OpenCloudOS-Kernel/drivers/hwmon/nct7802.c

1236 lines
36 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157 Based on 3 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [graeme] [gregory] [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema] [hk] [hemahk]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 1105 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-27 14:55:06 +08:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* nct7802 - Driver for Nuvoton NCT7802Y
*
* Copyright (C) 2014 Guenter Roeck <linux@roeck-us.net>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#define DRVNAME "nct7802"
static const u8 REG_VOLTAGE[5] = { 0x09, 0x0a, 0x0c, 0x0d, 0x0e };
static const u8 REG_VOLTAGE_LIMIT_LSB[2][5] = {
{ 0x46, 0x00, 0x40, 0x42, 0x44 },
{ 0x45, 0x00, 0x3f, 0x41, 0x43 },
};
static const u8 REG_VOLTAGE_LIMIT_MSB[5] = { 0x48, 0x00, 0x47, 0x47, 0x48 };
static const u8 REG_VOLTAGE_LIMIT_MSB_SHIFT[2][5] = {
{ 0, 0, 4, 0, 4 },
{ 2, 0, 6, 2, 6 },
};
#define REG_BANK 0x00
#define REG_TEMP_LSB 0x05
#define REG_TEMP_PECI_LSB 0x08
#define REG_VOLTAGE_LOW 0x0f
#define REG_FANCOUNT_LOW 0x13
#define REG_START 0x21
#define REG_MODE 0x22 /* 7.2.32 Mode Selection Register */
#define REG_PECI_ENABLE 0x23
#define REG_FAN_ENABLE 0x24
#define REG_VMON_ENABLE 0x25
#define REG_PWM(x) (0x60 + (x))
#define REG_SMARTFAN_EN(x) (0x64 + (x) / 2)
#define SMARTFAN_EN_SHIFT(x) ((x) % 2 * 4)
#define REG_VENDOR_ID 0xfd
#define REG_CHIP_ID 0xfe
#define REG_VERSION_ID 0xff
/*
* Resistance temperature detector (RTD) modes according to 7.2.32 Mode
* Selection Register
*/
#define RTD_MODE_CURRENT 0x1
#define RTD_MODE_THERMISTOR 0x2
#define RTD_MODE_VOLTAGE 0x3
#define MODE_RTD_MASK 0x3
#define MODE_LTD_EN 0x40
/*
* Bit offset for sensors modes in REG_MODE.
* Valid for index 0..2, indicating RTD1..3.
*/
#define MODE_BIT_OFFSET_RTD(index) ((index) * 2)
/*
* Data structures and manipulation thereof
*/
struct nct7802_data {
struct regmap *regmap;
struct mutex access_lock; /* for multi-byte read and write operations */
u8 in_status;
struct mutex in_alarm_lock;
};
static ssize_t temp_type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nct7802_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
unsigned int mode;
int ret;
ret = regmap_read(data->regmap, REG_MODE, &mode);
if (ret < 0)
return ret;
return sprintf(buf, "%u\n", (mode >> (2 * sattr->index) & 3) + 2);
}
static ssize_t temp_type_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct nct7802_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
unsigned int type;
int err;
err = kstrtouint(buf, 0, &type);
if (err < 0)
return err;
if (sattr->index == 2 && type != 4) /* RD3 */
return -EINVAL;
if (type < 3 || type > 4)
return -EINVAL;
err = regmap_update_bits(data->regmap, REG_MODE,
3 << 2 * sattr->index, (type - 2) << 2 * sattr->index);
return err ? : count;
}
static ssize_t pwm_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned int regval;
int ret;
if (sattr->index > 1)
return sprintf(buf, "1\n");
ret = regmap_read(data->regmap, 0x5E, &regval);
if (ret < 0)
return ret;
return sprintf(buf, "%u\n", !(regval & (1 << sattr->index)));
}
static ssize_t pwm_show(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned int val;
int ret;
if (!attr->index)
return sprintf(buf, "255\n");
ret = regmap_read(data->regmap, attr->index, &val);
if (ret < 0)
return ret;
return sprintf(buf, "%d\n", val);
}
static ssize_t pwm_store(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct nct7802_data *data = dev_get_drvdata(dev);
int err;
u8 val;
err = kstrtou8(buf, 0, &val);
if (err < 0)
return err;
err = regmap_write(data->regmap, attr->index, val);
return err ? : count;
}
static ssize_t pwm_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nct7802_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
unsigned int reg, enabled;
int ret;
ret = regmap_read(data->regmap, REG_SMARTFAN_EN(sattr->index), &reg);
if (ret < 0)
return ret;
