OpenCloudOS-Kernel/fs/ufs/super.c

1349 lines
39 KiB
C
Raw Normal View History

/*
* linux/fs/ufs/super.c
*
* Copyright (C) 1998
* Daniel Pirkl <daniel.pirkl@email.cz>
* Charles University, Faculty of Mathematics and Physics
*/
/* Derived from
*
* linux/fs/ext2/super.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
/*
* Inspired by
*
* linux/fs/ufs/super.c
*
* Copyright (C) 1996
* Adrian Rodriguez (adrian@franklins-tower.rutgers.edu)
* Laboratory for Computer Science Research Computing Facility
* Rutgers, The State University of New Jersey
*
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
*
* Kernel module support added on 96/04/26 by
* Stefan Reinauer <stepan@home.culture.mipt.ru>
*
* Module usage counts added on 96/04/29 by
* Gertjan van Wingerde <gertjan@cs.vu.nl>
*
* Clean swab support on 19970406 by
* Francois-Rene Rideau <fare@tunes.org>
*
* 4.4BSD (FreeBSD) support added on February 1st 1998 by
* Niels Kristian Bech Jensen <nkbj@image.dk> partially based
* on code by Martin von Loewis <martin@mira.isdn.cs.tu-berlin.de>.
*
* NeXTstep support added on February 5th 1998 by
* Niels Kristian Bech Jensen <nkbj@image.dk>.
*
* write support Daniel Pirkl <daniel.pirkl@email.cz> 1998
*
* HP/UX hfs filesystem support added by
* Martin K. Petersen <mkp@mkp.net>, August 1999
*
* UFS2 (of FreeBSD 5.x) support added by
* Niraj Kumar <niraj17@iitbombay.org>, Jan 2004
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/bitops.h>
#include <stdarg.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/ufs_fs.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/blkdev.h>
#include <linux/init.h>
#include <linux/parser.h>
#include <linux/smp_lock.h>
#include <linux/buffer_head.h>
#include <linux/vfs.h>
#include "swab.h"
#include "util.h"
#undef UFS_SUPER_DEBUG
#undef UFS_SUPER_DEBUG_MORE
#undef UFS_SUPER_DEBUG_MORE
#ifdef UFS_SUPER_DEBUG
#define UFSD(x) printk("(%s, %d), %s: ", __FILE__, __LINE__, __FUNCTION__); printk x;
#else
#define UFSD(x)
#endif
#ifdef UFS_SUPER_DEBUG_MORE
/*
* Print contents of ufs_super_block, useful for debugging
*/
void ufs_print_super_stuff(struct super_block *sb,
struct ufs_super_block_first * usb1,
struct ufs_super_block_second * usb2,
struct ufs_super_block_third * usb3)
{
printk("ufs_print_super_stuff\n");
printk("size of usb: %u\n", sizeof(struct ufs_super_block));
printk(" magic: 0x%x\n", fs32_to_cpu(sb, usb3->fs_magic));
printk(" sblkno: %u\n", fs32_to_cpu(sb, usb1->fs_sblkno));
printk(" cblkno: %u\n", fs32_to_cpu(sb, usb1->fs_cblkno));
printk(" iblkno: %u\n", fs32_to_cpu(sb, usb1->fs_iblkno));
printk(" dblkno: %u\n", fs32_to_cpu(sb, usb1->fs_dblkno));
printk(" cgoffset: %u\n", fs32_to_cpu(sb, usb1->fs_cgoffset));
printk(" ~cgmask: 0x%x\n", ~fs32_to_cpu(sb, usb1->fs_cgmask));
printk(" size: %u\n", fs32_to_cpu(sb, usb1->fs_size));
printk(" dsize: %u\n", fs32_to_cpu(sb, usb1->fs_dsize));
printk(" ncg: %u\n", fs32_to_cpu(sb, usb1->fs_ncg));
printk(" bsize: %u\n", fs32_to_cpu(sb, usb1->fs_bsize));
printk(" fsize: %u\n", fs32_to_cpu(sb, usb1->fs_fsize));
printk(" frag: %u\n", fs32_to_cpu(sb, usb1->fs_frag));
printk(" fragshift: %u\n", fs32_to_cpu(sb, usb1->fs_fragshift));
printk(" ~fmask: %u\n", ~fs32_to_cpu(sb, usb1->fs_fmask));
printk(" fshift: %u\n", fs32_to_cpu(sb, usb1->fs_fshift));
printk(" sbsize: %u\n", fs32_to_cpu(sb, usb1->fs_sbsize));
printk(" spc: %u\n", fs32_to_cpu(sb, usb1->fs_spc));
printk(" cpg: %u\n", fs32_to_cpu(sb, usb1->fs_cpg));
printk(" ipg: %u\n", fs32_to_cpu(sb, usb1->fs_ipg));
printk(" fpg: %u\n", fs32_to_cpu(sb, usb1->fs_fpg));
printk(" csaddr: %u\n", fs32_to_cpu(sb, usb1->fs_csaddr));
printk(" cssize: %u\n", fs32_to_cpu(sb, usb1->fs_cssize));
printk(" cgsize: %u\n", fs32_to_cpu(sb, usb1->fs_cgsize));
printk(" fstodb: %u\n", fs32_to_cpu(sb, usb1->fs_fsbtodb));
printk(" contigsumsize: %d\n", fs32_to_cpu(sb, usb3->fs_u2.fs_44.fs_contigsumsize));
printk(" postblformat: %u\n", fs32_to_cpu(sb, usb3->fs_postblformat));
printk(" nrpos: %u\n", fs32_to_cpu(sb, usb3->fs_nrpos));
printk(" ndir %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir));
printk(" nifree %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree));
printk(" nbfree %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree));
printk(" nffree %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree));
printk("\n");
}
/*
* Print contents of ufs2 ufs_super_block, useful for debugging
*/
