OpenCloudOS-Kernel/sound/pci/asihpi/asihpi.c

2993 lines
80 KiB
C
Raw Normal View History

/*
* Asihpi soundcard
* Copyright (c) by AudioScience Inc <alsa@audioscience.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* The following is not a condition of use, merely a request:
* If you modify this program, particularly if you fix errors, AudioScience Inc
* would appreciate it if you grant us the right to use those modifications
* for any purpose including commercial applications.
*/
#include "hpi_internal.h"
#include "hpi_version.h"
#include "hpimsginit.h"
#include "hpioctl.h"
#include "hpicmn.h"
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/wait.h>
#include <linux/module.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/info.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <sound/hwdep.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("AudioScience inc. <support@audioscience.com>");
MODULE_DESCRIPTION("AudioScience ALSA ASI5000 ASI6000 ASI87xx ASI89xx "
HPI_VER_STRING);
#if defined CONFIG_SND_DEBUG_VERBOSE
/**
* snd_printddd - very verbose debug printk
* @format: format string
*
* Works like snd_printk() for debugging purposes.
* Ignored when CONFIG_SND_DEBUG_VERBOSE is not set.
* Must set snd module debug parameter to 3 to enable at runtime.
*/
#define snd_printddd(format, args...) \
__snd_printk(3, __FILE__, __LINE__, format, ##args)
#else
#define snd_printddd(format, args...) do { } while (0)
#endif
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
static bool enable_hpi_hwdep = 1;
module_param_array(index, int, NULL, S_IRUGO);
MODULE_PARM_DESC(index, "ALSA index value for AudioScience soundcard.");
module_param_array(id, charp, NULL, S_IRUGO);
MODULE_PARM_DESC(id, "ALSA ID string for AudioScience soundcard.");
module_param_array(enable, bool, NULL, S_IRUGO);
MODULE_PARM_DESC(enable, "ALSA enable AudioScience soundcard.");
module_param(enable_hpi_hwdep, bool, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(enable_hpi_hwdep,
"ALSA enable HPI hwdep for AudioScience soundcard ");
/* identify driver */
#ifdef KERNEL_ALSA_BUILD
static char *build_info = "Built using headers from kernel source";
module_param(build_info, charp, S_IRUGO);
MODULE_PARM_DESC(build_info, "built using headers from kernel source");
#else
static char *build_info = "Built within ALSA source";
module_param(build_info, charp, S_IRUGO);
MODULE_PARM_DESC(build_info, "built within ALSA source");
#endif
/* set to 1 to dump every control from adapter to log */
static const int mixer_dump;
#define DEFAULT_SAMPLERATE 44100
static int adapter_fs = DEFAULT_SAMPLERATE;
/* defaults */
#define PERIODS_MIN 2
#define PERIOD_BYTES_MIN 2048
#define BUFFER_BYTES_MAX (512 * 1024)
#define MAX_CLOCKSOURCES (HPI_SAMPLECLOCK_SOURCE_LAST + 1 + 7)
struct clk_source {
int source;
int index;
char *name;
};
struct clk_cache {
int count;
int has_local;
struct clk_source s[MAX_CLOCKSOURCES];
};
/* Per card data */
struct snd_card_asihpi {
struct snd_card *card;
struct pci_dev *pci;
struct hpi_adapter *hpi;
u32 h_mixer;
struct clk_cache cc;
u16 can_dma;
u16 support_grouping;
u16 support_mrx;
u16 update_interval_frames;
u16 in_max_chans;
u16 out_max_chans;
u16 in_min_chans;
u16 out_min_chans;
};
/* Per stream data */
struct snd_card_asihpi_pcm {
struct timer_list timer;
unsigned int respawn_timer;
unsigned int hpi_buffer_attached;
unsigned int buffer_bytes;
unsigned int period_bytes;
unsigned int bytes_per_sec;
unsigned int pcm_buf_host_rw_ofs; /* Host R/W pos */
unsigned int pcm_buf_dma_ofs; /* DMA R/W offset in buffer */
unsigned int pcm_buf_elapsed_dma_ofs; /* DMA R/W offset in buffer */
unsigned int drained_count;
struct snd_pcm_substream *substream;
u32 h_stream;
struct hpi_format format;
};
/* universal stream verbs work with out or in stream handles */
/* Functions to allow driver to give a buffer to HPI for busmastering */
static u16 hpi_stream_host_buffer_attach(
u32 h_stream, /* handle to outstream. */
u32 size_in_bytes, /* size in bytes of bus mastering buffer */
u32 pci_address
)
{
struct hpi_message hm;
struct hpi_response hr;
unsigned int obj = hpi_handle_object(h_stream);
if (!h_stream)
return HPI_ERROR_INVALID_OBJ;
hpi_init_message_response(&hm, &hr, obj,
obj == HPI_OBJ_OSTREAM ?
HPI_OSTREAM_HOSTBUFFER_ALLOC :
HPI_ISTREAM_HOSTBUFFER_ALLOC);
hpi_handle_to_indexes(h_stream, &hm.adapter_index,
&hm.obj_index);
hm.u.d.u.buffer.buffer_size = size_in_bytes;
hm.u.d.u.buffer.pci_address = pci_address;
hm.u.d.u.buffer.command = HPI_BUFFER_CMD_INTERNAL_GRANTADAPTER;
hpi_send_recv(&hm, &hr);
return hr.error;
}
static u16 hpi_stream_host_buffer_detach(u32 h_stream)
{
struct hpi_message hm;
struct hpi_response hr;
unsigned int obj = hpi_handle_object(h_stream);
if (!h_stream)
return HPI_ERROR_INVALID_OBJ;
hpi_init_message_response(&hm, &hr, obj,
obj == HPI_OBJ_OSTREAM ?
HPI_OSTREAM_HOSTBUFFER_FREE :
HPI_ISTREAM_HOSTBUFFER_FREE);
hpi_handle_to_indexes(h_stream, &hm.adapter_index,
&hm.obj_index);
hm.u.d.u.buffer.command = HPI_BUFFER_CMD_INTERNAL_REVOKEADAPTER;
hpi_send_recv(&hm, &hr);
return hr.error;
}
static inline u16 hpi_stream_start(u32 h_stream)
{
if (hpi_handle_object(h_stream) == HPI_OBJ_OSTREAM)
return hpi_outstream_start(h_stream);
else
return hpi_instream_start(h_stream);
}
static inline u16 hpi_stream_stop(u32 h_stream)
{
if (hpi_handle_object(h_stream) == HPI_OBJ_OSTREAM)
return hpi_outstream_stop(h_stream);
else
return hpi_instream_stop(h_stream);
}
static inline u16 hpi_stream_get_info_ex(
u32 h_stream,
u16 *pw_state,
u32 *pbuffer_size,
u32 *pdata_in_buffer,
u32 *psample_count,
u32 *pauxiliary_data
)
{
u16 e;
if (hpi_handle_object(h_stream) == HPI_OBJ_OSTREAM)
e = hpi_outstream_get_info_ex(h_stream, pw_state,
pbuffer_size, pdata_in_buffer,
psample_count, pauxiliary_data);
else
e = hpi_instream_get_info_ex(h_stream, pw_state,
pbuffer_size, pdata_in_buffer,
psample_count, pauxiliary_data);
return e;
}
static inline u16 hpi_stream_group_add(
u32 h_master,
u32 h_stream)
{
if (hpi_handle_object(h_master) == HPI_OBJ_OSTREAM)
return hpi_outstream_group_add(h_master, h_stream);
else
return hpi_instream_group_add(h_master, h_stream);
}
static inline u16 hpi_stream_group_reset(u32 h_stream)
{
if (hpi_handle_object(h_stream) == HPI_OBJ_OSTREAM)
return hpi_outstream_group_reset(h_stream);
else
return hpi_instream_group_reset(h_stream);
}
static inline u16 hpi_stream_group_get_map(
u32 h_stream, u32 *mo, u32 *mi)
{
if (hpi_handle_object(h_stream) == HPI_OBJ_OSTREAM)
return hpi_outstream_group_get_map(h_stream, mo, mi);
else
return hpi_instream_group_get_map(h_stream, mo, mi);
}
static u16 handle_error(u16 err, int line, char *filename)
{
if (err)
printk(KERN_WARNING
"in file %s, line %d: HPI error %d\n",
filename, line, err);
return err;
}
#define hpi_handle_error(x) handle_error(x, __LINE__, __FILE__)
/***************************** GENERAL PCM ****************/
static void print_hwparams(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *p)
{
char name[16];
snd_pcm_debug_name(substream, name, sizeof(name));
snd_printd("%s HWPARAMS\n", name);
snd_printd(" samplerate %d Hz\n", params_rate(p));
snd_printd(" channels %d\n", params_channels(p));
snd_printd(" format %d\n", params_format(p));
snd_printd(" subformat %d\n", params_subformat(p));
snd_printd(" buffer %d B\n", params_buffer_bytes(p));
snd_printd(" period %d B\n", params_period_bytes(p));
snd_printd(" access %d\n", params_access(p));
snd_printd(" period_size %d\n", params_period_size(p));
snd_printd(" periods %d\n", params_periods(p));
snd_printd(" buffer_size %d\n", params_buffer_size(p));
snd_printd(" %d B/s\n", params_rate(p) *
params_channels(p) *
snd_pcm_format_width(params_format(p)) / 8);
}
static snd_pcm_format_t hpi_to_alsa_formats[] = {
-1, /* INVALID */
SNDRV_PCM_FORMAT_U8, /* HPI_FORMAT_PCM8_UNSIGNED 1 */
SNDRV_PCM_FORMAT_S16, /* HPI_FORMAT_PCM16_SIGNED 2 */
-1, /* HPI_FORMAT_MPEG_L1 3 */
SNDRV_PCM_FORMAT_MPEG, /* HPI_FORMAT_MPEG_L2 4 */
SNDRV_PCM_FORMAT_MPEG, /* HPI_FORMAT_MPEG_L3 5 */
-1, /* HPI_FORMAT_DOLBY_AC2 6 */
-1, /* HPI_FORMAT_DOLBY_AC3 7 */
SNDRV_PCM_FORMAT_S16_BE,/* HPI_FORMAT_PCM16_BIGENDIAN 8 */
-1, /* HPI_FORMAT_AA_TAGIT1_HITS 9 */
-1, /* HPI_FORMAT_AA_TAGIT1_INSERTS 10 */
SNDRV_PCM_FORMAT_S32, /* HPI_FORMAT_PCM32_SIGNED 11 */
-1, /* HPI_FORMAT_RAW_BITSTREAM 12 */
-1, /* HPI_FORMAT_AA_TAGIT1_HITS_EX1 13 */
SNDRV_PCM_FORMAT_FLOAT, /* HPI_FORMAT_PCM32_FLOAT 14 */
#if 1
/* ALSA can't handle 3 byte sample size together with power-of-2
* constraint on buffer_bytes, so disable this format
*/
-1
#else
/* SNDRV_PCM_FORMAT_S24_3LE */ /* HPI_FORMAT_PCM24_SIGNED 15 */
#endif
};
static int snd_card_asihpi_format_alsa2hpi(snd_pcm_format_t alsa_format,
u16 *hpi_format)
{
u16 format;
for (format = HPI_FORMAT_PCM8_UNSIGNED;
format <= HPI_FORMAT_PCM24_SIGNED; format++) {
if (hpi_to_alsa_formats[format] == alsa_format) {
*hpi_format = format;
return 0;
}
}
snd_printd(KERN_WARNING "failed match for alsa format %d\n",
alsa_format);
*hpi_format = 0;
return -EINVAL;
}
static void snd_card_asihpi_pcm_samplerates(struct snd_card_asihpi *asihpi,
struct snd_pcm_hardware *pcmhw)
{
u16 err;
u32 h_control;
u32 sample_rate;
int idx;
unsigned int rate_min = 200000;
unsigned int rate_max = 0;
unsigned int rates = 0;
if (asihpi->support_mrx) {
