAoJECkkeY3MjxOkB9kQAI9VqW0c3SfiTJnkVBEIovZ6Tnh5stD2 UYFkh1BdchLsYxi7W4XMpVPSzRztiTP87mIx5c/KvIzj+QNeWL1XWRJSPdI9HhTD pTAA/tM2OG7bqrbyQiKDNfpQdNl7+kk1RwnYd+f9RFl1QVuIJaYhmjVwrsN5xF/+ jUsotpROarM2dGFWiFwJbKhP2zMDT+6qEEahM8pEPggKhv8wRLYjany2cZVEe4e0 WGUpbINAS8gEKm0Ob922WaDfDrcK/N1Z0jNz/kMaENkK18Vvc7F6bCO0DzAawKX9 QZMMwm6mHp3EThflJAMAzCGIYiIcwLhykgdyj8rrjPhFrWbMD2Sdsbo21HOXU/8j u4aAhVl+d+h7emmbgBoJ8sycVJ7BQlXz7lX20sTgADv9xI4/dPhQ17CMRuwX6fXX JSrn6P6e1LTV5CEg6vrlSPnKPY6uhFn/cPw47FxCjRwJ9phVnp+8uZWQmf9Pz3yf Ok/tcj+juFbsmuOshHy2cbRkuNZNS0oRWlSTBo5795ZwOLSakMonR3L+ev2aOvzz DVrFp2Y/iIVwMSFdCbouYdYnhArPRhOAtCmZc2afY8aBN7aaMgrdTy3+mzUoHy3I FG3K+VuKpfi0vY4zn6ZoLZDIpyXIoJJ93RcSGltD32t3Dp1RaQMVEI4s45k05PVm 1nYpXKHA8qML =hxEG -----END PGP SIGNATURE----- Merge tag 'net-next-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking changes from Paolo Abeni: "Core: - Refactor the forward memory allocation to better cope with memory pressure with many open sockets, moving from a per socket cache to a per-CPU one - Replace rwlocks with RCU for better fairness in ping, raw sockets and IP multicast router. - Network-side support for IO uring zero-copy send. - A few skb drop reason improvements, including codegen the source file with string mapping instead of using macro magic. - Rename reference tracking helpers to a more consistent netdev_* schema. - Adapt u64_stats_t type to address load/store tearing issues. - Refine debug helper usage to reduce the log noise caused by bots. BPF: - Improve socket map performance, avoiding skb cloning on read operation. - Add support for 64 bits enum, to match types exposed by kernel. - Introduce support for sleepable uprobes program. - Introduce support for enum textual representation in libbpf. - New helpers to implement synproxy with eBPF/XDP. - Improve loop performances, inlining indirect calls when possible. - Removed all the deprecated libbpf APIs. - Implement new eBPF-based LSM flavor. - Add type match support, which allow accurate queries to the eBPF used types. - A few TCP congetsion control framework usability improvements. - Add new infrastructure to manipulate CT entries via eBPF programs. - Allow for livepatch (KLP) and BPF trampolines to attach to the same kernel function. Protocols: - Introduce per network namespace lookup tables for unix sockets, increasing scalability and reducing contention. - Preparation work for Wi-Fi 7 Multi-Link Operation (MLO) support. - Add support to forciby close TIME_WAIT TCP sockets via user-space tools. - Significant performance improvement for the TLS 1.3 receive path, both for zero-copy and not-zero-copy. - Support for changing the initial MTPCP subflow priority/backup status - Introduce virtually contingus buffers for sockets over RDMA, to cope better with memory pressure. - Extend CAN ethtool support with timestamping capabilities - Refactor CAN build infrastructure to allow building only the needed features. Driver API: - Remove devlink mutex to allow parallel commands on multiple links. - Add support for pause stats in distributed switch. - Implement devlink helpers to query and flash line cards. - New helper for phy mode to register conversion. New hardware / drivers: - Ethernet DSA driver for the rockchip mt7531 on BPI-R2 Pro. - Ethernet DSA driver for the Renesas RZ/N1 A5PSW switch. - Ethernet DSA driver for the Microchip LAN937x switch. - Ethernet PHY driver for the Aquantia AQR113C EPHY. - CAN driver for the OBD-II ELM327 interface. - CAN driver for RZ/N1 SJA1000 CAN controller. - Bluetooth: Infineon CYW55572 Wi-Fi plus Bluetooth combo device. Drivers: - Intel Ethernet NICs: - i40e: add support for vlan pruning - i40e: add support for XDP framented packets - ice: improved vlan offload support - ice: add support for PPPoE offload - Mellanox Ethernet (mlx5) - refactor packet steering offload for performance and scalability - extend support for TC offload - refactor devlink code to clean-up the locking schema - support stacked vlans for bridge offloads - use TLS objects pool to improve connection rate - Netronome Ethernet NICs (nfp): - extend support for IPv6 fields mangling offload - add support for vepa mode in HW bridge - better support for virtio data path acceleration (VDPA) - enable TSO by default - Microsoft vNIC driver (mana) - add support for XDP redirect - Others Ethernet drivers: - bonding: add per-port priority support - microchip lan743x: extend phy support - Fungible funeth: support UDP segmentation offload and XDP xmit - Solarflare EF100: add support for virtual function representors - MediaTek SoC: add XDP support - Mellanox Ethernet/IB switch (mlxsw): - dropped support for unreleased H/W (XM router). - improved stats accuracy - unified bridge model coversion improving scalability (parts 1-6) - support for PTP in Spectrum-2 asics - Broadcom PHYs - add PTP support for BCM54210E - add support for the BCM53128 internal PHY - Marvell Ethernet switches (prestera): - implement support for multicast forwarding offload - Embedded Ethernet switches: - refactor OcteonTx MAC filter for better scalability - improve TC H/W offload for the Felix driver - refactor the Microchip ksz8 and ksz9477 drivers to share the probe code (parts 1, 2), add support for phylink mac configuration - Other WiFi: - Microchip wilc1000: diable WEP support and enable WPA3 - Atheros ath10k: encapsulation offload support Old code removal: - Neterion vxge ethernet driver: this is untouched since more than 10 years" * tag 'net-next-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1890 commits) doc: sfp-phylink: Fix a broken reference wireguard: selftests: support UML wireguard: allowedips: don't corrupt stack when detecting overflow wireguard: selftests: update config fragments wireguard: ratelimiter: use hrtimer in selftest net/mlx5e: xsk: Discard unaligned XSK frames on striding RQ net: usb: ax88179_178a: Bind only to vendor-specific interface selftests: net: fix IOAM test skip return code net: usb: make USB_RTL8153_ECM non user configurable net: marvell: prestera: remove reduntant code octeontx2-pf: Reduce minimum mtu size to 60 net: devlink: Fix missing mutex_unlock() call net/tls: Remove redundant workqueue flush before destroy net: txgbe: Fix an error handling path in txgbe_probe() net: dsa: Fix spelling mistakes and cleanup code Documentation: devlink: add add devlink-selftests to the table of contents dccp: put dccp_qpolicy_full() and dccp_qpolicy_push() in the same lock net: ionic: fix error check for vlan flags in ionic_set_nic_features() net: ice: fix error NETIF_F_HW_VLAN_CTAG_FILTER check in ice_vsi_sync_fltr() nfp: flower: add support for tunnel offload without key ID ...
2022-08-04 07:29:08 +08:00
return hdr->ver == 1 && hdr->type == 1 && hdr->code == 0;
}
/**
* __skb_flow_dissect - extract the flow_keys struct and return it
* @net: associated network namespace, derived from @skb if NULL
* @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
* @flow_dissector: list of keys to dissect
* @target_container: target structure to put dissected values into
* @data: raw buffer pointer to the packet, if NULL use skb->data
* @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
* @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
* @hlen: packet header length, if @data is NULL use skb_headlen(skb)
* @flags: flags that control the dissection process, e.g.
* FLOW_DISSECTOR_F_STOP_AT_ENCAP.
*
* The function will try to retrieve individual keys into target specified
* by flow_dissector from either the skbuff or a raw buffer specified by the
* rest parameters.
*
* Caller must take care of zeroing target container memory.
*/
bool __skb_flow_dissect(const struct net *net,
const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
__be16 proto, int nhoff, int hlen, unsigned int flags)
{
struct flow_dissector_key_control *key_control;
struct flow_dissector_key_basic *key_basic;
struct flow_dissector_key_addrs *key_addrs;
struct flow_dissector_key_tags *key_tags;
struct flow_dissector_key_vlan *key_vlan;
enum flow_dissect_ret fdret;
enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
flow_dissector: Parse multiple MPLS Label Stack Entries The current MPLS dissector only parses the first MPLS Label Stack Entry (second LSE can be parsed too, but only to set a key_id). This patch adds the possibility to parse several LSEs by making __skb_flow_dissect_mpls() return FLOW_DISSECT_RET_PROTO_AGAIN as long as the Bottom Of Stack bit hasn't been seen, up to a maximum of FLOW_DIS_MPLS_MAX entries. FLOW_DIS_MPLS_MAX is arbitrarily set to 7. This should be enough for many practical purposes, without wasting too much space. To record the parsed values, flow_dissector_key_mpls is modified to store an array of stack entries, instead of just the values of the first one. A bit field, "used_lses", is also added to keep track of the LSEs that have been set. The objective is to avoid defining a new FLOW_DISSECTOR_KEY_MPLS_XX for each level of the MPLS stack. TC flower is adapted for the new struct flow_dissector_key_mpls layout. Matching on several MPLS Label Stack Entries will be added in the next patch. The NFP and MLX5 drivers are also adapted: nfp_flower_compile_mac() and mlx5's parse_tunnel() now verify that the rule only uses the first LSE and fail if it doesn't. Finally, the behaviour of the FLOW_DISSECTOR_KEY_MPLS_ENTROPY key is slightly modified. Instead of recording the first Entropy Label, it now records the last one. This shouldn't have any consequences since there doesn't seem to have any user of FLOW_DISSECTOR_KEY_MPLS_ENTROPY in the tree. We'd probably better do a hash of all parsed MPLS labels instead (excluding reserved labels) anyway. That'd give better entropy and would probably also simplify the code. But that's not the purpose of this patch, so I'm keeping that as a future possible improvement. Signed-off-by: Guillaume Nault <gnault@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-26 20:29:00 +08:00
bool mpls_el = false;
int mpls_lse = 0;
int num_hdrs = 0;
u8 ip_proto = 0;
bool ret;
if (!data) {
data = skb->data;
proto = skb_vlan_tag_present(skb) ?