void ufs2_print_super_stuff(
struct super_block *sb,
struct ufs_super_block *usb)
{
printk("ufs_print_super_stuff\n");
printk("size of usb: %u\n", sizeof(struct ufs_super_block));
printk(" magic: 0x%x\n", fs32_to_cpu(sb, usb->fs_magic));
printk(" fs_size: %u\n",fs64_to_cpu(sb, usb->fs_u11.fs_u2.fs_size));
printk(" fs_dsize: %u\n",fs64_to_cpu(sb, usb->fs_u11.fs_u2.fs_dsize));
printk(" bsize: %u\n", fs32_to_cpu(usb, usb->fs_bsize));
printk(" fsize: %u\n", fs32_to_cpu(usb, usb->fs_fsize));
printk(" fs_volname: %s\n", usb->fs_u11.fs_u2.fs_volname);
printk(" fs_fsmnt: %s\n", usb->fs_u11.fs_u2.fs_fsmnt);
printk(" fs_sblockloc: %u\n",fs64_to_cpu(sb,
usb->fs_u11.fs_u2.fs_sblockloc));
printk(" cs_ndir(No of dirs): %u\n",fs64_to_cpu(sb,
usb->fs_u11.fs_u2.fs_cstotal.cs_ndir));
printk(" cs_nbfree(No of free blocks): %u\n",fs64_to_cpu(sb,
usb->fs_u11.fs_u2.fs_cstotal.cs_nbfree));
printk("\n");
}
/*
* Print contents of ufs_cylinder_group, useful for debugging
*/
void ufs_print_cylinder_stuff(struct super_block *sb, struct ufs_cylinder_group *cg)
{
printk("\nufs_print_cylinder_stuff\n");
printk("size of ucg: %u\n", sizeof(struct ufs_cylinder_group));
printk(" magic: %x\n", fs32_to_cpu(sb, cg->cg_magic));
printk(" time: %u\n", fs32_to_cpu(sb, cg->cg_time));
printk(" cgx: %u\n", fs32_to_cpu(sb, cg->cg_cgx));
printk(" ncyl: %u\n", fs16_to_cpu(sb, cg->cg_ncyl));
printk(" niblk: %u\n", fs16_to_cpu(sb, cg->cg_niblk));
printk(" ndblk: %u\n", fs32_to_cpu(sb, cg->cg_ndblk));
printk(" cs_ndir: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_ndir));
printk(" cs_nbfree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nbfree));
printk(" cs_nifree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nifree));
printk(" cs_nffree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nffree));
printk(" rotor: %u\n", fs32_to_cpu(sb, cg->cg_rotor));
printk(" frotor: %u\n", fs32_to_cpu(sb, cg->cg_frotor));
printk(" irotor: %u\n", fs32_to_cpu(sb, cg->cg_irotor));
printk(" frsum: %u, %u, %u, %u, %u, %u, %u, %u\n",
fs32_to_cpu(sb, cg->cg_frsum[0]), fs32_to_cpu(sb, cg->cg_frsum[1]),
fs32_to_cpu(sb, cg->cg_frsum[2]), fs32_to_cpu(sb, cg->cg_frsum[3]),
fs32_to_cpu(sb, cg->cg_frsum[4]), fs32_to_cpu(sb, cg->cg_frsum[5]),
fs32_to_cpu(sb, cg->cg_frsum[6]), fs32_to_cpu(sb, cg->cg_frsum[7]));
printk(" btotoff: %u\n", fs32_to_cpu(sb, cg->cg_btotoff));
printk(" boff: %u\n", fs32_to_cpu(sb, cg->cg_boff));
printk(" iuseoff: %u\n", fs32_to_cpu(sb, cg->cg_iusedoff));
printk(" freeoff: %u\n", fs32_to_cpu(sb, cg->cg_freeoff));
printk(" nextfreeoff: %u\n", fs32_to_cpu(sb, cg->cg_nextfreeoff));
printk(" clustersumoff %u\n", fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clustersumoff));
printk(" clusteroff %u\n", fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clusteroff));
printk(" nclusterblks %u\n", fs32_to_cpu(sb, cg->cg_u.cg_44.cg_nclusterblks));
printk("\n");
}
#endif /* UFS_SUPER_DEBUG_MORE */
static struct super_operations ufs_super_ops;
static char error_buf[1024];
void ufs_error (struct super_block * sb, const char * function,
const char * fmt, ...)
{
struct ufs_sb_private_info * uspi;
struct ufs_super_block_first * usb1;
va_list args;
uspi = UFS_SB(sb)->s_uspi;
usb1 = ubh_get_usb_first(uspi);
if (!(sb->s_flags & MS_RDONLY)) {
usb1->fs_clean = UFS_FSBAD;
ubh_mark_buffer_dirty(USPI_UBH);
sb->s_dirt = 1;
sb->s_flags |= MS_RDONLY;
}
va_start (args, fmt);
vsprintf (error_buf, fmt, args);
va_end (args);
switch (UFS_SB(sb)->s_mount_opt & UFS_MOUNT_ONERROR) {
case UFS_MOUNT_ONERROR_PANIC:
panic ("UFS-fs panic (device %s): %s: %s\n",
sb->s_id, function, error_buf);
case UFS_MOUNT_ONERROR_LOCK:
case UFS_MOUNT_ONERROR_UMOUNT:
case UFS_MOUNT_ONERROR_REPAIR:
printk (KERN_CRIT "UFS-fs error (device %s): %s: %s\n",
sb->s_id, function, error_buf);
}
}
void ufs_panic (struct super_block * sb, const char * function,
const char * fmt, ...)
{
struct ufs_sb_private_info * uspi;
struct ufs_super_block_first * usb1;
va_list args;
uspi = UFS_SB(sb)->s_uspi;
usb1 = ubh_get_usb_first(uspi);
if (!(sb->s_flags & MS_RDONLY)) {
usb1->fs_clean = UFS_FSBAD;
ubh_mark_buffer_dirty(USPI_UBH);
sb->s_dirt = 1;
}
va_start (args, fmt);
vsprintf (error_buf, fmt, args);
va_end (args);
sb->s_flags |= MS_RDONLY;
printk (KERN_CRIT "UFS-fs panic (device %s): %s: %s\n",
sb->s_id, function, error_buf);
}
void ufs_warning (struct super_block * sb, const char * function,
const char * fmt, ...)
