net: dsa: Optional VLAN-based port separation for switches without tagging
This patch provides generic DSA code for using VLAN (802.1Q) tags for
the same purpose as a dedicated switch tag for injection/extraction.
It is based on the discussions and interest that has been so far
expressed in https://www.spinics.net/lists/netdev/msg556125.html.
Unlike all other DSA-supported tagging protocols, CONFIG_NET_DSA_TAG_8021Q
does not offer a complete solution for drivers (nor can it). Instead, it
provides generic code that driver can opt into calling:
- dsa_8021q_xmit: Inserts a VLAN header with the specified contents.
Can be called from another tagging protocol's xmit function.
Currently the LAN9303 driver is inserting headers that are simply
802.1Q with custom fields, so this is an opportunity for code reuse.
- dsa_8021q_rcv: Retrieves the TPID and TCI from a VLAN-tagged skb.
Removing the VLAN header is left as a decision for the caller to make.
- dsa_port_setup_8021q_tagging: For each user port, installs an Rx VID
and a Tx VID, for proper untagged traffic identification on ingress
and steering on egress. Also sets up the VLAN trunk on the upstream
(CPU or DSA) port. Drivers are intentionally left to call this
function explicitly, depending on the context and hardware support.
The expected switch behavior and VLAN semantics should not be violated
under any conditions. That is, after calling
dsa_port_setup_8021q_tagging, the hardware should still pass all
ingress traffic, be it tagged or untagged.
For uniformity with the other tagging protocols, a module for the
dsa_8021q_netdev_ops structure is registered, but the typical usage is
to set up another tagging protocol which selects CONFIG_NET_DSA_TAG_8021Q,
and calls the API from tag_8021q.h. Null function definitions are also
provided so that a "depends on" is not forced in the Kconfig.
This tagging protocol only works when switch ports are standalone, or
when they are added to a VLAN-unaware bridge. It will probably remain
this way for the reasons below.
When added to a bridge that has vlan_filtering 1, the bridge core will
install its own VLANs and reset the pvids through switchdev. For the
bridge core, switchdev is a write-only pipe. All VLAN-related state is
kept in the bridge core and nothing is read from DSA/switchdev or from
the driver. So the bridge core will break this port separation because
it will install the vlan_default_pvid into all switchdev ports.
Even if we could teach the bridge driver about switchdev preference of a
certain vlan_default_pvid (task difficult in itself since the current
setting is per-bridge but we would need it per-port), there would still
exist many other challenges.
Firstly, in the DSA rcv callback, a driver would have to perform an
iterative reverse lookup to find the correct switch port. That is
because the port is a bridge slave, so its Rx VID (port PVID) is subject
to user configuration. How would we ensure that the user doesn't reset
the pvid to a different value (which would make an O(1) translation
impossible), or to a non-unique value within this DSA switch tree (which
would make any translation impossible)?
Finally, not all switch ports are equal in DSA, and that makes it
difficult for the bridge to be completely aware of this anyway.
The CPU port needs to transmit tagged packets (VLAN trunk) in order for
the DSA rcv code to be able to decode source information.
But the bridge code has absolutely no idea which switch port is the CPU
port, if nothing else then just because there is no netdevice registered
by DSA for the CPU port.
Also DSA does not currently allow the user to specify that they want the
CPU port to do VLAN trunking anyway. VLANs are added to the CPU port
using the same flags as they were added on the user port.
So the VLANs installed by dsa_port_setup_8021q_tagging per driver
request should remain private from the bridge's and user's perspective,
and should not alter the VLAN semantics observed by the user.
In the current implementation a VLAN range ending at 4095 (VLAN_N_VID)
is reserved for this purpose. Each port receives a unique Rx VLAN and a
unique Tx VLAN. Separate VLANs are needed for Rx and Tx because they
serve different purposes: on Rx the switch must process traffic as
untagged and process it with a port-based VLAN, but with care not to
hinder bridging. On the other hand, the Tx VLAN is where the
reachability restrictions are imposed, since by tagging frames in the
xmit callback we are telling the switch onto which port to steer the
frame.