enabled = reg >> SMARTFAN_EN_SHIFT(sattr->index) & 1;
return sprintf(buf, "%u\n", enabled + 1);
}
static ssize_t pwm_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nct7802_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
u8 val;
int ret;
ret = kstrtou8(buf, 0, &val);
if (ret < 0)
return ret;
if (val < 1 || val > 2)
return -EINVAL;
ret = regmap_update_bits(data->regmap, REG_SMARTFAN_EN(sattr->index),
1 << SMARTFAN_EN_SHIFT(sattr->index),
(val - 1) << SMARTFAN_EN_SHIFT(sattr->index));
return ret ? : count;
}
static int nct7802_read_temp(struct nct7802_data *data,
u8 reg_temp, u8 reg_temp_low, int *temp)
{
unsigned int t1, t2 = 0;
int err;
*temp = 0;
mutex_lock(&data->access_lock);
err = regmap_read(data->regmap, reg_temp, &t1);
if (err < 0)
goto abort;
t1 <<= 8;
if (reg_temp_low) { /* 11 bit data */
err = regmap_read(data->regmap, reg_temp_low, &t2);
if (err < 0)
goto abort;
}
t1 |= t2 & 0xe0;
*temp = (s16)t1 / 32 * 125;
abort:
mutex_unlock(&data->access_lock);
return err;
}
static int nct7802_read_fan(struct nct7802_data *data, u8 reg_fan)
{
unsigned int f1, f2;
int ret;
mutex_lock(&data->access_lock);
ret = regmap_read(data->regmap, reg_fan, &f1);
if (ret < 0)
goto abort;
ret = regmap_read(data->regmap, REG_FANCOUNT_LOW, &f2);
if (ret < 0)
goto abort;
ret = (f1 << 5) | (f2 >> 3);
/* convert fan count to rpm */
if (ret == 0x1fff) /* maximum value, assume fan is stopped */
ret = 0;
else if (ret)
ret = DIV_ROUND_CLOSEST(1350000U, ret);
abort:
mutex_unlock(&data->access_lock);
return ret;
}
static int nct7802_read_fan_min(struct nct7802_data *data, u8 reg_fan_low,
u8 reg_fan_high)
{
unsigned int f1, f2;
int ret;
mutex_lock(&data->access_lock);
ret = regmap_read(data->regmap, reg_fan_low, &f1);
if (ret < 0)
goto abort;
ret = regmap_read(data->regmap, reg_fan_high, &f2);
if (ret < 0)
goto abort;
ret = f1 | ((f2 & 0xf8) << 5);
/* convert fan count to rpm */
if (ret == 0x1fff) /* maximum value, assume no limit */
ret = 0;
else if (ret)
ret = DIV_ROUND_CLOSEST(1350000U, ret);
else
ret = 1350000U;
abort:
mutex_unlock(&data->access_lock);
return ret;
}
static int nct7802_write_fan_min(struct nct7802_data *data, u8 reg_fan_low,
u8 reg_fan_high, unsigned long limit)
{
int err;
if (limit)
limit = DIV_ROUND_CLOSEST(1350000U, limit);
else
limit = 0x1fff;
limit = clamp_val(limit, 0, 0x1fff);
mutex_lock(&data->access_lock);
err = regmap_write(data->regmap, reg_fan_low, limit & 0xff);
if (err < 0)
goto abort;
err = regmap_write(data->regmap, reg_fan_high, (limit & 0x1f00) >> 5);
abort:
mutex_unlock(&data->access_lock);
return err;
}
static u8 nct7802_vmul[] = { 4, 2, 2, 2, 2 };
static int nct7802_read_voltage(struct nct7802_data *data, int nr, int index)
{
unsigned int v1, v2;
int ret;
mutex_lock(&data->access_lock);
if (index == 0) { /* voltage */
ret = regmap_read(data->regmap, REG_VOLTAGE[nr], &v1);
if (ret < 0)
goto abort;
ret = regmap_read(data->regmap, REG_VOLTAGE_LOW, &v2);
if (ret < 0)
goto abort;
ret = ((v1 << 2) | (v2 >> 6)) * nct7802_vmul[nr];
} else { /* limit */
int shift = 8 - REG_VOLTAGE_LIMIT_MSB_SHIFT[index - 1][nr];
ret = regmap_read(data->regmap,
REG_VOLTAGE_LIMIT_LSB[index - 1][nr], &v1);
if (ret < 0)
goto abort;
ret = regmap_read(data->regmap, REG_VOLTAGE_LIMIT_MSB[nr],
&v2);
if (ret < 0)
goto abort;
ret = (v1 | ((v2 << shift) & 0x300)) * nct7802_vmul[nr];
}
abort:
mutex_unlock(&data->access_lock);
return ret;
}
static int nct7802_write_voltage(struct nct7802_data *data, int nr, int index,
unsigned long voltage)
{
int shift = 8 - REG_VOLTAGE_LIMIT_MSB_SHIFT[index - 1][nr];
int err;
voltage = clamp_val(voltage, 0, 0x3ff * nct7802_vmul[nr]);
voltage = DIV_ROUND_CLOSEST(voltage, nct7802_vmul[nr]);
mutex_lock(&data->access_lock);
err = regmap_write(data->regmap,
REG_VOLTAGE_LIMIT_LSB[index - 1][nr],
voltage & 0xff);
if (err < 0)
goto abort;
err = regmap_update_bits(data->regmap, REG_VOLTAGE_LIMIT_MSB[nr],
0x0300 >> shift, (voltage & 0x0300) >> shift);
abort:
mutex_unlock(&data->access_lock);