skb->vlan_proto : skb->protocol;
nhoff = skb_network_offset(skb);
hlen = skb_headlen(skb);
#if IS_ENABLED(CONFIG_NET_DSA)
net: dsa: fix flow dissection on Tx path Commit 43e665287f93 ("net-next: dsa: fix flow dissection") added an ability to override protocol and network offset during flow dissection for DSA-enabled devices (i.e. controllers shipped as switch CPU ports) in order to fix skb hashing for RPS on Rx path. However, skb_hash() and added part of code can be invoked not only on Rx, but also on Tx path if we have a multi-queued device and: - kernel is running on UP system or - XPS is not configured. The call stack in this two cases will be like: dev_queue_xmit() -> __dev_queue_xmit() -> netdev_core_pick_tx() -> netdev_pick_tx() -> skb_tx_hash() -> skb_get_hash(). The problem is that skbs queued for Tx have both network offset and correct protocol already set up even after inserting a CPU tag by DSA tagger, so calling tag_ops->flow_dissect() on this path actually only breaks flow dissection and hashing. This can be observed by adding debug prints just before and right after tag_ops->flow_dissect() call to the related block of code: Before the patch: Rx path (RPS): [ 19.240001] Rx: proto: 0x00f8, nhoff: 0 /* ETH_P_XDSA */ [ 19.244271] tag_ops->flow_dissect() [ 19.247811] Rx: proto: 0x0800, nhoff: 8 /* ETH_P_IP */ [ 19.215435] Rx: proto: 0x00f8, nhoff: 0 /* ETH_P_XDSA */ [ 19.219746] tag_ops->flow_dissect() [ 19.223241] Rx: proto: 0x0806, nhoff: 8 /* ETH_P_ARP */ [ 18.654057] Rx: proto: 0x00f8, nhoff: 0 /* ETH_P_XDSA */ [ 18.658332] tag_ops->flow_dissect() [ 18.661826] Rx: proto: 0x8100, nhoff: 8 /* ETH_P_8021Q */ Tx path (UP system): [ 18.759560] Tx: proto: 0x0800, nhoff: 26 /* ETH_P_IP */ [ 18.763933] tag_ops->flow_dissect() [ 18.767485] Tx: proto: 0x920b, nhoff: 34 /* junk */ [ 22.800020] Tx: proto: 0x0806, nhoff: 26 /* ETH_P_ARP */ [ 22.804392] tag_ops->flow_dissect() [ 22.807921] Tx: proto: 0x920b, nhoff: 34 /* junk */ [ 16.898342] Tx: proto: 0x86dd, nhoff: 26 /* ETH_P_IPV6 */ [ 16.902705] tag_ops->flow_dissect() [ 16.906227] Tx: proto: 0x920b, nhoff: 34 /* junk */ After: Rx path (RPS): [ 16.520993] Rx: proto: 0x00f8, nhoff: 0 /* ETH_P_XDSA */ [ 16.525260] tag_ops->flow_dissect() [ 16.528808] Rx: proto: 0x0800, nhoff: 8 /* ETH_P_IP */ [ 15.484807] Rx: proto: 0x00f8, nhoff: 0 /* ETH_P_XDSA */ [ 15.490417] tag_ops->flow_dissect() [ 15.495223] Rx: proto: 0x0806, nhoff: 8 /* ETH_P_ARP */ [ 17.134621] Rx: proto: 0x00f8, nhoff: 0 /* ETH_P_XDSA */ [ 17.138895] tag_ops->flow_dissect() [ 17.142388] Rx: proto: 0x8100, nhoff: 8 /* ETH_P_8021Q */ Tx path (UP system): [ 15.499558] Tx: proto: 0x0800, nhoff: 26 /* ETH_P_IP */ [ 20.664689] Tx: proto: 0x0806, nhoff: 26 /* ETH_P_ARP */ [ 18.565782] Tx: proto: 0x86dd, nhoff: 26 /* ETH_P_IPV6 */ In order to fix that we can add the check 'proto == htons(ETH_P_XDSA)' to prevent code from calling tag_ops->flow_dissect() on Tx. I also decided to initialize 'offset' variable so tagger callbacks can now safely leave it untouched without provoking a chaos. Fixes: 43e665287f93 ("net-next: dsa: fix flow dissection") Signed-off-by: Alexander Lobakin <alobakin@dlink.ru> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-05 18:02:35 +08:00
if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
proto == htons(ETH_P_XDSA))) {
const struct dsa_device_ops *ops;
net: dsa: fix flow dissection on Tx path Commit 43e665287f93 ("net-next: dsa: fix flow dissection") added an ability to override protocol and network offset during flow dissection for DSA-enabled devices (i.e. controllers shipped as switch CPU ports) in order to fix skb hashing for RPS on Rx path. However, skb_hash() and added part of code can be invoked not only on Rx, but also on Tx path if we have a multi-queued device and: - kernel is running on UP system or - XPS is not configured. The call stack in this two cases will be like: dev_queue_xmit() -> __dev_queue_xmit() -> netdev_core_pick_tx() -> netdev_pick_tx() -> skb_tx_hash() -> skb_get_hash(). The problem is that skbs queued for Tx have both network offset and correct protocol already set up even after inserting a CPU tag by DSA tagger, so calling tag_ops->flow_dissect() on this path actually only breaks flow dissection and hashing. This can be observed by adding debug prints just before and right after tag_ops->flow_dissect() call to the related block of code: Before the patch: Rx path (RPS): [ 19.240001] Rx: proto: 0x00f8, nhoff: 0 /* ETH_P_XDSA */ [ 19.244271] tag_ops->flow_dissect() [ 19.247811] Rx: proto: 0x0800, nhoff: 8 /* ETH_P_IP */ [ 19.215435] Rx: proto: 0x00f8, nhoff: 0 /* ETH_P_XDSA */ [ 19.219746] tag_ops->flow_dissect() [ 19.223241] Rx: proto: 0x0806, nhoff: 8 /* ETH_P_ARP */ [ 18.654057] Rx: proto: 0x00f8, nhoff: 0 /* ETH_P_XDSA */ [ 18.658332] tag_ops->flow_dissect() [ 18.661826] Rx: proto: 0x8100, nhoff: 8 /* ETH_P_8021Q */ Tx path (UP system): [ 18.759560] Tx: proto: 0x0800, nhoff: 26 /* ETH_P_IP */ [ 18.763933] tag_ops->flow_dissect() [ 18.767485] Tx: proto: 0x920b, nhoff: 34 /* junk */ [ 22.800020] Tx: proto: 0x0806, nhoff: 26 /* ETH_P_ARP */ [ 22.804392] tag_ops->flow_dissect() [ 22.807921] Tx: proto: 0x920b, nhoff: 34 /* junk */ [ 16.898342] Tx: proto: 0x86dd, nhoff: 26 /* ETH_P_IPV6 */ [ 16.902705] tag_ops->flow_dissect() [ 16.906227] Tx: proto: 0x920b, nhoff: 34 /* junk */ After: Rx path (RPS): [ 16.520993] Rx: proto: 0x00f8, nhoff: 0 /* ETH_P_XDSA */ [ 16.525260] tag_ops->flow_dissect() [ 16.528808] Rx: proto: 0x0800, nhoff: 8 /* ETH_P_IP */ [ 15.484807] Rx: proto: 0x00f8, nhoff: 0 /* ETH_P_XDSA */ [ 15.490417] tag_ops->flow_dissect() [ 15.495223] Rx: proto: 0x0806, nhoff: 8 /* ETH_P_ARP */ [ 17.134621] Rx: proto: 0x00f8, nhoff: 0 /* ETH_P_XDSA */ [ 17.138895] tag_ops->flow_dissect() [ 17.142388] Rx: proto: 0x8100, nhoff: 8 /* ETH_P_8021Q */ Tx path (UP system): [ 15.499558] Tx: proto: 0x0800, nhoff: 26 /* ETH_P_IP */ [ 20.664689] Tx: proto: 0x0806, nhoff: 26 /* ETH_P_ARP */ [ 18.565782] Tx: proto: 0x86dd, nhoff: 26 /* ETH_P_IPV6 */ In order to fix that we can add the check 'proto == htons(ETH_P_XDSA)' to prevent code from calling tag_ops->flow_dissect() on Tx. I also decided to initialize 'offset' variable so tagger callbacks can now safely leave it untouched without provoking a chaos. Fixes: 43e665287f93 ("net-next: dsa: fix flow dissection") Signed-off-by: Alexander Lobakin <alobakin@dlink.ru> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-05 18:02:35 +08:00
int offset = 0;
ops = skb->dev->dsa_ptr->tag_ops;
/* Only DSA header taggers break flow dissection */
if (ops->needed_headroom) {
if (ops->flow_dissect)
ops->flow_dissect(skb, &proto, &offset);
else
dsa_tag_generic_flow_dissect(skb,
&proto,
&offset);
hlen -= offset;
nhoff += offset;
}
}
#endif
}
/* It is ensured by skb_flow_dissector_init() that control key will
* be always present.
*/
key_control = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_CONTROL,
target_container);
/* It is ensured by skb_flow_dissector_init() that basic key will
* be always present.