Some general guidance on how this support might be employed for
real-life hardware (some comments made by Florian Fainelli):
- If the hardware supports VLAN tag stacking, it should somehow back
up its private VLAN settings when the bridge tries to override them.
Then the driver could re-apply them as outer tags. Dedicating an outer
tag per bridge device would allow identical inner tag VID numbers to
co-exist, yet preserve broadcast domain isolation.
- If the switch cannot handle VLAN tag stacking, it should disable this
port separation when added as slave to a vlan_filtering bridge, in
that case having reduced functionality.
- Drivers for old switches that don't support the entire VLAN_N_VID
range will need to rework the current range selection mechanism.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-05 18:19:22 +08:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0
|
|
|
|
* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _NET_DSA_8021Q_H
|
|
|
|
#define _NET_DSA_8021Q_H
|
|
|
|
|
net: dsa: keep the bridge_dev and bridge_num as part of the same structure
The main desire behind this is to provide coherent bridge information to
the fast path without locking.
For example, right now we set dp->bridge_dev and dp->bridge_num from
separate code paths, it is theoretically possible for a packet
transmission to read these two port properties consecutively and find a
bridge number which does not correspond with the bridge device.
Another desire is to start passing more complex bridge information to
dsa_switch_ops functions. For example, with FDB isolation, it is
expected that drivers will need to be passed the bridge which requested
an FDB/MDB entry to be offloaded, and along with that bridge_dev, the
associated bridge_num should be passed too, in case the driver might
want to implement an isolation scheme based on that number.
We already pass the {bridge_dev, bridge_num} pair to the TX forwarding
offload switch API, however we'd like to remove that and squash it into
the basic bridge join/leave API. So that means we need to pass this
pair to the bridge join/leave API.
During dsa_port_bridge_leave, first we unset dp->bridge_dev, then we
call the driver's .port_bridge_leave with what used to be our
dp->bridge_dev, but provided as an argument.
When bridge_dev and bridge_num get folded into a single structure, we
need to preserve this behavior in dsa_port_bridge_leave: we need a copy
of what used to be in dp->bridge.
Switch drivers check bridge membership by comparing dp->bridge_dev with
the provided bridge_dev, but now, if we provide the struct dsa_bridge as
a pointer, they cannot keep comparing dp->bridge to the provided
pointer, since this only points to an on-stack copy. To make this
obvious and prevent driver writers from forgetting and doing stupid
things, in this new API, the struct dsa_bridge is provided as a full
structure (not very large, contains an int and a pointer) instead of a
pointer. An explicit comparison function needs to be used to determine
bridge membership: dsa_port_offloads_bridge().
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-07 00:57:56 +08:00
|
|
|
#include <net/dsa.h>
|
2022-11-21 21:55:54 +08:00
|
|
|
#include <linux/types.h>
|
net: dsa: tag_8021q: add a context structure
While working on another tag_8021q driver implementation, some things
became apparent:
- It is not mandatory for a DSA driver to offload the tag_8021q VLANs by
using the VLAN table per se. For example, it can add custom TCAM rules
that simply encapsulate RX traffic, and redirect & decapsulate rules
for TX traffic. For such a driver, it makes no sense to receive the
tag_8021q configuration through the same callback as it receives the
VLAN configuration from the bridge and the 8021q modules.
- Currently, sja1105 (the only tag_8021q user) sets a
priv->expect_dsa_8021q variable to distinguish between the bridge
calling, and tag_8021q calling. That can be improved, to say the
least.
- The crosschip bridging operations are, in fact, stateful already. The
list of crosschip_links must be kept by the caller and passed to the
relevant tag_8021q functions.
So it would be nice if the tag_8021q configuration was more
self-contained. This patch attempts to do that.
Create a struct dsa_8021q_context which encapsulates a struct
dsa_switch, and has 2 function pointers for adding and deleting a VLAN.
