2015-06-01 19:43:56 +08:00
|
|
|
/*
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
* ChaCha20 (RFC7539) and XChaCha20 stream cipher algorithms
|
2015-06-01 19:43:56 +08:00
|
|
|
*
|
|
|
|
* Copyright (C) 2015 Martin Willi
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
* Copyright (C) 2018 Google LLC
|
2015-06-01 19:43:56 +08:00
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
2017-11-23 03:51:36 +08:00
|
|
|
#include <asm/unaligned.h>
|
2015-06-01 19:43:56 +08:00
|
|
|
#include <crypto/algapi.h>
|
2018-11-17 09:26:21 +08:00
|
|
|
#include <crypto/chacha.h>
|
2016-12-09 22:33:51 +08:00
|
|
|
#include <crypto/internal/skcipher.h>
|
|
|
|
#include <linux/module.h>
|
2015-06-01 19:43:56 +08:00
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
static void chacha_docrypt(u32 *state, u8 *dst, const u8 *src,
|
|
|
|
unsigned int bytes, int nrounds)
|
2015-06-01 19:43:56 +08:00
|
|
|
{
|
2018-09-12 11:05:10 +08:00
|
|
|
/* aligned to potentially speed up crypto_xor() */
|
2018-11-17 09:26:21 +08:00
|
|
|
u8 stream[CHACHA_BLOCK_SIZE] __aligned(sizeof(long));
|
2015-06-01 19:43:56 +08:00
|
|
|
|
|
|
|
if (dst != src)
|
|
|
|
memcpy(dst, src, bytes);
|
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
while (bytes >= CHACHA_BLOCK_SIZE) {
|
|
|
|
chacha_block(state, stream, nrounds);
|
|
|
|
crypto_xor(dst, stream, CHACHA_BLOCK_SIZE);
|
|
|
|
bytes -= CHACHA_BLOCK_SIZE;
|
|
|
|
dst += CHACHA_BLOCK_SIZE;
|
2015-06-01 19:43:56 +08:00
|
|
|
}
|
|
|
|
if (bytes) {
|
2018-11-17 09:26:21 +08:00
|
|
|
chacha_block(state, stream, nrounds);
|
2018-09-12 11:05:10 +08:00
|
|
|
crypto_xor(dst, stream, bytes);
|
2015-06-01 19:43:56 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
static int chacha_stream_xor(struct skcipher_request *req,
|
|
|
|
struct chacha_ctx *ctx, u8 *iv)
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
{
|
|
|
|
struct skcipher_walk walk;
|
|
|
|
u32 state[16];
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
crypto_chacha_init(state, ctx, iv);
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
|
|
|
|
while (walk.nbytes > 0) {
|
|
|
|
unsigned int nbytes = walk.nbytes;
|
|
|
|
|
|
|
|
if (nbytes < walk.total)
|
|
|
|
nbytes = round_down(nbytes, walk.stride);
|
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
chacha_docrypt(state, walk.dst.virt.addr, walk.src.virt.addr,
|
|
|
|
nbytes, ctx->nrounds);
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
void crypto_chacha_init(u32 *state, struct chacha_ctx *ctx, u8 *iv)
|
2015-06-01 19:43:56 +08:00
|
|
|
{
|
2017-11-23 03:51:35 +08:00
|
|
|
state[0] = 0x61707865; /* "expa" */
|
|
|
|
state[1] = 0x3320646e; /* "nd 3" */
|
|
|
|
state[2] = 0x79622d32; /* "2-by" */
|
|
|
|
state[3] = 0x6b206574; /* "te k" */
|
2015-06-01 19:43:56 +08:00
|
|
|
state[4] = ctx->key[0];
|
|
|
|
state[5] = ctx->key[1];
|
|
|
|
state[6] = ctx->key[2];
|
|
|
|
state[7] = ctx->key[3];
|
|
|
|
state[8] = ctx->key[4];
|
|
|
|
state[9] = ctx->key[5];
|
|
|
|
state[10] = ctx->key[6];
|
|
|
|
state[11] = ctx->key[7];
|
2017-11-23 03:51:36 +08:00
|
|
|
state[12] = get_unaligned_le32(iv + 0);
|
|
|
|
state[13] = get_unaligned_le32(iv + 4);
|
|
|
|
state[14] = get_unaligned_le32(iv + 8);
|
|
|
|
state[15] = get_unaligned_le32(iv + 12);
|
2015-06-01 19:43:56 +08:00
|
|
|
}
|
2018-11-17 09:26:21 +08:00
|
|
|
EXPORT_SYMBOL_GPL(crypto_chacha_init);
|
2015-06-01 19:43:56 +08:00
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
static int chacha_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
|
|
unsigned int keysize, int nrounds)
|
2015-06-01 19:43:56 +08:00
|
|
|
{
|
2018-11-17 09:26:21 +08:00
|
|
|
struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm);
|
2015-06-01 19:43:56 +08:00
|
|
|
int i;
|
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
if (keysize != CHACHA_KEY_SIZE)
|
2015-06-01 19:43:56 +08:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ctx->key); i++)
|
2017-11-23 03:51:36 +08:00
|
|
|
ctx->key[i] = get_unaligned_le32(key + i * sizeof(u32));
|
2015-06-01 19:43:56 +08:00
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
ctx->nrounds = nrounds;
|
2015-06-01 19:43:56 +08:00
|
|
|
return 0;
|
|
|
|
}
|
2018-11-17 09:26:21 +08:00
|
|
|
|
|
|
|
int crypto_chacha20_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
|
|
unsigned int keysize)
|
|
|
|
{
|
|
|
|
return chacha_setkey(tfm, key, keysize, 20);
|
|
|
|
}
|
2015-07-17 01:14:00 +08:00
|
|
|
EXPORT_SYMBOL_GPL(crypto_chacha20_setkey);
|
2015-06-01 19:43:56 +08:00
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
int crypto_chacha_crypt(struct skcipher_request *req)
|
2015-06-01 19:43:56 +08:00
|
|
|
{
|
2016-12-09 22:33:51 +08:00
|
