OpenCloudOS-Kernel/drivers/media/dvb-frontends/tc90522.c

854 lines
20 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Toshiba TC90522 Demodulator
*
* Copyright (C) 2014 Akihiro Tsukada <tskd08@gmail.com>
*/
/*
* NOTICE:
* This driver is incomplete and lacks init/config of the chips,
* as the necessary info is not disclosed.
* It assumes that users of this driver (such as a PCI bridge of
* DTV receiver cards) properly init and configure the chip
* via I2C *before* calling this driver's init() function.
*
* Currently, PT3 driver is the only one that uses this driver,
* and contains init/config code in its firmware.
* Thus some part of the code might be dependent on PT3 specific config.
*/
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/dvb/frontend.h>
#include <media/dvb_math.h>
#include "tc90522.h"
#define TC90522_I2C_THRU_REG 0xfe
#define TC90522_MODULE_IDX(addr) (((u8)(addr) & 0x02U) >> 1)
struct tc90522_state {
struct tc90522_config cfg;
struct dvb_frontend fe;
struct i2c_client *i2c_client;
struct i2c_adapter tuner_i2c;
bool lna;
};
struct reg_val {
u8 reg;
u8 val;
};
static int
reg_write(struct tc90522_state *state, const struct reg_val *regs, int num)
{
int i, ret;
struct i2c_msg msg;
ret = 0;
msg.addr = state->i2c_client->addr;
msg.flags = 0;
msg.len = 2;
for (i = 0; i < num; i++) {
msg.buf = (u8 *)&regs[i];
ret = i2c_transfer(state->i2c_client->adapter, &msg, 1);
if (ret == 0)
ret = -EIO;
if (ret < 0)
return ret;
}
return 0;
}
static int reg_read(struct tc90522_state *state, u8 reg, u8 *val, u8 len)
{
struct i2c_msg msgs[2] = {
{
.addr = state->i2c_client->addr,
.flags = 0,
.buf = &reg,
.len = 1,
},
{
.addr = state->i2c_client->addr,
.flags = I2C_M_RD,
.buf = val,
.len = len,
},
};
int ret;
ret = i2c_transfer(state->i2c_client->adapter, msgs, ARRAY_SIZE(msgs));
if (ret == ARRAY_SIZE(msgs))
ret = 0;
else if (ret >= 0)
ret = -EIO;
return ret;
}
static struct tc90522_state *cfg_to_state(struct tc90522_config *c)
{
return container_of(c, struct tc90522_state, cfg);
}
static int tc90522s_set_tsid(struct dvb_frontend *fe)
{
struct reg_val set_tsid[] = {
{ 0x8f, 00 },
{ 0x90, 00 }
};
set_tsid[0].val = (fe->dtv_property_cache.stream_id & 0xff00) >> 8;
set_tsid[1].val = fe->dtv_property_cache.stream_id & 0xff;
return reg_write(fe->demodulator_priv, set_tsid, ARRAY_SIZE(set_tsid));
}
static int tc90522t_set_layers(struct dvb_frontend *fe)
{
struct reg_val rv;
u8 laysel;
laysel = ~fe->dtv_property_cache.isdbt_layer_enabled & 0x07;
laysel = (laysel & 0x01) << 2 | (laysel & 0x02) | (laysel & 0x04) >> 2;
rv.reg = 0x71;
rv.val = laysel;
return reg_write(fe->demodulator_priv, &rv, 1);
}
/* frontend ops */
static int tc90522s_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct tc90522_state *state;
int ret;
u8 reg;
state = fe->demodulator_priv;
ret = reg_read(state, 0xc3, &reg, 1);
if (ret < 0)
return ret;
*status = 0;
if (reg & 0x80) /* input level under min ? */
return 0;
*status |= FE_HAS_SIGNAL;
if (reg & 0x60) /* carrier? */
return 0;
*status |= FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC;
if (reg & 0x10)
return 0;
if (reg_read(state, 0xc5, &reg, 1) < 0 || !(reg & 0x03))
return 0;
*status |= FE_HAS_LOCK;
return 0;
}
static int tc90522t_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct tc90522_state *state;
int ret;
u8 reg;
state = fe->demodulator_priv;