These will replace the previous channel to the driver, which was through
the .port_vlan_add and .port_vlan_del callbacks of dsa_switch_ops.
Also put the list of crosschip_links into this dsa_8021q_context.
Drivers that don't support cross-chip bridging can simply omit to
initialize this list, as long as they dont call any cross-chip function.
The sja1105_vlan_add and sja1105_vlan_del functions are refactored into
a smaller sja1105_vlan_add_one, which now has 2 entry points:
- sja1105_vlan_add, from struct dsa_switch_ops
- sja1105_dsa_8021q_vlan_add, from the tag_8021q ops
But even this change is fairly trivial. It just reflects the fact that
for sja1105, the VLANs from these 2 channels end up in the same hardware
table. However that is not necessarily true in the general sense (and
that's the reason for making this change).
The rest of the patch is mostly plain refactoring of "ds" -> "ctx". The
dsa_8021q_context structure needs to be propagated because adding a VLAN
is now done through the ops function pointers inside of it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-11 00:48:56 +08:00
|
|
|
|
2021-07-20 01:14:49 +08:00
|
|
|
int dsa_tag_8021q_register(struct dsa_switch *ds, __be16 proto);
|
2021-07-20 01:14:46 +08:00
|
|
|
|
net: dsa: let the core manage the tag_8021q context
The basic problem description is as follows:
Be there 3 switches in a daisy chain topology:
|
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4
[ user ] [ user ] [ user ] [ dsa ] [ cpu ]
|
+---------+
|
sw1p0 sw1p1 sw1p2 sw1p3 sw1p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
|
+---------+
|
sw2p0 sw2p1 sw2p2 sw2p3 sw2p4
[ user ] [ user ] [ user ] [ user ] [ dsa ]
The CPU will not be able to ping through the user ports of the
bottom-most switch (like for example sw2p0), simply because tag_8021q
was not coded up for this scenario - it has always assumed DSA switch
trees with a single switch.
To add support for the topology above, we must admit that the RX VLAN of
sw2p0 must be added on some ports of switches 0 and 1 as well. This is
in fact a textbook example of thing that can use the cross-chip notifier
framework that DSA has set up in switch.c.
There is only one problem: core DSA (switch.c) is not able right now to
make the connection between a struct dsa_switch *ds and a struct
dsa_8021q_context *ctx. Right now, it is drivers who call into
tag_8021q.c and always provide a struct dsa_8021q_context *ctx pointer,
and tag_8021q.c calls them back with the .tag_8021q_vlan_{add,del}
methods.
But with cross-chip notifiers, it is possible for tag_8021q to call
drivers without drivers having ever asked for anything. A good example
is right above: when sw2p0 wants to set itself up for tag_8021q,
the .tag_8021q_vlan_add method needs to be called for switches 1 and 0,
so that they transport sw2p0's VLANs towards the CPU without dropping
them.
So instead of letting drivers manage the tag_8021q context, add a
tag_8021q_ctx pointer inside of struct dsa_switch, which will be
populated when dsa_tag_8021q_register() returns success.
The patch is fairly long-winded because we are partly reverting commit
5899ee367ab3 ("net: dsa: tag_8021q: add a context structure") which made
the driver-facing tag_8021q API use "ctx" instead of "ds". Now that we
can access "ctx" directly from "ds", this is no longer needed.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-20 01:14:48 +08:00
|
|
|
void dsa_tag_8021q_unregister(struct dsa_switch *ds);
|
2021-07-20 01:14:46 +08:00
|
|
|
|
net: dsa: tag_8021q: replace the SVL bridging with VLAN-unaware IVL bridging
For VLAN-unaware bridging, tag_8021q uses something perhaps a bit too
tied with the sja1105 switch: each port uses the same pvid which is also
used for standalone operation (a unique one from which the source port
and device ID can be retrieved when packets from that port are forwarded
to the CPU). Since each port has a unique pvid when performing
autonomous forwarding, the switch must be configured for Shared VLAN
Learning (SVL) such that the VLAN ID itself is ignored when performing
FDB lookups. Without SVL, packets would always be flooded, since FDB
lookup in the source port's VLAN would never find any entry.