return err;
}
static ssize_t in_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
int voltage;
voltage = nct7802_read_voltage(data, sattr->nr, sattr->index);
if (voltage < 0)
return voltage;
return sprintf(buf, "%d\n", voltage);
}
static ssize_t in_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
int index = sattr->index;
int nr = sattr->nr;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
err = nct7802_write_voltage(data, nr, index, val);
return err ? : count;
}
static ssize_t in_alarm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
int volt, min, max, ret;
unsigned int val;
mutex_lock(&data->in_alarm_lock);
/*
* The SMI Voltage status register is the only register giving a status
* for voltages. A bit is set for each input crossing a threshold, in
* both direction, but the "inside" or "outside" limits info is not
* available. Also this register is cleared on read.
* Note: this is not explicitly spelled out in the datasheet, but
* from experiment.
* To deal with this we use a status cache with one validity bit and
* one status bit for each input. Validity is cleared at startup and
* each time the register reports a change, and the status is processed
* by software based on current input value and limits.
*/
ret = regmap_read(data->regmap, 0x1e, &val); /* SMI Voltage status */
if (ret < 0)
goto abort;
/* invalidate cached status for all inputs crossing a threshold */
data->in_status &= ~((val & 0x0f) << 4);
/* if cached status for requested input is invalid, update it */
if (!(data->in_status & (0x10 << sattr->index))) {
ret = nct7802_read_voltage(data, sattr->nr, 0);
if (ret < 0)
goto abort;
volt = ret;
ret = nct7802_read_voltage(data, sattr->nr, 1);
if (ret < 0)
goto abort;
min = ret;
ret = nct7802_read_voltage(data, sattr->nr, 2);
if (ret < 0)
goto abort;
max = ret;
if (volt < min || volt > max)
data->in_status |= (1 << sattr->index);
else
data->in_status &= ~(1 << sattr->index);
data->in_status |= 0x10 << sattr->index;
}
ret = sprintf(buf, "%u\n", !!(data->in_status & (1 << sattr->index)));
abort:
mutex_unlock(&data->in_alarm_lock);
return ret;
}
static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nct7802_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
int err, temp;
err = nct7802_read_temp(data, sattr->nr, sattr->index, &temp);
if (err < 0)
return err;
return sprintf(buf, "%d\n", temp);
}
static ssize_t temp_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
int nr = sattr->nr;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
val = DIV_ROUND_CLOSEST(clamp_val(val, -128000, 127000), 1000);
err = regmap_write(data->regmap, nr, val & 0xff);
return err ? : count;
}
static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
int speed;
speed = nct7802_read_fan(data, sattr->index);
if (speed < 0)
return speed;
return sprintf(buf, "%d\n", speed);
}
static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
int speed;
speed = nct7802_read_fan_min(data, sattr->nr, sattr->index);
if (speed < 0)
return speed;
return sprintf(buf, "%d\n", speed);
}
static ssize_t fan_min_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
err = nct7802_write_fan_min(data, sattr->nr, sattr->index, val);
return err ? : count;
}
static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nct7802_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
int bit = sattr->index;
unsigned int val;
int ret;
ret = regmap_read(data->regmap, sattr->nr, &val);
if (ret < 0)
return ret;
return sprintf(buf, "%u\n", !!(val & (1 << bit)));
}
static ssize_t
beep_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned int regval;
int err;
err = regmap_read(data->regmap, sattr->nr, &regval);
if (err)
return err;
return sprintf(buf, "%u\n", !!(regval & (1 << sattr->index)));
}
static ssize_t
beep_store(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
if (val > 1)
return -EINVAL;
err = regmap_update_bits(data->regmap, sattr->nr, 1 << sattr->index,
val ? 1 << sattr->index : 0);
return err ? : count;