ret = reg_read(state, 0x96, &reg, 1);
if (ret < 0)
return ret;
*status = 0;
if (reg & 0xe0) {
*status = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI
| FE_HAS_SYNC | FE_HAS_LOCK;
return 0;
}
ret = reg_read(state, 0x80, &reg, 1);
if (ret < 0)
return ret;
if (reg & 0xf0)
return 0;
*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
if (reg & 0x0c)
return 0;
*status |= FE_HAS_SYNC | FE_HAS_VITERBI;
if (reg & 0x02)
return 0;
*status |= FE_HAS_LOCK;
return 0;
}
static const enum fe_code_rate fec_conv_sat[] = {
FEC_NONE, /* unused */
FEC_1_2, /* for BPSK */
FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8, /* for QPSK */
FEC_2_3, /* for 8PSK. (trellis code) */
};
static int tc90522s_get_frontend(struct dvb_frontend *fe,
struct dtv_frontend_properties *c)
{
struct tc90522_state *state;
struct dtv_fe_stats *stats;
int ret, i;
int layers;
u8 val[10];
u32 cndat;
state = fe->demodulator_priv;
c->delivery_system = SYS_ISDBS;
c->symbol_rate = 28860000;
layers = 0;
ret = reg_read(state, 0xe6, val, 5);
if (ret == 0) {
u8 v;
c->stream_id = val[0] << 8 | val[1];
/* high/single layer */
v = (val[2] & 0x70) >> 4;
c->modulation = (v == 7) ? PSK_8 : QPSK;
c->fec_inner = fec_conv_sat[v];
c->layer[0].fec = c->fec_inner;
c->layer[0].modulation = c->modulation;
c->layer[0].segment_count = val[3] & 0x3f; /* slots */
/* low layer */
v = (val[2] & 0x07);
c->layer[1].fec = fec_conv_sat[v];
if (v == 0) /* no low layer */
c->layer[1].segment_count = 0;
else
c->layer[1].segment_count = val[4] & 0x3f; /* slots */
/*
* actually, BPSK if v==1, but not defined in
* enum fe_modulation
*/
c->layer[1].modulation = QPSK;
layers = (v > 0) ? 2 : 1;
}
/* statistics */
stats = &c->strength;
stats->len = 0;
/* let the connected tuner set RSSI property cache */
if (fe->ops.tuner_ops.get_rf_strength) {
u16 dummy;
fe->ops.tuner_ops.get_rf_strength(fe, &dummy);
}
stats = &c->cnr;
stats->len = 1;
stats->stat[0].scale = FE_SCALE_NOT_AVAILABLE;
cndat = 0;
ret = reg_read(state, 0xbc, val, 2);
if (ret == 0)
cndat = val[0] << 8 | val[1];
if (cndat >= 3000) {
u32 p, p4;
s64 cn;
cndat -= 3000; /* cndat: 4.12 fixed point float */
/*
* cnr[mdB] = -1634.6 * P^5 + 14341 * P^4 - 50259 * P^3
* + 88977 * P^2 - 89565 * P + 58857
* (P = sqrt(cndat) / 64)
*/
/* p := sqrt(cndat) << 8 = P << 14, 2.14 fixed point float */
/* cn = cnr << 3 */
p = int_sqrt(cndat << 16);
p4 = cndat * cndat;
cn = div64_s64(-16346LL * p4 * p, 10) >> 35;
cn += (14341LL * p4) >> 21;
cn -= (50259LL * cndat * p) >> 23;
cn += (88977LL * cndat) >> 9;
cn -= (89565LL * p) >> 11;
cn += 58857 << 3;
stats->stat[0].svalue = cn >> 3;
stats->stat[0].scale = FE_SCALE_DECIBEL;
}
/* per-layer post viterbi BER (or PER? config dependent?) */
stats = &c->post_bit_error;
memset(stats, 0, sizeof(*stats));
stats->len = layers;
ret = reg_read(state, 0xeb, val, 10);
if (ret < 0)
for (i = 0; i < layers; i++)
stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE;
else {
for (i = 0; i < layers; i++) {
stats->stat[i].scale = FE_SCALE_COUNTER;
stats->stat[i].uvalue = val[i * 5] << 16
| val[i * 5 + 1] << 8 | val[i * 5 + 2];
}
}
stats = &c->post_bit_count;
memset(stats, 0, sizeof(*stats));
stats->len = layers;
if (ret < 0)
for (i = 0; i < layers; i++)
stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE;
else {
for (i = 0; i < layers; i++) {