First of all, to make tag_8021q more palatable to switches which might
not support Shared VLAN Learning, let's just use a common VLAN for all
ports that are under the same bridge.
Secondly, using Shared VLAN Learning means that FDB isolation can never
be enforced. But if all ports under the same VLAN-unaware bridge share
the same VLAN ID, it can.
The disadvantage is that the CPU port can no longer perform precise
source port identification for these packets. But at least we have a
mechanism which has proven to be adequate for that situation: imprecise
RX (dsa_find_designated_bridge_port_by_vid), which is what we use for
termination on VLAN-aware bridges.
The VLAN ID that VLAN-unaware bridges will use with tag_8021q is the
same one as we were previously using for imprecise TX (bridge TX
forwarding offload). It is already allocated, it is just a matter of
using it.
Note that because now all ports under the same bridge share the same
VLAN, the complexity of performing a tag_8021q bridge join decreases
dramatically. We no longer have to install the RX VLAN of a newly
joining port into the port membership of the existing bridge ports.
The newly joining port just becomes a member of the VLAN corresponding
to that bridge, and the other ports are already members of it from when
they joined the bridge themselves. So forwarding works properly.
This means that we can unhook dsa_tag_8021q_bridge_{join,leave} from the
cross-chip notifier level dsa_switch_bridge_{join,leave}. We can put
these calls directly into the sja1105 driver.
With this new mode of operation, a port controlled by tag_8021q can have
two pvids whereas before it could only have one. The pvid for standalone
operation is different from the pvid used for VLAN-unaware bridging.
This is done, again, so that FDB isolation can be enforced.
Let tag_8021q manage this by deleting the standalone pvid when a port
joins a bridge, and restoring it when it leaves it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:16 +08:00
|
|
|
int dsa_tag_8021q_bridge_join(struct dsa_switch *ds, int port,
|
|
|
|
struct dsa_bridge bridge);
|
|
|
|
|
|
|
|
void dsa_tag_8021q_bridge_leave(struct dsa_switch *ds, int port,
|
|
|
|
struct dsa_bridge bridge);
|
|
|
|
|
2022-02-25 17:22:21 +08:00
|
|
|
u16 dsa_tag_8021q_bridge_vid(unsigned int bridge_num);
|
net: dsa: sja1105: add bridge TX data plane offload based on tag_8021q
The main desire for having this feature in sja1105 is to support network
stack termination for traffic coming from a VLAN-aware bridge.
For sja1105, offloading the bridge data plane means sending packets
as-is, with the proper VLAN tag, to the chip. The chip will look up its
FDB and forward them to the correct destination port.
But we support bridge data plane offload even for VLAN-unaware bridges,
and the implementation there is different. In fact, VLAN-unaware
bridging is governed by tag_8021q, so it makes sense to have the
.bridge_fwd_offload_add() implementation fully within tag_8021q.
The key difference is that we only support 1 VLAN-aware bridge, but we
support multiple VLAN-unaware bridges. So we need to make sure that the
forwarding domain is not crossed by packets injected from the stack.
For this, we introduce the concept of a tag_8021q TX VLAN for bridge
forwarding offload. As opposed to the regular TX VLANs which contain
only 2 ports (the user port and the CPU port), a bridge data plane TX
VLAN is "multicast" (or "imprecise"): it contains all the ports that are
part of a certain bridge, and the hardware will select where the packet
goes within this "imprecise" forwarding domain.
Each VLAN-unaware bridge has its own "imprecise" TX VLAN, so we make use
of the unique "bridge_num" provided by DSA for the data plane offload.
We use the same 3 bits from the tag_8021q VLAN ID format to encode this
bridge number.