rates |= SNDRV_PCM_RATE_CONTINUOUS;
rates |= SNDRV_PCM_RATE_8000_96000;
rate_min = 8000;
rate_max = 100000;
} else {
/* on cards without SRC,
valid rates are determined by sampleclock */
err = hpi_mixer_get_control(asihpi->h_mixer,
HPI_SOURCENODE_CLOCK_SOURCE, 0, 0, 0,
HPI_CONTROL_SAMPLECLOCK, &h_control);
if (err) {
snd_printk(KERN_ERR
"No local sampleclock, err %d\n", err);
}
for (idx = -1; idx < 100; idx++) {
if (idx == -1) {
if (hpi_sample_clock_get_sample_rate(h_control,
&sample_rate))
continue;
} else if (hpi_sample_clock_query_local_rate(h_control,
idx, &sample_rate)) {
break;
}
rate_min = min(rate_min, sample_rate);
rate_max = max(rate_max, sample_rate);
switch (sample_rate) {
case 5512:
rates |= SNDRV_PCM_RATE_5512;
break;
case 8000:
rates |= SNDRV_PCM_RATE_8000;
break;
case 11025:
rates |= SNDRV_PCM_RATE_11025;
break;
case 16000:
rates |= SNDRV_PCM_RATE_16000;
break;
case 22050:
rates |= SNDRV_PCM_RATE_22050;
break;
case 32000:
rates |= SNDRV_PCM_RATE_32000;
break;
case 44100:
rates |= SNDRV_PCM_RATE_44100;
break;
case 48000:
rates |= SNDRV_PCM_RATE_48000;
break;
case 64000:
rates |= SNDRV_PCM_RATE_64000;
break;
case 88200:
rates |= SNDRV_PCM_RATE_88200;
break;
case 96000:
rates |= SNDRV_PCM_RATE_96000;
break;
case 176400:
rates |= SNDRV_PCM_RATE_176400;
break;
case 192000:
rates |= SNDRV_PCM_RATE_192000;
break;
default: /* some other rate */
rates |= SNDRV_PCM_RATE_KNOT;
}
}
}
pcmhw->rates = rates;
pcmhw->rate_min = rate_min;
pcmhw->rate_max = rate_max;
}
static int snd_card_asihpi_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_card_asihpi_pcm *dpcm = runtime->private_data;
struct snd_card_asihpi *card = snd_pcm_substream_chip(substream);
int err;
u16 format;
int width;
unsigned int bytes_per_sec;
print_hwparams(substream, params);
err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
if (err < 0)
return err;
err = snd_card_asihpi_format_alsa2hpi(params_format(params), &format);
if (err)
return err;
hpi_handle_error(hpi_format_create(&dpcm->format,
params_channels(params),
format, params_rate(params), 0, 0));
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
if (hpi_instream_reset(dpcm->h_stream) != 0)
return -EINVAL;
if (hpi_instream_set_format(
dpcm->h_stream, &dpcm->format) != 0)
return -EINVAL;
}
dpcm->hpi_buffer_attached = 0;
if (card->can_dma) {
err = hpi_stream_host_buffer_attach(dpcm->h_stream,
params_buffer_bytes(params), runtime->dma_addr);
if (err == 0) {
snd_printdd(
"stream_host_buffer_attach succeeded %u %lu\n",
params_buffer_bytes(params),
(unsigned long)runtime->dma_addr);
} else {
snd_printd("stream_host_buffer_attach error %d\n",
err);
return -ENOMEM;
}
err = hpi_stream_get_info_ex(dpcm->h_stream, NULL,
&dpcm->hpi_buffer_attached,
NULL, NULL, NULL);
snd_printdd("stream_host_buffer_attach status 0x%x\n",
dpcm->hpi_buffer_attached);
}
bytes_per_sec = params_rate(params) * params_channels(params);
width = snd_pcm_format_width(params_format(params));
bytes_per_sec *= width;
bytes_per_sec /= 8;
if (width < 0 || bytes_per_sec == 0)
return -EINVAL;
dpcm->bytes_per_sec = bytes_per_sec;
dpcm->buffer_bytes = params_buffer_bytes(params);
dpcm->period_bytes = params_period_bytes(params);
return 0;
}
static int
snd_card_asihpi_hw_free(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_card_asihpi_pcm *dpcm = runtime->private_data;
if (dpcm->hpi_buffer_attached)
hpi_stream_host_buffer_detach(dpcm->h_stream);
snd_pcm_lib_free_pages(substream);
return 0;
}
static void snd_card_asihpi_runtime_free(struct snd_pcm_runtime *runtime)
{
struct snd_card_asihpi_pcm *dpcm = runtime->private_data;
kfree(dpcm);
}
static void snd_card_asihpi_pcm_timer_start(struct snd_pcm_substream *
substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_card_asihpi_pcm *dpcm = runtime->private_data;
int expiry;
expiry = HZ / 200;
/*? (dpcm->period_bytes * HZ / dpcm->bytes_per_sec); */
expiry = max(expiry, 1); /* don't let it be zero! */
dpcm->timer.expires = jiffies + expiry;
dpcm->respawn_timer = 1;
add_timer(&dpcm->timer);
}
static void snd_card_asihpi_pcm_timer_stop(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_card_asihpi_pcm *dpcm = runtime->private_data;
dpcm->respawn_timer = 0;
del_timer(&dpcm->timer);
}
static int snd_card_asihpi_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_card_asihpi_pcm *dpcm = substream->runtime->private_data;
struct snd_card_asihpi *card = snd_pcm_substream_chip(substream);
struct snd_pcm_substream *s;
u16 e;
char name[16];
snd_pcm_debug_name(substream, name, sizeof(name));
snd_printdd("%s trigger\n", name);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
snd_pcm_group_for_each_entry(s, substream) {
struct snd_pcm_runtime *runtime = s->runtime;
struct snd_card_asihpi_pcm *ds = runtime->private_data;
if (snd_pcm_substream_chip(s) != card)
continue;
/* don't link Cap and Play */
if (substream->stream != s->stream)
continue;
ds->drained_count = 0;
if (s->stream == SNDRV_PCM_STREAM_PLAYBACK) {
/* How do I know how much valid data is present
* in buffer? Must be at least one period!
* Guessing 2 periods, but if
* buffer is bigger it may contain even more
* data??
*/
unsigned int preload = ds->period_bytes * 1;
snd_printddd("%d preload x%x\n", s->number, preload);
hpi_handle_error(hpi_outstream_write_buf(
ds->h_stream,
&runtime->dma_area[0],
preload,
&ds->format));
ds->pcm_buf_host_rw_ofs = preload;
}
if (card->support_grouping) {
snd_printdd("%d group\n", s->number);
e = hpi_stream_group_add(
dpcm->h_stream,
ds->h_stream);
if (!e) {
snd_pcm_trigger_done(s, substream);
} else {
hpi_handle_error(e);
break;
}
} else
break;
}
snd_printdd("start\n");
/* start the master stream */
snd_card_asihpi_pcm_timer_start(substream);
if ((substream->stream == SNDRV_PCM_STREAM_CAPTURE) ||
!card->can_dma)
hpi_handle_error(hpi_stream_start(dpcm->h_stream));
break;
case SNDRV_PCM_TRIGGER_STOP:
snd_card_asihpi_pcm_timer_stop(substream);
snd_pcm_group_for_each_entry(s, substream) {
if (snd_pcm_substream_chip(s) != card)
continue;
/* don't link Cap and Play */
if (substream->stream != s->stream)
continue;
/*? workaround linked streams don't
transition to SETUP 20070706*/
s->runtime->status->state = SNDRV_PCM_STATE_SETUP;
if (card->support_grouping) {
snd_printdd("%d group\n", s->number);
snd_pcm_trigger_done(s, substream);
} else
break;
}
snd_printdd("stop\n");
/* _prepare and _hwparams reset the stream */
hpi_handle_error(hpi_stream_stop(dpcm->h_stream));
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
hpi_handle_error(
hpi_outstream_reset(dpcm->h_stream));
if (card->support_grouping)
hpi_handle_error(hpi_stream_group_reset(dpcm->h_stream));
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
snd_printdd("pause release\n");
hpi_handle_error(hpi_stream_start(dpcm->h_stream));
snd_card_asihpi_pcm_timer_start(substream);
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
snd_printdd("pause\n");
snd_card_asihpi_pcm_timer_stop(substream);
hpi_handle_error(hpi_stream_stop(dpcm->h_stream));
break;
default:
snd_printd(KERN_ERR "\tINVALID\n");
return -EINVAL;
}
return 0;
}
/*algorithm outline
Without linking degenerates to getting single stream pos etc
Without mmap 2nd loop degenerates to snd_pcm_period_elapsed
*/
/*
pcm_buf_dma_ofs=get_buf_pos(s);
for_each_linked_stream(s) {
pcm_buf_dma_ofs=get_buf_pos(s);
min_buf_pos = modulo_min(min_buf_pos, pcm_buf_dma_ofs, buffer_bytes)
new_data = min(new_data, calc_new_data(pcm_buf_dma_ofs,irq_pos)
}
timer.expires = jiffies + predict_next_period_ready(min_buf_pos);
for_each_linked_stream(s) {
s->pcm_buf_dma_ofs = min_buf_pos;
if (new_data > period_bytes) {
if (mmap) {
irq_pos = (irq_pos + period_bytes) % buffer_bytes;
if (playback) {
write(period_bytes);
} else {
read(period_bytes);
}
}
snd_pcm_period_elapsed(s);
}
}
*/
/** Minimum of 2 modulo values. Works correctly when the difference between
* the values is less than half the modulus
*/
static inline unsigned int modulo_min(unsigned int a, unsigned int b,
unsigned long int modulus)
{
unsigned int result;
if (((a-b) % modulus) < (modulus/2))
result = b;
else
result = a;
return result;
}
/** Timer function, equivalent to interrupt service routine for cards
*/
static void snd_card_asihpi_timer_function(unsigned long data)
{
struct snd_card_asihpi_pcm *dpcm = (struct snd_card_asihpi_pcm *)data;
struct snd_pcm_substream *substream = dpcm->substream;
struct snd_card_asihpi *card = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime;
struct snd_pcm_substream *s;
unsigned int newdata = 0;
unsigned int pcm_buf_dma_ofs, min_buf_pos = 0;
unsigned int remdata, xfercount, next_jiffies;
int first = 1;
int loops = 0;
u16 state;
u32 buffer_size, bytes_avail, samples_played, on_card_bytes;
char name[16];
snd_pcm_debug_name(substream, name, sizeof(name));
snd_printdd("%s snd_card_asihpi_timer_function\n", name);
/* find minimum newdata and buffer pos in group */
snd_pcm_group_for_each_entry(s, substream) {
struct snd_card_asihpi_pcm *ds = s->runtime->private_data;
runtime = s->runtime;
if (snd_pcm_substream_chip(s) != card)
continue;
/* don't link Cap and Play */
if (substream->stream != s->stream)
continue;
hpi_handle_error(hpi_stream_get_info_ex(
ds->h_stream, &state,
&buffer_size, &bytes_avail,
&samples_played, &on_card_bytes));