*/
key_basic = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_BASIC,
target_container);
if (skb) {
if (!net) {
if (skb->dev)
net = dev_net(skb->dev);
else if (skb->sk)
net = sock_net(skb->sk);
}
}
WARN_ON_ONCE(!net);
if (net) {
enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
struct bpf_prog_array *run_array;
rcu_read_lock();
run_array = rcu_dereference(init_net.bpf.run_array[type]);
if (!run_array)
run_array = rcu_dereference(net->bpf.run_array[type]);
if (run_array) {
struct bpf_flow_keys flow_keys;
struct bpf_flow_dissector ctx = {
.flow_keys = &flow_keys,
.data = data,
.data_end = data + hlen,
};
__be16 n_proto = proto;
struct bpf_prog *prog;
u32 result;
if (skb) {
ctx.skb = skb;
/* we can't use 'proto' in the skb case
* because it might be set to skb->vlan_proto
* which has been pulled from the data
*/
n_proto = skb->protocol;
}
prog = READ_ONCE(run_array->items[0].prog);
result = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
hlen, flags);
if (result == BPF_FLOW_DISSECTOR_CONTINUE)
goto dissect_continue;
__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
target_container);
rcu_read_unlock();
return result == BPF_OK;
}
dissect_continue:
rcu_read_unlock();
}
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct ethhdr *eth = eth_hdr(skb);
struct flow_dissector_key_eth_addrs *key_eth_addrs;
key_eth_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ETH_ADDRS,
target_container);
memcpy(key_eth_addrs, eth, sizeof(*key_eth_addrs));
}
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_NUM_OF_VLANS)) {
struct flow_dissector_key_num_of_vlans *key_num_of_vlans;
key_num_of_vlans = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
target_container);
key_num_of_vlans->num_of_vlans = 0;
}
proto_again:
fdret = FLOW_DISSECT_RET_CONTINUE;
switch (proto) {
case htons(ETH_P_IP): {
const struct iphdr *iph;
struct iphdr _iph;
iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
if (!iph || iph->ihl < 5) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
nhoff += iph->ihl * 4;
ip_proto = iph->protocol;
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
key_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IPV4_ADDRS,
target_container);
flow_dissector: Fix out-of-bounds warnings Fix the following out-of-bounds warnings: net/core/flow_dissector.c: In function '__skb_flow_dissect': >> net/core/flow_dissector.c:1104:4: warning: 'memcpy' offset [24, 39] from the object at '<unknown>' is out of the bounds of referenced subobject 'saddr' with type 'struct in6_addr' at offset 8 [-Warray-bounds] 1104 | memcpy(&key_addrs->v6addrs, &iph->saddr, | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1105 | sizeof(key_addrs->v6addrs)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ In file included from include/linux/ipv6.h:5, from net/core/flow_dissector.c:6: include/uapi/linux/ipv6.h:133:18: note: subobject 'saddr' declared here 133 | struct in6_addr saddr; | ^~~~~ >> net/core/flow_dissector.c:1059:4: warning: 'memcpy' offset [16, 19] from the object at '<unknown>' is out of the bounds of referenced subobject 'saddr' with type 'unsigned int' at offset 12 [-Warray-bounds] 1059 | memcpy(&key_addrs->v4addrs, &iph->saddr, | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1060 | sizeof(key_addrs->v4addrs)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ In file included from include/linux/ip.h:17, from net/core/flow_dissector.c:5: include/uapi/linux/ip.h:103:9: note: subobject 'saddr' declared here 103 | __be32 saddr; | ^~~~~ The problem is that the original code is trying to copy data into a couple of struct members adjacent to each other in a single call to memcpy(). So, the compiler legitimately complains about it. As these are just a couple of members, fix this by copying each one of them in separate calls to memcpy(). This helps with the ongoing efforts to globally enable -Warray-bounds and get us closer to being able to tighten the FORTIFY_SOURCE routines on memcpy(). Link: https://github.com/KSPP/linux/issues/109 Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/lkml/d5ae2e65-1f18-2577-246f-bada7eee6ccd@intel.com/ Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-27 03:25:11 +08:00
memcpy(&key_addrs->v4addrs.src, &iph->saddr,
sizeof(key_addrs->v4addrs.src));
memcpy(&key_addrs->v4addrs.dst, &iph->daddr,
sizeof(key_addrs->v4addrs.dst));
key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
}
__skb_flow_dissect_ipv4(skb, flow_dissector,
target_container, data, iph);
if (ip_is_fragment(iph)) {
key_control->flags |= FLOW_DIS_IS_FRAGMENT;
if (iph->frag_off & htons(IP_OFFSET)) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
} else {
key_control->flags |= FLOW_DIS_FIRST_FRAG;
if (!(flags &
FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
}
}
break;
}
case htons(ETH_P_IPV6): {
const struct ipv6hdr *iph;
struct ipv6hdr _iph;
iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
if (!iph) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
ip_proto = iph->nexthdr;
nhoff += sizeof(struct ipv6hdr);
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
key_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IPV6_ADDRS,
target_container);
flow_dissector: Fix out-of-bounds warnings Fix the following out-of-bounds warnings: net/core/flow_dissector.c: In function '__skb_flow_dissect': >> net/core/flow_dissector.c:1104:4: warning: 'memcpy' offset [24, 39] from the object at '<unknown>' is out of the bounds of referenced subobject 'saddr' with type 'struct in6_addr' at offset 8 [-Warray-bounds] 1104 | memcpy(&key_addrs->v6addrs, &iph->saddr, | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1105 | sizeof(key_addrs->v6addrs)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ In file included from include/linux/ipv6.h:5, from net/core/flow_dissector.c:6: include/uapi/linux/ipv6.h:133:18: note: subobject 'saddr' declared here 133 | struct in6_addr saddr; | ^~~~~ >> net/core/flow_dissector.c:1059:4: warning: 'memcpy' offset [16, 19] from the object at '<unknown>' is out of the bounds of referenced subobject 'saddr' with type 'unsigned int' at offset 12 [-Warray-bounds] 1059 | memcpy(&key_addrs->v4addrs, &iph->saddr, | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1060 | sizeof(key_addrs->v4addrs)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ In file included from include/linux/ip.h:17, from net/core/flow_dissector.c:5: include/uapi/linux/ip.h:103:9: note: subobject 'saddr' declared here 103 | __be32 saddr; | ^~~~~ The problem is that the original code is trying to copy data into a couple of struct members adjacent to each other in a single call to memcpy(). So, the compiler legitimately complains about it. As these are just a couple of members, fix this by copying each one of them in separate calls to memcpy(). This helps with the ongoing efforts to globally enable -Warray-bounds and get us closer to being able to tighten the FORTIFY_SOURCE routines on memcpy(). Link: https://github.com/KSPP/linux/issues/109 Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/lkml/d5ae2e65-1f18-2577-246f-bada7eee6ccd@intel.com/ Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-27 03:25:11 +08:00
memcpy(&key_addrs->v6addrs.src, &iph->saddr,
sizeof(key_addrs->v6addrs.src));
memcpy(&key_addrs->v6addrs.dst, &iph->daddr,
sizeof(key_addrs->v6addrs.dst));
key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
}
if ((dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
(flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
ip6_flowlabel(iph)) {
__be32 flow_label = ip6_flowlabel(iph);
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
key_tags = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_FLOW_LABEL,
target_container);
key_tags->flow_label = ntohl(flow_label);
}
if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
}
__skb_flow_dissect_ipv6(skb, flow_dissector,
target_container, data, iph);
break;
}
case htons(ETH_P_8021AD):
case htons(ETH_P_8021Q): {
const struct vlan_hdr *vlan = NULL;
flow_dissector: fix vlan tag handling gcc warns about an uninitialized pointer dereference in the vlan priority handling: net/core/flow_dissector.c: In function '__skb_flow_dissect': net/core/flow_dissector.c:281:61: error: 'vlan' may be used uninitialized in this function [-Werror=maybe-uninitialized] As pointed out by Jiri Pirko, the variable is never actually used without being initialized first as the only way it end up uninitialized is with skb_vlan_tag_present(skb)==true, and that means it does not get accessed. However, the warning hints at some related issues that I'm addressing here: - the second check for the vlan tag is different from the first one that tests the skb for being NULL first, causing both the warning and a possible NULL pointer dereference that was not entirely fixed. - The same patch that introduced the NULL pointer check dropped an earlier optimization that skipped the repeated check of the protocol type - The local '_vlan' variable is referenced through the 'vlan' pointer but the variable has gone out of scope by the time that it is accessed, causing undefined behavior Caching the result of the 'skb && skb_vlan_tag_present(skb)' check in a local variable allows the compiler to further optimize the later check. With those changes, the warning also disappears. Fixes: 3805a938a6c2 ("flow_dissector: Check skb for VLAN only if skb specified.") Fixes: d5709f7ab776 ("flow_dissector: For stripped vlan, get vlan info from skb->vlan_tci") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Jiri Pirko <jiri@mellanox.com> Acked-by: Eric Garver <e@erig.me> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-25 05:40:30 +08:00
struct vlan_hdr _vlan;
__be16 saved_vlan_tpid = proto;
if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
skb && skb_vlan_tag_present(skb)) {
proto = skb->protocol;
} else {
vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
data, hlen, &_vlan);
if (!vlan) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
proto = vlan->h_vlan_encapsulated_proto;
nhoff += sizeof(*vlan);
}
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_NUM_OF_VLANS)) {
struct flow_dissector_key_num_of_vlans *key_nvs;
key_nvs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
target_container);
key_nvs->num_of_vlans++;
}
if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
} else {
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
break;
}
if (dissector_uses_key(flow_dissector, dissector_vlan)) {
key_vlan = skb_flow_dissector_target(flow_dissector,
dissector_vlan,
target_container);
if (!vlan) {
key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
} else {
key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
VLAN_VID_MASK;
key_vlan->vlan_priority =
(ntohs(vlan->h_vlan_TCI) &
VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
}
key_vlan->vlan_tpid = saved_vlan_tpid;
net/sched: flower: fix parsing of ethertype following VLAN header A tc flower filter matching TCA_FLOWER_KEY_VLAN_ETH_TYPE is expected to match the L2 ethertype following the first VLAN header, as confirmed by linked discussion with the maintainer. However, such rule also matches packets that have additional second VLAN header, even though filter has both eth_type and vlan_ethtype set to "ipv4". Looking at the code this seems to be mostly an artifact of the way flower uses flow dissector. First, even though looking at the uAPI eth_type and vlan_ethtype appear like a distinct fields, in flower they are all mapped to the same key->basic.n_proto. Second, flow dissector skips following VLAN header as no keys for FLOW_DISSECTOR_KEY_CVLAN are set and eventually assigns the value of n_proto to last parsed header. With these, such filters ignore any headers present between first VLAN header and first "non magic" header (ipv4 in this case) that doesn't result FLOW_DISSECT_RET_PROTO_AGAIN. Fix the issue by extending flow dissector VLAN key structure with new 'vlan_eth_type' field that matches first ethertype following previously parsed VLAN header. Modify flower classifier to set the new flow_dissector_key_vlan->vlan_eth_type with value obtained from TCA_FLOWER_KEY_VLAN_ETH_TYPE/TCA_FLOWER_KEY_CVLAN_ETH_TYPE uAPIs. Link: https://lore.kernel.org/all/Yjhgi48BpTGh6dig@nanopsycho/ Fixes: 9399ae9a6cb2 ("net_sched: flower: Add vlan support") Fixes: d64efd0926ba ("net/sched: flower: Add supprt for matching on QinQ vlan headers") Signed-off-by: Vlad Buslov <vladbu@nvidia.com> Reviewed-by: Jiri Pirko <jiri@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-04-06 19:22:41 +08:00