{
va_list args;
va_start (args, fmt);
vsprintf (error_buf, fmt, args);
va_end (args);
printk (KERN_WARNING "UFS-fs warning (device %s): %s: %s\n",
sb->s_id, function, error_buf);
}
enum {
Opt_type_old, Opt_type_sunx86, Opt_type_sun, Opt_type_44bsd,
Opt_type_ufs2, Opt_type_hp, Opt_type_nextstepcd, Opt_type_nextstep,
Opt_type_openstep, Opt_onerror_panic, Opt_onerror_lock,
Opt_onerror_umount, Opt_onerror_repair, Opt_err
};
static match_table_t tokens = {
{Opt_type_old, "ufstype=old"},
{Opt_type_sunx86, "ufstype=sunx86"},
{Opt_type_sun, "ufstype=sun"},
{Opt_type_44bsd, "ufstype=44bsd"},
{Opt_type_ufs2, "ufstype=ufs2"},
{Opt_type_ufs2, "ufstype=5xbsd"},
{Opt_type_hp, "ufstype=hp"},
{Opt_type_nextstepcd, "ufstype=nextstep-cd"},
{Opt_type_nextstep, "ufstype=nextstep"},
{Opt_type_openstep, "ufstype=openstep"},
{Opt_onerror_panic, "onerror=panic"},
{Opt_onerror_lock, "onerror=lock"},
{Opt_onerror_umount, "onerror=umount"},
{Opt_onerror_repair, "onerror=repair"},
{Opt_err, NULL}
};
static int ufs_parse_options (char * options, unsigned * mount_options)
{
char * p;
UFSD(("ENTER\n"))
if (!options)
return 1;
while ((p = strsep(&options, ",")) != NULL) {
substring_t args[MAX_OPT_ARGS];
int token;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_type_old:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_OLD);
break;
case Opt_type_sunx86:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_SUNx86);
break;
case Opt_type_sun:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_SUN);
break;
case Opt_type_44bsd:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_44BSD);
break;
case Opt_type_ufs2:
ufs_clear_opt(*mount_options, UFSTYPE);
ufs_set_opt(*mount_options, UFSTYPE_UFS2);
break;
case Opt_type_hp:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_HP);
break;
case Opt_type_nextstepcd:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP_CD);
break;
case Opt_type_nextstep:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP);
break;
case Opt_type_openstep:
ufs_clear_opt (*mount_options, UFSTYPE);
ufs_set_opt (*mount_options, UFSTYPE_OPENSTEP);
break;
case Opt_onerror_panic:
ufs_clear_opt (*mount_options, ONERROR);
ufs_set_opt (*mount_options, ONERROR_PANIC);
break;
case Opt_onerror_lock:
ufs_clear_opt (*mount_options, ONERROR);
ufs_set_opt (*mount_options, ONERROR_LOCK);
break;
case Opt_onerror_umount:
ufs_clear_opt (*mount_options, ONERROR);
ufs_set_opt (*mount_options, ONERROR_UMOUNT);
break;
case Opt_onerror_repair:
printk("UFS-fs: Unable to do repair on error, "
"will lock lock instead\n");
ufs_clear_opt (*mount_options, ONERROR);
ufs_set_opt (*mount_options, ONERROR_REPAIR);
break;
default:
printk("UFS-fs: Invalid option: \"%s\" "
"or missing value\n", p);
return 0;
}
}
return 1;
}
/*
* Read on-disk structures associated with cylinder groups
*/
static int ufs_read_cylinder_structures (struct super_block *sb) {
struct ufs_sb_info * sbi = UFS_SB(sb);
struct ufs_sb_private_info * uspi;
struct ufs_super_block *usb;
struct ufs_buffer_head * ubh;
unsigned char * base, * space;
unsigned size, blks, i;
unsigned flags = 0;
UFSD(("ENTER\n"))
uspi = sbi->s_uspi;
usb = (struct ufs_super_block *)
((struct ufs_buffer_head *)uspi)->bh[0]->b_data;
flags = UFS_SB(sb)->s_flags;
/*
* Read cs structures from (usually) first data block
* on the device.
*/
size = uspi->s_cssize;
blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
base = space = kmalloc(size, GFP_KERNEL);
if (!base)
goto failed;
for (i = 0; i < blks; i += uspi->s_fpb) {
size = uspi->s_bsize;
if (i + uspi->s_fpb > blks)
size = (blks - i) * uspi->s_fsize;
if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
ubh = ubh_bread(sb,
fs64_to_cpu(sb, usb->fs_u11.fs_u2.fs_csaddr) + i, size);
else
ubh = ubh_bread(sb, uspi->s_csaddr + i, size);
if (!ubh)
goto failed;
ubh_ubhcpymem (space, ubh, size);
sbi->s_csp[ufs_fragstoblks(i)]=(struct ufs_csum *)space;
space += size;
ubh_brelse (ubh);
ubh = NULL;
}
/*
* Read cylinder group (we read only first fragment from block
* at this time) and prepare internal data structures for cg caching.