stats->stat[i].scale = FE_SCALE_COUNTER;
stats->stat[i].uvalue =
val[i * 5 + 3] << 8 | val[i * 5 + 4];
stats->stat[i].uvalue *= 204 * 8;
}
}
return 0;
}
static const enum fe_transmit_mode tm_conv[] = {
TRANSMISSION_MODE_2K,
TRANSMISSION_MODE_4K,
TRANSMISSION_MODE_8K,
0
};
static const enum fe_code_rate fec_conv_ter[] = {
FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8, 0, 0, 0
};
static const enum fe_modulation mod_conv[] = {
DQPSK, QPSK, QAM_16, QAM_64, 0, 0, 0, 0
};
static int tc90522t_get_frontend(struct dvb_frontend *fe,
struct dtv_frontend_properties *c)
{
struct tc90522_state *state;
struct dtv_fe_stats *stats;
int ret, i;
int layers;
u8 val[15], mode;
u32 cndat;
state = fe->demodulator_priv;
c->delivery_system = SYS_ISDBT;
c->bandwidth_hz = 6000000;
mode = 1;
ret = reg_read(state, 0xb0, val, 1);
if (ret == 0) {
mode = (val[0] & 0xc0) >> 6;
c->transmission_mode = tm_conv[mode];
c->guard_interval = (val[0] & 0x30) >> 4;
}
ret = reg_read(state, 0xb2, val, 6);
layers = 0;
if (ret == 0) {
u8 v;
c->isdbt_partial_reception = val[0] & 0x01;
c->isdbt_sb_mode = (val[0] & 0xc0) == 0x40;
/* layer A */
v = (val[2] & 0x78) >> 3;
if (v == 0x0f)
c->layer[0].segment_count = 0;
else {
layers++;
c->layer[0].segment_count = v;
c->layer[0].fec = fec_conv_ter[(val[1] & 0x1c) >> 2];
c->layer[0].modulation = mod_conv[(val[1] & 0xe0) >> 5];
v = (val[1] & 0x03) << 1 | (val[2] & 0x80) >> 7;
c->layer[0].interleaving = v;
}
/* layer B */
v = (val[3] & 0x03) << 2 | (val[4] & 0xc0) >> 6;
if (v == 0x0f)
c->layer[1].segment_count = 0;
else {
layers++;
c->layer[1].segment_count = v;
c->layer[1].fec = fec_conv_ter[(val[3] & 0xe0) >> 5];
c->layer[1].modulation = mod_conv[(val[2] & 0x07)];
c->layer[1].interleaving = (val[3] & 0x1c) >> 2;
}
/* layer C */
v = (val[5] & 0x1e) >> 1;
if (v == 0x0f)
c->layer[2].segment_count = 0;
else {
layers++;
c->layer[2].segment_count = v;
c->layer[2].fec = fec_conv_ter[(val[4] & 0x07)];
c->layer[2].modulation = mod_conv[(val[4] & 0x38) >> 3];
c->layer[2].interleaving = (val[5] & 0xe0) >> 5;
}
}
/* statistics */
stats = &c->strength;
stats->len = 0;
/* let the connected tuner set RSSI property cache */
if (fe->ops.tuner_ops.get_rf_strength) {
u16 dummy;
fe->ops.tuner_ops.get_rf_strength(fe, &dummy);
}
stats = &c->cnr;
stats->len = 1;
stats->stat[0].scale = FE_SCALE_NOT_AVAILABLE;
cndat = 0;
ret = reg_read(state, 0x8b, val, 3);
if (ret == 0)
cndat = val[0] << 16 | val[1] << 8 | val[2];
if (cndat != 0) {
u32 p, tmp;
s64 cn;
/*
* cnr[mdB] = 0.024 P^4 - 1.6 P^3 + 39.8 P^2 + 549.1 P + 3096.5
* (P = 10log10(5505024/cndat))
*/
/* cn = cnr << 3 (61.3 fixed point float */
/* p = 10log10(5505024/cndat) << 24 (8.24 fixed point float)*/
p = intlog10(5505024) - intlog10(cndat);
p *= 10;
cn = 24772;
cn += div64_s64(43827LL * p, 10) >> 24;
tmp = p >> 8;
cn += div64_s64(3184LL * tmp * tmp, 10) >> 32;
tmp = p >> 13;
cn -= div64_s64(128LL * tmp * tmp * tmp, 10) >> 33;
tmp = p >> 18;
cn += div64_s64(192LL * tmp * tmp * tmp * tmp, 1000) >> 24;
stats->stat[0].svalue = cn >> 3;
stats->stat[0].scale = FE_SCALE_DECIBEL;
}
/* per-layer post viterbi BER (or PER? config dependent?) */
stats = &c->post_bit_error;
memset(stats, 0, sizeof(*stats));
stats->len = layers;
ret = reg_read(state, 0x9d, val, 15);
if (ret < 0)
for (i = 0; i < layers; i++)
stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE;
