2013-12-03 22:15:31 +08:00
|
|
|
/*
|
|
|
|
* u_fs.h
|
|
|
|
*
|
|
|
|
* Utility definitions for the FunctionFS
|
|
|
|
*
|
|
|
|
* Copyright (c) 2013 Samsung Electronics Co., Ltd.
|
|
|
|
* http://www.samsung.com
|
|
|
|
*
|
|
|
|
* Author: Andrzej Pietrasiewicz <andrzej.p@samsung.com>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef U_FFS_H
|
|
|
|
#define U_FFS_H
|
|
|
|
|
|
|
|
#include <linux/usb/composite.h>
|
2013-12-03 22:15:32 +08:00
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/mutex.h>
|
2013-12-03 22:15:31 +08:00
|
|
|
|
2013-12-03 22:15:33 +08:00
|
|
|
#ifdef VERBOSE_DEBUG
|
|
|
|
#ifndef pr_vdebug
|
|
|
|
# define pr_vdebug pr_debug
|
|
|
|
#endif /* pr_vdebug */
|
|
|
|
# define ffs_dump_mem(prefix, ptr, len) \
|
|
|
|
print_hex_dump_bytes(pr_fmt(prefix ": "), DUMP_PREFIX_NONE, ptr, len)
|
|
|
|
#else
|
|
|
|
#ifndef pr_vdebug
|
|
|
|
# define pr_vdebug(...) do { } while (0)
|
|
|
|
#endif /* pr_vdebug */
|
|
|
|
# define ffs_dump_mem(prefix, ptr, len) do { } while (0)
|
|
|
|
#endif /* VERBOSE_DEBUG */
|
|
|
|
|
|
|
|
#define ENTER() pr_vdebug("%s()\n", __func__)
|
|
|
|
|
2013-12-03 22:15:36 +08:00
|
|
|
struct f_fs_opts;
|
2013-12-03 22:15:33 +08:00
|
|
|
|
2013-12-03 22:15:31 +08:00
|
|
|
struct ffs_dev {
|
|
|
|
const char *name;
|
2013-12-03 22:15:36 +08:00
|
|
|
bool name_allocated;
|
2013-12-03 22:15:31 +08:00
|
|
|
bool mounted;
|
|
|
|
bool desc_ready;
|
2013-12-03 22:15:32 +08:00
|
|
|
bool single;
|
2013-12-03 22:15:31 +08:00
|
|
|
struct ffs_data *ffs_data;
|
2013-12-03 22:15:36 +08:00
|
|
|
struct f_fs_opts *opts;
|
2013-12-03 22:15:32 +08:00
|
|
|
struct list_head entry;
|
|
|
|
|
|
|
|
int (*ffs_ready_callback)(struct ffs_data *ffs);
|
|
|
|
void (*ffs_closed_callback)(struct ffs_data *ffs);
|
2013-12-03 22:15:33 +08:00
|
|
|
void *(*ffs_acquire_dev_callback)(struct ffs_dev *dev);
|
|
|
|
void (*ffs_release_dev_callback)(struct ffs_dev *dev);
|
2013-12-03 22:15:31 +08:00
|
|
|
};
|
|
|
|
|
2013-12-03 22:15:32 +08:00
|
|
|
extern struct mutex ffs_lock;
|
|
|
|
|
|
|
|
static inline void ffs_dev_lock(void)
|
|
|
|
{
|
|
|
|
mutex_lock(&ffs_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void ffs_dev_unlock(void)
|
|
|
|
{
|
|
|
|
mutex_unlock(&ffs_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct ffs_dev *ffs_alloc_dev(void);
|
|
|
|
int ffs_name_dev(struct ffs_dev *dev, const char *name);
|
|
|
|
int ffs_single_dev(struct ffs_dev *dev);
|
|
|
|
void ffs_free_dev(struct ffs_dev *dev);
|
|
|
|
|
2013-12-03 22:15:33 +08:00
|
|
|
struct ffs_epfile;
|
|
|
|
struct ffs_function;
|
|
|
|
|
|
|
|
enum ffs_state {
|
|
|
|
/*
|
|
|
|
* Waiting for descriptors and strings.
|
|
|
|
*
|
|
|
|
* In this state no open(2), read(2) or write(2) on epfiles
|
|
|
|
* may succeed (which should not be the problem as there
|
|
|
|
* should be no such files opened in the first place).