*/
if (!(sbi->s_ucg = kmalloc (sizeof(struct buffer_head *) * uspi->s_ncg, GFP_KERNEL)))
goto failed;
for (i = 0; i < uspi->s_ncg; i++)
sbi->s_ucg[i] = NULL;
for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
sbi->s_ucpi[i] = NULL;
sbi->s_cgno[i] = UFS_CGNO_EMPTY;
}
for (i = 0; i < uspi->s_ncg; i++) {
UFSD(("read cg %u\n", i))
if (!(sbi->s_ucg[i] = sb_bread(sb, ufs_cgcmin(i))))
goto failed;
if (!ufs_cg_chkmagic (sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data))
goto failed;
#ifdef UFS_SUPER_DEBUG_MORE
ufs_print_cylinder_stuff(sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data);
#endif
}
for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
if (!(sbi->s_ucpi[i] = kmalloc (sizeof(struct ufs_cg_private_info), GFP_KERNEL)))
goto failed;
sbi->s_cgno[i] = UFS_CGNO_EMPTY;
}
sbi->s_cg_loaded = 0;
UFSD(("EXIT\n"))
return 1;
failed:
kfree (base);
if (sbi->s_ucg) {
for (i = 0; i < uspi->s_ncg; i++)
if (sbi->s_ucg[i])
brelse (sbi->s_ucg[i]);
kfree (sbi->s_ucg);
for (i = 0; i < UFS_MAX_GROUP_LOADED; i++)
kfree (sbi->s_ucpi[i]);
}
UFSD(("EXIT (FAILED)\n"))
return 0;
}
/*
* Put on-disk structures associated with cylinder groups and
* write them back to disk
*/
static void ufs_put_cylinder_structures (struct super_block *sb) {
struct ufs_sb_info * sbi = UFS_SB(sb);
struct ufs_sb_private_info * uspi;
struct ufs_buffer_head * ubh;
unsigned char * base, * space;
unsigned blks, size, i;
UFSD(("ENTER\n"))
uspi = sbi->s_uspi;
size = uspi->s_cssize;
blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
base = space = (char*) sbi->s_csp[0];
for (i = 0; i < blks; i += uspi->s_fpb) {
size = uspi->s_bsize;
if (i + uspi->s_fpb > blks)
size = (blks - i) * uspi->s_fsize;
ubh = ubh_bread(sb, uspi->s_csaddr + i, size);
ubh_memcpyubh (ubh, space, size);
space += size;
ubh_mark_buffer_uptodate (ubh, 1);
ubh_mark_buffer_dirty (ubh);
ubh_brelse (ubh);
}
for (i = 0; i < sbi->s_cg_loaded; i++) {
ufs_put_cylinder (sb, i);
kfree (sbi->s_ucpi[i]);
}
for (; i < UFS_MAX_GROUP_LOADED; i++)
kfree (sbi->s_ucpi[i]);
for (i = 0; i < uspi->s_ncg; i++)
brelse (sbi->s_ucg[i]);
kfree (sbi->s_ucg);
kfree (base);
UFSD(("EXIT\n"))
}
static int ufs_fill_super(struct super_block *sb, void *data, int silent)
{
struct ufs_sb_info * sbi;
struct ufs_sb_private_info * uspi;
struct ufs_super_block_first * usb1;
struct ufs_super_block_second * usb2;
struct ufs_super_block_third * usb3;
struct ufs_super_block *usb;
struct ufs_buffer_head * ubh;
struct inode *inode;
unsigned block_size, super_block_size;
unsigned flags;
unsigned super_block_offset;
uspi = NULL;
ubh = NULL;
flags = 0;
UFSD(("ENTER\n"))
sbi = kmalloc(sizeof(struct ufs_sb_info), GFP_KERNEL);
if (!sbi)
goto failed_nomem;
sb->s_fs_info = sbi;
memset(sbi, 0, sizeof(struct ufs_sb_info));
UFSD(("flag %u\n", (int)(sb->s_flags & MS_RDONLY)))
#ifndef CONFIG_UFS_FS_WRITE
if (!(sb->s_flags & MS_RDONLY)) {
printk("ufs was compiled with read-only support, "
"can't be mounted as read-write\n");
goto failed;
}
#endif
/*
* Set default mount options
* Parse mount options
*/
sbi->s_mount_opt = 0;
ufs_set_opt (sbi->s_mount_opt, ONERROR_LOCK);
if (!ufs_parse_options ((char *) data, &sbi->s_mount_opt)) {
printk("wrong mount options\n");
goto failed;
}
if (!(sbi->s_mount_opt & UFS_MOUNT_UFSTYPE)) {
if (!silent)
printk("You didn't specify the type of your ufs filesystem\n\n"
"mount -t ufs -o ufstype="
"sun|sunx86|44bsd|ufs2|5xbsd|old|hp|nextstep|netxstep-cd|openstep ...\n\n"
">>>WARNING<<< Wrong ufstype may corrupt your filesystem, "
"default is ufstype=old\n");
ufs_set_opt (sbi->s_mount_opt, UFSTYPE_OLD);
}
sbi->s_uspi = uspi =
kmalloc (sizeof(struct ufs_sb_private_info), GFP_KERNEL);
if (!uspi)
goto failed;
super_block_offset=UFS_SBLOCK;
/* Keep 2Gig file limit. Some UFS variants need to override
this but as I don't know which I'll let those in the know loosen
the rules */
switch (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) {
case UFS_MOUNT_UFSTYPE_44BSD:
UFSD(("ufstype=44bsd\n"))
uspi->s_fsize = block_size = 512;
uspi->s_fmask = ~(512 - 1);
uspi->s_fshift = 9;
uspi->s_sbsize = super_block_size = 1536;
uspi->s_sbbase = 0;
flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
break;
case UFS_MOUNT_UFSTYPE_UFS2:
UFSD(("ufstype=ufs2\n"));
super_block_offset=SBLOCK_UFS2;
uspi->s_fsize = block_size = 512;
uspi->s_fmask = ~(512 - 1);
uspi->s_fshift = 9;
uspi->s_sbsize = super_block_size = 1536;
uspi->s_sbbase = 0;
flags |= UFS_TYPE_UFS2 | UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
if (!(sb->s_flags & MS_RDONLY)) {
printk(KERN_INFO "ufstype=ufs2 is supported read-only\n");
sb->s_flags |= MS_RDONLY;
}
break;
case UFS_MOUNT_UFSTYPE_SUN:
UFSD(("ufstype=sun\n"))
uspi->s_fsize = block_size = 1024;
uspi->s_fmask = ~(1024 - 1);
uspi->s_fshift = 10;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
uspi->s_maxsymlinklen = 56;
flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUN | UFS_CG_SUN;
break;
case UFS_MOUNT_UFSTYPE_SUNx86:
UFSD(("ufstype=sunx86\n"))
uspi->s_fsize = block_size = 1024;
uspi->s_fmask = ~(1024 - 1);
uspi->s_fshift = 10;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
uspi->s_maxsymlinklen = 56;
flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUNx86 | UFS_CG_SUN;
break;
case UFS_MOUNT_UFSTYPE_OLD:
UFSD(("ufstype=old\n"))
uspi->s_fsize = block_size = 1024;
uspi->s_fmask = ~(1024 - 1);
uspi->s_fshift = 10;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
if (!(sb->s_flags & MS_RDONLY)) {
if (!silent)
printk(KERN_INFO "ufstype=old is supported read-only\n");
sb->s_flags |= MS_RDONLY;
}
break;
case UFS_MOUNT_UFSTYPE_NEXTSTEP:
UFSD(("ufstype=nextstep\n"))
uspi->s_fsize = block_size = 1024;
uspi->s_fmask = ~(1024 - 1);
uspi->s_fshift = 10;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
if (!(sb->s_flags & MS_RDONLY)) {
if (!silent)
printk(KERN_INFO "ufstype=nextstep is supported read-only\n");
sb->s_flags |= MS_RDONLY;
}
break;
case UFS_MOUNT_UFSTYPE_NEXTSTEP_CD:
UFSD(("ufstype=nextstep-cd\n"))
uspi->s_fsize = block_size = 2048;
uspi->s_fmask = ~(2048 - 1);
uspi->s_fshift = 11;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
if (!(sb->s_flags & MS_RDONLY)) {
if (!silent)
printk(KERN_INFO "ufstype=nextstep-cd is supported read-only\n");
sb->s_flags |= MS_RDONLY;
}
break;
case UFS_MOUNT_UFSTYPE_OPENSTEP:
UFSD(("ufstype=openstep\n"))
uspi->s_fsize = block_size = 1024;
uspi->s_fmask = ~(1024 - 1);
uspi->s_fshift = 10;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
if (!(sb->s_flags & MS_RDONLY)) {
if (!silent)
printk(KERN_INFO "ufstype=openstep is supported read-only\n");
sb->s_flags |= MS_RDONLY;
}
break;
case UFS_MOUNT_UFSTYPE_HP:
UFSD(("ufstype=hp\n"))
uspi->s_fsize = block_size = 1024;
uspi->s_fmask = ~(1024 - 1);
uspi->s_fshift = 10;
uspi->s_sbsize = super_block_size = 2048;
uspi->s_sbbase = 0;
flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
if (!(sb->s_flags & MS_RDONLY)) {
if (!silent)
printk(KERN_INFO "ufstype=hp is supported read-only\n");
sb->s_flags |= MS_RDONLY;
}
break;
default:
if (!silent)
printk("unknown ufstype\n");
goto failed;
}
again:
if (!sb_set_blocksize(sb, block_size)) {
printk(KERN_ERR "UFS: failed to set blocksize\n");
goto failed;
}
/*
* read ufs super block from device
*/
ubh = ubh_bread_uspi(uspi, sb, uspi->s_sbbase + super_block_offset/block_size, super_block_size);
if (!ubh)
goto failed;
usb1 = ubh_get_usb_first(uspi);
usb2 = ubh_get_usb_second(uspi);
usb3 = ubh_get_usb_third(uspi);
usb = (struct ufs_super_block *)
((struct ufs_buffer_head *)uspi)->bh[0]->b_data ;
/*
* Check ufs magic number
*/
sbi->s_bytesex = BYTESEX_LE;
switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
case UFS_MAGIC:
case UFS2_MAGIC:
case UFS_MAGIC_LFN:
case UFS_MAGIC_FEA:
case UFS_MAGIC_4GB:
goto magic_found;
}
sbi->s_bytesex = BYTESEX_BE;
switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
case UFS_MAGIC:
case UFS2_MAGIC:
case UFS_MAGIC_LFN:
case UFS_MAGIC_FEA:
case UFS_MAGIC_4GB:
goto magic_found;
}
if ((((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP)
|| ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP_CD)
|| ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_OPENSTEP))
&& uspi->s_sbbase < 256) {
ubh_brelse_uspi(uspi);
ubh = NULL;
uspi->s_sbbase += 8;
goto again;
}
if (!silent)
printk("ufs_read_super: bad magic number\n");
goto failed;
magic_found:
/*
* Check block and fragment sizes
*/
uspi->s_bsize = fs32_to_cpu(sb, usb1->fs_bsize);
uspi->s_fsize = fs32_to_cpu(sb, usb1->fs_fsize);
uspi->s_sbsize = fs32_to_cpu(sb, usb1->fs_sbsize);
uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
if (uspi->s_fsize & (uspi->s_fsize - 1)) {
printk(KERN_ERR "ufs_read_super: fragment size %u is not a power of 2\n",
uspi->s_fsize);
goto failed;
}
if (uspi->s_fsize < 512) {
printk(KERN_ERR "ufs_read_super: fragment size %u is too small\n",
uspi->s_fsize);
goto failed;
}
if (uspi->s_fsize > 4096) {
printk(KERN_ERR "ufs_read_super: fragment size %u is too large\n",
uspi->s_fsize);
goto failed;
}
if (uspi->s_bsize & (uspi->s_bsize - 1)) {
printk(KERN_ERR "ufs_read_super: block size %u is not a power of 2\n",
uspi->s_bsize);
goto failed;
}
if (uspi->s_bsize < 4096) {
printk(KERN_ERR "ufs_read_super: block size %u is too small\n",
uspi->s_bsize);
goto failed;
}
if (uspi->s_bsize / uspi->s_fsize > 8) {
printk(KERN_ERR "ufs_read_super: too many fragments per block (%u)\n",
uspi->s_bsize / uspi->s_fsize);
goto failed;
}
if (uspi->s_fsize != block_size || uspi->s_sbsize != super_block_size) {
ubh_brelse_uspi(uspi);
ubh = NULL;
block_size = uspi->s_fsize;
super_block_size = uspi->s_sbsize;
UFSD(("another value of block_size or super_block_size %u, %u\n", block_size, super_block_size))
goto again;
}
#ifdef UFS_SUPER_DEBUG_MORE
if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
ufs2_print_super_stuff(sb,usb);
else
ufs_print_super_stuff(sb, usb1, usb2, usb3);
#endif
/*
* Check, if file system was correctly unmounted.
* If not, make it read only.
