OpenCloudOS-Kernel/drivers/gpu/drm/rcar-du/rcar_du_group.c

354 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* rcar_du_group.c -- R-Car Display Unit Channels Pair
*
* Copyright (C) 2013-2015 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*/
/*
* The R8A7779 DU is split in per-CRTC resources (scan-out engine, blending
* unit, timings generator, ...) and device-global resources (start/stop
* control, planes, ...) shared between the two CRTCs.
*
* The R8A7790 introduced a third CRTC with its own set of global resources.
* This would be modeled as two separate DU device instances if it wasn't for
* a handful or resources that are shared between the three CRTCs (mostly
* related to input and output routing). For this reason the R8A7790 DU must be
* modeled as a single device with three CRTCs, two sets of "semi-global"
* resources, and a few device-global resources.
*
* The rcar_du_group object is a driver specific object, without any real
* counterpart in the DU documentation, that models those semi-global resources.
*/
#include <linux/clk.h>
#include <linux/io.h>
#include "rcar_du_drv.h"
#include "rcar_du_group.h"
#include "rcar_du_regs.h"
u32 rcar_du_group_read(struct rcar_du_group *rgrp, u32 reg)
{
return rcar_du_read(rgrp->dev, rgrp->mmio_offset + reg);
}
void rcar_du_group_write(struct rcar_du_group *rgrp, u32 reg, u32 data)
{
rcar_du_write(rgrp->dev, rgrp->mmio_offset + reg, data);
}
static void rcar_du_group_setup_pins(struct rcar_du_group *rgrp)
{
u32 defr6 = DEFR6_CODE;
if (rgrp->channels_mask & BIT(0))
defr6 |= DEFR6_ODPM02_DISP;
if (rgrp->channels_mask & BIT(1))
defr6 |= DEFR6_ODPM12_DISP;
rcar_du_group_write(rgrp, DEFR6, defr6);
}
static void rcar_du_group_setup_defr8(struct rcar_du_group *rgrp)
{
struct rcar_du_device *rcdu = rgrp->dev;
u32 defr8 = DEFR8_CODE;
if (rcdu->info->gen < 3) {
defr8 |= DEFR8_DEFE8;
/*
* On Gen2 the DEFR8 register for the first group also controls
* RGB output routing to DPAD0 and VSPD1 routing to DU0/1/2 for
* DU instances that support it.
*/
if (rgrp->index == 0) {
defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source);
if (rgrp->dev->vspd1_sink == 2)
defr8 |= DEFR8_VSCS;
}
} else {
/*
* On Gen3 VSPD routing can't be configured, and DPAD routing
* is set in the group corresponding to the DPAD output (no Gen3
* SoC has multiple DPAD sources belonging to separate groups).
*/
if (rgrp->index == rcdu->dpad0_source / 2)
defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source);
}
rcar_du_group_write(rgrp, DEFR8, defr8);
}
drm: rcar-du: Use LVDS PLL clock as dot clock when possible On selected SoCs, the DU can use the clock output by the LVDS encoder PLL as its input dot clock. This feature is optional, but on the D3 and E3 SoC it is often the only way to obtain a precise dot clock frequency, as the other available clocks (CPG-generated clock and external clock) usually have fixed rates. Add a DU model information field to describe which DU channels can use the LVDS PLL output clock as their input clock, and configure clock routing accordingly. This feature is available on H2, M2-W, M2-N, D3 and E3 SoCs, with D3 and E3 being the primary targets. It is left disabled in this commit, and will be enabled per-SoC after careful testing. At the hardware level, clock routing is configured at runtime in two steps, first selecting an internal dot clock between the LVDS PLL clock and the external DOTCLKIN clock, and then selecting between the internal dot clock and the CPG-generated clock. The first part requires stopping the whole DU group in order for the change to take effect, thus causing flickering on the screen. For this reason we currently hardcode the clock source to the LVDS PLL clock if available, and allow flicker-free selection of the external DOTCLKIN clock or CPG-generated clock otherwise. A more dynamic clock selection process can be implemented later if the need arises. Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com> Tested-by: Jacopo Mondi <jacopo+renesas@jmondi.org> Reviewed-by: Jacopo Mondi <jacopo+renesas@jmondi.org>
2018-08-22 02:31:04 +08:00
static void rcar_du_group_setup_didsr(struct rcar_du_group *rgrp)
{
struct rcar_du_device *rcdu = rgrp->dev;
struct rcar_du_crtc *rcrtc;
unsigned int num_crtcs = 0;
unsigned int i;
u32 didsr;
/*
* Configure input dot clock routing with a hardcoded configuration. If
* the DU channel can use the LVDS encoder output clock as the dot
* clock, do so. Otherwise route DU_DOTCLKINn signal to DUn.
*
* Each channel can then select between the dot clock configured here
* and the clock provided by the CPG through the ESCR register.
*/
if (rcdu->info->gen < 3 && rgrp->index == 0) {
/*
* On Gen2 a single register in the first group controls dot
* clock selection for all channels.