/* number of bytes in on-card buffer */
runtime->delay = on_card_bytes;
if (!card->can_dma)
on_card_bytes = bytes_avail;
if (s->stream == SNDRV_PCM_STREAM_PLAYBACK) {
pcm_buf_dma_ofs = ds->pcm_buf_host_rw_ofs - bytes_avail;
if (state == HPI_STATE_STOPPED) {
if (bytes_avail == 0) {
hpi_handle_error(hpi_stream_start(ds->h_stream));
snd_printdd("P%d start\n", s->number);
ds->drained_count = 0;
}
} else if (state == HPI_STATE_DRAINED) {
snd_printd(KERN_WARNING "P%d drained\n",
s->number);
ds->drained_count++;
if (ds->drained_count > 20) {
snd_pcm_stop(s, SNDRV_PCM_STATE_XRUN);
continue;
}
} else {
ds->drained_count = 0;
}
} else
pcm_buf_dma_ofs = bytes_avail + ds->pcm_buf_host_rw_ofs;
if (first) {
/* can't statically init min when wrap is involved */
min_buf_pos = pcm_buf_dma_ofs;
newdata = (pcm_buf_dma_ofs - ds->pcm_buf_elapsed_dma_ofs) % ds->buffer_bytes;
first = 0;
} else {
min_buf_pos =
modulo_min(min_buf_pos, pcm_buf_dma_ofs, UINT_MAX+1L);
newdata = min(
(pcm_buf_dma_ofs - ds->pcm_buf_elapsed_dma_ofs) % ds->buffer_bytes,
newdata);
}
snd_printdd("hw_ptr 0x%04lX, appl_ptr 0x%04lX\n",
(unsigned long)frames_to_bytes(runtime,
runtime->status->hw_ptr),
(unsigned long)frames_to_bytes(runtime,
runtime->control->appl_ptr));
snd_printdd("%d S=%d, "
"rw=0x%04X, dma=0x%04X, left=0x%04X, "
"aux=0x%04X space=0x%04X\n",
s->number, state,
ds->pcm_buf_host_rw_ofs, pcm_buf_dma_ofs,
(int)bytes_avail,
(int)on_card_bytes, buffer_size-bytes_avail);
loops++;
}
pcm_buf_dma_ofs = min_buf_pos;
remdata = newdata % dpcm->period_bytes;
xfercount = newdata - remdata; /* a multiple of period_bytes */
/* come back when on_card_bytes has decreased enough to allow
write to happen, or when data has been consumed to make another
period
*/
if (xfercount && (on_card_bytes > dpcm->period_bytes))
next_jiffies = ((on_card_bytes - dpcm->period_bytes) * HZ / dpcm->bytes_per_sec);
else
next_jiffies = ((dpcm->period_bytes - remdata) * HZ / dpcm->bytes_per_sec);
next_jiffies = max(next_jiffies, 1U);
dpcm->timer.expires = jiffies + next_jiffies;
snd_printdd("jif %d buf pos 0x%04X newdata 0x%04X xfer 0x%04X\n",
next_jiffies, pcm_buf_dma_ofs, newdata, xfercount);
snd_pcm_group_for_each_entry(s, substream) {
struct snd_card_asihpi_pcm *ds = s->runtime->private_data;
/* don't link Cap and Play */
if (substream->stream != s->stream)
continue;
ds->pcm_buf_dma_ofs = pcm_buf_dma_ofs;
if (xfercount &&
/* Limit use of on card fifo for playback */
((on_card_bytes <= ds->period_bytes) ||
(s->stream == SNDRV_PCM_STREAM_CAPTURE)))
{
unsigned int buf_ofs = ds->pcm_buf_host_rw_ofs % ds->buffer_bytes;
unsigned int xfer1, xfer2;
char *pd = &s->runtime->dma_area[buf_ofs];
if (card->can_dma) { /* buffer wrap is handled at lower level */
xfer1 = xfercount;
xfer2 = 0;
} else {
xfer1 = min(xfercount, ds->buffer_bytes - buf_ofs);
xfer2 = xfercount - xfer1;
}
if (s->stream == SNDRV_PCM_STREAM_PLAYBACK) {
snd_printddd("P%d write1 0x%04X 0x%04X\n",
s->number, xfer1, buf_ofs);
hpi_handle_error(
hpi_outstream_write_buf(
ds->h_stream, pd, xfer1,
&ds->format));
if (xfer2) {
pd = s->runtime->dma_area;
snd_printddd("P%d write2 0x%04X 0x%04X\n",
s->number,
xfercount - xfer1, buf_ofs);
hpi_handle_error(
hpi_outstream_write_buf(
ds->h_stream, pd,
xfercount - xfer1,
&ds->format));
}
} else {
snd_printddd("C%d read1 0x%04x\n",
s->number, xfer1);
hpi_handle_error(
hpi_instream_read_buf(
ds->h_stream,
pd, xfer1));
if (xfer2) {
pd = s->runtime->dma_area;
snd_printddd("C%d read2 0x%04x\n",
s->number, xfer2);
hpi_handle_error(
hpi_instream_read_buf(
ds->h_stream,
pd, xfer2));
}
}
ds->pcm_buf_host_rw_ofs += xfercount;
ds->pcm_buf_elapsed_dma_ofs += xfercount;
snd_pcm_period_elapsed(s);
}
}
if (dpcm->respawn_timer)
add_timer(&dpcm->timer);
}
/***************************** PLAYBACK OPS ****************/
static int snd_card_asihpi_playback_ioctl(struct snd_pcm_substream *substream,
unsigned int cmd, void *arg)
{
char name[16];
snd_pcm_debug_name(substream, name, sizeof(name));
snd_printddd(KERN_INFO "%s ioctl %d\n", name, cmd);
return snd_pcm_lib_ioctl(substream, cmd, arg);
}
static int snd_card_asihpi_playback_prepare(struct snd_pcm_substream *
substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_card_asihpi_pcm *dpcm = runtime->private_data;
snd_printdd("P%d prepare\n", substream->number);
hpi_handle_error(hpi_outstream_reset(dpcm->h_stream));
dpcm->pcm_buf_host_rw_ofs = 0;
dpcm->pcm_buf_dma_ofs = 0;
dpcm->pcm_buf_elapsed_dma_ofs = 0;
return 0;
}
static snd_pcm_uframes_t
snd_card_asihpi_playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_card_asihpi_pcm *dpcm = runtime->private_data;
snd_pcm_uframes_t ptr;
char name[16];
snd_pcm_debug_name(substream, name, sizeof(name));
ptr = bytes_to_frames(runtime, dpcm->pcm_buf_dma_ofs % dpcm->buffer_bytes);
snd_printddd("%s pointer = 0x%04lx\n", name, (unsigned long)ptr);
return ptr;
}
static u64 snd_card_asihpi_playback_formats(struct snd_card_asihpi *asihpi,
u32 h_stream)
{
struct hpi_format hpi_format;
u16 format;
u16 err;
u32 h_control;
u32 sample_rate = 48000;
u64 formats = 0;
/* on cards without SRC, must query at valid rate,
* maybe set by external sync
*/
err = hpi_mixer_get_control(asihpi->h_mixer,
HPI_SOURCENODE_CLOCK_SOURCE, 0, 0, 0,
HPI_CONTROL_SAMPLECLOCK, &h_control);
if (!err)
err = hpi_sample_clock_get_sample_rate(h_control,
&sample_rate);
for (format = HPI_FORMAT_PCM8_UNSIGNED;
format <= HPI_FORMAT_PCM24_SIGNED; format++) {
err = hpi_format_create(&hpi_format, asihpi->out_max_chans,
format, sample_rate, 128000, 0);
if (!err)
err = hpi_outstream_query_format(h_stream, &hpi_format);
if (!err && (hpi_to_alsa_formats[format] != -1))
formats |= pcm_format_to_bits(hpi_to_alsa_formats[format]);
}
return formats;
}
static int snd_card_asihpi_playback_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_card_asihpi_pcm *dpcm;
struct snd_card_asihpi *card = snd_pcm_substream_chip(substream);
struct snd_pcm_hardware snd_card_asihpi_playback;
int err;
dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL);
if (dpcm == NULL)
return -ENOMEM;
err = hpi_outstream_open(card->hpi->adapter->index,
substream->number, &dpcm->h_stream);
hpi_handle_error(err);
if (err)
kfree(dpcm);
if (err == HPI_ERROR_OBJ_ALREADY_OPEN)
return -EBUSY;
if (err)
return -EIO;
/*? also check ASI5000 samplerate source
If external, only support external rate.
If internal and other stream playing, can't switch
*/
init_timer(&dpcm->timer);
dpcm->timer.data = (unsigned long) dpcm;
dpcm->timer.function = snd_card_asihpi_timer_function;
dpcm->substream = substream;
runtime->private_data = dpcm;
runtime->private_free = snd_card_asihpi_runtime_free;
memset(&snd_card_asihpi_playback, 0, sizeof(snd_card_asihpi_playback));
snd_card_asihpi_playback.buffer_bytes_max = BUFFER_BYTES_MAX;
snd_card_asihpi_playback.period_bytes_min = PERIOD_BYTES_MIN;
/*?snd_card_asihpi_playback.period_bytes_min =
card->out_max_chans * 4096; */
snd_card_asihpi_playback.period_bytes_max = BUFFER_BYTES_MAX / PERIODS_MIN;
snd_card_asihpi_playback.periods_min = PERIODS_MIN;
snd_card_asihpi_playback.periods_max = BUFFER_BYTES_MAX / PERIOD_BYTES_MIN;
/* snd_card_asihpi_playback.fifo_size = 0; */
snd_card_asihpi_playback.channels_max = card->out_max_chans;
snd_card_asihpi_playback.channels_min = card->out_min_chans;
snd_card_asihpi_playback.formats =
snd_card_asihpi_playback_formats(card, dpcm->h_stream);
snd_card_asihpi_pcm_samplerates(card, &snd_card_asihpi_playback);
snd_card_asihpi_playback.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_DOUBLE |
SNDRV_PCM_INFO_BATCH |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID;
if (card->support_grouping) {
snd_card_asihpi_playback.info |= SNDRV_PCM_INFO_SYNC_START;
snd_pcm_set_sync(substream);
}
/* struct is copied, so can create initializer dynamically */
runtime->hw = snd_card_asihpi_playback;
if (card->can_dma)
err = snd_pcm_hw_constraint_pow2(runtime, 0,
SNDRV_PCM_HW_PARAM_BUFFER_BYTES);
if (err < 0)
return err;
snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
card->update_interval_frames);
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
card->update_interval_frames * 2, UINT_MAX);
snd_printdd("playback open\n");
return 0;
}
static int snd_card_asihpi_playback_close(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_card_asihpi_pcm *dpcm = runtime->private_data;
hpi_handle_error(hpi_outstream_close(dpcm->h_stream));
snd_printdd("playback close\n");
return 0;
}
static struct snd_pcm_ops snd_card_asihpi_playback_mmap_ops = {
.open = snd_card_asihpi_playback_open,
.close = snd_card_asihpi_playback_close,
.ioctl = snd_card_asihpi_playback_ioctl,
.hw_params = snd_card_asihpi_pcm_hw_params,
.hw_free = snd_card_asihpi_hw_free,
.prepare = snd_card_asihpi_playback_prepare,
.trigger = snd_card_asihpi_trigger,
.pointer = snd_card_asihpi_playback_pointer,
};
/***************************** CAPTURE OPS ****************/
static snd_pcm_uframes_t
snd_card_asihpi_capture_pointer(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_card_asihpi_pcm *dpcm = runtime->private_data;
snd_printddd("capture pointer %d=%d\n",
substream->number, dpcm->pcm_buf_dma_ofs);
/* NOTE Unlike playback can't use actual samples_played
for the capture position, because those samples aren't yet in
the local buffer available for reading.