*/
if (((flags & UFS_ST_MASK) == UFS_ST_44BSD) ||
((flags & UFS_ST_MASK) == UFS_ST_OLD) ||
(((flags & UFS_ST_MASK) == UFS_ST_SUN ||
(flags & UFS_ST_MASK) == UFS_ST_SUNx86) &&
(ufs_get_fs_state(sb, usb1, usb3) == (UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time))))) {
switch(usb1->fs_clean) {
case UFS_FSCLEAN:
UFSD(("fs is clean\n"))
break;
case UFS_FSSTABLE:
UFSD(("fs is stable\n"))
break;
case UFS_FSOSF1:
UFSD(("fs is DEC OSF/1\n"))
break;
case UFS_FSACTIVE:
printk("ufs_read_super: fs is active\n");
sb->s_flags |= MS_RDONLY;
break;
case UFS_FSBAD:
printk("ufs_read_super: fs is bad\n");
sb->s_flags |= MS_RDONLY;
break;
default:
printk("ufs_read_super: can't grok fs_clean 0x%x\n", usb1->fs_clean);
sb->s_flags |= MS_RDONLY;
break;
}
}
else {
printk("ufs_read_super: fs needs fsck\n");
sb->s_flags |= MS_RDONLY;
}
/*
* Read ufs_super_block into internal data structures
*/
sb->s_op = &ufs_super_ops;
sb->dq_op = NULL; /***/
sb->s_magic = fs32_to_cpu(sb, usb3->fs_magic);
uspi->s_sblkno = fs32_to_cpu(sb, usb1->fs_sblkno);
uspi->s_cblkno = fs32_to_cpu(sb, usb1->fs_cblkno);
uspi->s_iblkno = fs32_to_cpu(sb, usb1->fs_iblkno);
uspi->s_dblkno = fs32_to_cpu(sb, usb1->fs_dblkno);
uspi->s_cgoffset = fs32_to_cpu(sb, usb1->fs_cgoffset);
uspi->s_cgmask = fs32_to_cpu(sb, usb1->fs_cgmask);
if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
uspi->s_u2_size = fs64_to_cpu(sb, usb->fs_u11.fs_u2.fs_size);
uspi->s_u2_dsize = fs64_to_cpu(sb, usb->fs_u11.fs_u2.fs_dsize);
}
else {
uspi->s_size = fs32_to_cpu(sb, usb1->fs_size);
uspi->s_dsize = fs32_to_cpu(sb, usb1->fs_dsize);
}
uspi->s_ncg = fs32_to_cpu(sb, usb1->fs_ncg);
/* s_bsize already set */
/* s_fsize already set */
uspi->s_fpb = fs32_to_cpu(sb, usb1->fs_frag);
uspi->s_minfree = fs32_to_cpu(sb, usb1->fs_minfree);
uspi->s_bmask = fs32_to_cpu(sb, usb1->fs_bmask);
uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
uspi->s_bshift = fs32_to_cpu(sb, usb1->fs_bshift);
uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
UFSD(("uspi->s_bshift = %d,uspi->s_fshift = %d", uspi->s_bshift,
uspi->s_fshift));
uspi->s_fpbshift = fs32_to_cpu(sb, usb1->fs_fragshift);
uspi->s_fsbtodb = fs32_to_cpu(sb, usb1->fs_fsbtodb);
/* s_sbsize already set */
uspi->s_csmask = fs32_to_cpu(sb, usb1->fs_csmask);
uspi->s_csshift = fs32_to_cpu(sb, usb1->fs_csshift);
uspi->s_nindir = fs32_to_cpu(sb, usb1->fs_nindir);
uspi->s_inopb = fs32_to_cpu(sb, usb1->fs_inopb);
uspi->s_nspf = fs32_to_cpu(sb, usb1->fs_nspf);
uspi->s_npsect = ufs_get_fs_npsect(sb, usb1, usb3);
uspi->s_interleave = fs32_to_cpu(sb, usb1->fs_interleave);
uspi->s_trackskew = fs32_to_cpu(sb, usb1->fs_trackskew);
uspi->s_csaddr = fs32_to_cpu(sb, usb1->fs_csaddr);
uspi->s_cssize = fs32_to_cpu(sb, usb1->fs_cssize);
uspi->s_cgsize = fs32_to_cpu(sb, usb1->fs_cgsize);
uspi->s_ntrak = fs32_to_cpu(sb, usb1->fs_ntrak);
uspi->s_nsect = fs32_to_cpu(sb, usb1->fs_nsect);
uspi->s_spc = fs32_to_cpu(sb, usb1->fs_spc);
uspi->s_ipg = fs32_to_cpu(sb, usb1->fs_ipg);
uspi->s_fpg = fs32_to_cpu(sb, usb1->fs_fpg);
uspi->s_cpc = fs32_to_cpu(sb, usb2->fs_cpc);
uspi->s_contigsumsize = fs32_to_cpu(sb, usb3->fs_u2.fs_44.fs_contigsumsize);
uspi->s_qbmask = ufs_get_fs_qbmask(sb, usb3);
uspi->s_qfmask = ufs_get_fs_qfmask(sb, usb3);
uspi->s_postblformat = fs32_to_cpu(sb, usb3->fs_postblformat);
uspi->s_nrpos = fs32_to_cpu(sb, usb3->fs_nrpos);
uspi->s_postbloff = fs32_to_cpu(sb, usb3->fs_postbloff);
uspi->s_rotbloff = fs32_to_cpu(sb, usb3->fs_rotbloff);
/*
* Compute another frequently used values
*/
uspi->s_fpbmask = uspi->s_fpb - 1;
if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
uspi->s_apbshift = uspi->s_bshift - 3;
}
else {
uspi->s_apbshift = uspi->s_bshift - 2;
}
uspi->s_2apbshift = uspi->s_apbshift * 2;
uspi->s_3apbshift = uspi->s_apbshift * 3;
uspi->s_apb = 1 << uspi->s_apbshift;
uspi->s_2apb = 1 << uspi->s_2apbshift;
uspi->s_3apb = 1 << uspi->s_3apbshift;
uspi->s_apbmask = uspi->s_apb - 1;
uspi->s_nspfshift = uspi->s_fshift - UFS_SECTOR_BITS;
uspi->s_nspb = uspi->s_nspf << uspi->s_fpbshift;
uspi->s_inopf = uspi->s_inopb >> uspi->s_fpbshift;
uspi->s_bpf = uspi->s_fsize << 3;
uspi->s_bpfshift = uspi->s_fshift + 3;
uspi->s_bpfmask = uspi->s_bpf - 1;
if ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) ==
UFS_MOUNT_UFSTYPE_44BSD)
uspi->s_maxsymlinklen =
fs32_to_cpu(sb, usb3->fs_u2.fs_44.fs_maxsymlinklen);
sbi->s_flags = flags;
inode = iget(sb, UFS_ROOTINO);
if (!inode || is_bad_inode(inode))
goto failed;
sb->s_root = d_alloc_root(inode);