Note that these 3 bit positions have been used before for sub-VLANs in
best-effort VLAN filtering mode. The difference is that for best-effort,
the sub-VLANs were only valid on RX (and it was documented that the
sub-VLAN field needed to be transmitted as zero). Whereas for the bridge
data plane offload, these 3 bits are only valid on TX.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-27 00:55:35 +08:00
|
|
|
|
net: dsa: tag_8021q: merge RX and TX VLANs
In the old Shared VLAN Learning mode of operation that tag_8021q
previously used for forwarding, we needed to have distinct concepts for
an RX and a TX VLAN.
An RX VLAN could be installed on all ports that were members of a given
bridge, so that autonomous forwarding could still work, while a TX VLAN
was dedicated for precise packet steering, so it just contained the CPU
port and one egress port.
Now that tag_8021q uses Independent VLAN Learning and imprecise RX/TX
all over, those lines have been blurred and we no longer have the need
to do precise TX towards a port that is in a bridge. As for standalone
ports, it is fine to use the same VLAN ID for both RX and TX.
This patch changes the tag_8021q format by shifting the VLAN range it
reserves, and halving it. Previously, our DIR bits were encoding the
VLAN direction (RX/TX) and were set to either 1 or 2. This meant that
tag_8021q reserved 2K VLANs, or 50% of the available range.
Change the DIR bits to a hardcoded value of 3 now, which makes tag_8021q
reserve only 1K VLANs, and a different range now (the last 1K). This is
done so that we leave the old format in place in case we need to return
to it.
In terms of code, the vid_is_dsa_8021q_rxvlan and vid_is_dsa_8021q_txvlan
functions go away. Any vid_is_dsa_8021q is both a TX and an RX VLAN, and
they are no longer distinct. For example, felix which did different
things for different VLAN types, now needs to handle the RX and the TX
logic for the same VLAN.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-25 17:22:20 +08:00
|
|
|
u16 dsa_tag_8021q_standalone_vid(const struct dsa_port *dp);
|
net: dsa: Optional VLAN-based port separation for switches without tagging
This patch provides generic DSA code for using VLAN (802.1Q) tags for
the same purpose as a dedicated switch tag for injection/extraction.
It is based on the discussions and interest that has been so far
expressed in https://www.spinics.net/lists/netdev/msg556125.html.
Unlike all other DSA-supported tagging protocols, CONFIG_NET_DSA_TAG_8021Q
does not offer a complete solution for drivers (nor can it). Instead, it
provides generic code that driver can opt into calling:
- dsa_8021q_xmit: Inserts a VLAN header with the specified contents.
Can be called from another tagging protocol's xmit function.
Currently the LAN9303 driver is inserting headers that are simply
802.1Q with custom fields, so this is an opportunity for code reuse.
- dsa_8021q_rcv: Retrieves the TPID and TCI from a VLAN-tagged skb.
Removing the VLAN header is left as a decision for the caller to make.
- dsa_port_setup_8021q_tagging: For each user port, installs an Rx VID
and a Tx VID, for proper untagged traffic identification on ingress
and steering on egress. Also sets up the VLAN trunk on the upstream
(CPU or DSA) port. Drivers are intentionally left to call this
function explicitly, depending on the context and hardware support.
The expected switch behavior and VLAN semantics should not be violated
under any conditions. That is, after calling
dsa_port_setup_8021q_tagging, the hardware should still pass all
ingress traffic, be it tagged or untagged.
For uniformity with the other tagging protocols, a module for the
dsa_8021q_netdev_ops structure is registered, but the typical usage is
to set up another tagging protocol which selects CONFIG_NET_DSA_TAG_8021Q,
and calls the API from tag_8021q.h. Null function definitions are also
provided so that a "depends on" is not forced in the Kconfig.
This tagging protocol only works when switch ports are standalone, or
when they are added to a VLAN-unaware bridge. It will probably remain
this way for the reasons below.