key_vlan->vlan_eth_type = proto;
}
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
break;
}
case htons(ETH_P_PPP_SES): {
struct {
struct pppoe_hdr hdr;
__be16 proto;
} *hdr, _hdr;
u16 ppp_proto;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
if (!hdr) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
Networking changes for 6.0. Core ---- - Refactor the forward memory allocation to better cope with memory pressure with many open sockets, moving from a per socket cache to a per-CPU one - Replace rwlocks with RCU for better fairness in ping, raw sockets and IP multicast router. - Network-side support for IO uring zero-copy send. - A few skb drop reason improvements, including codegen the source file with string mapping instead of using macro magic. - Rename reference tracking helpers to a more consistent netdev_* schema. - Adapt u64_stats_t type to address load/store tearing issues. - Refine debug helper usage to reduce the log noise caused by bots. BPF --- - Improve socket map performance, avoiding skb cloning on read operation. - Add support for 64 bits enum, to match types exposed by kernel. - Introduce support for sleepable uprobes program. - Introduce support for enum textual representation in libbpf. - New helpers to implement synproxy with eBPF/XDP. - Improve loop performances, inlining indirect calls when possible. - Removed all the deprecated libbpf APIs. - Implement new eBPF-based LSM flavor. - Add type match support, which allow accurate queries to the eBPF used types. - A few TCP congetsion control framework usability improvements. - Add new infrastructure to manipulate CT entries via eBPF programs. - Allow for livepatch (KLP) and BPF trampolines to attach to the same kernel function. Protocols --------- - Introduce per network namespace lookup tables for unix sockets, increasing scalability and reducing contention. - Preparation work for Wi-Fi 7 Multi-Link Operation (MLO) support. - Add support to forciby close TIME_WAIT TCP sockets via user-space tools. - Significant performance improvement for the TLS 1.3 receive path, both for zero-copy and not-zero-copy. - Support for changing the initial MTPCP subflow priority/backup status - Introduce virtually contingus buffers for sockets over RDMA, to cope better with memory pressure. - Extend CAN ethtool support with timestamping capabilities - Refactor CAN build infrastructure to allow building only the needed features. Driver API ---------- - Remove devlink mutex to allow parallel commands on multiple links. - Add support for pause stats in distributed switch. - Implement devlink helpers to query and flash line cards. - New helper for phy mode to register conversion. New hardware / drivers ---------------------- - Ethernet DSA driver for the rockchip mt7531 on BPI-R2 Pro. - Ethernet DSA driver for the Renesas RZ/N1 A5PSW switch. - Ethernet DSA driver for the Microchip LAN937x switch. - Ethernet PHY driver for the Aquantia AQR113C EPHY. - CAN driver for the OBD-II ELM327 interface. - CAN driver for RZ/N1 SJA1000 CAN controller. - Bluetooth: Infineon CYW55572 Wi-Fi plus Bluetooth combo device. Drivers ------- - Intel Ethernet NICs: - i40e: add support for vlan pruning - i40e: add support for XDP framented packets - ice: improved vlan offload support - ice: add support for PPPoE offload - Mellanox Ethernet (mlx5) - refactor packet steering offload for performance and scalability - extend support for TC offload - refactor devlink code to clean-up the locking schema - support stacked vlans for bridge offloads - use TLS objects pool to improve connection rate - Netronome Ethernet NICs (nfp): - extend support for IPv6 fields mangling offload - add support for vepa mode in HW bridge - better support for virtio data path acceleration (VDPA) - enable TSO by default - Microsoft vNIC driver (mana) - add support for XDP redirect - Others Ethernet drivers: - bonding: add per-port priority support - microchip lan743x: extend phy support - Fungible funeth: support UDP segmentation offload and XDP xmit - Solarflare EF100: add support for virtual function representors - MediaTek SoC: add XDP support - Mellanox Ethernet/IB switch (mlxsw): - dropped support for unreleased H/W (XM router). - improved stats accuracy - unified bridge model coversion improving scalability (parts 1-6) - support for PTP in Spectrum-2 asics - Broadcom PHYs - add PTP support for BCM54210E - add support for the BCM53128 internal PHY - Marvell Ethernet switches (prestera): - implement support for multicast forwarding offload - Embedded Ethernet switches: - refactor OcteonTx MAC filter for better scalability - improve TC H/W offload for the Felix driver - refactor the Microchip ksz8 and ksz9477 drivers to share the probe code (parts 1, 2), add support for phylink mac configuration - Other WiFi: - Microchip wilc1000: diable WEP support and enable WPA3 - Atheros ath10k: encapsulation offload support Old code removal: - Neterion vxge ethernet driver: this is untouched since more than 10 years. Signed-off-by: Paolo Abeni <pabeni@redhat.com> -----BEGIN PGP SIGNATURE----- iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmLqN+oSHHBhYmVuaUBy ZWRoYXQuY29tAAoJECkkeY3MjxOkB9kQAI9VqW0c3SfiTJnkVBEIovZ6Tnh5stD2 UYFkh1BdchLsYxi7W4XMpVPSzRztiTP87mIx5c/KvIzj+QNeWL1XWRJSPdI9HhTD pTAA/tM2OG7bqrbyQiKDNfpQdNl7+kk1RwnYd+f9RFl1QVuIJaYhmjVwrsN5xF/+ jUsotpROarM2dGFWiFwJbKhP2zMDT+6qEEahM8pEPggKhv8wRLYjany2cZVEe4e0 WGUpbINAS8gEKm0Ob922WaDfDrcK/N1Z0jNz/kMaENkK18Vvc7F6bCO0DzAawKX9 QZMMwm6mHp3EThflJAMAzCGIYiIcwLhykgdyj8rrjPhFrWbMD2Sdsbo21HOXU/8j u4aAhVl+d+h7emmbgBoJ8sycVJ7BQlXz7lX20sTgADv9xI4/dPhQ17CMRuwX6fXX JSrn6P6e1LTV5CEg6vrlSPnKPY6uhFn/cPw47FxCjRwJ9phVnp+8uZWQmf9Pz3yf Ok/tcj+juFbsmuOshHy2cbRkuNZNS0oRWlSTBo5795ZwOLSakMonR3L+ev2aOvzz DVrFp2Y/iIVwMSFdCbouYdYnhArPRhOAtCmZc2afY8aBN7aaMgrdTy3+mzUoHy3I FG3K+VuKpfi0vY4zn6ZoLZDIpyXIoJJ93RcSGltD32t3Dp1RaQMVEI4s45k05PVm 1nYpXKHA8qML =hxEG -----END PGP SIGNATURE----- Merge tag 'net-next-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking changes from Paolo Abeni: "Core: - Refactor the forward memory allocation to better cope with memory pressure with many open sockets, moving from a per socket cache to a per-CPU one - Replace rwlocks with RCU for better fairness in ping, raw sockets and IP multicast router. - Network-side support for IO uring zero-copy send. - A few skb drop reason improvements, including codegen the source file with string mapping instead of using macro magic. - Rename reference tracking helpers to a more consistent netdev_* schema. - Adapt u64_stats_t type to address load/store tearing issues. - Refine debug helper usage to reduce the log noise caused by bots. BPF: - Improve socket map performance, avoiding skb cloning on read operation. - Add support for 64 bits enum, to match types exposed by kernel. - Introduce support for sleepable uprobes program. - Introduce support for enum textual representation in libbpf. - New helpers to implement synproxy with eBPF/XDP. - Improve loop performances, inlining indirect calls when possible. - Removed all the deprecated libbpf APIs. - Implement new eBPF-based LSM flavor. - Add type match support, which allow accurate queries to the eBPF used types. - A few TCP congetsion control framework usability improvements. - Add new infrastructure to manipulate CT entries via eBPF programs. - Allow for livepatch (KLP) and BPF trampolines to attach to the same kernel function. Protocols: - Introduce per network namespace lookup tables for unix sockets, increasing scalability and reducing contention. - Preparation work for Wi-Fi 7 Multi-Link Operation (MLO) support. - Add support to forciby close TIME_WAIT TCP sockets via user-space tools. - Significant performance improvement for the TLS 1.3 receive path, both for zero-copy and not-zero-copy. - Support for changing the initial MTPCP subflow priority/backup status - Introduce virtually contingus buffers for sockets over RDMA, to cope better with memory pressure. - Extend CAN ethtool support with timestamping capabilities - Refactor CAN build infrastructure to allow building only the needed features. Driver API: - Remove devlink mutex to allow parallel commands on multiple links. - Add support for pause stats in distributed switch. - Implement devlink helpers to query and flash line cards. - New helper for phy mode to register conversion. New hardware / drivers: - Ethernet DSA driver for the rockchip mt7531 on BPI-R2 Pro. - Ethernet DSA driver for the Renesas RZ/N1 A5PSW switch. - Ethernet DSA driver for the Microchip LAN937x switch. - Ethernet PHY driver for the Aquantia AQR113C EPHY. - CAN driver for the OBD-II ELM327 interface. - CAN driver for RZ/N1 SJA1000 CAN controller. - Bluetooth: Infineon CYW55572 Wi-Fi plus Bluetooth combo device. Drivers: - Intel Ethernet NICs: - i40e: add support for vlan pruning - i40e: add support for XDP framented packets - ice: improved vlan offload support - ice: add support for PPPoE offload - Mellanox Ethernet (mlx5) - refactor packet steering offload for performance and scalability - extend support for TC offload - refactor devlink code to clean-up the locking schema - support stacked vlans for bridge offloads - use TLS objects pool to improve connection rate - Netronome Ethernet NICs (nfp): - extend support for IPv6 fields mangling offload - add support for vepa mode in HW bridge - better support for virtio data path acceleration (VDPA) - enable TSO by default - Microsoft vNIC driver (mana) - add support for XDP redirect - Others Ethernet drivers: - bonding: add per-port priority support - microchip lan743x: extend phy support - Fungible funeth: support UDP segmentation offload and XDP xmit - Solarflare EF100: add support for virtual function representors - MediaTek SoC: add XDP support - Mellanox Ethernet/IB switch (mlxsw): - dropped support for unreleased H/W (XM router). - improved stats accuracy - unified bridge model coversion improving scalability (parts 1-6) - support for PTP in Spectrum-2 asics - Broadcom PHYs - add PTP support for BCM54210E - add support for the BCM53128 internal PHY - Marvell Ethernet switches (prestera): - implement support for multicast forwarding offload - Embedded Ethernet switches: - refactor OcteonTx MAC filter for better scalability - improve TC H/W offload for the Felix driver - refactor the Microchip ksz8 and ksz9477 drivers to share the probe code (parts 1, 2), add support for phylink mac configuration - Other WiFi: - Microchip wilc1000: diable WEP support and enable WPA3 - Atheros ath10k: encapsulation offload support Old code removal: - Neterion vxge ethernet driver: this is untouched since more than 10 years" * tag 'net-next-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1890 commits) doc: sfp-phylink: Fix a broken reference wireguard: selftests: support UML wireguard: allowedips: don't corrupt stack when detecting overflow wireguard: selftests: update config fragments wireguard: ratelimiter: use hrtimer in selftest net/mlx5e: xsk: Discard unaligned XSK frames on striding RQ net: usb: ax88179_178a: Bind only to vendor-specific interface selftests: net: fix IOAM test skip return code net: usb: make USB_RTL8153_ECM non user configurable net: marvell: prestera: remove reduntant code octeontx2-pf: Reduce minimum mtu size to 60 net: devlink: Fix missing mutex_unlock() call net/tls: Remove redundant workqueue flush before destroy net: txgbe: Fix an error handling path in txgbe_probe() net: dsa: Fix spelling mistakes and cleanup code Documentation: devlink: add add devlink-selftests to the table of contents dccp: put dccp_qpolicy_full() and dccp_qpolicy_push() in the same lock net: ionic: fix error check for vlan flags in ionic_set_nic_features() net: ice: fix error NETIF_F_HW_VLAN_CTAG_FILTER check in ice_vsi_sync_fltr() nfp: flower: add support for tunnel offload without key ID ...