*/
return bytes_to_frames(runtime, dpcm->pcm_buf_dma_ofs % dpcm->buffer_bytes);
}
static int snd_card_asihpi_capture_ioctl(struct snd_pcm_substream *substream,
unsigned int cmd, void *arg)
{
return snd_pcm_lib_ioctl(substream, cmd, arg);
}
static int snd_card_asihpi_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_card_asihpi_pcm *dpcm = runtime->private_data;
hpi_handle_error(hpi_instream_reset(dpcm->h_stream));
dpcm->pcm_buf_host_rw_ofs = 0;
dpcm->pcm_buf_dma_ofs = 0;
dpcm->pcm_buf_elapsed_dma_ofs = 0;
snd_printdd("Capture Prepare %d\n", substream->number);
return 0;
}
static u64 snd_card_asihpi_capture_formats(struct snd_card_asihpi *asihpi,
u32 h_stream)
{
struct hpi_format hpi_format;
u16 format;
u16 err;
u32 h_control;
u32 sample_rate = 48000;
u64 formats = 0;
/* on cards without SRC, must query at valid rate,
maybe set by external sync */
err = hpi_mixer_get_control(asihpi->h_mixer,
HPI_SOURCENODE_CLOCK_SOURCE, 0, 0, 0,
HPI_CONTROL_SAMPLECLOCK, &h_control);
if (!err)
err = hpi_sample_clock_get_sample_rate(h_control,
&sample_rate);
for (format = HPI_FORMAT_PCM8_UNSIGNED;
format <= HPI_FORMAT_PCM24_SIGNED; format++) {
err = hpi_format_create(&hpi_format, asihpi->in_max_chans,
format, sample_rate, 128000, 0);
if (!err)
err = hpi_instream_query_format(h_stream, &hpi_format);
if (!err && (hpi_to_alsa_formats[format] != -1))
formats |= pcm_format_to_bits(hpi_to_alsa_formats[format]);
}
return formats;
}
static int snd_card_asihpi_capture_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_card_asihpi *card = snd_pcm_substream_chip(substream);
struct snd_card_asihpi_pcm *dpcm;
struct snd_pcm_hardware snd_card_asihpi_capture;
int err;
dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL);
if (dpcm == NULL)
return -ENOMEM;
snd_printdd("capture open adapter %d stream %d\n",
card->hpi->adapter->index, substream->number);
err = hpi_handle_error(
hpi_instream_open(card->hpi->adapter->index,
substream->number, &dpcm->h_stream));
if (err)
kfree(dpcm);
if (err == HPI_ERROR_OBJ_ALREADY_OPEN)
return -EBUSY;
if (err)
return -EIO;
init_timer(&dpcm->timer);
dpcm->timer.data = (unsigned long) dpcm;
dpcm->timer.function = snd_card_asihpi_timer_function;
dpcm->substream = substream;
runtime->private_data = dpcm;
runtime->private_free = snd_card_asihpi_runtime_free;
memset(&snd_card_asihpi_capture, 0, sizeof(snd_card_asihpi_capture));
snd_card_asihpi_capture.buffer_bytes_max = BUFFER_BYTES_MAX;
snd_card_asihpi_capture.period_bytes_min = PERIOD_BYTES_MIN;
snd_card_asihpi_capture.period_bytes_max = BUFFER_BYTES_MAX / PERIODS_MIN;
snd_card_asihpi_capture.periods_min = PERIODS_MIN;
snd_card_asihpi_capture.periods_max = BUFFER_BYTES_MAX / PERIOD_BYTES_MIN;
/* snd_card_asihpi_capture.fifo_size = 0; */
snd_card_asihpi_capture.channels_max = card->in_max_chans;
snd_card_asihpi_capture.channels_min = card->in_min_chans;
snd_card_asihpi_capture.formats =
snd_card_asihpi_capture_formats(card, dpcm->h_stream);
snd_card_asihpi_pcm_samplerates(card, &snd_card_asihpi_capture);
snd_card_asihpi_capture.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID;
if (card->support_grouping)
snd_card_asihpi_capture.info |= SNDRV_PCM_INFO_SYNC_START;
runtime->hw = snd_card_asihpi_capture;
if (card->can_dma)
err = snd_pcm_hw_constraint_pow2(runtime, 0,
SNDRV_PCM_HW_PARAM_BUFFER_BYTES);
if (err < 0)
return err;
snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
card->update_interval_frames);
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
card->update_interval_frames * 2, UINT_MAX);
snd_pcm_set_sync(substream);
return 0;
}
static int snd_card_asihpi_capture_close(struct snd_pcm_substream *substream)
{
struct snd_card_asihpi_pcm *dpcm = substream->runtime->private_data;
hpi_handle_error(hpi_instream_close(dpcm->h_stream));
return 0;
}
static struct snd_pcm_ops snd_card_asihpi_capture_mmap_ops = {
.open = snd_card_asihpi_capture_open,
.close = snd_card_asihpi_capture_close,
.ioctl = snd_card_asihpi_capture_ioctl,
.hw_params = snd_card_asihpi_pcm_hw_params,
.hw_free = snd_card_asihpi_hw_free,
.prepare = snd_card_asihpi_capture_prepare,
.trigger = snd_card_asihpi_trigger,
.pointer = snd_card_asihpi_capture_pointer,
};
static int snd_card_asihpi_pcm_new(struct snd_card_asihpi *asihpi, int device)
{
struct snd_pcm *pcm;
int err;
u16 num_instreams, num_outstreams, x16;
u32 x32;
err = hpi_adapter_get_info(asihpi->hpi->adapter->index,
&num_outstreams, &num_instreams,
&x16, &x32, &x16);
err = snd_pcm_new(asihpi->card, "Asihpi PCM", device,
num_outstreams, num_instreams, &pcm);
if (err < 0)
return err;
/* pointer to ops struct is stored, dont change ops afterwards! */
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_card_asihpi_playback_mmap_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
&snd_card_asihpi_capture_mmap_ops);
pcm->private_data = asihpi;
pcm->info_flags = 0;
strcpy(pcm->name, "Asihpi PCM");
/*? do we want to emulate MMAP for non-BBM cards?
Jack doesn't work with ALSAs MMAP emulation - WHY NOT? */
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(asihpi->pci),
64*1024, BUFFER_BYTES_MAX);
return 0;
}
/***************************** MIXER CONTROLS ****************/
struct hpi_control {
u32 h_control;
u16 control_type;
u16 src_node_type;
u16 src_node_index;
u16 dst_node_type;
u16 dst_node_index;
u16 band;
char name[SNDRV_CTL_ELEM_ID_NAME_MAXLEN]; /* copied to snd_ctl_elem_id.name[44]; */
};
static const char * const asihpi_tuner_band_names[] = {
"invalid",
"AM",
"FM mono",
"TV NTSC-M",
"FM stereo",
"AUX",
"TV PAL BG",
"TV PAL I",
"TV PAL DK",
"TV SECAM",
};
compile_time_assert(
(ARRAY_SIZE(asihpi_tuner_band_names) ==
(HPI_TUNER_BAND_LAST+1)),
assert_tuner_band_names_size);
static const char * const asihpi_src_names[] = {
"no source",
"PCM",
"Line",
"Digital",
"Tuner",
"RF",
"Clock",
"Bitstream",
"Mic",
"Net",
"Analog",
"Adapter",
"RTP",
"Internal"
};
compile_time_assert(
(ARRAY_SIZE(asihpi_src_names) ==
(HPI_SOURCENODE_LAST_INDEX-HPI_SOURCENODE_NONE+1)),
assert_src_names_size);
static const char * const asihpi_dst_names[] = {
"no destination",
"PCM",
"Line",
"Digital",
"RF",
"Speaker",
"Net",
"Analog",
"RTP",
};
compile_time_assert(
(ARRAY_SIZE(asihpi_dst_names) ==
(HPI_DESTNODE_LAST_INDEX-HPI_DESTNODE_NONE+1)),
assert_dst_names_size);
static inline int ctl_add(struct snd_card *card, struct snd_kcontrol_new *ctl,
struct snd_card_asihpi *asihpi)
{
int err;
err = snd_ctl_add(card, snd_ctl_new1(ctl, asihpi));
if (err < 0)
return err;
else if (mixer_dump)
snd_printk(KERN_INFO "added %s(%d)\n", ctl->name, ctl->index);
return 0;
}
/* Convert HPI control name and location into ALSA control name */
static void asihpi_ctl_init(struct snd_kcontrol_new *snd_control,
struct hpi_control *hpi_ctl,
char *name)
{
char *dir;
memset(snd_control, 0, sizeof(*snd_control));
snd_control->name = hpi_ctl->name;
snd_control->private_value = hpi_ctl->h_control;
snd_control->iface = SNDRV_CTL_ELEM_IFACE_MIXER;
snd_control->index = 0;
if (hpi_ctl->src_node_type + HPI_SOURCENODE_NONE == HPI_SOURCENODE_CLOCK_SOURCE)
dir = ""; /* clock is neither capture nor playback */
else if (hpi_ctl->dst_node_type + HPI_DESTNODE_NONE == HPI_DESTNODE_ISTREAM)
dir = "Capture "; /* On or towards a PCM capture destination*/
else if ((hpi_ctl->src_node_type + HPI_SOURCENODE_NONE != HPI_SOURCENODE_OSTREAM) &&
(!hpi_ctl->dst_node_type))
dir = "Capture "; /* On a source node that is not PCM playback */
else if (hpi_ctl->src_node_type &&
(hpi_ctl->src_node_type + HPI_SOURCENODE_NONE != HPI_SOURCENODE_OSTREAM) &&
(hpi_ctl->dst_node_type))
dir = "Monitor Playback "; /* Between an input and an output */
else
dir = "Playback "; /* PCM Playback source, or output node */
if (hpi_ctl->src_node_type && hpi_ctl->dst_node_type)
sprintf(hpi_ctl->name, "%s %d %s %d %s%s",
asihpi_src_names[hpi_ctl->src_node_type],
hpi_ctl->src_node_index,
asihpi_dst_names[hpi_ctl->dst_node_type],
hpi_ctl->dst_node_index,
dir, name);
else if (hpi_ctl->dst_node_type) {
sprintf(hpi_ctl->name, "%s %d %s%s",
asihpi_dst_names[hpi_ctl->dst_node_type],
hpi_ctl->dst_node_index,
dir, name);
} else {
sprintf(hpi_ctl->name, "%s %d %s%s",
asihpi_src_names[hpi_ctl->src_node_type],
hpi_ctl->src_node_index,
dir, name);
}
/* printk(KERN_INFO "Adding %s %d to %d ", hpi_ctl->name,
hpi_ctl->wSrcNodeType, hpi_ctl->wDstNodeType); */
}
/*------------------------------------------------------------
Volume controls
------------------------------------------------------------*/
#define VOL_STEP_mB 1
static int snd_asihpi_volume_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
u32 h_control = kcontrol->private_value;
u32 count;
u16 err;
/* native gains are in millibels */
short min_gain_mB;
short max_gain_mB;
short step_gain_mB;
err = hpi_volume_query_range(h_control,