When added to a bridge that has vlan_filtering 1, the bridge core will
install its own VLANs and reset the pvids through switchdev. For the
bridge core, switchdev is a write-only pipe. All VLAN-related state is
kept in the bridge core and nothing is read from DSA/switchdev or from
the driver. So the bridge core will break this port separation because
it will install the vlan_default_pvid into all switchdev ports.
Even if we could teach the bridge driver about switchdev preference of a
certain vlan_default_pvid (task difficult in itself since the current
setting is per-bridge but we would need it per-port), there would still
exist many other challenges.
Firstly, in the DSA rcv callback, a driver would have to perform an
iterative reverse lookup to find the correct switch port. That is
because the port is a bridge slave, so its Rx VID (port PVID) is subject
to user configuration. How would we ensure that the user doesn't reset
the pvid to a different value (which would make an O(1) translation
impossible), or to a non-unique value within this DSA switch tree (which
would make any translation impossible)?
Finally, not all switch ports are equal in DSA, and that makes it
difficult for the bridge to be completely aware of this anyway.
The CPU port needs to transmit tagged packets (VLAN trunk) in order for
the DSA rcv code to be able to decode source information.
But the bridge code has absolutely no idea which switch port is the CPU
port, if nothing else then just because there is no netdevice registered
by DSA for the CPU port.
Also DSA does not currently allow the user to specify that they want the
CPU port to do VLAN trunking anyway. VLANs are added to the CPU port
using the same flags as they were added on the user port.
So the VLANs installed by dsa_port_setup_8021q_tagging per driver
request should remain private from the bridge's and user's perspective,
and should not alter the VLAN semantics observed by the user.
In the current implementation a VLAN range ending at 4095 (VLAN_N_VID)
is reserved for this purpose. Each port receives a unique Rx VLAN and a
unique Tx VLAN. Separate VLANs are needed for Rx and Tx because they
serve different purposes: on Rx the switch must process traffic as
untagged and process it with a port-based VLAN, but with care not to
hinder bridging. On the other hand, the Tx VLAN is where the
reachability restrictions are imposed, since by tagging frames in the
xmit callback we are telling the switch onto which port to steer the
frame.
Some general guidance on how this support might be employed for
real-life hardware (some comments made by Florian Fainelli):
- If the hardware supports VLAN tag stacking, it should somehow back
up its private VLAN settings when the bridge tries to override them.
Then the driver could re-apply them as outer tags. Dedicating an outer
tag per bridge device would allow identical inner tag VID numbers to
co-exist, yet preserve broadcast domain isolation.
- If the switch cannot handle VLAN tag stacking, it should disable this
port separation when added as slave to a vlan_filtering bridge, in
that case having reduced functionality.
- Drivers for old switches that don't support the entire VLAN_N_VID
range will need to rework the current range selection mechanism.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-05 18:19:22 +08:00
|
|
|
|
|
|
|
int dsa_8021q_rx_switch_id(u16 vid);
|
|
|
|
|
|
|
|
int dsa_8021q_rx_source_port(u16 vid);
|
|
|
|
|
2020-05-13 01:20:26 +08:00
|
|
|
bool vid_is_dsa_8021q(u16 vid);
|
|
|
|
|
net: dsa: Optional VLAN-based port separation for switches without tagging
This patch provides generic DSA code for using VLAN (802.1Q) tags for
the same purpose as a dedicated switch tag for injection/extraction.
It is based on the discussions and interest that has been so far
expressed in https://www.spinics.net/lists/netdev/msg556125.html.
Unlike all other DSA-supported tagging protocols, CONFIG_NET_DSA_TAG_8021Q
does not offer a complete solution for drivers (nor can it). Instead, it
provides generic code that driver can opt into calling:
- dsa_8021q_xmit: Inserts a VLAN header with the specified contents.
Can be called from another tagging protocol's xmit function.
Currently the LAN9303 driver is inserting headers that are simply
802.1Q with custom fields, so this is an opportunity for code reuse.
- dsa_8021q_rcv: Retrieves the TPID and TCI from a VLAN-tagged skb.