*/
rcrtc = rcdu->crtcs;
num_crtcs = rcdu->num_crtcs;
} else if (rcdu->info->gen == 3 && rgrp->num_crtcs > 1) {
/*
* On Gen3 dot clocks are setup through per-group registers,
* only available when the group has two channels.
*/
rcrtc = &rcdu->crtcs[rgrp->index * 2];
num_crtcs = rgrp->num_crtcs;
}
if (!num_crtcs)
return;
didsr = DIDSR_CODE;
for (i = 0; i < num_crtcs; ++i, ++rcrtc) {
if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index))
didsr |= DIDSR_LCDS_LVDS0(i)
| DIDSR_PDCS_CLK(i, 0);
else
didsr |= DIDSR_LCDS_DCLKIN(i)
| DIDSR_PDCS_CLK(i, 0);
}
rcar_du_group_write(rgrp, DIDSR, didsr);
}
static void rcar_du_group_setup(struct rcar_du_group *rgrp)
{
struct rcar_du_device *rcdu = rgrp->dev;
/* Enable extended features */
rcar_du_group_write(rgrp, DEFR, DEFR_CODE | DEFR_DEFE);
if (rcdu->info->gen < 3) {
rcar_du_group_write(rgrp, DEFR2, DEFR2_CODE | DEFR2_DEFE2G);
rcar_du_group_write(rgrp, DEFR3, DEFR3_CODE | DEFR3_DEFE3);
rcar_du_group_write(rgrp, DEFR4, DEFR4_CODE);
}
rcar_du_group_write(rgrp, DEFR5, DEFR5_CODE | DEFR5_DEFE5);
rcar_du_group_setup_pins(rgrp);
if (rcdu->info->gen >= 2) {
rcar_du_group_setup_defr8(rgrp);
drm: rcar-du: Use LVDS PLL clock as dot clock when possible On selected SoCs, the DU can use the clock output by the LVDS encoder PLL as its input dot clock. This feature is optional, but on the D3 and E3 SoC it is often the only way to obtain a precise dot clock frequency, as the other available clocks (CPG-generated clock and external clock) usually have fixed rates. Add a DU model information field to describe which DU channels can use the LVDS PLL output clock as their input clock, and configure clock routing accordingly. This feature is available on H2, M2-W, M2-N, D3 and E3 SoCs, with D3 and E3 being the primary targets. It is left disabled in this commit, and will be enabled per-SoC after careful testing. At the hardware level, clock routing is configured at runtime in two steps, first selecting an internal dot clock between the LVDS PLL clock and the external DOTCLKIN clock, and then selecting between the internal dot clock and the CPG-generated clock. The first part requires stopping the whole DU group in order for the change to take effect, thus causing flickering on the screen. For this reason we currently hardcode the clock source to the LVDS PLL clock if available, and allow flicker-free selection of the external DOTCLKIN clock or CPG-generated clock otherwise. A more dynamic clock selection process can be implemented later if the need arises. Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com> Tested-by: Jacopo Mondi <jacopo+renesas@jmondi.org> Reviewed-by: Jacopo Mondi <jacopo+renesas@jmondi.org>
2018-08-22 02:31:04 +08:00
rcar_du_group_setup_didsr(rgrp);
}
if (rcdu->info->gen >= 3)
rcar_du_group_write(rgrp, DEFR10, DEFR10_CODE | DEFR10_DEFE10);
/*
* Use DS1PR and DS2PR to configure planes priorities and connects the
* superposition 0 to DU0 pins. DU1 pins will be configured dynamically.
*/
rcar_du_group_write(rgrp, DORCR, DORCR_PG1D_DS1 | DORCR_DPRS);
/* Apply planes to CRTCs association. */
mutex_lock(&rgrp->lock);
rcar_du_group_write(rgrp, DPTSR, (rgrp->dptsr_planes << 16) |
rgrp->dptsr_planes);
mutex_unlock(&rgrp->lock);
}
/*
* rcar_du_group_get - Acquire a reference to the DU channels group
*
* Acquiring the first reference setups core registers. A reference must be held
* before accessing any hardware registers.
*
* This function must be called with the DRM mode_config lock held.
*
* Return 0 in case of success or a negative error code otherwise.
*/
int rcar_du_group_get(struct rcar_du_group *rgrp)
{
if (rgrp->use_count)
goto done;
rcar_du_group_setup(rgrp);
done:
rgrp->use_count++;
return 0;
}
/*
* rcar_du_group_put - Release a reference to the DU
*
* This function must be called with the DRM mode_config lock held.
*/
void rcar_du_group_put(struct rcar_du_group *rgrp)
{
--rgrp->use_count;
}
static void __rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
{
struct rcar_du_device *rcdu = rgrp->dev;
/*
* Group start/stop is controlled by the DRES and DEN bits of DSYSR0
* for the first group and DSYSR2 for the second group. On most DU
* instances, this maps to the first CRTC of the group, and we can just
* use rcar_du_crtc_dsysr_clr_set() to access the correct DSYSR. On
* M3-N, however, DU2 doesn't exist, but DSYSR2 does. We thus need to
* access the register directly using group read/write.