&min_gain_mB, &max_gain_mB, &step_gain_mB);
if (err) {
max_gain_mB = 0;
min_gain_mB = -10000;
step_gain_mB = VOL_STEP_mB;
}
err = hpi_meter_query_channels(h_control, &count);
if (err)
count = HPI_MAX_CHANNELS;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = count;
uinfo->value.integer.min = min_gain_mB / VOL_STEP_mB;
uinfo->value.integer.max = max_gain_mB / VOL_STEP_mB;
uinfo->value.integer.step = step_gain_mB / VOL_STEP_mB;
return 0;
}
static int snd_asihpi_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 h_control = kcontrol->private_value;
short an_gain_mB[HPI_MAX_CHANNELS];
hpi_handle_error(hpi_volume_get_gain(h_control, an_gain_mB));
ucontrol->value.integer.value[0] = an_gain_mB[0] / VOL_STEP_mB;
ucontrol->value.integer.value[1] = an_gain_mB[1] / VOL_STEP_mB;
return 0;
}
static int snd_asihpi_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int change;
u32 h_control = kcontrol->private_value;
short an_gain_mB[HPI_MAX_CHANNELS];
an_gain_mB[0] =
(ucontrol->value.integer.value[0]) * VOL_STEP_mB;
an_gain_mB[1] =
(ucontrol->value.integer.value[1]) * VOL_STEP_mB;
/* change = asihpi->mixer_volume[addr][0] != left ||
asihpi->mixer_volume[addr][1] != right;
*/
change = 1;
hpi_handle_error(hpi_volume_set_gain(h_control, an_gain_mB));
return change;
}
static const DECLARE_TLV_DB_SCALE(db_scale_100, -10000, VOL_STEP_mB, 0);
#define snd_asihpi_volume_mute_info snd_ctl_boolean_mono_info
static int snd_asihpi_volume_mute_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 h_control = kcontrol->private_value;
u32 mute;
hpi_handle_error(hpi_volume_get_mute(h_control, &mute));
ucontrol->value.integer.value[0] = mute ? 0 : 1;
return 0;
}
static int snd_asihpi_volume_mute_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 h_control = kcontrol->private_value;
int change = 1;
/* HPI currently only supports all or none muting of multichannel volume
ALSA Switch element has opposite sense to HPI mute: on==unmuted, off=muted
*/
int mute = ucontrol->value.integer.value[0] ? 0 : HPI_BITMASK_ALL_CHANNELS;
hpi_handle_error(hpi_volume_set_mute(h_control, mute));
return change;
}
static int snd_asihpi_volume_add(struct snd_card_asihpi *asihpi,
struct hpi_control *hpi_ctl)
{
struct snd_card *card = asihpi->card;
struct snd_kcontrol_new snd_control;
int err;
u32 mute;
asihpi_ctl_init(&snd_control, hpi_ctl, "Volume");
snd_control.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ;
snd_control.info = snd_asihpi_volume_info;
snd_control.get = snd_asihpi_volume_get;
snd_control.put = snd_asihpi_volume_put;
snd_control.tlv.p = db_scale_100;
err = ctl_add(card, &snd_control, asihpi);
if (err)
return err;
if (hpi_volume_get_mute(hpi_ctl->h_control, &mute) == 0) {
asihpi_ctl_init(&snd_control, hpi_ctl, "Switch");
snd_control.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
snd_control.info = snd_asihpi_volume_mute_info;
snd_control.get = snd_asihpi_volume_mute_get;
snd_control.put = snd_asihpi_volume_mute_put;
err = ctl_add(card, &snd_control, asihpi);
}
return err;
}
/*------------------------------------------------------------
Level controls
------------------------------------------------------------*/
static int snd_asihpi_level_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
u32 h_control = kcontrol->private_value;
u16 err;
short min_gain_mB;
short max_gain_mB;
short step_gain_mB;
err =
hpi_level_query_range(h_control, &min_gain_mB,
&max_gain_mB, &step_gain_mB);
if (err) {
max_gain_mB = 2400;
min_gain_mB = -1000;
step_gain_mB = 100;
}
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = min_gain_mB / HPI_UNITS_PER_dB;
uinfo->value.integer.max = max_gain_mB / HPI_UNITS_PER_dB;
uinfo->value.integer.step = step_gain_mB / HPI_UNITS_PER_dB;
return 0;
}
static int snd_asihpi_level_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 h_control = kcontrol->private_value;
short an_gain_mB[HPI_MAX_CHANNELS];
hpi_handle_error(hpi_level_get_gain(h_control, an_gain_mB));
ucontrol->value.integer.value[0] =
an_gain_mB[0] / HPI_UNITS_PER_dB;
ucontrol->value.integer.value[1] =
an_gain_mB[1] / HPI_UNITS_PER_dB;
return 0;
}
static int snd_asihpi_level_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int change;
u32 h_control = kcontrol->private_value;
short an_gain_mB[HPI_MAX_CHANNELS];
an_gain_mB[0] =
(ucontrol->value.integer.value[0]) * HPI_UNITS_PER_dB;
an_gain_mB[1] =
(ucontrol->value.integer.value[1]) * HPI_UNITS_PER_dB;
/* change = asihpi->mixer_level[addr][0] != left ||
asihpi->mixer_level[addr][1] != right;
*/
change = 1;
hpi_handle_error(hpi_level_set_gain(h_control, an_gain_mB));
return change;
}
static const DECLARE_TLV_DB_SCALE(db_scale_level, -1000, 100, 0);
static int snd_asihpi_level_add(struct snd_card_asihpi *asihpi,
struct hpi_control *hpi_ctl)
{
struct snd_card *card = asihpi->card;
struct snd_kcontrol_new snd_control;
/* can't use 'volume' cos some nodes have volume as well */
asihpi_ctl_init(&snd_control, hpi_ctl, "Level");
snd_control.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ;
snd_control.info = snd_asihpi_level_info;
snd_control.get = snd_asihpi_level_get;
snd_control.put = snd_asihpi_level_put;
snd_control.tlv.p = db_scale_level;
return ctl_add(card, &snd_control, asihpi);
}
/*------------------------------------------------------------
AESEBU controls
------------------------------------------------------------*/
/* AESEBU format */
static const char * const asihpi_aesebu_format_names[] = {
"N/A", "S/PDIF", "AES/EBU" };
static int snd_asihpi_aesebu_format_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 3;
if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
uinfo->value.enumerated.item =
uinfo->value.enumerated.items - 1;
strcpy(uinfo->value.enumerated.name,
asihpi_aesebu_format_names[uinfo->value.enumerated.item]);
return 0;
}
static int snd_asihpi_aesebu_format_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol,
u16 (*func)(u32, u16 *))
{
u32 h_control = kcontrol->private_value;
u16 source, err;
err = func(h_control, &source);
/* default to N/A */
ucontrol->value.enumerated.item[0] = 0;
/* return success but set the control to N/A */
if (err)
return 0;
if (source == HPI_AESEBU_FORMAT_SPDIF)
ucontrol->value.enumerated.item[0] = 1;
if (source == HPI_AESEBU_FORMAT_AESEBU)
ucontrol->value.enumerated.item[0] = 2;
return 0;
}
static int snd_asihpi_aesebu_format_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol,
u16 (*func)(u32, u16))
{
u32 h_control = kcontrol->private_value;
/* default to S/PDIF */
u16 source = HPI_AESEBU_FORMAT_SPDIF;
if (ucontrol->value.enumerated.item[0] == 1)
source = HPI_AESEBU_FORMAT_SPDIF;
if (ucontrol->value.enumerated.item[0] == 2)
source = HPI_AESEBU_FORMAT_AESEBU;
if (func(h_control, source) != 0)
return -EINVAL;
return 1;
}
static int snd_asihpi_aesebu_rx_format_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol) {
return snd_asihpi_aesebu_format_get(kcontrol, ucontrol,
hpi_aesebu_receiver_get_format);
}
static int snd_asihpi_aesebu_rx_format_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol) {
return snd_asihpi_aesebu_format_put(kcontrol, ucontrol,
hpi_aesebu_receiver_set_format);
}
static int snd_asihpi_aesebu_rxstatus_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 0X1F;
uinfo->value.integer.step = 1;
return 0;
}
static int snd_asihpi_aesebu_rxstatus_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol) {
u32 h_control = kcontrol->private_value;
u16 status;
hpi_handle_error(hpi_aesebu_receiver_get_error_status(
h_control, &status));
ucontrol->value.integer.value[0] = status;
return 0;
}
static int snd_asihpi_aesebu_rx_add(struct snd_card_asihpi *asihpi,
struct hpi_control *hpi_ctl)
{
struct snd_card *card = asihpi->card;
struct snd_kcontrol_new snd_control;
asihpi_ctl_init(&snd_control, hpi_ctl, "Format");
snd_control.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
snd_control.info = snd_asihpi_aesebu_format_info;
snd_control.get = snd_asihpi_aesebu_rx_format_get;
snd_control.put = snd_asihpi_aesebu_rx_format_put;
if (ctl_add(card, &snd_control, asihpi) < 0)
return -EINVAL;
asihpi_ctl_init(&snd_control, hpi_ctl, "Status");
snd_control.access =
SNDRV_CTL_ELEM_ACCESS_VOLATILE | SNDRV_CTL_ELEM_ACCESS_READ;
snd_control.info = snd_asihpi_aesebu_rxstatus_info;
snd_control.get = snd_asihpi_aesebu_rxstatus_get;
return ctl_add(card, &snd_control, asihpi);
}
static int snd_asihpi_aesebu_tx_format_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol) {
return snd_asihpi_aesebu_format_get(kcontrol, ucontrol,
hpi_aesebu_transmitter_get_format);
}
static int snd_asihpi_aesebu_tx_format_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol) {
return snd_asihpi_aesebu_format_put(kcontrol, ucontrol,
hpi_aesebu_transmitter_set_format);
}
static int snd_asihpi_aesebu_tx_add(struct snd_card_asihpi *asihpi,