}
static SENSOR_DEVICE_ATTR_RW(temp1_type, temp_type, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp1_input, temp, 0x01, REG_TEMP_LSB);
static SENSOR_DEVICE_ATTR_2_RW(temp1_min, temp, 0x31, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_max, temp, 0x30, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_crit, temp, 0x3a, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_type, temp_type, 1);
static SENSOR_DEVICE_ATTR_2_RO(temp2_input, temp, 0x02, REG_TEMP_LSB);
static SENSOR_DEVICE_ATTR_2_RW(temp2_min, temp, 0x33, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp2_max, temp, 0x32, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp2_crit, temp, 0x3b, 0);
static SENSOR_DEVICE_ATTR_RW(temp3_type, temp_type, 2);
static SENSOR_DEVICE_ATTR_2_RO(temp3_input, temp, 0x03, REG_TEMP_LSB);
static SENSOR_DEVICE_ATTR_2_RW(temp3_min, temp, 0x35, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp3_max, temp, 0x34, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp3_crit, temp, 0x3c, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp4_input, temp, 0x04, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp4_min, temp, 0x37, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp4_max, temp, 0x36, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp4_crit, temp, 0x3d, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp5_input, temp, 0x06, REG_TEMP_PECI_LSB);
static SENSOR_DEVICE_ATTR_2_RW(temp5_min, temp, 0x39, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp5_max, temp, 0x38, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp5_crit, temp, 0x3e, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp6_input, temp, 0x07, REG_TEMP_PECI_LSB);
static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, alarm, 0x18, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, alarm, 0x18, 1);
static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, alarm, 0x18, 2);
static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, alarm, 0x18, 3);
static SENSOR_DEVICE_ATTR_2_RO(temp5_min_alarm, alarm, 0x18, 4);
static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, alarm, 0x19, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, alarm, 0x19, 1);
static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, alarm, 0x19, 2);
static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, alarm, 0x19, 3);
static SENSOR_DEVICE_ATTR_2_RO(temp5_max_alarm, alarm, 0x19, 4);
static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, alarm, 0x1b, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, alarm, 0x1b, 1);
static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, alarm, 0x1b, 2);
static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, alarm, 0x1b, 3);
static SENSOR_DEVICE_ATTR_2_RO(temp5_crit_alarm, alarm, 0x1b, 4);
static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, alarm, 0x17, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, alarm, 0x17, 1);
static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, alarm, 0x17, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp1_beep, beep, 0x5c, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp2_beep, beep, 0x5c, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp3_beep, beep, 0x5c, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp4_beep, beep, 0x5c, 3);
static SENSOR_DEVICE_ATTR_2_RW(temp5_beep, beep, 0x5c, 4);
static SENSOR_DEVICE_ATTR_2_RW(temp6_beep, beep, 0x5c, 5);
static struct attribute *nct7802_temp_attrs[] = {
&sensor_dev_attr_temp1_type.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_fault.dev_attr.attr,
&sensor_dev_attr_temp1_beep.dev_attr.attr,
&sensor_dev_attr_temp2_type.dev_attr.attr, /* 10 */
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_fault.dev_attr.attr,
&sensor_dev_attr_temp2_beep.dev_attr.attr,
&sensor_dev_attr_temp3_type.dev_attr.attr, /* 20 */
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_fault.dev_attr.attr,
&sensor_dev_attr_temp3_beep.dev_attr.attr,