if (!sb->s_root)
goto dalloc_failed;
/*
* Read cylinder group structures
*/
if (!(sb->s_flags & MS_RDONLY))
if (!ufs_read_cylinder_structures(sb))
goto failed;
UFSD(("EXIT\n"))
return 0;
dalloc_failed:
iput(inode);
failed:
if (ubh)
ubh_brelse_uspi (uspi);
kfree (uspi);
kfree(sbi);
sb->s_fs_info = NULL;
UFSD(("EXIT (FAILED)\n"))
return -EINVAL;
failed_nomem:
UFSD(("EXIT (NOMEM)\n"))
return -ENOMEM;
}
static void ufs_write_super (struct super_block *sb) {
struct ufs_sb_private_info * uspi;
struct ufs_super_block_first * usb1;
struct ufs_super_block_third * usb3;
unsigned flags;
lock_kernel();
UFSD(("ENTER\n"))
flags = UFS_SB(sb)->s_flags;
uspi = UFS_SB(sb)->s_uspi;
usb1 = ubh_get_usb_first(uspi);
usb3 = ubh_get_usb_third(uspi);
if (!(sb->s_flags & MS_RDONLY)) {
usb1->fs_time = cpu_to_fs32(sb, get_seconds());
if ((flags & UFS_ST_MASK) == UFS_ST_SUN
|| (flags & UFS_ST_MASK) == UFS_ST_SUNx86)
ufs_set_fs_state(sb, usb1, usb3,
UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
ubh_mark_buffer_dirty (USPI_UBH);
}
sb->s_dirt = 0;
UFSD(("EXIT\n"))
unlock_kernel();
}
static void ufs_put_super (struct super_block *sb)
{
struct ufs_sb_info * sbi = UFS_SB(sb);
UFSD(("ENTER\n"))
if (!(sb->s_flags & MS_RDONLY))
ufs_put_cylinder_structures (sb);
ubh_brelse_uspi (sbi->s_uspi);
kfree (sbi->s_uspi);
kfree (sbi);
sb->s_fs_info = NULL;
return;
}
static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
{
struct ufs_sb_private_info * uspi;
struct ufs_super_block_first * usb1;
struct ufs_super_block_third * usb3;
unsigned new_mount_opt, ufstype;
unsigned flags;
uspi = UFS_SB(sb)->s_uspi;
flags = UFS_SB(sb)->s_flags;
usb1 = ubh_get_usb_first(uspi);
usb3 = ubh_get_usb_third(uspi);
/*
* Allow the "check" option to be passed as a remount option.
* It is not possible to change ufstype option during remount
*/
ufstype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
new_mount_opt = 0;
ufs_set_opt (new_mount_opt, ONERROR_LOCK);
if (!ufs_parse_options (data, &new_mount_opt))
return -EINVAL;
if (!(new_mount_opt & UFS_MOUNT_UFSTYPE)) {
new_mount_opt |= ufstype;
}
else if ((new_mount_opt & UFS_MOUNT_UFSTYPE) != ufstype) {
printk("ufstype can't be changed during remount\n");
return -EINVAL;
}
if ((*mount_flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
UFS_SB(sb)->s_mount_opt = new_mount_opt;
return 0;
}
/*
* fs was mouted as rw, remounting ro
*/
if (*mount_flags & MS_RDONLY) {
ufs_put_cylinder_structures(sb);
usb1->fs_time = cpu_to_fs32(sb, get_seconds());
if ((flags & UFS_ST_MASK) == UFS_ST_SUN
|| (flags & UFS_ST_MASK) == UFS_ST_SUNx86)
ufs_set_fs_state(sb, usb1, usb3,
UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
ubh_mark_buffer_dirty (USPI_UBH);
sb->s_dirt = 0;
sb->s_flags |= MS_RDONLY;
}
/*
* fs was mounted as ro, remounting rw
*/
else {
#ifndef CONFIG_UFS_FS_WRITE
printk("ufs was compiled with read-only support, "
"can't be mounted as read-write\n");
return -EINVAL;
#else
if (ufstype != UFS_MOUNT_UFSTYPE_SUN &&
ufstype != UFS_MOUNT_UFSTYPE_44BSD &&
ufstype != UFS_MOUNT_UFSTYPE_SUNx86) {
printk("this ufstype is read-only supported\n");
return -EINVAL;
}
if (!ufs_read_cylinder_structures (sb)) {
printk("failed during remounting\n");
return -EPERM;
}
sb->s_flags &= ~MS_RDONLY;
#endif
}
UFS_SB(sb)->s_mount_opt = new_mount_opt;
return 0;
}
static int ufs_statfs (struct super_block *sb, struct kstatfs *buf)
{
struct ufs_sb_private_info * uspi;
struct ufs_super_block_first * usb1;
struct ufs_super_block * usb;
unsigned flags = 0;
lock_kernel();
uspi = UFS_SB(sb)->s_uspi;
usb1 = ubh_get_usb_first (uspi);
usb = (struct ufs_super_block *)
((struct ufs_buffer_head *)uspi)->bh[0]->b_data ;
flags = UFS_SB(sb)->s_flags;
if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
buf->f_type = UFS2_MAGIC;
buf->f_blocks = fs64_to_cpu(sb, usb->fs_u11.fs_u2.fs_dsize);
buf->f_bfree = ufs_blkstofrags(fs64_to_cpu(sb, usb->fs_u11.fs_u2.fs_cstotal.cs_nbfree)) +
fs64_to_cpu(sb, usb->fs_u11.fs_u2.fs_cstotal.cs_nffree);
buf->f_ffree = fs64_to_cpu(sb,
usb->fs_u11.fs_u2.fs_cstotal.cs_nifree);
}
else {
buf->f_type = UFS_MAGIC;
buf->f_blocks = uspi->s_dsize;
buf->f_bfree = ufs_blkstofrags(fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree)) +
fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree);
buf->f_ffree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree);
}
buf->f_bsize = sb->s_blocksize;
buf->f_bavail = (buf->f_bfree > (((long)buf->f_blocks / 100) * uspi->s_minfree))
? (buf->f_bfree - (((long)buf->f_blocks / 100) * uspi->s_minfree)) : 0;