struct hpi_control *hpi_ctl)
{
struct snd_card *card = asihpi->card;
struct snd_kcontrol_new snd_control;
asihpi_ctl_init(&snd_control, hpi_ctl, "Format");
snd_control.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
snd_control.info = snd_asihpi_aesebu_format_info;
snd_control.get = snd_asihpi_aesebu_tx_format_get;
snd_control.put = snd_asihpi_aesebu_tx_format_put;
return ctl_add(card, &snd_control, asihpi);
}
/*------------------------------------------------------------
Tuner controls
------------------------------------------------------------*/
/* Gain */
static int snd_asihpi_tuner_gain_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
u32 h_control = kcontrol->private_value;
u16 err;
short idx;
u16 gain_range[3];
for (idx = 0; idx < 3; idx++) {
err = hpi_tuner_query_gain(h_control,
idx, &gain_range[idx]);
if (err != 0)
return err;
}
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = ((int)gain_range[0]) / HPI_UNITS_PER_dB;
uinfo->value.integer.max = ((int)gain_range[1]) / HPI_UNITS_PER_dB;
uinfo->value.integer.step = ((int) gain_range[2]) / HPI_UNITS_PER_dB;
return 0;
}
static int snd_asihpi_tuner_gain_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
/*
struct snd_card_asihpi *asihpi = snd_kcontrol_chip(kcontrol);
*/
u32 h_control = kcontrol->private_value;
short gain;
hpi_handle_error(hpi_tuner_get_gain(h_control, &gain));
ucontrol->value.integer.value[0] = gain / HPI_UNITS_PER_dB;
return 0;
}
static int snd_asihpi_tuner_gain_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
/*
struct snd_card_asihpi *asihpi = snd_kcontrol_chip(kcontrol);
*/
u32 h_control = kcontrol->private_value;
short gain;
gain = (ucontrol->value.integer.value[0]) * HPI_UNITS_PER_dB;
hpi_handle_error(hpi_tuner_set_gain(h_control, gain));
return 1;
}
/* Band */
static int asihpi_tuner_band_query(struct snd_kcontrol *kcontrol,
u16 *band_list, u32 len) {
u32 h_control = kcontrol->private_value;
u16 err = 0;
u32 i;
for (i = 0; i < len; i++) {
err = hpi_tuner_query_band(
h_control, i, &band_list[i]);
if (err != 0)
break;
}
if (err && (err != HPI_ERROR_INVALID_OBJ_INDEX))
return -EIO;
return i;
}
static int snd_asihpi_tuner_band_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
u16 tuner_bands[HPI_TUNER_BAND_LAST];
int num_bands = 0;
num_bands = asihpi_tuner_band_query(kcontrol, tuner_bands,
HPI_TUNER_BAND_LAST);
if (num_bands < 0)
return num_bands;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = num_bands;
if (num_bands > 0) {
if (uinfo->value.enumerated.item >=
uinfo->value.enumerated.items)
uinfo->value.enumerated.item =
uinfo->value.enumerated.items - 1;
strcpy(uinfo->value.enumerated.name,
asihpi_tuner_band_names[
tuner_bands[uinfo->value.enumerated.item]]);
}
return 0;
}
static int snd_asihpi_tuner_band_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 h_control = kcontrol->private_value;
/*
struct snd_card_asihpi *asihpi = snd_kcontrol_chip(kcontrol);
*/
u16 band, idx;
u16 tuner_bands[HPI_TUNER_BAND_LAST];
u32 num_bands = 0;
num_bands = asihpi_tuner_band_query(kcontrol, tuner_bands,
HPI_TUNER_BAND_LAST);
hpi_handle_error(hpi_tuner_get_band(h_control, &band));
ucontrol->value.enumerated.item[0] = -1;
for (idx = 0; idx < HPI_TUNER_BAND_LAST; idx++)
if (tuner_bands[idx] == band) {
ucontrol->value.enumerated.item[0] = idx;
break;
}
return 0;
}
static int snd_asihpi_tuner_band_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
/*
struct snd_card_asihpi *asihpi = snd_kcontrol_chip(kcontrol);
*/
u32 h_control = kcontrol->private_value;
u16 band;
u16 tuner_bands[HPI_TUNER_BAND_LAST];
u32 num_bands = 0;
num_bands = asihpi_tuner_band_query(kcontrol, tuner_bands,
HPI_TUNER_BAND_LAST);
band = tuner_bands[ucontrol->value.enumerated.item[0]];
hpi_handle_error(hpi_tuner_set_band(h_control, band));
return 1;
}
/* Freq */
static int snd_asihpi_tuner_freq_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
u32 h_control = kcontrol->private_value;
u16 err;
u16 tuner_bands[HPI_TUNER_BAND_LAST];
u16 num_bands = 0, band_iter, idx;
u32 freq_range[3], temp_freq_range[3];
num_bands = asihpi_tuner_band_query(kcontrol, tuner_bands,
HPI_TUNER_BAND_LAST);
freq_range[0] = INT_MAX;
freq_range[1] = 0;
freq_range[2] = INT_MAX;
for (band_iter = 0; band_iter < num_bands; band_iter++) {
for (idx = 0; idx < 3; idx++) {
err = hpi_tuner_query_frequency(h_control,
idx, tuner_bands[band_iter],
&temp_freq_range[idx]);
if (err != 0)
return err;
}
/* skip band with bogus stepping */
if (temp_freq_range[2] <= 0)
continue;
if (temp_freq_range[0] < freq_range[0])
freq_range[0] = temp_freq_range[0];
if (temp_freq_range[1] > freq_range[1])
freq_range[1] = temp_freq_range[1];
if (temp_freq_range[2] < freq_range[2])
freq_range[2] = temp_freq_range[2];
}
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = ((int)freq_range[0]);
uinfo->value.integer.max = ((int)freq_range[1]);
uinfo->value.integer.step = ((int)freq_range[2]);
return 0;
}
static int snd_asihpi_tuner_freq_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 h_control = kcontrol->private_value;
u32 freq;
hpi_handle_error(hpi_tuner_get_frequency(h_control, &freq));
ucontrol->value.integer.value[0] = freq;
return 0;
}
static int snd_asihpi_tuner_freq_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 h_control = kcontrol->private_value;
u32 freq;
freq = ucontrol->value.integer.value[0];
hpi_handle_error(hpi_tuner_set_frequency(h_control, freq));
return 1;
}
/* Tuner control group initializer */
static int snd_asihpi_tuner_add(struct snd_card_asihpi *asihpi,
struct hpi_control *hpi_ctl)
{
struct snd_card *card = asihpi->card;
struct snd_kcontrol_new snd_control;
snd_control.private_value = hpi_ctl->h_control;
snd_control.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
if (!hpi_tuner_get_gain(hpi_ctl->h_control, NULL)) {
asihpi_ctl_init(&snd_control, hpi_ctl, "Gain");
snd_control.info = snd_asihpi_tuner_gain_info;
snd_control.get = snd_asihpi_tuner_gain_get;
snd_control.put = snd_asihpi_tuner_gain_put;
if (ctl_add(card, &snd_control, asihpi) < 0)
return -EINVAL;
}
asihpi_ctl_init(&snd_control, hpi_ctl, "Band");
snd_control.info = snd_asihpi_tuner_band_info;
snd_control.get = snd_asihpi_tuner_band_get;
snd_control.put = snd_asihpi_tuner_band_put;
if (ctl_add(card, &snd_control, asihpi) < 0)
return -EINVAL;
asihpi_ctl_init(&snd_control, hpi_ctl, "Freq");
snd_control.info = snd_asihpi_tuner_freq_info;
snd_control.get = snd_asihpi_tuner_freq_get;
snd_control.put = snd_asihpi_tuner_freq_put;
return ctl_add(card, &snd_control, asihpi);
}
/*------------------------------------------------------------
Meter controls
------------------------------------------------------------*/
static int snd_asihpi_meter_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
u32 h_control = kcontrol->private_value;
u32 count;
u16 err;
err = hpi_meter_query_channels(h_control, &count);
if (err)
count = HPI_MAX_CHANNELS;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = count;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 0x7FFFFFFF;
return 0;
}
/* linear values for 10dB steps */
static int log2lin[] = {
0x7FFFFFFF, /* 0dB */
679093956,
214748365,
67909396,
21474837,
6790940,
2147484, /* -60dB */
679094,
214748, /* -80 */
67909,
21475, /* -100 */
6791,
2147,
679,
214,
68,
21,
7,
2
};
static int snd_asihpi_meter_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 h_control = kcontrol->private_value;
short an_gain_mB[HPI_MAX_CHANNELS], i;
u16 err;
err = hpi_meter_get_peak(h_control, an_gain_mB);
for (i = 0; i < HPI_MAX_CHANNELS; i++) {
if (err) {
ucontrol->value.integer.value[i] = 0;
} else if (an_gain_mB[i] >= 0) {
ucontrol->value.integer.value[i] =
an_gain_mB[i] << 16;
} else {
/* -ve is log value in millibels < -60dB,
* convert to (roughly!) linear,
*/
ucontrol->value.integer.value[i] =
log2lin[an_gain_mB[i] / -1000];
}
}
return 0;
}
static int snd_asihpi_meter_add(struct snd_card_asihpi *asihpi,
struct hpi_control *hpi_ctl, int subidx)
{
struct snd_card *card = asihpi->card;
struct snd_kcontrol_new snd_control;
asihpi_ctl_init(&snd_control, hpi_ctl, "Meter");
snd_control.access =
SNDRV_CTL_ELEM_ACCESS_VOLATILE | SNDRV_CTL_ELEM_ACCESS_READ;
snd_control.info = snd_asihpi_meter_info;
snd_control.get = snd_asihpi_meter_get;
snd_control.index = subidx;
return ctl_add(card, &snd_control, asihpi);
}
/*------------------------------------------------------------
Multiplexer controls
------------------------------------------------------------*/
static int snd_card_asihpi_mux_count_sources(struct snd_kcontrol *snd_control)
{
u32 h_control = snd_control->private_value;
struct hpi_control hpi_ctl;
int s, err;
for (s = 0; s < 32; s++) {
err = hpi_multiplexer_query_source(h_control, s,
&hpi_ctl.
src_node_type,
&hpi_ctl.