&sensor_dev_attr_temp4_input.dev_attr.attr, /* 30 */
&sensor_dev_attr_temp4_min.dev_attr.attr,
&sensor_dev_attr_temp4_max.dev_attr.attr,
&sensor_dev_attr_temp4_crit.dev_attr.attr,
&sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_beep.dev_attr.attr,
&sensor_dev_attr_temp5_input.dev_attr.attr, /* 38 */
&sensor_dev_attr_temp5_min.dev_attr.attr,
&sensor_dev_attr_temp5_max.dev_attr.attr,
&sensor_dev_attr_temp5_crit.dev_attr.attr,
&sensor_dev_attr_temp5_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp5_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp5_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp5_beep.dev_attr.attr,
&sensor_dev_attr_temp6_input.dev_attr.attr, /* 46 */
&sensor_dev_attr_temp6_beep.dev_attr.attr,
NULL
};
static umode_t nct7802_temp_is_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned int reg;
int err;
err = regmap_read(data->regmap, REG_MODE, &reg);
if (err < 0)
return 0;
if (index < 10 &&
(reg & 03) != 0x01 && (reg & 0x03) != 0x02) /* RD1 */
return 0;
if (index >= 10 && index < 20 &&
(reg & 0x0c) != 0x04 && (reg & 0x0c) != 0x08) /* RD2 */
return 0;
if (index >= 20 && index < 30 && (reg & 0x30) != 0x20) /* RD3 */
return 0;
if (index >= 30 && index < 38) /* local */
return attr->mode;
err = regmap_read(data->regmap, REG_PECI_ENABLE, &reg);
if (err < 0)
return 0;
if (index >= 38 && index < 46 && !(reg & 0x01)) /* PECI 0 */
return 0;
if (index >= 0x46 && (!(reg & 0x02))) /* PECI 1 */
return 0;
return attr->mode;
}
static const struct attribute_group nct7802_temp_group = {
.attrs = nct7802_temp_attrs,
.is_visible = nct7802_temp_is_visible,
};
static SENSOR_DEVICE_ATTR_2_RO(in0_input, in, 0, 0);
static SENSOR_DEVICE_ATTR_2_RW(in0_min, in, 0, 1);
static SENSOR_DEVICE_ATTR_2_RW(in0_max, in, 0, 2);
static SENSOR_DEVICE_ATTR_2_RO(in0_alarm, in_alarm, 0, 3);
static SENSOR_DEVICE_ATTR_2_RW(in0_beep, beep, 0x5a, 3);
static SENSOR_DEVICE_ATTR_2_RO(in1_input, in, 1, 0);
static SENSOR_DEVICE_ATTR_2_RO(in2_input, in, 2, 0);
static SENSOR_DEVICE_ATTR_2_RW(in2_min, in, 2, 1);
static SENSOR_DEVICE_ATTR_2_RW(in2_max, in, 2, 2);
static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, in_alarm, 2, 0);
static SENSOR_DEVICE_ATTR_2_RW(in2_beep, beep, 0x5a, 0);
static SENSOR_DEVICE_ATTR_2_RO(in3_input, in, 3, 0);
static SENSOR_DEVICE_ATTR_2_RW(in3_min, in, 3, 1);
static SENSOR_DEVICE_ATTR_2_RW(in3_max, in, 3, 2);
static SENSOR_DEVICE_ATTR_2_RO(in3_alarm, in_alarm, 3, 1);
static SENSOR_DEVICE_ATTR_2_RW(in3_beep, beep, 0x5a, 1);
static SENSOR_DEVICE_ATTR_2_RO(in4_input, in, 4, 0);
static SENSOR_DEVICE_ATTR_2_RW(in4_min, in, 4, 1);
static SENSOR_DEVICE_ATTR_2_RW(in4_max, in, 4, 2);
static SENSOR_DEVICE_ATTR_2_RO(in4_alarm, in_alarm, 4, 2);
static SENSOR_DEVICE_ATTR_2_RW(in4_beep, beep, 0x5a, 2);
static struct attribute *nct7802_in_attrs[] = {
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
&sensor_dev_attr_in0_beep.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr, /* 5 */
&sensor_dev_attr_in2_input.dev_attr.attr, /* 6 */
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in2_beep.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr, /* 11 */
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_in3_beep.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr, /* 16 */
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
&sensor_dev_attr_in4_beep.dev_attr.attr,
NULL,
};
static umode_t nct7802_in_is_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned int reg;
int err;
if (index < 6) /* VCC, VCORE */
return attr->mode;
err = regmap_read(data->regmap, REG_MODE, &reg);
if (err < 0)
return 0;
if (index >= 6 && index < 11 && (reg & 0x03) != 0x03) /* VSEN1 */
return 0;
if (index >= 11 && index < 16 && (reg & 0x0c) != 0x0c) /* VSEN2 */
return 0;
if (index >= 16 && (reg & 0x30) != 0x30) /* VSEN3 */
return 0;
return attr->mode;
}
static const struct attribute_group nct7802_in_group = {
.attrs = nct7802_in_attrs,
.is_visible = nct7802_in_is_visible,