else {
for (i = 0; i < layers; i++) {
stats->stat[i].scale = FE_SCALE_COUNTER;
stats->stat[i].uvalue = val[i * 3] << 16
| val[i * 3 + 1] << 8 | val[i * 3 + 2];
}
}
stats = &c->post_bit_count;
memset(stats, 0, sizeof(*stats));
stats->len = layers;
if (ret < 0)
for (i = 0; i < layers; i++)
stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE;
else {
for (i = 0; i < layers; i++) {
stats->stat[i].scale = FE_SCALE_COUNTER;
stats->stat[i].uvalue =
val[9 + i * 2] << 8 | val[9 + i * 2 + 1];
stats->stat[i].uvalue *= 204 * 8;
}
}
return 0;
}
static const struct reg_val reset_sat = { 0x03, 0x01 };
static const struct reg_val reset_ter = { 0x01, 0x40 };
static int tc90522_set_frontend(struct dvb_frontend *fe)
{
struct tc90522_state *state;
int ret;
state = fe->demodulator_priv;
if (fe->ops.tuner_ops.set_params)
ret = fe->ops.tuner_ops.set_params(fe);
else
ret = -ENODEV;
if (ret < 0)
goto failed;
if (fe->ops.delsys[0] == SYS_ISDBS) {
ret = tc90522s_set_tsid(fe);
if (ret < 0)
goto failed;
ret = reg_write(state, &reset_sat, 1);
} else {
ret = tc90522t_set_layers(fe);
if (ret < 0)
goto failed;
ret = reg_write(state, &reset_ter, 1);
}
if (ret < 0)
goto failed;
return 0;
failed:
dev_warn(&state->tuner_i2c.dev, "(%s) failed. [adap%d-fe%d]\n",
__func__, fe->dvb->num, fe->id);
return ret;
}
static int tc90522_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *settings)
{
if (fe->ops.delsys[0] == SYS_ISDBS) {
settings->min_delay_ms = 250;
settings->step_size = 1000;
settings->max_drift = settings->step_size * 2;
} else {
settings->min_delay_ms = 400;
settings->step_size = 142857;
settings->max_drift = settings->step_size;
}
return 0;
}
static int tc90522_set_if_agc(struct dvb_frontend *fe, bool on)
{
struct reg_val agc_sat[] = {
{ 0x0a, 0x00 },
{ 0x10, 0x30 },
{ 0x11, 0x00 },
{ 0x03, 0x01 },
};
struct reg_val agc_ter[] = {
{ 0x25, 0x00 },
{ 0x23, 0x4c },
{ 0x01, 0x40 },
};
struct tc90522_state *state;
struct reg_val *rv;
int num;
state = fe->demodulator_priv;
if (fe->ops.delsys[0] == SYS_ISDBS) {
agc_sat[0].val = on ? 0xff : 0x00;
agc_sat[1].val |= 0x80;
agc_sat[1].val |= on ? 0x01 : 0x00;
agc_sat[2].val |= on ? 0x40 : 0x00;
rv = agc_sat;
num = ARRAY_SIZE(agc_sat);
} else {
agc_ter[0].val = on ? 0x40 : 0x00;
agc_ter[1].val |= on ? 0x00 : 0x01;
rv = agc_ter;
num = ARRAY_SIZE(agc_ter);
}
return reg_write(state, rv, num);
}
static const struct reg_val sleep_sat = { 0x17, 0x01 };
static const struct reg_val sleep_ter = { 0x03, 0x90 };
static int tc90522_sleep(struct dvb_frontend *fe)
{
struct tc90522_state *state;
int ret;
state = fe->demodulator_priv;
if (fe->ops.delsys[0] == SYS_ISDBS)
ret = reg_write(state, &sleep_sat, 1);
else {
ret = reg_write(state, &sleep_ter, 1);
if (ret == 0 && fe->ops.set_lna &&
fe->dtv_property_cache.lna == LNA_AUTO) {
fe->dtv_property_cache.lna = 0;
ret = fe->ops.set_lna(fe);
fe->dtv_property_cache.lna = LNA_AUTO;
}
}
if (ret < 0)
dev_warn(&state->tuner_i2c.dev,
"(%s) failed. [adap%d-fe%d]\n",
__func__, fe->dvb->num, fe->id);
return ret;
}
static const struct reg_val wakeup_sat = { 0x17, 0x00 };
static const struct reg_val wakeup_ter = { 0x03, 0x80 };
static int tc90522_init(struct dvb_frontend *fe)
{
struct tc90522_state *state;
int ret;
/*
* Because the init sequence is not public,
* the parent device/driver should have init'ed the device before.