2022-08-04 07:29:08 +08:00
if (!is_pppoe_ses_hdr_valid(&hdr->hdr)) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
/* least significant bit of the most significant octet
* indicates if protocol field was compressed
*/
ppp_proto = ntohs(hdr->proto);
if (ppp_proto & 0x0100) {
ppp_proto = ppp_proto >> 8;
nhoff += PPPOE_SES_HLEN - 1;
} else {
nhoff += PPPOE_SES_HLEN;
}
if (ppp_proto == PPP_IP) {
proto = htons(ETH_P_IP);
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
} else if (ppp_proto == PPP_IPV6) {
proto = htons(ETH_P_IPV6);
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
} else if (ppp_proto == PPP_MPLS_UC) {
proto = htons(ETH_P_MPLS_UC);
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
} else if (ppp_proto == PPP_MPLS_MC) {
proto = htons(ETH_P_MPLS_MC);
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
} else if (ppp_proto_is_valid(ppp_proto)) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
} else {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_PPPOE)) {
struct flow_dissector_key_pppoe *key_pppoe;
key_pppoe = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_PPPOE,
target_container);
key_pppoe->session_id = hdr->hdr.sid;
key_pppoe->ppp_proto = htons(ppp_proto);
key_pppoe->type = htons(ETH_P_PPP_SES);
}
break;
}
case htons(ETH_P_TIPC): {
struct tipc_basic_hdr *hdr, _hdr;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
data, hlen, &_hdr);
if (!hdr) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_TIPC)) {
key_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_TIPC,
target_container);
key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
}
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
case htons(ETH_P_MPLS_UC):
case htons(ETH_P_MPLS_MC):
fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
target_container, data,
flow_dissector: Parse multiple MPLS Label Stack Entries The current MPLS dissector only parses the first MPLS Label Stack Entry (second LSE can be parsed too, but only to set a key_id). This patch adds the possibility to parse several LSEs by making __skb_flow_dissect_mpls() return FLOW_DISSECT_RET_PROTO_AGAIN as long as the Bottom Of Stack bit hasn't been seen, up to a maximum of FLOW_DIS_MPLS_MAX entries. FLOW_DIS_MPLS_MAX is arbitrarily set to 7. This should be enough for many practical purposes, without wasting too much space. To record the parsed values, flow_dissector_key_mpls is modified to store an array of stack entries, instead of just the values of the first one. A bit field, "used_lses", is also added to keep track of the LSEs that have been set. The objective is to avoid defining a new FLOW_DISSECTOR_KEY_MPLS_XX for each level of the MPLS stack. TC flower is adapted for the new struct flow_dissector_key_mpls layout. Matching on several MPLS Label Stack Entries will be added in the next patch. The NFP and MLX5 drivers are also adapted: nfp_flower_compile_mac() and mlx5's parse_tunnel() now verify that the rule only uses the first LSE and fail if it doesn't. Finally, the behaviour of the FLOW_DISSECTOR_KEY_MPLS_ENTROPY key is slightly modified. Instead of recording the first Entropy Label, it now records the last one. This shouldn't have any consequences since there doesn't seem to have any user of FLOW_DISSECTOR_KEY_MPLS_ENTROPY in the tree. We'd probably better do a hash of all parsed MPLS labels instead (excluding reserved labels) anyway. That'd give better entropy and would probably also simplify the code. But that's not the purpose of this patch, so I'm keeping that as a future possible improvement. Signed-off-by: Guillaume Nault <gnault@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-26 20:29:00 +08:00
nhoff, hlen, mpls_lse,
&mpls_el);
nhoff += sizeof(struct mpls_label);
mpls_lse++;
break;
case htons(ETH_P_FCOE):
if ((hlen - nhoff) < FCOE_HEADER_LEN) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
nhoff += FCOE_HEADER_LEN;
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
case htons(ETH_P_ARP):
case htons(ETH_P_RARP):
fdret = __skb_flow_dissect_arp(skb, flow_dissector,
target_container, data,
nhoff, hlen);
break;
case htons(ETH_P_BATMAN):
fdret = __skb_flow_dissect_batadv(skb, key_control, data,
&proto, &nhoff, hlen, flags);
break;
case htons(ETH_P_1588): {
struct ptp_header *hdr, _hdr;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
hlen, &_hdr);
if (!hdr) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
nhoff += ntohs(hdr->message_length);
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
case htons(ETH_P_PRP):
case htons(ETH_P_HSR): {
struct hsr_tag *hdr, _hdr;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen,
&_hdr);
if (!hdr) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
proto = hdr->encap_proto;
nhoff += HSR_HLEN;
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
break;
}
default:
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
/* Process result of proto processing */
switch (fdret) {
case FLOW_DISSECT_RET_OUT_GOOD:
goto out_good;
case FLOW_DISSECT_RET_PROTO_AGAIN:
if (skb_flow_dissect_allowed(&num_hdrs))
goto proto_again;
goto out_good;
case FLOW_DISSECT_RET_CONTINUE:
case FLOW_DISSECT_RET_IPPROTO_AGAIN:
break;
case FLOW_DISSECT_RET_OUT_BAD:
default:
goto out_bad;
}
ip_proto_again:
fdret = FLOW_DISSECT_RET_CONTINUE;
switch (ip_proto) {
case IPPROTO_GRE:
cls_flower: Fix inability to match GRE/IPIP packets When a packet of a new flow arrives in openvswitch kernel module, it dissects the packet and passes the extracted flow key to ovs-vswtichd daemon. If hw- offload configuration is enabled, the daemon creates a new TC flower entry to bypass openvswitch kernel module for the flow (TC flower can also offload flows to NICs but this time that does not matter). In this processing flow, I found the following issue in cases of GRE/IPIP packets. When ovs_flow_key_extract() in openvswitch module parses a packet of a new GRE (or IPIP) flow received on non-tunneling vports, it extracts information of the outer IP header for ip_proto/src_ip/dst_ip match keys. This means ovs-vswitchd creates a TC flower entry with IP protocol/addresses match keys whose values are those of the outer IP header. OTOH, TC flower, which uses flow_dissector (different parser from openvswitch module), extracts information of the inner IP header. The following flow is an example to describe the issue in more detail. <----------- Outer IP -----------------> <---------- Inner IP ----------> +----------+--------------+--------------+----------+----------+----------+ | ip_proto | src_ip | dst_ip | ip_proto | src_ip | dst_ip | | 47 (GRE) | 192.168.10.1 | 192.168.10.2 | 6 (TCP) | 10.0.0.1 | 10.0.0.2 | +----------+--------------+--------------+----------+----------+----------+ In this case, TC flower entry and extracted information are shown as below: - ovs-vswitchd creates TC flower entry with: - ip_proto: 47 - src_ip: 192.168.10.1 - dst_ip: 192.168.10.2 - TC flower extracts below for IP header matches: - ip_proto: 6 - src_ip: 10.0.0.1 - dst_ip: 10.0.0.2 Thus, GRE or IPIP packets never match the TC flower entry, as each dissector behaves differently. IMHO, the behavior of TC flower (flow dissector) does not look correct, as ip_proto/src_ip/dst_ip in TC flower match means the outermost IP header information except for GRE/IPIP cases. This patch adds a new flow_dissector flag FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP which skips dissection of the encapsulated inner GRE/IPIP header in TC flower classifier. Signed-off-by: Yoshiki Komachi <komachi.yoshiki@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-29 17:21:41 +08:00
if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
target_container, data,
&proto, &nhoff, &hlen, flags);
break;
case NEXTHDR_HOP:
case NEXTHDR_ROUTING:
case NEXTHDR_DEST: {
u8 _opthdr[2], *opthdr;
if (proto != htons(ETH_P_IPV6))
break;
opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
data, hlen, &_opthdr);
if (!opthdr) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
ip_proto = opthdr[0];
nhoff += (opthdr[1] + 1) << 3;
fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
break;
}
case NEXTHDR_FRAGMENT: {
struct frag_hdr _fh, *fh;
if (proto != htons(ETH_P_IPV6))
break;
fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
data, hlen, &_fh);
if (!fh) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
key_control->flags |= FLOW_DIS_IS_FRAGMENT;
nhoff += sizeof(_fh);
ip_proto = fh->nexthdr;
if (!(fh->frag_off & htons(IP6_OFFSET))) {
key_control->flags |= FLOW_DIS_FIRST_FRAG;
if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
break;
}
}
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
case IPPROTO_IPIP:
cls_flower: Fix inability to match GRE/IPIP packets When a packet of a new flow arrives in openvswitch kernel module, it dissects the packet and passes the extracted flow key to ovs-vswtichd daemon. If hw- offload configuration is enabled, the daemon creates a new TC flower entry to bypass openvswitch kernel module for the flow (TC flower can also offload flows to NICs but this time that does not matter). In this processing flow, I found the following issue in cases of GRE/IPIP packets. When ovs_flow_key_extract() in openvswitch module parses a packet of a new GRE (or IPIP) flow received on non-tunneling vports, it extracts information of the outer IP header for ip_proto/src_ip/dst_ip match keys. This means ovs-vswitchd creates a TC flower entry with IP protocol/addresses match keys whose values are those of the outer IP header. OTOH, TC flower, which uses flow_dissector (different parser from openvswitch module), extracts information of the inner IP header. The following flow is an example to describe the issue in more detail. <----------- Outer IP -----------------> <---------- Inner IP ----------> +----------+--------------+--------------+----------+----------+----------+ | ip_proto | src_ip | dst_ip | ip_proto | src_ip | dst_ip | | 47 (GRE) | 192.168.10.1 | 192.168.10.2 | 6 (TCP) | 10.0.0.1 | 10.0.0.2 | +----------+--------------+--------------+----------+----------+----------+ In this case, TC flower entry and extracted information are shown as below: - ovs-vswitchd creates TC flower entry with: - ip_proto: 47 - src_ip: 192.168.10.1 - dst_ip: 192.168.10.2 - TC flower extracts below for IP header matches: - ip_proto: 6 - src_ip: 10.0.0.1 - dst_ip: 10.0.0.2 Thus, GRE or IPIP packets never match the TC flower entry, as each dissector behaves differently. IMHO, the behavior of TC flower (flow dissector) does not look correct, as ip_proto/src_ip/dst_ip in TC flower match means the outermost IP header information except for GRE/IPIP cases. This patch adds a new flow_dissector flag FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP which skips dissection of the encapsulated inner GRE/IPIP header in TC flower classifier. Signed-off-by: Yoshiki Komachi <komachi.yoshiki@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-29 17:21:41 +08:00
if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
proto = htons(ETH_P_IP);
key_control->flags |= FLOW_DIS_ENCAPSULATION;
if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
break;
case IPPROTO_IPV6:
cls_flower: Fix inability to match GRE/IPIP packets When a packet of a new flow arrives in openvswitch kernel module, it dissects the packet and passes the extracted flow key to ovs-vswtichd daemon. If hw- offload configuration is enabled, the daemon creates a new TC flower entry to bypass openvswitch kernel module for the flow (TC flower can also offload flows to NICs but this time that does not matter). In this processing flow, I found the following issue in cases of GRE/IPIP packets. When ovs_flow_key_extract() in openvswitch module parses a packet of a new GRE (or IPIP) flow received on non-tunneling vports, it extracts information of the outer IP header for ip_proto/src_ip/dst_ip match keys. This means ovs-vswitchd creates a TC flower entry with IP protocol/addresses match keys whose values are those of the outer IP header. OTOH, TC flower, which uses flow_dissector (different parser from openvswitch module), extracts information of the inner IP header. The following flow is an example to describe the issue in more detail. <----------- Outer IP -----------------> <---------- Inner IP ----------> +----------+--------------+--------------+----------+----------+----------+ | ip_proto | src_ip | dst_ip | ip_proto | src_ip | dst_ip | | 47 (GRE) | 192.168.10.1 | 192.168.10.2 | 6 (TCP) | 10.0.0.1 | 10.0.0.2 | +----------+--------------+--------------+----------+----------+----------+ In this case, TC flower entry and extracted information are shown as below: - ovs-vswitchd creates TC flower entry with: - ip_proto: 47 - src_ip: 192.168.10.1 - dst_ip: 192.168.10.2 - TC flower extracts below for IP header matches: - ip_proto: 6 - src_ip: 10.0.0.1 - dst_ip: 10.0.0.2 Thus, GRE or IPIP packets never match the TC flower entry, as each dissector behaves differently. IMHO, the behavior of TC flower (flow dissector) does not look correct, as ip_proto/src_ip/dst_ip in TC flower match means the outermost IP header information except for GRE/IPIP cases. This patch adds a new flow_dissector flag FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP which skips dissection of the encapsulated inner GRE/IPIP header in TC flower classifier. Signed-off-by: Yoshiki Komachi <komachi.yoshiki@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-29 17:21:41 +08:00
if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
proto = htons(ETH_P_IPV6);
key_control->flags |= FLOW_DIS_ENCAPSULATION;
if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
break;
case IPPROTO_MPLS:
proto = htons(ETH_P_MPLS_UC);
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
break;
case IPPROTO_TCP:
__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
data, nhoff, hlen);
break;
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
data, nhoff, hlen);
break;
case IPPROTO_L2TP:
__skb_flow_dissect_l2tpv3(skb, flow_dissector, target_container,
data, nhoff, hlen);
break;
default:
break;
}
cls_flower: Fix the behavior using port ranges with hw-offload The recent commit 5c72299fba9d ("net: sched: cls_flower: Classify packets using port ranges") had added filtering based on port ranges to tc flower. However the commit missed necessary changes in hw-offload code, so the feature gave rise to generating incorrect offloaded flow keys in NIC. One more detailed example is below: $ tc qdisc add dev eth0 ingress $ tc filter add dev eth0 ingress protocol ip flower ip_proto tcp \ dst_port 100-200 action drop With the setup above, an exact match filter with dst_port == 0 will be installed in NIC by hw-offload. IOW, the NIC will have a rule which is equivalent to the following one. $ tc qdisc add dev eth0 ingress $ tc filter add dev eth0 ingress protocol ip flower ip_proto tcp \ dst_port 0 action drop The behavior was caused by the flow dissector which extracts packet data into the flow key in the tc flower. More specifically, regardless of exact match or specified port ranges, fl_init_dissector() set the FLOW_DISSECTOR_KEY_PORTS flag in struct flow_dissector to extract port numbers from skb in skb_flow_dissect() called by fl_classify(). Note that device drivers received the same struct flow_dissector object as used in skb_flow_dissect(). Thus, offloaded drivers could not identify which of these is used because the FLOW_DISSECTOR_KEY_PORTS flag was set to struct flow_dissector in either case. This patch adds the new FLOW_DISSECTOR_KEY_PORTS_RANGE flag and the new tp_range field in struct fl_flow_key to recognize which filters are applied to offloaded drivers. At this point, when filters based on port ranges passed to drivers, drivers return the EOPNOTSUPP error because they do not support the feature (the newly created FLOW_DISSECTOR_KEY_PORTS_RANGE flag). Fixes: 5c72299fba9d ("net: sched: cls_flower: Classify packets using port ranges") Signed-off-by: Yoshiki Komachi <komachi.yoshiki@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-03 18:40:12 +08:00
if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
__skb_flow_dissect_ports(skb, flow_dissector, target_container,
data, nhoff, ip_proto, hlen);
/* Process result of IP proto processing */
switch (fdret) {
case FLOW_DISSECT_RET_PROTO_AGAIN:
if (skb_flow_dissect_allowed(&num_hdrs))
goto proto_again;
break;
case FLOW_DISSECT_RET_IPPROTO_AGAIN:
if (skb_flow_dissect_allowed(&num_hdrs))
goto ip_proto_again;
break;
case FLOW_DISSECT_RET_OUT_GOOD:
case FLOW_DISSECT_RET_CONTINUE:
break;
case FLOW_DISSECT_RET_OUT_BAD:
default:
goto out_bad;
}
out_good:
ret = true;
out:
flow_dissector: properly cap thoff field syzbot reported yet another crash [1] that is caused by insufficient validation of DODGY packets. Two bugs are happening here to trigger the crash. 1) Flow dissection leaves with incorrect thoff field. 2) skb_probe_transport_header() sets transport header to this invalid thoff, even if pointing after skb valid data. 3) qdisc_pkt_len_init() reads out-of-bound data because it trusts tcp_hdrlen(skb) Possible fixes : - Full flow dissector validation before injecting bad DODGY packets in the stack. This approach was attempted here : https://patchwork.ozlabs.org/patch/ 861874/ - Have more robust functions in the core. This might be needed anyway for stable versions. This patch fixes the flow dissection issue. [1] CPU: 1 PID: 3144 Comm: syzkaller271204 Not tainted 4.15.0-rc4-mm1+ #49 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:17 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:53 print_address_description+0x73/0x250 mm/kasan/report.c:256 kasan_report_error mm/kasan/report.c:355 [inline] kasan_report+0x23b/0x360 mm/kasan/report.c:413 __asan_report_load2_noabort+0x14/0x20 mm/kasan/report.c:432 __tcp_hdrlen include/linux/tcp.h:35 [inline] tcp_hdrlen include/linux/tcp.h:40 [inline] qdisc_pkt_len_init net/core/dev.c:3160 [inline] __dev_queue_xmit+0x20d3/0x2200 net/core/dev.c:3465 dev_queue_xmit+0x17/0x20 net/core/dev.c:3554 packet_snd net/packet/af_packet.c:2943 [inline] packet_sendmsg+0x3ad5/0x60a0 net/packet/af_packet.c:2968 sock_sendmsg_nosec net/socket.c:628 [inline] sock_sendmsg+0xca/0x110 net/socket.c:638 sock_write_iter+0x31a/0x5d0 net/socket.c:907 call_write_iter include/linux/fs.h:1776 [inline] new_sync_write fs/read_write.c:469 [inline] __vfs_write+0x684/0x970 fs/read_write.c:482 vfs_write+0x189/0x510 fs/read_write.c:544 SYSC_write fs/read_write.c:589 [inline] SyS_write+0xef/0x220 fs/read_write.c:581 entry_SYSCALL_64_fastpath+0x1f/0x96 Fixes: 34fad54c2537 ("net: __skb_flow_dissect() must cap its return value") Fixes: a6e544b0a88b ("flow_dissector: Jump to exit code in __skb_flow_dissect") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Willem de Bruijn <willemb@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Acked-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-18 06:21:13 +08:00
key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
key_basic->n_proto = proto;
key_basic->ip_proto = ip_proto;
return ret;
out_bad:
ret = false;
goto out;
}
EXPORT_SYMBOL(__skb_flow_dissect);
static siphash_aligned_key_t hashrnd;
static __always_inline void __flow_hash_secret_init(void)
{
net_get_random_once(&hashrnd, sizeof(hashrnd));
}
net/flow_dissector: switch to siphash UDP IPv6 packets auto flowlabels are using a 32bit secret (static u32 hashrnd in net/core/flow_dissector.c) and apply jhash() over fields known by the receivers. Attackers can easily infer the 32bit secret and use this information to identify a device and/or user, since this 32bit secret is only set at boot time. Really, using jhash() to generate cookies sent on the wire is a serious security concern. Trying to change the rol32(hash, 16) in ip6_make_flowlabel() would be a dead end. Trying to periodically change the secret (like in sch_sfq.c) could change paths taken in the network for long lived flows. Let's switch to siphash, as we did in commit df453700e8d8 ("inet: switch IP ID generator to siphash") Using a cryptographically strong pseudo random function will solve this privacy issue and more generally remove other weak points in the stack. Packet schedulers using skb_get_hash_perturb() benefit from this change. Fixes: b56774163f99 ("ipv6: Enable auto flow labels by default") Fixes: 42240901f7c4 ("ipv6: Implement different admin modes for automatic flow labels") Fixes: 67800f9b1f4e ("ipv6: Call skb_get_hash_flowi6 to get skb->hash in ip6_make_flowlabel") Fixes: cb1ce2ef387b ("ipv6: Implement automatic flow label generation on transmit") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Jonathan Berger <jonathann1@walla.com> Reported-by: Amit Klein <aksecurity@gmail.com> Reported-by: Benny Pinkas <benny@pinkas.net> Cc: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-22 22:57:46 +08:00
static const void *flow_keys_hash_start(const struct flow_keys *flow)
{
net/flow_dissector: switch to siphash UDP IPv6 packets auto flowlabels are using a 32bit secret (static u32 hashrnd in net/core/flow_dissector.c) and apply jhash() over fields known by the receivers. Attackers can easily infer the 32bit secret and use this information to identify a device and/or user, since this 32bit secret is only set at boot time. Really, using jhash() to generate cookies sent on the wire is a serious security concern. Trying to change the rol32(hash, 16) in ip6_make_flowlabel() would be a dead end. Trying to periodically change the secret (like in sch_sfq.c) could change paths taken in the network for long lived flows. Let's switch to siphash, as we did in commit df453700e8d8 ("inet: switch IP ID generator to siphash") Using a cryptographically strong pseudo random function will solve this privacy issue and more generally remove other weak points in the stack. Packet schedulers using skb_get_hash_perturb() benefit from this change. Fixes: b56774163f99 ("ipv6: Enable auto flow labels by default") Fixes: 42240901f7c4 ("ipv6: Implement different admin modes for automatic flow labels") Fixes: 67800f9b1f4e ("ipv6: Call skb_get_hash_flowi6 to get skb->hash in ip6_make_flowlabel") Fixes: cb1ce2ef387b ("ipv6: Implement automatic flow label generation on transmit") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Jonathan Berger <jonathann1@walla.com> Reported-by: Amit Klein <aksecurity@gmail.com> Reported-by: Benny Pinkas <benny@pinkas.net> Cc: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-22 22:57:46 +08:00
BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
return &flow->FLOW_KEYS_HASH_START_FIELD;
}
static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
{
size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
switch (flow->control.addr_type) {
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
diff -= sizeof(flow->addrs.v4addrs);
break;
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
diff -= sizeof(flow->addrs.v6addrs);
break;
case FLOW_DISSECTOR_KEY_TIPC:
diff -= sizeof(flow->addrs.tipckey);
break;
}
net/flow_dissector: switch to siphash UDP IPv6 packets auto flowlabels are using a 32bit secret (static u32 hashrnd in net/core/flow_dissector.c) and apply jhash() over fields known by the receivers. Attackers can easily infer the 32bit secret and use this information to identify a device and/or user, since this 32bit secret is only set at boot time. Really, using jhash() to generate cookies sent on the wire is a serious security concern. Trying to change the rol32(hash, 16) in ip6_make_flowlabel() would be a dead end. Trying to periodically change the secret (like in sch_sfq.c) could change paths taken in the network for long lived flows. Let's switch to siphash, as we did in commit df453700e8d8 ("inet: switch IP ID generator to siphash") Using a cryptographically strong pseudo random function will solve this privacy issue and more generally remove other weak points in the stack. Packet schedulers using skb_get_hash_perturb() benefit from this change. Fixes: b56774163f99 ("ipv6: Enable auto flow labels by default") Fixes: 42240901f7c4 ("ipv6: Implement different admin modes for automatic flow labels") Fixes: 67800f9b1f4e ("ipv6: Call skb_get_hash_flowi6 to get skb->hash in ip6_make_flowlabel") Fixes: cb1ce2ef387b ("ipv6: Implement automatic flow label generation on transmit") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Jonathan Berger <jonathann1@walla.com> Reported-by: Amit Klein <aksecurity@gmail.com> Reported-by: Benny Pinkas <benny@pinkas.net> Cc: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-22 22:57:46 +08:00