buf->f_files = uspi->s_ncg * uspi->s_ipg;
buf->f_namelen = UFS_MAXNAMLEN;
unlock_kernel();
return 0;
}
static kmem_cache_t * ufs_inode_cachep;
static struct inode *ufs_alloc_inode(struct super_block *sb)
{
struct ufs_inode_info *ei;
ei = (struct ufs_inode_info *)kmem_cache_alloc(ufs_inode_cachep, SLAB_KERNEL);
if (!ei)
return NULL;
ei->vfs_inode.i_version = 1;
return &ei->vfs_inode;
}
static void ufs_destroy_inode(struct inode *inode)
{
kmem_cache_free(ufs_inode_cachep, UFS_I(inode));
}
static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
{
struct ufs_inode_info *ei = (struct ufs_inode_info *) foo;
if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
SLAB_CTOR_CONSTRUCTOR)
inode_init_once(&ei->vfs_inode);
}
static int init_inodecache(void)
{
ufs_inode_cachep = kmem_cache_create("ufs_inode_cache",
sizeof(struct ufs_inode_info),
0, SLAB_RECLAIM_ACCOUNT,
init_once, NULL);
if (ufs_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
if (kmem_cache_destroy(ufs_inode_cachep))
printk(KERN_INFO "ufs_inode_cache: not all structures were freed\n");
}
#ifdef CONFIG_QUOTA
static ssize_t ufs_quota_read(struct super_block *, int, char *,size_t, loff_t);
static ssize_t ufs_quota_write(struct super_block *, int, const char *, size_t, loff_t);
#endif
static struct super_operations ufs_super_ops = {
.alloc_inode = ufs_alloc_inode,
.destroy_inode = ufs_destroy_inode,
.read_inode = ufs_read_inode,
.write_inode = ufs_write_inode,
.delete_inode = ufs_delete_inode,
.put_super = ufs_put_super,
.write_super = ufs_write_super,
.statfs = ufs_statfs,
.remount_fs = ufs_remount,
#ifdef CONFIG_QUOTA
.quota_read = ufs_quota_read,
.quota_write = ufs_quota_write,
#endif
};
#ifdef CONFIG_QUOTA
/* Read data from quotafile - avoid pagecache and such because we cannot afford
* acquiring the locks... As quota files are never truncated and quota code
* itself serializes the operations (and noone else should touch the files)
* we don't have to be afraid of races */
static ssize_t ufs_quota_read(struct super_block *sb, int type, char *data,
size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
sector_t blk = off >> sb->s_blocksize_bits;
int err = 0;
int offset = off & (sb->s_blocksize - 1);
int tocopy;
size_t toread;
struct buffer_head *bh;
loff_t i_size = i_size_read(inode);
if (off > i_size)
return 0;
if (off+len > i_size)
len = i_size-off;
toread = len;
while (toread > 0) {
tocopy = sb->s_blocksize - offset < toread ?
sb->s_blocksize - offset : toread;
bh = ufs_bread(inode, blk, 0, &err);
if (err)
return err;
if (!bh) /* A hole? */
memset(data, 0, tocopy);
else {
memcpy(data, bh->b_data+offset, tocopy);
brelse(bh);
}
offset = 0;
toread -= tocopy;
data += tocopy;
blk++;
}
return len;
}
/* Write to quotafile */
static ssize_t ufs_quota_write(struct super_block *sb, int type,
const char *data, size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
sector_t blk = off >> sb->s_blocksize_bits;
int err = 0;
int offset = off & (sb->s_blocksize - 1);
int tocopy;
size_t towrite = len;
struct buffer_head *bh;
mutex_lock(&inode->i_mutex);
while (towrite > 0) {
tocopy = sb->s_blocksize - offset < towrite ?
sb->s_blocksize - offset : towrite;
bh = ufs_bread(inode, blk, 1, &err);
if (!bh)
goto out;
lock_buffer(bh);
memcpy(bh->b_data+offset, data, tocopy);
flush_dcache_page(bh->b_page);
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
unlock_buffer(bh);
brelse(bh);
offset = 0;
towrite -= tocopy;
data += tocopy;
blk++;
}
out:
if (len == towrite) {
mutex_unlock(&inode->i_mutex);
return err;
}
if (inode->i_size < off+len-towrite)
i_size_write(inode, off+len-towrite);
inode->i_version++;
inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
mark_inode_dirty(inode);
mutex_unlock(&inode->i_mutex);
return len - towrite;
}
#endif
static struct super_block *ufs_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return get_sb_bdev(fs_type, flags, dev_name, data, ufs_fill_super);
}
static struct file_system_type ufs_fs_type = {
.owner = THIS_MODULE,
.name = "ufs",
.get_sb = ufs_get_sb,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
static int __init init_ufs_fs(void)
{
int err = init_inodecache();
if (err)
goto out1;
err = register_filesystem(&ufs_fs_type);
if (err)
goto out;
return 0;
out:
destroy_inodecache();
out1:
return err;
}
static void __exit exit_ufs_fs(void)
{
unregister_filesystem(&ufs_fs_type);
destroy_inodecache();
}
module_init(init_ufs_fs)
module_exit(exit_ufs_fs)
MODULE_LICENSE("GPL");