* just wake up the device here.
*/
state = fe->demodulator_priv;
if (fe->ops.delsys[0] == SYS_ISDBS)
ret = reg_write(state, &wakeup_sat, 1);
else {
ret = reg_write(state, &wakeup_ter, 1);
if (ret == 0 && fe->ops.set_lna &&
fe->dtv_property_cache.lna == LNA_AUTO) {
fe->dtv_property_cache.lna = 1;
ret = fe->ops.set_lna(fe);
fe->dtv_property_cache.lna = LNA_AUTO;
}
}
if (ret < 0) {
dev_warn(&state->tuner_i2c.dev,
"(%s) failed. [adap%d-fe%d]\n",
__func__, fe->dvb->num, fe->id);
return ret;
}
/* prefer 'all-layers' to 'none' as a default */
if (fe->dtv_property_cache.isdbt_layer_enabled == 0)
fe->dtv_property_cache.isdbt_layer_enabled = 7;
return tc90522_set_if_agc(fe, true);
}
/*
* tuner I2C adapter functions
*/
static int
tc90522_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
struct tc90522_state *state;
struct i2c_msg *new_msgs;
int i, j;
int ret, rd_num;
u8 wbuf[256];
u8 *p, *bufend;
if (num <= 0)
return -EINVAL;
rd_num = 0;
for (i = 0; i < num; i++)
if (msgs[i].flags & I2C_M_RD)
rd_num++;
new_msgs = kmalloc_array(num + rd_num, sizeof(*new_msgs), GFP_KERNEL);
if (!new_msgs)
return -ENOMEM;
state = i2c_get_adapdata(adap);
p = wbuf;
bufend = wbuf + sizeof(wbuf);
for (i = 0, j = 0; i < num; i++, j++) {
new_msgs[j].addr = state->i2c_client->addr;
new_msgs[j].flags = msgs[i].flags;
if (msgs[i].flags & I2C_M_RD) {
new_msgs[j].flags &= ~I2C_M_RD;
if (p + 2 > bufend)
break;
p[0] = TC90522_I2C_THRU_REG;
p[1] = msgs[i].addr << 1 | 0x01;
new_msgs[j].buf = p;
new_msgs[j].len = 2;
p += 2;
j++;
new_msgs[j].addr = state->i2c_client->addr;
new_msgs[j].flags = msgs[i].flags;
new_msgs[j].buf = msgs[i].buf;
new_msgs[j].len = msgs[i].len;
continue;
}
if (p + msgs[i].len + 2 > bufend)
break;
p[0] = TC90522_I2C_THRU_REG;
p[1] = msgs[i].addr << 1;
memcpy(p + 2, msgs[i].buf, msgs[i].len);
new_msgs[j].buf = p;
new_msgs[j].len = msgs[i].len + 2;
p += new_msgs[j].len;
}
if (i < num) {
ret = -ENOMEM;
} else if (!state->cfg.split_tuner_read_i2c || rd_num == 0) {
ret = i2c_transfer(state->i2c_client->adapter, new_msgs, j);
} else {
/*
* Split transactions at each I2C_M_RD message.