return sizeof(*flow) - diff;
}
__be32 flow_get_u32_src(const struct flow_keys *flow)
{
switch (flow->control.addr_type) {
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
return flow->addrs.v4addrs.src;
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
return (__force __be32)ipv6_addr_hash(
&flow->addrs.v6addrs.src);
case FLOW_DISSECTOR_KEY_TIPC:
return flow->addrs.tipckey.key;
default:
return 0;
}
}
EXPORT_SYMBOL(flow_get_u32_src);
__be32 flow_get_u32_dst(const struct flow_keys *flow)
{
switch (flow->control.addr_type) {
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
return flow->addrs.v4addrs.dst;
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
return (__force __be32)ipv6_addr_hash(
&flow->addrs.v6addrs.dst);
default:
return 0;
}
}
EXPORT_SYMBOL(flow_get_u32_dst);
/* Sort the source and destination IP and the ports,
* to have consistent hash within the two directions
*/
static inline void __flow_hash_consistentify(struct flow_keys *keys)
{
int addr_diff, i;
switch (keys->control.addr_type) {
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
addr_diff = (__force u32)keys->addrs.v4addrs.dst -
(__force u32)keys->addrs.v4addrs.src;
if (addr_diff < 0)
swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
if ((__force u16)keys->ports.dst <
(__force u16)keys->ports.src) {
swap(keys->ports.src, keys->ports.dst);
}
break;
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
addr_diff = memcmp(&keys->addrs.v6addrs.dst,
&keys->addrs.v6addrs.src,
sizeof(keys->addrs.v6addrs.dst));
if (addr_diff < 0) {
for (i = 0; i < 4; i++)
swap(keys->addrs.v6addrs.src.s6_addr32[i],
keys->addrs.v6addrs.dst.s6_addr32[i]);
}
if ((__force u16)keys->ports.dst <
(__force u16)keys->ports.src) {
swap(keys->ports.src, keys->ports.dst);
}
break;
}
}
net/flow_dissector: switch to siphash UDP IPv6 packets auto flowlabels are using a 32bit secret (static u32 hashrnd in net/core/flow_dissector.c) and apply jhash() over fields known by the receivers. Attackers can easily infer the 32bit secret and use this information to identify a device and/or user, since this 32bit secret is only set at boot time. Really, using jhash() to generate cookies sent on the wire is a serious security concern. Trying to change the rol32(hash, 16) in ip6_make_flowlabel() would be a dead end. Trying to periodically change the secret (like in sch_sfq.c) could change paths taken in the network for long lived flows. Let's switch to siphash, as we did in commit df453700e8d8 ("inet: switch IP ID generator to siphash") Using a cryptographically strong pseudo random function will solve this privacy issue and more generally remove other weak points in the stack. Packet schedulers using skb_get_hash_perturb() benefit from this change. Fixes: b56774163f99 ("ipv6: Enable auto flow labels by default") Fixes: 42240901f7c4 ("ipv6: Implement different admin modes for automatic flow labels") Fixes: 67800f9b1f4e ("ipv6: Call skb_get_hash_flowi6 to get skb->hash in ip6_make_flowlabel") Fixes: cb1ce2ef387b ("ipv6: Implement automatic flow label generation on transmit") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Jonathan Berger <jonathann1@walla.com> Reported-by: Amit Klein <aksecurity@gmail.com> Reported-by: Benny Pinkas <benny@pinkas.net> Cc: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-22 22:57:46 +08:00
static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
const siphash_key_t *keyval)
{
u32 hash;
__flow_hash_consistentify(keys);
net/flow_dissector: switch to siphash UDP IPv6 packets auto flowlabels are using a 32bit secret (static u32 hashrnd in net/core/flow_dissector.c) and apply jhash() over fields known by the receivers. Attackers can easily infer the 32bit secret and use this information to identify a device and/or user, since this 32bit secret is only set at boot time. Really, using jhash() to generate cookies sent on the wire is a serious security concern. Trying to change the rol32(hash, 16) in ip6_make_flowlabel() would be a dead end. Trying to periodically change the secret (like in sch_sfq.c) could change paths taken in the network for long lived flows. Let's switch to siphash, as we did in commit df453700e8d8 ("inet: switch IP ID generator to siphash") Using a cryptographically strong pseudo random function will solve this privacy issue and more generally remove other weak points in the stack. Packet schedulers using skb_get_hash_perturb() benefit from this change. Fixes: b56774163f99 ("ipv6: Enable auto flow labels by default") Fixes: 42240901f7c4 ("ipv6: Implement different admin modes for automatic flow labels") Fixes: 67800f9b1f4e ("ipv6: Call skb_get_hash_flowi6 to get skb->hash in ip6_make_flowlabel") Fixes: cb1ce2ef387b ("ipv6: Implement automatic flow label generation on transmit") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Jonathan Berger <jonathann1@walla.com> Reported-by: Amit Klein <aksecurity@gmail.com> Reported-by: Benny Pinkas <benny@pinkas.net> Cc: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-22 22:57:46 +08:00
hash = siphash(flow_keys_hash_start(keys),
flow_keys_hash_length(keys), keyval);
if (!hash)
hash = 1;
return hash;
}
u32 flow_hash_from_keys(struct flow_keys *keys)
{
__flow_hash_secret_init();
net/flow_dissector: switch to siphash UDP IPv6 packets auto flowlabels are using a 32bit secret (static u32 hashrnd in net/core/flow_dissector.c) and apply jhash() over fields known by the receivers. Attackers can easily infer the 32bit secret and use this information to identify a device and/or user, since this 32bit secret is only set at boot time. Really, using jhash() to generate cookies sent on the wire is a serious security concern. Trying to change the rol32(hash, 16) in ip6_make_flowlabel() would be a dead end. Trying to periodically change the secret (like in sch_sfq.c) could change paths taken in the network for long lived flows. Let's switch to siphash, as we did in commit df453700e8d8 ("inet: switch IP ID generator to siphash") Using a cryptographically strong pseudo random function will solve this privacy issue and more generally remove other weak points in the stack. Packet schedulers using skb_get_hash_perturb() benefit from this change. Fixes: b56774163f99 ("ipv6: Enable auto flow labels by default") Fixes: 42240901f7c4 ("ipv6: Implement different admin modes for automatic flow labels") Fixes: 67800f9b1f4e ("ipv6: Call skb_get_hash_flowi6 to get skb->hash in ip6_make_flowlabel") Fixes: cb1ce2ef387b ("ipv6: Implement automatic flow label generation on transmit") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Jonathan Berger <jonathann1@walla.com> Reported-by: Amit Klein <aksecurity@gmail.com> Reported-by: Benny Pinkas <benny@pinkas.net> Cc: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-22 22:57:46 +08:00
return __flow_hash_from_keys(keys, &hashrnd);
}
EXPORT_SYMBOL(flow_hash_from_keys);
static inline u32 ___skb_get_hash(const struct sk_buff *skb,
net/flow_dissector: switch to siphash UDP IPv6 packets auto flowlabels are using a 32bit secret (static u32 hashrnd in net/core/flow_dissector.c) and apply jhash() over fields known by the receivers. Attackers can easily infer the 32bit secret and use this information to identify a device and/or user, since this 32bit secret is only set at boot time. Really, using jhash() to generate cookies sent on the wire is a serious security concern. Trying to change the rol32(hash, 16) in ip6_make_flowlabel() would be a dead end. Trying to periodically change the secret (like in sch_sfq.c) could change paths taken in the network for long lived flows. Let's switch to siphash, as we did in commit df453700e8d8 ("inet: switch IP ID generator to siphash") Using a cryptographically strong pseudo random function will solve this privacy issue and more generally remove other weak points in the stack. Packet schedulers using skb_get_hash_perturb() benefit from this change. Fixes: b56774163f99 ("ipv6: Enable auto flow labels by default") Fixes: 42240901f7c4 ("ipv6: Implement different admin modes for automatic flow labels") Fixes: 67800f9b1f4e ("ipv6: Call skb_get_hash_flowi6 to get skb->hash in ip6_make_flowlabel") Fixes: cb1ce2ef387b ("ipv6: Implement automatic flow label generation on transmit") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Jonathan Berger <jonathann1@walla.com> Reported-by: Amit Klein <aksecurity@gmail.com> Reported-by: Benny Pinkas <benny@pinkas.net> Cc: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-22 22:57:46 +08:00
struct flow_keys *keys,
const siphash_key_t *keyval)
{
skb_flow_dissect_flow_keys(skb, keys,
FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
return __flow_hash_from_keys(keys, keyval);
}
struct _flow_keys_digest_data {
__be16 n_proto;
u8 ip_proto;
u8 padding;
__be32 ports;
__be32 src;
__be32 dst;
};
void make_flow_keys_digest(struct flow_keys_digest *digest,
const struct flow_keys *flow)
{
struct _flow_keys_digest_data *data =
(struct _flow_keys_digest_data *)digest;
BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
memset(digest, 0, sizeof(*digest));
data->n_proto = flow->basic.n_proto;
data->ip_proto = flow->basic.ip_proto;
data->ports = flow->ports.ports;
data->src = flow->addrs.v4addrs.src;
data->dst = flow->addrs.v4addrs.dst;
}
EXPORT_SYMBOL(make_flow_keys_digest);
static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
{
struct flow_keys keys;
__flow_hash_secret_init();
memset(&keys, 0, sizeof(keys));
__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
&keys, NULL, 0, 0, 0,
FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
net/flow_dissector: switch to siphash UDP IPv6 packets auto flowlabels are using a 32bit secret (static u32 hashrnd in net/core/flow_dissector.c) and apply jhash() over fields known by the receivers. Attackers can easily infer the 32bit secret and use this information to identify a device and/or user, since this 32bit secret is only set at boot time. Really, using jhash() to generate cookies sent on the wire is a serious security concern. Trying to change the rol32(hash, 16) in ip6_make_flowlabel() would be a dead end. Trying to periodically change the secret (like in sch_sfq.c) could change paths taken in the network for long lived flows. Let's switch to siphash, as we did in commit df453700e8d8 ("inet: switch IP ID generator to siphash") Using a cryptographically strong pseudo random function will solve this privacy issue and more generally remove other weak points in the stack. Packet schedulers using skb_get_hash_perturb() benefit from this change. Fixes: b56774163f99 ("ipv6: Enable auto flow labels by default") Fixes: 42240901f7c4 ("ipv6: Implement different admin modes for automatic flow labels") Fixes: 67800f9b1f4e ("ipv6: Call skb_get_hash_flowi6 to get skb->hash in ip6_make_flowlabel") Fixes: cb1ce2ef387b ("ipv6: Implement automatic flow label generation on transmit") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Jonathan Berger <jonathann1@walla.com> Reported-by: Amit Klein <aksecurity@gmail.com> Reported-by: Benny Pinkas <benny@pinkas.net> Cc: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-22 22:57:46 +08:00
return __flow_hash_from_keys(&keys, &hashrnd);
}
EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
/**
* __skb_get_hash: calculate a flow hash
* @skb: sk_buff to calculate flow hash from
*
* This function calculates a flow hash based on src/dst addresses
* and src/dst port numbers. Sets hash in skb to non-zero hash value
* on success, zero indicates no valid hash. Also, sets l4_hash in skb
* if hash is a canonical 4-tuple hash over transport ports.