};
static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0x10);
static SENSOR_DEVICE_ATTR_2_RW(fan1_min, fan_min, 0x49, 0x4c);
static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, alarm, 0x1a, 0);
static SENSOR_DEVICE_ATTR_2_RW(fan1_beep, beep, 0x5b, 0);
static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 0x11);
static SENSOR_DEVICE_ATTR_2_RW(fan2_min, fan_min, 0x4a, 0x4d);
static SENSOR_DEVICE_ATTR_2_RO(fan2_alarm, alarm, 0x1a, 1);
static SENSOR_DEVICE_ATTR_2_RW(fan2_beep, beep, 0x5b, 1);
static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 0x12);
static SENSOR_DEVICE_ATTR_2_RW(fan3_min, fan_min, 0x4b, 0x4e);
static SENSOR_DEVICE_ATTR_2_RO(fan3_alarm, alarm, 0x1a, 2);
static SENSOR_DEVICE_ATTR_2_RW(fan3_beep, beep, 0x5b, 2);
/* 7.2.89 Fan Control Output Type */
static SENSOR_DEVICE_ATTR_RO(pwm1_mode, pwm_mode, 0);
static SENSOR_DEVICE_ATTR_RO(pwm2_mode, pwm_mode, 1);
static SENSOR_DEVICE_ATTR_RO(pwm3_mode, pwm_mode, 2);
/* 7.2.91... Fan Control Output Value */
static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, REG_PWM(0));
static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, REG_PWM(1));
static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, REG_PWM(2));
/* 7.2.95... Temperature to Fan mapping Relationships Register */
static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
static struct attribute *nct7802_fan_attrs[] = {
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_beep.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_beep.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_beep.dev_attr.attr,
NULL
};
static umode_t nct7802_fan_is_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct nct7802_data *data = dev_get_drvdata(dev);
int fan = index / 4; /* 4 attributes per fan */
unsigned int reg;
int err;
err = regmap_read(data->regmap, REG_FAN_ENABLE, &reg);
if (err < 0 || !(reg & (1 << fan)))
return 0;
return attr->mode;
}
static const struct attribute_group nct7802_fan_group = {
.attrs = nct7802_fan_attrs,
.is_visible = nct7802_fan_is_visible,
};
static struct attribute *nct7802_pwm_attrs[] = {
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_mode.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm2_mode.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm3_enable.dev_attr.attr,
&sensor_dev_attr_pwm3_mode.dev_attr.attr,
&sensor_dev_attr_pwm3.dev_attr.attr,
NULL
};
static const struct attribute_group nct7802_pwm_group = {
.attrs = nct7802_pwm_attrs,
};
/* 7.2.115... 0x80-0x83, 0x84 Temperature (X-axis) transition */
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point1_temp, temp, 0x80, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point2_temp, temp, 0x81, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point3_temp, temp, 0x82, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point4_temp, temp, 0x83, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point5_temp, temp, 0x84, 0);
/* 7.2.120... 0x85-0x88 PWM (Y-axis) transition */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point1_pwm, pwm, 0x85);
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point2_pwm, pwm, 0x86);
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point3_pwm, pwm, 0x87);
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point4_pwm, pwm, 0x88);
static SENSOR_DEVICE_ATTR_RO(pwm1_auto_point5_pwm, pwm, 0);
/* 7.2.124 Table 2 X-axis Transition Point 1 Register */
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point1_temp, temp, 0x90, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point2_temp, temp, 0x91, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point3_temp, temp, 0x92, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point4_temp, temp, 0x93, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point5_temp, temp, 0x94, 0);
/* 7.2.129 Table 2 Y-axis Transition Point 1 Register */