* Some of the parent device require this,
* such as Friio (see. dvb-usb-gl861).
*/
int from, to;
ret = 0;
from = 0;
do {
int r;
to = from + 1;
while (to < j && !(new_msgs[to].flags & I2C_M_RD))
to++;
r = i2c_transfer(state->i2c_client->adapter,
&new_msgs[from], to - from);
ret = (r <= 0) ? r : ret + r;
from = to;
} while (from < j && ret > 0);
}
if (ret >= 0 && ret < j)
ret = -EIO;
kfree(new_msgs);
return (ret == j) ? num : ret;
}
static u32 tc90522_functionality(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C;
}
static const struct i2c_algorithm tc90522_tuner_i2c_algo = {
.master_xfer = &tc90522_master_xfer,
.functionality = &tc90522_functionality,
};
/*
* I2C driver functions
*/
static const struct dvb_frontend_ops tc90522_ops_sat = {
.delsys = { SYS_ISDBS },
.info = {
.name = "Toshiba TC90522 ISDB-S module",
.frequency_min_hz = 950 * MHz,
.frequency_max_hz = 2150 * MHz,
.caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO |
FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO,
},
.init = tc90522_init,
.sleep = tc90522_sleep,
.set_frontend = tc90522_set_frontend,
.get_tune_settings = tc90522_get_tune_settings,
.get_frontend = tc90522s_get_frontend,
.read_status = tc90522s_read_status,
};
static const struct dvb_frontend_ops tc90522_ops_ter = {
.delsys = { SYS_ISDBT },
.info = {
.name = "Toshiba TC90522 ISDB-T module",
.frequency_min_hz = 470 * MHz,
.frequency_max_hz = 770 * MHz,
.frequency_stepsize_hz = 142857,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER |
FE_CAN_HIERARCHY_AUTO,
},
.init = tc90522_init,
.sleep = tc90522_sleep,
.set_frontend = tc90522_set_frontend,
.get_tune_settings = tc90522_get_tune_settings,
.get_frontend = tc90522t_get_frontend,
.read_status = tc90522t_read_status,
};
static int tc90522_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct tc90522_state *state;
struct tc90522_config *cfg;
const struct dvb_frontend_ops *ops;
struct i2c_adapter *adap;
int ret;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
state->i2c_client = client;
cfg = client->dev.platform_data;
memcpy(&state->cfg, cfg, sizeof(state->cfg));
cfg->fe = state->cfg.fe = &state->fe;
ops = id->driver_data == 0 ? &tc90522_ops_sat : &tc90522_ops_ter;
memcpy(&state->fe.ops, ops, sizeof(*ops));
state->fe.demodulator_priv = state;
adap = &state->tuner_i2c;
adap->owner = THIS_MODULE;
adap->algo = &tc90522_tuner_i2c_algo;
adap->dev.parent = &client->dev;
strscpy(adap->name, "tc90522_sub", sizeof(adap->name));
i2c_set_adapdata(adap, state);
ret = i2c_add_adapter(adap);
if (ret < 0)
goto free_state;
cfg->tuner_i2c = state->cfg.tuner_i2c = adap;
i2c_set_clientdata(client, &state->cfg);
dev_info(&client->dev, "Toshiba TC90522 attached.\n");
return 0;
free_state:
kfree(state);
return ret;
}
static int tc90522_remove(struct i2c_client *client)
{
struct tc90522_state *state;
state = cfg_to_state(i2c_get_clientdata(client));
i2c_del_adapter(&state->tuner_i2c);
kfree(state);
return 0;
}
static const struct i2c_device_id tc90522_id[] = {
{ TC90522_I2C_DEV_SAT, 0 },
{ TC90522_I2C_DEV_TER, 1 },
{}
};
MODULE_DEVICE_TABLE(i2c, tc90522_id);
static struct i2c_driver tc90522_driver = {
.driver = {
.name = "tc90522",
},
.probe = tc90522_probe,
.remove = tc90522_remove,
.id_table = tc90522_id,
};
module_i2c_driver(tc90522_driver);
MODULE_DESCRIPTION("Toshiba TC90522 frontend");
MODULE_AUTHOR("Akihiro TSUKADA");
MODULE_LICENSE("GPL");