*/
void __skb_get_hash(struct sk_buff *skb)
{
struct flow_keys keys;
u32 hash;
__flow_hash_secret_init();
net/flow_dissector: switch to siphash UDP IPv6 packets auto flowlabels are using a 32bit secret (static u32 hashrnd in net/core/flow_dissector.c) and apply jhash() over fields known by the receivers. Attackers can easily infer the 32bit secret and use this information to identify a device and/or user, since this 32bit secret is only set at boot time. Really, using jhash() to generate cookies sent on the wire is a serious security concern. Trying to change the rol32(hash, 16) in ip6_make_flowlabel() would be a dead end. Trying to periodically change the secret (like in sch_sfq.c) could change paths taken in the network for long lived flows. Let's switch to siphash, as we did in commit df453700e8d8 ("inet: switch IP ID generator to siphash") Using a cryptographically strong pseudo random function will solve this privacy issue and more generally remove other weak points in the stack. Packet schedulers using skb_get_hash_perturb() benefit from this change. Fixes: b56774163f99 ("ipv6: Enable auto flow labels by default") Fixes: 42240901f7c4 ("ipv6: Implement different admin modes for automatic flow labels") Fixes: 67800f9b1f4e ("ipv6: Call skb_get_hash_flowi6 to get skb->hash in ip6_make_flowlabel") Fixes: cb1ce2ef387b ("ipv6: Implement automatic flow label generation on transmit") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Jonathan Berger <jonathann1@walla.com> Reported-by: Amit Klein <aksecurity@gmail.com> Reported-by: Benny Pinkas <benny@pinkas.net> Cc: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-22 22:57:46 +08:00
hash = ___skb_get_hash(skb, &keys, &hashrnd);
__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
}
EXPORT_SYMBOL(__skb_get_hash);
net/flow_dissector: switch to siphash UDP IPv6 packets auto flowlabels are using a 32bit secret (static u32 hashrnd in net/core/flow_dissector.c) and apply jhash() over fields known by the receivers. Attackers can easily infer the 32bit secret and use this information to identify a device and/or user, since this 32bit secret is only set at boot time. Really, using jhash() to generate cookies sent on the wire is a serious security concern. Trying to change the rol32(hash, 16) in ip6_make_flowlabel() would be a dead end. Trying to periodically change the secret (like in sch_sfq.c) could change paths taken in the network for long lived flows. Let's switch to siphash, as we did in commit df453700e8d8 ("inet: switch IP ID generator to siphash") Using a cryptographically strong pseudo random function will solve this privacy issue and more generally remove other weak points in the stack. Packet schedulers using skb_get_hash_perturb() benefit from this change. Fixes: b56774163f99 ("ipv6: Enable auto flow labels by default") Fixes: 42240901f7c4 ("ipv6: Implement different admin modes for automatic flow labels") Fixes: 67800f9b1f4e ("ipv6: Call skb_get_hash_flowi6 to get skb->hash in ip6_make_flowlabel") Fixes: cb1ce2ef387b ("ipv6: Implement automatic flow label generation on transmit") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Jonathan Berger <jonathann1@walla.com> Reported-by: Amit Klein <aksecurity@gmail.com> Reported-by: Benny Pinkas <benny@pinkas.net> Cc: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-22 22:57:46 +08:00
__u32 skb_get_hash_perturb(const struct sk_buff *skb,
const siphash_key_t *perturb)
{
struct flow_keys keys;
return ___skb_get_hash(skb, &keys, perturb);
}
EXPORT_SYMBOL(skb_get_hash_perturb);
u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
const struct flow_keys_basic *keys, int hlen)
{
u32 poff = keys->control.thoff;
/* skip L4 headers for fragments after the first */
if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
!(keys->control.flags & FLOW_DIS_FIRST_FRAG))
return poff;
switch (keys->basic.ip_proto) {
case IPPROTO_TCP: {
/* access doff as u8 to avoid unaligned access */
const u8 *doff;
u8 _doff;
doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
data, hlen, &_doff);
if (!doff)
return poff;
poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
break;
}
case IPPROTO_UDP:
case IPPROTO_UDPLITE:
poff += sizeof(struct udphdr);
break;
/* For the rest, we do not really care about header
* extensions at this point for now.
*/
case IPPROTO_ICMP:
poff += sizeof(struct icmphdr);
break;
case IPPROTO_ICMPV6:
poff += sizeof(struct icmp6hdr);
break;
case IPPROTO_IGMP:
poff += sizeof(struct igmphdr);
break;
case IPPROTO_DCCP:
poff += sizeof(struct dccp_hdr);
break;
case IPPROTO_SCTP:
poff += sizeof(struct sctphdr);
break;
}
return poff;
}
/**
* skb_get_poff - get the offset to the payload
* @skb: sk_buff to get the payload offset from
*
* The function will get the offset to the payload as far as it could
* be dissected. The main user is currently BPF, so that we can dynamically
* truncate packets without needing to push actual payload to the user
* space and can analyze headers only, instead.
*/
u32 skb_get_poff(const struct sk_buff *skb)
{
struct flow_keys_basic keys;
if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
NULL, 0, 0, 0, 0))
return 0;
return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
}
__u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
{
memset(keys, 0, sizeof(*keys));
memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
sizeof(keys->addrs.v6addrs.src));
memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
sizeof(keys->addrs.v6addrs.dst));
keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
keys->ports.src = fl6->fl6_sport;
keys->ports.dst = fl6->fl6_dport;
keys->keyid.keyid = fl6->fl6_gre_key;
keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
keys->basic.ip_proto = fl6->flowi6_proto;
return flow_hash_from_keys(keys);
}
EXPORT_SYMBOL(__get_hash_from_flowi6);
static const struct flow_dissector_key flow_keys_dissector_keys[] = {
{
.key_id = FLOW_DISSECTOR_KEY_CONTROL,
.offset = offsetof(struct flow_keys, control),
},
{
.key_id = FLOW_DISSECTOR_KEY_BASIC,
.offset = offsetof(struct flow_keys, basic),
},
{
.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
.offset = offsetof(struct flow_keys, addrs.v4addrs),
},
{
.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
.offset = offsetof(struct flow_keys, addrs.v6addrs),
},
{
.key_id = FLOW_DISSECTOR_KEY_TIPC,
.offset = offsetof(struct flow_keys, addrs.tipckey),
},
{
.key_id = FLOW_DISSECTOR_KEY_PORTS,
.offset = offsetof(struct flow_keys, ports),
},
{
.key_id = FLOW_DISSECTOR_KEY_VLAN,
.offset = offsetof(struct flow_keys, vlan),
},
{
.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
.offset = offsetof(struct flow_keys, tags),
},
{
.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
.offset = offsetof(struct flow_keys, keyid),
},
};
static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
{
.key_id = FLOW_DISSECTOR_KEY_CONTROL,
.offset = offsetof(struct flow_keys, control),
},
{
.key_id = FLOW_DISSECTOR_KEY_BASIC,
.offset = offsetof(struct flow_keys, basic),
},
{
.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
.offset = offsetof(struct flow_keys, addrs.v4addrs),
},
{
.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
.offset = offsetof(struct flow_keys, addrs.v6addrs),
},
{
.key_id = FLOW_DISSECTOR_KEY_PORTS,
.offset = offsetof(struct flow_keys, ports),
},
};
static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
{
.key_id = FLOW_DISSECTOR_KEY_CONTROL,
.offset = offsetof(struct flow_keys, control),
},
{
.key_id = FLOW_DISSECTOR_KEY_BASIC,
.offset = offsetof(struct flow_keys, basic),
},
};
struct flow_dissector flow_keys_dissector __read_mostly;
EXPORT_SYMBOL(flow_keys_dissector);
struct flow_dissector flow_keys_basic_dissector __read_mostly;
EXPORT_SYMBOL(flow_keys_basic_dissector);
static int __init init_default_flow_dissectors(void)
{
skb_flow_dissector_init(&flow_keys_dissector,
flow_keys_dissector_keys,
ARRAY_SIZE(flow_keys_dissector_keys));
skb_flow_dissector_init(&flow_keys_dissector_symmetric,
flow_keys_dissector_symmetric_keys,
ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
skb_flow_dissector_init(&flow_keys_basic_dissector,
flow_keys_basic_dissector_keys,
ARRAY_SIZE(flow_keys_basic_dissector_keys));
return 0;
}
core_initcall(init_default_flow_dissectors);