*/
if (rcdu->info->channels_mask & BIT(rgrp->index * 2)) {
struct rcar_du_crtc *rcrtc = &rgrp->dev->crtcs[rgrp->index * 2];
rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_DRES | DSYSR_DEN,
start ? DSYSR_DEN : DSYSR_DRES);
} else {
rcar_du_group_write(rgrp, DSYSR,
start ? DSYSR_DEN : DSYSR_DRES);
}
}
void rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
{
/*
* Many of the configuration bits are only updated when the display
* reset (DRES) bit in DSYSR is set to 1, disabling *both* CRTCs. Some
* of those bits could be pre-configured, but others (especially the
* bits related to plane assignment to display timing controllers) need
* to be modified at runtime.
*
* Restart the display controller if a start is requested. Sorry for the
* flicker. It should be possible to move most of the "DRES-update" bits
* setup to driver initialization time and minimize the number of cases
* when the display controller will have to be restarted.
*/
if (start) {
if (rgrp->used_crtcs++ != 0)
__rcar_du_group_start_stop(rgrp, false);
__rcar_du_group_start_stop(rgrp, true);
} else {
if (--rgrp->used_crtcs == 0)
__rcar_du_group_start_stop(rgrp, false);
}
}
void rcar_du_group_restart(struct rcar_du_group *rgrp)
{
rgrp->need_restart = false;
__rcar_du_group_start_stop(rgrp, false);
__rcar_du_group_start_stop(rgrp, true);
}
int rcar_du_set_dpad0_vsp1_routing(struct rcar_du_device *rcdu)
{
struct rcar_du_group *rgrp;
struct rcar_du_crtc *crtc;
unsigned int index;
int ret;
if (rcdu->info->gen < 2)
return 0;
/*
* RGB output routing to DPAD0 and VSP1D routing to DU0/1/2 are
* configured in the DEFR8 register of the first group on Gen2 and the
* last group on Gen3. As this function can be called with the DU
* channels of the corresponding CRTCs disabled, we need to enable the
* group clock before accessing the register.
*/
index = rcdu->info->gen < 3 ? 0 : DIV_ROUND_UP(rcdu->num_crtcs, 2) - 1;
rgrp = &rcdu->groups[index];
crtc = &rcdu->crtcs[index * 2];
ret = clk_prepare_enable(crtc->clock);
if (ret < 0)
return ret;
rcar_du_group_setup_defr8(rgrp);
clk_disable_unprepare(crtc->clock);
return 0;
}
static void rcar_du_group_set_dpad_levels(struct rcar_du_group *rgrp)
{
static const u32 doflr_values[2] = {
DOFLR_HSYCFL0 | DOFLR_VSYCFL0 | DOFLR_ODDFL0 |
DOFLR_DISPFL0 | DOFLR_CDEFL0 | DOFLR_RGBFL0,
DOFLR_HSYCFL1 | DOFLR_VSYCFL1 | DOFLR_ODDFL1 |
DOFLR_DISPFL1 | DOFLR_CDEFL1 | DOFLR_RGBFL1,
};
static const u32 dpad_mask = BIT(RCAR_DU_OUTPUT_DPAD1)
| BIT(RCAR_DU_OUTPUT_DPAD0);
struct rcar_du_device *rcdu = rgrp->dev;
u32 doflr = DOFLR_CODE;
unsigned int i;
if (rcdu->info->gen < 2)
return;
/*
* The DPAD outputs can't be controlled directly. However, the parallel
* output of the DU channels routed to DPAD can be set to fixed levels
* through the DOFLR group register. Use this to turn the DPAD on or off
* by driving fixed low-level signals at the output of any DU channel
* not routed to a DPAD output. This doesn't affect the DU output
* signals going to other outputs, such as the internal LVDS and HDMI
* encoders.
*/
for (i = 0; i < rgrp->num_crtcs; ++i) {
struct rcar_du_crtc_state *rstate;
struct rcar_du_crtc *rcrtc;
rcrtc = &rcdu->crtcs[rgrp->index * 2 + i];
rstate = to_rcar_crtc_state(rcrtc->crtc.state);
if (!(rstate->outputs & dpad_mask))
doflr |= doflr_values[i];
}
rcar_du_group_write(rgrp, DOFLR, doflr);
}
int rcar_du_group_set_routing(struct rcar_du_group *rgrp)
{
struct rcar_du_device *rcdu = rgrp->dev;
u32 dorcr = rcar_du_group_read(rgrp, DORCR);
dorcr &= ~(DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_MASK);
/*
* Set the DPAD1 pins sources. Select CRTC 0 if explicitly requested and
* CRTC 1 in all other cases to avoid cloning CRTC 0 to DPAD0 and DPAD1
* by default.
*/
if (rcdu->dpad1_source == rgrp->index * 2)
dorcr |= DORCR_PG2D_DS1;
else
dorcr |= DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_DS2;
rcar_du_group_write(rgrp, DORCR, dorcr);
rcar_du_group_set_dpad_levels(rgrp);
return rcar_du_set_dpad0_vsp1_routing(rgrp->dev);
}