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point1_pwm, pwm, 0x95);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point2_pwm, pwm, 0x96);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point3_pwm, pwm, 0x97);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point4_pwm, pwm, 0x98);
static SENSOR_DEVICE_ATTR_RO(pwm2_auto_point5_pwm, pwm, 0);
/* 7.2.133 Table 3 X-axis Transition Point 1 Register */
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point1_temp, temp, 0xA0, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point2_temp, temp, 0xA1, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point3_temp, temp, 0xA2, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point4_temp, temp, 0xA3, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point5_temp, temp, 0xA4, 0);
/* 7.2.138 Table 3 Y-axis Transition Point 1 Register */
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point1_pwm, pwm, 0xA5);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point2_pwm, pwm, 0xA6);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point3_pwm, pwm, 0xA7);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point4_pwm, pwm, 0xA8);
static SENSOR_DEVICE_ATTR_RO(pwm3_auto_point5_pwm, pwm, 0);
static struct attribute *nct7802_auto_point_attrs[] = {
&sensor_dev_attr_pwm1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point3_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point4_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point5_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point3_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point4_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point5_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point3_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point4_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point5_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point3_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point4_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point5_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point3_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point4_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point5_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point3_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point4_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point5_pwm.dev_attr.attr,
NULL
};
static const struct attribute_group nct7802_auto_point_group = {
.attrs = nct7802_auto_point_attrs,
};
static const struct attribute_group *nct7802_groups[] = {
&nct7802_temp_group,
&nct7802_in_group,
&nct7802_fan_group,
&nct7802_pwm_group,
&nct7802_auto_point_group,
NULL
};
static int nct7802_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
int reg;
/*
* Chip identification registers are only available in bank 0,
* so only attempt chip detection if bank 0 is selected
*/
reg = i2c_smbus_read_byte_data(client, REG_BANK);
if (reg != 0x00)
return -ENODEV;
reg = i2c_smbus_read_byte_data(client, REG_VENDOR_ID);
if (reg != 0x50)
return -ENODEV;
reg = i2c_smbus_read_byte_data(client, REG_CHIP_ID);
if (reg != 0xc3)
return -ENODEV;
reg = i2c_smbus_read_byte_data(client, REG_VERSION_ID);
if (reg < 0 || (reg & 0xf0) != 0x20)
return -ENODEV;
/* Also validate lower bits of voltage and temperature registers */
reg = i2c_smbus_read_byte_data(client, REG_TEMP_LSB);
if (reg < 0 || (reg & 0x1f))
return -ENODEV;
reg = i2c_smbus_read_byte_data(client, REG_TEMP_PECI_LSB);
if (reg < 0 || (reg & 0x3f))
return -ENODEV;
reg = i2c_smbus_read_byte_data(client, REG_VOLTAGE_LOW);
if (reg < 0 || (reg & 0x3f))
return -ENODEV;
strscpy(info->type, "nct7802", I2C_NAME_SIZE);
return 0;
}
static bool nct7802_regmap_is_volatile(struct device *dev, unsigned int reg)
{
return (reg != REG_BANK && reg <= 0x20) ||
(reg >= REG_PWM(0) && reg <= REG_PWM(2));
}
static const struct regmap_config nct7802_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.cache_type = REGCACHE_RBTREE,
.volatile_reg = nct7802_regmap_is_volatile,
};