src_node_index);
if (err)
break;
}
return s;
}
static int snd_asihpi_mux_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int err;
u16 src_node_type, src_node_index;
u32 h_control = kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items =
snd_card_asihpi_mux_count_sources(kcontrol);
if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
uinfo->value.enumerated.item =
uinfo->value.enumerated.items - 1;
err =
hpi_multiplexer_query_source(h_control,
uinfo->value.enumerated.item,
&src_node_type, &src_node_index);
sprintf(uinfo->value.enumerated.name, "%s %d",
asihpi_src_names[src_node_type - HPI_SOURCENODE_NONE],
src_node_index);
return 0;
}
static int snd_asihpi_mux_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 h_control = kcontrol->private_value;
u16 source_type, source_index;
u16 src_node_type, src_node_index;
int s;
hpi_handle_error(hpi_multiplexer_get_source(h_control,
&source_type, &source_index));
/* Should cache this search result! */
for (s = 0; s < 256; s++) {
if (hpi_multiplexer_query_source(h_control, s,
&src_node_type, &src_node_index))
break;
if ((source_type == src_node_type)
&& (source_index == src_node_index)) {
ucontrol->value.enumerated.item[0] = s;
return 0;
}
}
snd_printd(KERN_WARNING
"Control %x failed to match mux source %hu %hu\n",
h_control, source_type, source_index);
ucontrol->value.enumerated.item[0] = 0;
return 0;
}
static int snd_asihpi_mux_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int change;
u32 h_control = kcontrol->private_value;
u16 source_type, source_index;
u16 e;
change = 1;
e = hpi_multiplexer_query_source(h_control,
ucontrol->value.enumerated.item[0],
&source_type, &source_index);
if (!e)
hpi_handle_error(
hpi_multiplexer_set_source(h_control,
source_type, source_index));
return change;
}
static int snd_asihpi_mux_add(struct snd_card_asihpi *asihpi,
struct hpi_control *hpi_ctl)
{
struct snd_card *card = asihpi->card;
struct snd_kcontrol_new snd_control;
asihpi_ctl_init(&snd_control, hpi_ctl, "Route");
snd_control.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
snd_control.info = snd_asihpi_mux_info;
snd_control.get = snd_asihpi_mux_get;
snd_control.put = snd_asihpi_mux_put;
return ctl_add(card, &snd_control, asihpi);
}
/*------------------------------------------------------------
Channel mode controls
------------------------------------------------------------*/
static int snd_asihpi_cmode_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char * const mode_names[HPI_CHANNEL_MODE_LAST + 1] = {
"invalid",
"Normal", "Swap",
"From Left", "From Right",
"To Left", "To Right"
};
u32 h_control = kcontrol->private_value;
u16 mode;
int i;
u16 mode_map[6];
int valid_modes = 0;
/* HPI channel mode values can be from 1 to 6
Some adapters only support a contiguous subset
*/
for (i = 0; i < HPI_CHANNEL_MODE_LAST; i++)
if (!hpi_channel_mode_query_mode(
h_control, i, &mode)) {
mode_map[valid_modes] = mode;
valid_modes++;
}
if (!valid_modes)
return -EINVAL;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = valid_modes;
if (uinfo->value.enumerated.item >= valid_modes)
uinfo->value.enumerated.item = valid_modes - 1;
strcpy(uinfo->value.enumerated.name,
mode_names[mode_map[uinfo->value.enumerated.item]]);
return 0;
}
static int snd_asihpi_cmode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 h_control = kcontrol->private_value;
u16 mode;
if (hpi_channel_mode_get(h_control, &mode))
mode = 1;
ucontrol->value.enumerated.item[0] = mode - 1;
return 0;
}
static int snd_asihpi_cmode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int change;
u32 h_control = kcontrol->private_value;
change = 1;
hpi_handle_error(hpi_channel_mode_set(h_control,
ucontrol->value.enumerated.item[0] + 1));
return change;
}
static int snd_asihpi_cmode_add(struct snd_card_asihpi *asihpi,
struct hpi_control *hpi_ctl)
{
struct snd_card *card = asihpi->card;
struct snd_kcontrol_new snd_control;
asihpi_ctl_init(&snd_control, hpi_ctl, "Mode");
snd_control.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
snd_control.info = snd_asihpi_cmode_info;
snd_control.get = snd_asihpi_cmode_get;
snd_control.put = snd_asihpi_cmode_put;
return ctl_add(card, &snd_control, asihpi);
}
/*------------------------------------------------------------
Sampleclock source controls
------------------------------------------------------------*/
static char *sampleclock_sources[MAX_CLOCKSOURCES] = {
"N/A", "Local PLL", "Digital Sync", "Word External", "Word Header",
"SMPTE", "Digital1", "Auto", "Network", "Invalid",
"Prev Module",
"Digital2", "Digital3", "Digital4", "Digital5",
"Digital6", "Digital7", "Digital8"};
static int snd_asihpi_clksrc_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_card_asihpi *asihpi =
(struct snd_card_asihpi *)(kcontrol->private_data);
struct clk_cache *clkcache = &asihpi->cc;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = clkcache->count;
if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
uinfo->value.enumerated.item =
uinfo->value.enumerated.items - 1;
strcpy(uinfo->value.enumerated.name,
clkcache->s[uinfo->value.enumerated.item].name);
return 0;
}
static int snd_asihpi_clksrc_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_card_asihpi *asihpi =
(struct snd_card_asihpi *)(kcontrol->private_data);
struct clk_cache *clkcache = &asihpi->cc;
u32 h_control = kcontrol->private_value;
u16 source, srcindex = 0;
int i;
ucontrol->value.enumerated.item[0] = 0;
if (hpi_sample_clock_get_source(h_control, &source))
source = 0;
if (source == HPI_SAMPLECLOCK_SOURCE_AESEBU_INPUT)
if (hpi_sample_clock_get_source_index(h_control, &srcindex))
srcindex = 0;
for (i = 0; i < clkcache->count; i++)
if ((clkcache->s[i].source == source) &&
(clkcache->s[i].index == srcindex))
break;
ucontrol->value.enumerated.item[0] = i;
return 0;
}
static int snd_asihpi_clksrc_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_card_asihpi *asihpi =
(struct snd_card_asihpi *)(kcontrol->private_data);
struct clk_cache *clkcache = &asihpi->cc;
int change, item;
u32 h_control = kcontrol->private_value;
change = 1;
item = ucontrol->value.enumerated.item[0];
if (item >= clkcache->count)
item = clkcache->count-1;
hpi_handle_error(hpi_sample_clock_set_source(
h_control, clkcache->s[item].source));
if (clkcache->s[item].source == HPI_SAMPLECLOCK_SOURCE_AESEBU_INPUT)
hpi_handle_error(hpi_sample_clock_set_source_index(
h_control, clkcache->s[item].index));
return change;
}
/*------------------------------------------------------------
Clkrate controls
------------------------------------------------------------*/
/* Need to change this to enumerated control with list of rates */
static int snd_asihpi_clklocal_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 8000;
uinfo->value.integer.max = 192000;
uinfo->value.integer.step = 100;
return 0;
}
static int snd_asihpi_clklocal_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 h_control = kcontrol->private_value;
u32 rate;
u16 e;
e = hpi_sample_clock_get_local_rate(h_control, &rate);
if (!e)
ucontrol->value.integer.value[0] = rate;
else
ucontrol->value.integer.value[0] = 0;
return 0;
}
static int snd_asihpi_clklocal_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int change;
u32 h_control = kcontrol->private_value;
/* change = asihpi->mixer_clkrate[addr][0] != left ||
asihpi->mixer_clkrate[addr][1] != right;
*/
change = 1;
hpi_handle_error(hpi_sample_clock_set_local_rate(h_control,
ucontrol->value.integer.value[0]));
return change;
}
static int snd_asihpi_clkrate_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 8000;
uinfo->value.integer.max = 192000;
uinfo->value.integer.step = 100;
return 0;
}
static int snd_asihpi_clkrate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 h_control = kcontrol->private_value;
u32 rate;
u16 e;
e = hpi_sample_clock_get_sample_rate(h_control, &rate);
if (!e)
ucontrol->value.integer.value[0] = rate;
else
ucontrol->value.integer.value[0] = 0;
return 0;
}
static int snd_asihpi_sampleclock_add(struct snd_card_asihpi *asihpi,
struct hpi_control *hpi_ctl)
{
struct snd_card *card = asihpi->card;
struct snd_kcontrol_new snd_control;
struct clk_cache *clkcache = &asihpi->cc;
u32 hSC = hpi_ctl->h_control;
int has_aes_in = 0;
int i, j;
u16 source;
snd_control.private_value = hpi_ctl->h_control;
clkcache->has_local = 0;
for (i = 0; i <= HPI_SAMPLECLOCK_SOURCE_LAST; i++) {
if (hpi_sample_clock_query_source(hSC,
i, &source))
break;
clkcache->s[i].source = source;
clkcache->s[i].index = 0;
clkcache->s[i].name = sampleclock_sources[source];
if (source == HPI_SAMPLECLOCK_SOURCE_AESEBU_INPUT)
has_aes_in = 1;
if (source == HPI_SAMPLECLOCK_SOURCE_LOCAL)
clkcache->has_local = 1;
}
if (has_aes_in)
/* already will have picked up index 0 above */
for (j = 1; j < 8; j++) {
if (hpi_sample_clock_query_source_index(hSC,
j, HPI_SAMPLECLOCK_SOURCE_AESEBU_INPUT,
&source))
break;
clkcache->s[i].source =
HPI_SAMPLECLOCK_SOURCE_AESEBU_INPUT;
clkcache->s[i].index = j;
clkcache->s[i].name = sampleclock_sources[
j+HPI_SAMPLECLOCK_SOURCE_LAST];
i++;
}
clkcache->count = i;
asihpi_ctl_init(&snd_control, hpi_ctl, "Source");
snd_control.access = SNDRV_CTL_ELEM_ACCESS_READWRITE ;
snd_control.info = snd_asihpi_clksrc_info;
snd_control.get = snd_asihpi_clksrc_get;
snd_control.put = snd_asihpi_clksrc_put;
if (ctl_add(card, &snd_control, asihpi) < 0)
return -EINVAL;
if (clkcache->has_local) {
asihpi_ctl_init(&snd_control, hpi_ctl, "Localrate");
snd_control.access = SNDRV_CTL_ELEM_ACCESS_READWRITE ;
snd_control.info = snd_asihpi_clklocal_info;
snd_control.get = snd_asihpi_clklocal_get;
snd_control.put = snd_asihpi_clklocal_put;
if (ctl_add(card, &snd_control, asihpi) < 0)
return -EINVAL;
}
asihpi_ctl_init(&snd_control, hpi_ctl, "Rate");
snd_control.access =
SNDRV_CTL_ELEM_ACCESS_VOLATILE | SNDRV_CTL_ELEM_ACCESS_READ;
snd_control.info = snd_asihpi_clkrate_info;
snd_control.get = snd_asihpi_clkrate_get;
return ctl_add(card, &snd_control, asihpi);
}
/*------------------------------------------------------------
Mixer
------------------------------------------------------------*/
static int snd_card_asihpi_mixer_new(struct snd_card_asihpi *asihpi)
{
struct snd_card *card;
unsigned int idx = 0;
unsigned int subindex = 0;
int err;
struct hpi_control hpi_ctl, prev_ctl;
if (snd_BUG_ON(!asihpi))
return -EINVAL;
card = asihpi->card;
strcpy(card->mixername, "Asihpi Mixer");
err =
hpi_mixer_open(asihpi->hpi->adapter->index,
&asihpi->h_mixer);
hpi_handle_error(err);
if (err)
return -err;
memset(&prev_ctl, 0, sizeof(prev_ctl));
prev_ctl.control_type = -1;
for (idx = 0; idx < 2000; idx++) {
err = hpi_mixer_get_control_by_index(
asihpi->h_mixer,
idx,
&hpi_ctl.src_node_type,
&hpi_ctl.src_node_index,
&hpi_ctl.dst_node_type,
&hpi_ctl.dst_node_index,
&hpi_ctl.control_type,
&hpi_ctl.h_control);
if (err) {
if (err == HPI_ERROR_CONTROL_DISABLED) {
if (mixer_dump)
snd_printk(KERN_INFO
"Disabled HPI Control(%d)\n",
idx);
continue;
} else
break;
}
hpi_ctl.src_node_type -= HPI_SOURCENODE_NONE;
hpi_ctl.dst_node_type -= HPI_DESTNODE_NONE;
/* ASI50xx in SSX mode has multiple meters on the same node.
Use subindex to create distinct ALSA controls
for any duplicated controls.