Removing the VLAN header is left as a decision for the caller to make.
- dsa_port_setup_8021q_tagging: For each user port, installs an Rx VID
and a Tx VID, for proper untagged traffic identification on ingress
and steering on egress. Also sets up the VLAN trunk on the upstream
(CPU or DSA) port. Drivers are intentionally left to call this
function explicitly, depending on the context and hardware support.
The expected switch behavior and VLAN semantics should not be violated
under any conditions. That is, after calling
dsa_port_setup_8021q_tagging, the hardware should still pass all
ingress traffic, be it tagged or untagged.
For uniformity with the other tagging protocols, a module for the
dsa_8021q_netdev_ops structure is registered, but the typical usage is
to set up another tagging protocol which selects CONFIG_NET_DSA_TAG_8021Q,
and calls the API from tag_8021q.h. Null function definitions are also
provided so that a "depends on" is not forced in the Kconfig.
This tagging protocol only works when switch ports are standalone, or
when they are added to a VLAN-unaware bridge. It will probably remain
this way for the reasons below.
When added to a bridge that has vlan_filtering 1, the bridge core will
install its own VLANs and reset the pvids through switchdev. For the
bridge core, switchdev is a write-only pipe. All VLAN-related state is
kept in the bridge core and nothing is read from DSA/switchdev or from
the driver. So the bridge core will break this port separation because
it will install the vlan_default_pvid into all switchdev ports.
Even if we could teach the bridge driver about switchdev preference of a
certain vlan_default_pvid (task difficult in itself since the current
setting is per-bridge but we would need it per-port), there would still
exist many other challenges.
Firstly, in the DSA rcv callback, a driver would have to perform an
iterative reverse lookup to find the correct switch port. That is
because the port is a bridge slave, so its Rx VID (port PVID) is subject
to user configuration. How would we ensure that the user doesn't reset
the pvid to a different value (which would make an O(1) translation
impossible), or to a non-unique value within this DSA switch tree (which
would make any translation impossible)?
Finally, not all switch ports are equal in DSA, and that makes it
difficult for the bridge to be completely aware of this anyway.
The CPU port needs to transmit tagged packets (VLAN trunk) in order for
the DSA rcv code to be able to decode source information.
But the bridge code has absolutely no idea which switch port is the CPU
port, if nothing else then just because there is no netdevice registered
by DSA for the CPU port.
Also DSA does not currently allow the user to specify that they want the
CPU port to do VLAN trunking anyway. VLANs are added to the CPU port
using the same flags as they were added on the user port.
So the VLANs installed by dsa_port_setup_8021q_tagging per driver
request should remain private from the bridge's and user's perspective,
and should not alter the VLAN semantics observed by the user.
In the current implementation a VLAN range ending at 4095 (VLAN_N_VID)
is reserved for this purpose. Each port receives a unique Rx VLAN and a
unique Tx VLAN. Separate VLANs are needed for Rx and Tx because they
serve different purposes: on Rx the switch must process traffic as
untagged and process it with a port-based VLAN, but with care not to
hinder bridging. On the other hand, the Tx VLAN is where the
reachability restrictions are imposed, since by tagging frames in the
xmit callback we are telling the switch onto which port to steer the
frame.
Some general guidance on how this support might be employed for
real-life hardware (some comments made by Florian Fainelli):
- If the hardware supports VLAN tag stacking, it should somehow back
up its private VLAN settings when the bridge tries to override them.
Then the driver could re-apply them as outer tags. Dedicating an outer
tag per bridge device would allow identical inner tag VID numbers to
co-exist, yet preserve broadcast domain isolation.
- If the switch cannot handle VLAN tag stacking, it should disable this
port separation when added as slave to a vlan_filtering bridge, in
that case having reduced functionality.
- Drivers for old switches that don't support the entire VLAN_N_VID
range will need to rework the current range selection mechanism.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-05 18:19:22 +08:00
|
|
|
#endif /* _NET_DSA_8021Q_H */
|