static int nct7802_get_channel_config(struct device *dev,
struct device_node *node, u8 *mode_mask,
u8 *mode_val)
{
u32 reg;
const char *type_str, *md_str;
u8 md;
if (!node->name || of_node_cmp(node->name, "channel"))
return 0;
if (of_property_read_u32(node, "reg", &reg)) {
dev_err(dev, "Could not read reg value for '%s'\n",
node->full_name);
return -EINVAL;
}
if (reg > 3) {
dev_err(dev, "Invalid reg (%u) in '%s'\n", reg,
node->full_name);
return -EINVAL;
}
if (reg == 0) {
if (!of_device_is_available(node))
*mode_val &= ~MODE_LTD_EN;
else
*mode_val |= MODE_LTD_EN;
*mode_mask |= MODE_LTD_EN;
return 0;
}
/* At this point we have reg >= 1 && reg <= 3 */
if (!of_device_is_available(node)) {
*mode_val &= ~(MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1));
*mode_mask |= MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1);
return 0;
}
if (of_property_read_string(node, "sensor-type", &type_str)) {
dev_err(dev, "No type for '%s'\n", node->full_name);
return -EINVAL;
}
if (!strcmp(type_str, "voltage")) {
*mode_val |= (RTD_MODE_VOLTAGE & MODE_RTD_MASK)
<< MODE_BIT_OFFSET_RTD(reg - 1);
*mode_mask |= MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1);
return 0;
}
if (strcmp(type_str, "temperature")) {
dev_err(dev, "Invalid type '%s' for '%s'\n", type_str,
node->full_name);
return -EINVAL;
}
if (reg == 3) {
/* RTD3 only supports thermistor mode */
md = RTD_MODE_THERMISTOR;
} else {
if (of_property_read_string(node, "temperature-mode",
&md_str)) {
dev_err(dev, "No mode for '%s'\n", node->full_name);
return -EINVAL;
}
if (!strcmp(md_str, "thermal-diode"))
md = RTD_MODE_CURRENT;
else if (!strcmp(md_str, "thermistor"))
md = RTD_MODE_THERMISTOR;
else {
dev_err(dev, "Invalid mode '%s' for '%s'\n", md_str,
node->full_name);
return -EINVAL;
}
}
*mode_val |= (md & MODE_RTD_MASK) << MODE_BIT_OFFSET_RTD(reg - 1);
*mode_mask |= MODE_RTD_MASK << MODE_BIT_OFFSET_RTD(reg - 1);
return 0;
}
static int nct7802_configure_channels(struct device *dev,
struct nct7802_data *data)
{
/* Enable local temperature sensor by default */
u8 mode_mask = MODE_LTD_EN, mode_val = MODE_LTD_EN;
struct device_node *node;
int err;
if (dev->of_node) {
for_each_child_of_node(dev->of_node, node) {
err = nct7802_get_channel_config(dev, node, &mode_mask,
&mode_val);
if (err) {
of_node_put(node);
return err;
}
}
}
return regmap_update_bits(data->regmap, REG_MODE, mode_mask, mode_val);
}
static int nct7802_init_chip(struct device *dev, struct nct7802_data *data)
{
int err;
/* Enable ADC */
err = regmap_update_bits(data->regmap, REG_START, 0x01, 0x01);
if (err)
return err;
err = nct7802_configure_channels(dev, data);
if (err)
return err;
/* Enable Vcore and VCC voltage monitoring */
return regmap_update_bits(data->regmap, REG_VMON_ENABLE, 0x03, 0x03);
}
static int nct7802_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct nct7802_data *data;
struct device *hwmon_dev;
int ret;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
data->regmap = devm_regmap_init_i2c(client, &nct7802_regmap_config);
if (IS_ERR(data->regmap))
return PTR_ERR(data->regmap);
mutex_init(&data->access_lock);
mutex_init(&data->in_alarm_lock);
ret = nct7802_init_chip(dev, data);
if (ret < 0)
return ret;
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
data,
nct7802_groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const unsigned short nct7802_address_list[] = {
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END
};
static const struct i2c_device_id nct7802_idtable[] = {
{ "nct7802", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, nct7802_idtable);
static struct i2c_driver nct7802_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = DRVNAME,
},
.detect = nct7802_detect,
.probe_new = nct7802_probe,
.id_table = nct7802_idtable,
.address_list = nct7802_address_list,
};
module_i2c_driver(nct7802_driver);
MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>");
MODULE_DESCRIPTION("NCT7802Y Hardware Monitoring Driver");
MODULE_LICENSE("GPL v2");