*/
if ((hpi_ctl.control_type == prev_ctl.control_type) &&
(hpi_ctl.src_node_type == prev_ctl.src_node_type) &&
(hpi_ctl.src_node_index == prev_ctl.src_node_index) &&
(hpi_ctl.dst_node_type == prev_ctl.dst_node_type) &&
(hpi_ctl.dst_node_index == prev_ctl.dst_node_index))
subindex++;
else
subindex = 0;
prev_ctl = hpi_ctl;
switch (hpi_ctl.control_type) {
case HPI_CONTROL_VOLUME:
err = snd_asihpi_volume_add(asihpi, &hpi_ctl);
break;
case HPI_CONTROL_LEVEL:
err = snd_asihpi_level_add(asihpi, &hpi_ctl);
break;
case HPI_CONTROL_MULTIPLEXER:
err = snd_asihpi_mux_add(asihpi, &hpi_ctl);
break;
case HPI_CONTROL_CHANNEL_MODE:
err = snd_asihpi_cmode_add(asihpi, &hpi_ctl);
break;
case HPI_CONTROL_METER:
err = snd_asihpi_meter_add(asihpi, &hpi_ctl, subindex);
break;
case HPI_CONTROL_SAMPLECLOCK:
err = snd_asihpi_sampleclock_add(
asihpi, &hpi_ctl);
break;
case HPI_CONTROL_CONNECTION: /* ignore these */
continue;
case HPI_CONTROL_TUNER:
err = snd_asihpi_tuner_add(asihpi, &hpi_ctl);
break;
case HPI_CONTROL_AESEBU_TRANSMITTER:
err = snd_asihpi_aesebu_tx_add(asihpi, &hpi_ctl);
break;
case HPI_CONTROL_AESEBU_RECEIVER:
err = snd_asihpi_aesebu_rx_add(asihpi, &hpi_ctl);
break;
case HPI_CONTROL_VOX:
case HPI_CONTROL_BITSTREAM:
case HPI_CONTROL_MICROPHONE:
case HPI_CONTROL_PARAMETRIC_EQ:
case HPI_CONTROL_COMPANDER:
default:
if (mixer_dump)
snd_printk(KERN_INFO
"Untranslated HPI Control"
"(%d) %d %d %d %d %d\n",
idx,
hpi_ctl.control_type,
hpi_ctl.src_node_type,
hpi_ctl.src_node_index,
hpi_ctl.dst_node_type,
hpi_ctl.dst_node_index);
continue;
}
if (err < 0)
return err;
}
if (HPI_ERROR_INVALID_OBJ_INDEX != err)
hpi_handle_error(err);
snd_printk(KERN_INFO "%d mixer controls found\n", idx);
return 0;
}
/*------------------------------------------------------------
/proc interface
------------------------------------------------------------*/
static void
snd_asihpi_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_card_asihpi *asihpi = entry->private_data;
u32 h_control;
u32 rate = 0;
u16 source = 0;
u16 num_outstreams;
u16 num_instreams;
u16 version;
u32 serial_number;
u16 type;
int err;
snd_iprintf(buffer, "ASIHPI driver proc file\n");
hpi_handle_error(hpi_adapter_get_info(asihpi->hpi->adapter->index,
&num_outstreams, &num_instreams,
&version, &serial_number, &type));
snd_iprintf(buffer,
"Adapter type ASI%4X\nHardware Index %d\n"
"%d outstreams\n%d instreams\n",
type, asihpi->hpi->adapter->index,
num_outstreams, num_instreams);
snd_iprintf(buffer,
"Serial#%d\nHardware version %c%d\nDSP code version %03d\n",
serial_number, ((version >> 3) & 0xf) + 'A', version & 0x7,
((version >> 13) * 100) + ((version >> 7) & 0x3f));
err = hpi_mixer_get_control(asihpi->h_mixer,
HPI_SOURCENODE_CLOCK_SOURCE, 0, 0, 0,
HPI_CONTROL_SAMPLECLOCK, &h_control);
if (!err) {
err = hpi_sample_clock_get_sample_rate(h_control, &rate);
err += hpi_sample_clock_get_source(h_control, &source);
if (!err)
snd_iprintf(buffer, "Sample Clock %dHz, source %s\n",
rate, sampleclock_sources[source]);
}
}
static void snd_asihpi_proc_init(struct snd_card_asihpi *asihpi)
{
struct snd_info_entry *entry;
if (!snd_card_proc_new(asihpi->card, "info", &entry))
snd_info_set_text_ops(entry, asihpi, snd_asihpi_proc_read);
}
/*------------------------------------------------------------
HWDEP
------------------------------------------------------------*/
static int snd_asihpi_hpi_open(struct snd_hwdep *hw, struct file *file)
{
if (enable_hpi_hwdep)
return 0;
else
return -ENODEV;
}
static int snd_asihpi_hpi_release(struct snd_hwdep *hw, struct file *file)
{
if (enable_hpi_hwdep)
return asihpi_hpi_release(file);
else
return -ENODEV;
}
static int snd_asihpi_hpi_ioctl(struct snd_hwdep *hw, struct file *file,
unsigned int cmd, unsigned long arg)
{
if (enable_hpi_hwdep)
return asihpi_hpi_ioctl(file, cmd, arg);
else
return -ENODEV;
}
/* results in /dev/snd/hwC#D0 file for each card with index #
also /proc/asound/hwdep will contain '#-00: asihpi (HPI) for each card'
*/
static int snd_asihpi_hpi_new(struct snd_card_asihpi *asihpi,
int device, struct snd_hwdep **rhwdep)
{
struct snd_hwdep *hw;
int err;
if (rhwdep)
*rhwdep = NULL;
err = snd_hwdep_new(asihpi->card, "HPI", device, &hw);
if (err < 0)
return err;
strcpy(hw->name, "asihpi (HPI)");
hw->iface = SNDRV_HWDEP_IFACE_LAST;
hw->ops.open = snd_asihpi_hpi_open;
hw->ops.ioctl = snd_asihpi_hpi_ioctl;
hw->ops.release = snd_asihpi_hpi_release;
hw->private_data = asihpi;
if (rhwdep)
*rhwdep = hw;
return 0;
}
/*------------------------------------------------------------
CARD
------------------------------------------------------------*/
static int snd_asihpi_probe(struct pci_dev *pci_dev,
const struct pci_device_id *pci_id)
{
int err;
struct hpi_adapter *hpi;
struct snd_card *card;
struct snd_card_asihpi *asihpi;
u32 h_control;
u32 h_stream;
u32 adapter_index;
static int dev;
if (dev >= SNDRV_CARDS)
return -ENODEV;
/* Should this be enable[hpi->index] ? */
if (!enable[dev]) {
dev++;
return -ENOENT;
}
/* Initialise low-level HPI driver */
err = asihpi_adapter_probe(pci_dev, pci_id);
if (err < 0)
return err;
hpi = pci_get_drvdata(pci_dev);
adapter_index = hpi->adapter->index;
/* first try to give the card the same index as its hardware index */
err = snd_card_create(adapter_index,
id[adapter_index], THIS_MODULE,
sizeof(struct snd_card_asihpi),
&card);
if (err < 0) {
/* if that fails, try the default index==next available */
err =
snd_card_create(index[dev], id[dev],
THIS_MODULE,
sizeof(struct snd_card_asihpi),
&card);
if (err < 0)
return err;
snd_printk(KERN_WARNING
"**** WARNING **** Adapter index %d->ALSA index %d\n",
adapter_index, card->number);
}
snd_card_set_dev(card, &pci_dev->dev);
asihpi = card->private_data;
asihpi->card = card;
asihpi->pci = pci_dev;
asihpi->hpi = hpi;
snd_printk(KERN_INFO "adapter ID=%4X index=%d\n",
asihpi->hpi->adapter->type, adapter_index);
err = hpi_adapter_get_property(adapter_index,
HPI_ADAPTER_PROPERTY_CAPS1,
NULL, &asihpi->support_grouping);
if (err)
asihpi->support_grouping = 0;
err = hpi_adapter_get_property(adapter_index,
HPI_ADAPTER_PROPERTY_CAPS2,
&asihpi->support_mrx, NULL);
if (err)
asihpi->support_mrx = 0;
err = hpi_adapter_get_property(adapter_index,
HPI_ADAPTER_PROPERTY_INTERVAL,
NULL, &asihpi->update_interval_frames);
if (err)
asihpi->update_interval_frames = 512;
if (!asihpi->can_dma)
asihpi->update_interval_frames *= 2;
hpi_handle_error(hpi_instream_open(adapter_index,
0, &h_stream));
err = hpi_instream_host_buffer_free(h_stream);
asihpi->can_dma = (!err);
hpi_handle_error(hpi_instream_close(h_stream));
err = hpi_adapter_get_property(adapter_index,
HPI_ADAPTER_PROPERTY_CURCHANNELS,
&asihpi->in_max_chans, &asihpi->out_max_chans);
if (err) {
asihpi->in_max_chans = 2;
asihpi->out_max_chans = 2;
}
if (asihpi->out_max_chans > 2) { /* assume LL mode */
asihpi->out_min_chans = asihpi->out_max_chans;
asihpi->in_min_chans = asihpi->in_max_chans;
asihpi->support_grouping = 0;
} else {
asihpi->out_min_chans = 1;
asihpi->in_min_chans = 1;
}
snd_printk(KERN_INFO "Has dma:%d, grouping:%d, mrx:%d\n",
asihpi->can_dma,
asihpi->support_grouping,
asihpi->support_mrx
);
err = snd_card_asihpi_pcm_new(asihpi, 0);
if (err < 0) {
snd_printk(KERN_ERR "pcm_new failed\n");
goto __nodev;
}
err = snd_card_asihpi_mixer_new(asihpi);
if (err < 0) {
snd_printk(KERN_ERR "mixer_new failed\n");
goto __nodev;
}
err = hpi_mixer_get_control(asihpi->h_mixer,
HPI_SOURCENODE_CLOCK_SOURCE, 0, 0, 0,
HPI_CONTROL_SAMPLECLOCK, &h_control);
if (!err)
err = hpi_sample_clock_set_local_rate(
h_control, adapter_fs);
snd_asihpi_proc_init(asihpi);
/* always create, can be enabled or disabled dynamically
by enable_hwdep module param*/
snd_asihpi_hpi_new(asihpi, 0, NULL);
strcpy(card->driver, "ASIHPI");
sprintf(card->shortname, "AudioScience ASI%4X",
asihpi->hpi->adapter->type);
sprintf(card->longname, "%s %i",
card->shortname, adapter_index);
err = snd_card_register(card);
if (!err) {
hpi->snd_card = card;
dev++;
return 0;
}
__nodev:
snd_card_free(card);
snd_printk(KERN_ERR "snd_asihpi_probe error %d\n", err);
return err;
}
static void snd_asihpi_remove(struct pci_dev *pci_dev)
{
struct hpi_adapter *hpi = pci_get_drvdata(pci_dev);
snd_card_free(hpi->snd_card);
hpi->snd_card = NULL;
asihpi_adapter_remove(pci_dev);
}
static DEFINE_PCI_DEVICE_TABLE(asihpi_pci_tbl) = {
{HPI_PCI_VENDOR_ID_TI, HPI_PCI_DEV_ID_DSP6205,
HPI_PCI_VENDOR_ID_AUDIOSCIENCE, PCI_ANY_ID, 0, 0,
(kernel_ulong_t)HPI_6205},
{HPI_PCI_VENDOR_ID_TI, HPI_PCI_DEV_ID_PCI2040,
HPI_PCI_VENDOR_ID_AUDIOSCIENCE, PCI_ANY_ID, 0, 0,
(kernel_ulong_t)HPI_6000},
{0,}
};
MODULE_DEVICE_TABLE(pci, asihpi_pci_tbl);
static struct pci_driver driver = {
.name = KBUILD_MODNAME,
.id_table = asihpi_pci_tbl,
.probe = snd_asihpi_probe,
.remove = snd_asihpi_remove,
#ifdef CONFIG_PM_SLEEP
/* .suspend = snd_asihpi_suspend,
.resume = snd_asihpi_resume, */
#endif
};
static int __init snd_asihpi_init(void)
{
asihpi_init();
return pci_register_driver(&driver);
}
static void __exit snd_asihpi_exit(void)
{
pci_unregister_driver(&driver);
asihpi_exit();
}
module_init(snd_asihpi_init)
module_exit(snd_asihpi_exit)