|
|
|
|
*/
|
|
|
|
FFS_READ_DESCRIPTORS,
|
|
|
|
FFS_READ_STRINGS,
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We've got descriptors and strings. We are or have called
|
|
|
|
* functionfs_ready_callback(). functionfs_bind() may have
|
|
|
|
* been called but we don't know.
|
|
|
|
*
|
|
|
|
* This is the only state in which operations on epfiles may
|
|
|
|
* succeed.
|
|
|
|
*/
|
|
|
|
FFS_ACTIVE,
|
|
|
|
|
|
|
|
/*
|
|
|
|
* All endpoints have been closed. This state is also set if
|
|
|
|
* we encounter an unrecoverable error. The only
|
|
|
|
* unrecoverable error is situation when after reading strings
|
|
|
|
* from user space we fail to initialise epfiles or
|
|
|
|
* functionfs_ready_callback() returns with error (<0).
|
|
|
|
*
|
|
|
|
* In this state no open(2), read(2) or write(2) (both on ep0
|
|
|
|
* as well as epfile) may succeed (at this point epfiles are
|
|
|
|
* unlinked and all closed so this is not a problem; ep0 is
|
|
|
|
* also closed but ep0 file exists and so open(2) on ep0 must
|
|
|
|
* fail).
|
|
|
|
*/
|
|
|
|
FFS_CLOSING
|
|
|
|
};
|
|
|
|
|
|
|
|
enum ffs_setup_state {
|
|
|
|
/* There is no setup request pending. */
|
|
|
|
FFS_NO_SETUP,
|
|
|
|
/*
|
|
|
|
* User has read events and there was a setup request event
|
|
|
|
* there. The next read/write on ep0 will handle the
|
|
|
|
* request.
|
|
|
|
*/
|
|
|
|
FFS_SETUP_PENDING,
|
|
|
|
/*
|
|
|
|
* There was event pending but before user space handled it
|
|
|
|
* some other event was introduced which canceled existing
|
|
|
|
* setup. If this state is set read/write on ep0 return
|
|
|
|
* -EIDRM. This state is only set when adding event.
|
|
|
|
*/
|
|
|
|
FFS_SETUP_CANCELED
|
|
|
|
};
|
|
|
|
|
|
|
|
struct ffs_data {
|
|
|
|
struct usb_gadget *gadget;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Protect access read/write operations, only one read/write
|
|
|
|
* at a time. As a consequence protects ep0req and company.
|
|
|
|
* While setup request is being processed (queued) this is
|
|
|
|
* held.
|
|
|
|
*/
|
|
|
|
struct mutex mutex;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Protect access to endpoint related structures (basically
|
|
|
|
* usb_ep_queue(), usb_ep_dequeue(), etc. calls) except for
|
|
|
|
* endpoint zero.
|
|
|
|
*/
|
|
|
|
spinlock_t eps_lock;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX REVISIT do we need our own request? Since we are not
|
|
|
|
* handling setup requests immediately user space may be so
|
|
|
|
* slow that another setup will be sent to the gadget but this
|
|
|
|
* time not to us but another function and then there could be
|
|
|
|
* a race. Is that the case? Or maybe we can use cdev->req
|
|
|
|
* after all, maybe we just need some spinlock for that?