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
2018-11-17 09:26:21 +08:00
|
|
|
struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm);
|
2015-06-01 19:43:56 +08:00
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
return chacha_stream_xor(req, ctx, req->iv);
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
}
|
2018-11-17 09:26:21 +08:00
|
|
|
EXPORT_SYMBOL_GPL(crypto_chacha_crypt);
|
2015-06-01 19:43:56 +08:00
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
int crypto_xchacha_crypt(struct skcipher_request *req)
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
{
|
|
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
2018-11-17 09:26:21 +08:00
|
|
|
struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
struct chacha_ctx subctx;
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
u32 state[16];
|
|
|
|
u8 real_iv[16];
|
2017-08-14 21:28:14 +08:00
|
|
|
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
/* Compute the subkey given the original key and first 128 nonce bits */
|
2018-11-17 09:26:21 +08:00
|
|
|
crypto_chacha_init(state, ctx, req->iv);
|
|
|
|
hchacha_block(state, subctx.key, ctx->nrounds);
|
|
|
|
subctx.nrounds = ctx->nrounds;
|
2017-08-14 21:28:14 +08:00
|
|
|
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
/* Build the real IV */
|
|
|
|
memcpy(&real_iv[0], req->iv + 24, 8); /* stream position */
|
|
|
|
memcpy(&real_iv[8], req->iv + 16, 8); /* remaining 64 nonce bits */
|
2015-06-01 19:43:56 +08:00
|
|
|
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
/* Generate the stream and XOR it with the data */
|
2018-11-17 09:26:21 +08:00
|
|
|
return chacha_stream_xor(req, &subctx, real_iv);
|
2015-06-01 19:43:56 +08:00
|
|
|
}
|
2018-11-17 09:26:21 +08:00
|
|
|
EXPORT_SYMBOL_GPL(crypto_xchacha_crypt);
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
|
|
|
|
static struct skcipher_alg algs[] = {
|
|
|
|
{
|
|
|
|
.base.cra_name = "chacha20",
|
|
|
|
.base.cra_driver_name = "chacha20-generic",
|
|
|
|
.base.cra_priority = 100,
|
|
|
|
.base.cra_blocksize = 1,
|
2018-11-17 09:26:21 +08:00
|
|
|
.base.cra_ctxsize = sizeof(struct chacha_ctx),
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
.min_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.max_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.ivsize = CHACHA_IV_SIZE,
|
|
|
|
.chunksize = CHACHA_BLOCK_SIZE,
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
.setkey = crypto_chacha20_setkey,
|
2018-11-17 09:26:21 +08:00
|
|
|
.encrypt = crypto_chacha_crypt,
|
|
|
|
.decrypt = crypto_chacha_crypt,
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
}, {
|
|
|
|
.base.cra_name = "xchacha20",
|
|
|
|
.base.cra_driver_name = "xchacha20-generic",
|
|
|
|
.base.cra_priority = 100,
|
|
|
|
.base.cra_blocksize = 1,
|
2018-11-17 09:26:21 +08:00
|
|
|
.base.cra_ctxsize = sizeof(struct chacha_ctx),
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
.min_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.max_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.ivsize = XCHACHA_IV_SIZE,
|
|
|
|
.chunksize = CHACHA_BLOCK_SIZE,
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
.setkey = crypto_chacha20_setkey,
|
2018-11-17 09:26:21 +08:00
|
|
|
.encrypt = crypto_xchacha_crypt,
|
|
|
|
.decrypt = crypto_xchacha_crypt,
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
}
|
2015-06-01 19:43:56 +08:00
|
|
|
};
|
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
static int __init chacha_generic_mod_init(void)
|
2015-06-01 19:43:56 +08:00
|
|
|
{
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
return crypto_register_skciphers(algs, ARRAY_SIZE(algs));
|
2015-06-01 19:43:56 +08:00
|
|
|
}
|
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
static void __exit chacha_generic_mod_fini(void)
|
2015-06-01 19:43:56 +08:00
|
|
|
{
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
crypto_unregister_skciphers(algs, ARRAY_SIZE(algs));
|
2015-06-01 19:43:56 +08:00
|
|
|
}
|
|
|
|
|
2018-11-17 09:26:21 +08:00
|
|
|
module_init(chacha_generic_mod_init);
|
|
|
|
module_exit(chacha_generic_mod_fini);
|
2015-06-01 19:43:56 +08:00
|
|
|
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_AUTHOR("Martin Willi <martin@strongswan.org>");
|
2018-11-17 09:26:21 +08:00
|
|
|
MODULE_DESCRIPTION("ChaCha and XChaCha stream ciphers (generic)");
|
2015-06-01 19:43:56 +08:00
|
|
|
MODULE_ALIAS_CRYPTO("chacha20");
|
|
|
|
MODULE_ALIAS_CRYPTO("chacha20-generic");
|
crypto: chacha20-generic - add XChaCha20 support
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-17 09:26:20 +08:00
|
|
|
MODULE_ALIAS_CRYPTO("xchacha20");
|
|
|
|
MODULE_ALIAS_CRYPTO("xchacha20-generic");
|