|
|
|
|
*/
|
|
|
|
struct usb_request *ep0req; /* P: mutex */
|
|
|
|
struct completion ep0req_completion; /* P: mutex */
|
|
|
|
int ep0req_status; /* P: mutex */
|
|
|
|
|
|
|
|
/* reference counter */
|
|
|
|
atomic_t ref;
|
|
|
|
/* how many files are opened (EP0 and others) */
|
|
|
|
atomic_t opened;
|
|
|
|
|
|
|
|
/* EP0 state */
|
|
|
|
enum ffs_state state;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Possible transitions:
|
|
|
|
* + FFS_NO_SETUP -> FFS_SETUP_PENDING -- P: ev.waitq.lock
|
|
|
|
* happens only in ep0 read which is P: mutex
|
|
|
|
* + FFS_SETUP_PENDING -> FFS_NO_SETUP -- P: ev.waitq.lock
|
|
|
|
* happens only in ep0 i/o which is P: mutex
|
|
|
|
* + FFS_SETUP_PENDING -> FFS_SETUP_CANCELED -- P: ev.waitq.lock
|
|
|
|
* + FFS_SETUP_CANCELED -> FFS_NO_SETUP -- cmpxchg
|
|
|
|
*/
|
|
|
|
enum ffs_setup_state setup_state;
|
|
|
|
|
|
|
|
#define FFS_SETUP_STATE(ffs) \
|
|
|
|
((enum ffs_setup_state)cmpxchg(&(ffs)->setup_state, \
|
|
|
|
FFS_SETUP_CANCELED, FFS_NO_SETUP))
|
|
|
|
|
|
|
|
/* Events & such. */
|
|
|
|
struct {
|
|
|
|
u8 types[4];
|
|
|
|
unsigned short count;
|
|
|
|
/* XXX REVISIT need to update it in some places, or do we? */
|
|
|
|
unsigned short can_stall;
|
|
|
|
struct usb_ctrlrequest setup;
|
|
|
|
|
|
|
|
wait_queue_head_t waitq;
|
|
|
|
} ev; /* the whole structure, P: ev.waitq.lock */
|
|
|
|
|
|
|
|
/* Flags */
|
|
|
|
unsigned long flags;
|
|
|
|
#define FFS_FL_CALL_CLOSED_CALLBACK 0
|
|
|
|
#define FFS_FL_BOUND 1
|
|
|
|
|
|
|
|
/* Active function */
|
|
|
|
struct ffs_function *func;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Device name, write once when file system is mounted.
|
|
|
|
* Intended for user to read if she wants.
|
|
|
|
*/
|
|
|
|
const char *dev_name;
|
|
|
|
/* Private data for our user (ie. gadget). Managed by user. */
|
|
|
|
void *private_data;
|
|
|
|
|
|
|
|
/* filled by __ffs_data_got_descs() */
|
|
|
|
/*
|
|
|
|
* Real descriptors are 16 bytes after raw_descs (so you need
|
|
|
|
* to skip 16 bytes (ie. ffs->raw_descs + 16) to get to the
|
|
|
|
* first full speed descriptor). raw_descs_length and
|
|
|
|
* raw_fs_descs_length do not have those 16 bytes added.
|
|
|
|
*/
|
|
|
|
const void *raw_descs;
|
|
|
|
unsigned raw_descs_length;
|
|
|
|
unsigned raw_fs_descs_length;
|
|
|
|
unsigned fs_descs_count;
|
|
|
|
unsigned hs_descs_count;
|
|
|
|
|
|
|
|
unsigned short strings_count;
|
|
|
|
unsigned short interfaces_count;
|
|
|
|
unsigned short eps_count;
|
|
|
|
unsigned short _pad1;
|
|
|
|
|
|
|
|
/* filled by __ffs_data_got_strings() */
|
|
|
|
/* ids in stringtabs are set in functionfs_bind() */
|
|
|
|
const void *raw_strings;
|
|
|
|
struct usb_gadget_strings **stringtabs;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* File system's super block, write once when file system is
|
|
|
|
* mounted.
|
|
|
|
*/
|
|
|
|
struct super_block *sb;
|
|
|
|
|
|
|
|
/* File permissions, written once when fs is mounted */
|
|
|
|
struct ffs_file_perms {
|
|
|
|
umode_t mode;
|
|
|
|
kuid_t uid;
|
|
|
|
kgid_t gid;
|
|
|
|
} file_perms;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The endpoint files, filled by ffs_epfiles_create(),
|
|
|
|
* destroyed by ffs_epfiles_destroy().
|
|
|
|
*/
|
|
|
|
struct ffs_epfile *epfiles;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
struct f_fs_opts {
|
|
|
|
struct usb_function_instance func_inst;
|
|
|
|
struct ffs_dev *dev;
|
|
|
|
unsigned refcnt;
|
|
|
|
bool no_configfs;
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline struct f_fs_opts *to_f_fs_opts(struct usb_function_instance *fi)
|
|
|
|
{
|
|
|
|
return container_of(fi, struct f_fs_opts, func_inst);
|
|
|
|
}
|
|
|
|
|
2013-12-03 22:15:31 +08:00
|
|
|
#endif /* U_FFS_H */
|