OpenCloudOS-Kernel/drivers/mtd/nand/raw/intel-nand-controller.c

737 lines
19 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/* Copyright (c) 2020 Intel Corporation. */
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/units.h>
#include <asm/unaligned.h>
#define EBU_CLC 0x000
#define EBU_CLC_RST 0x00000000u
#define EBU_ADDR_SEL(n) (0x020 + (n) * 4)
/* 5 bits 26:22 included for comparison in the ADDR_SELx */
#define EBU_ADDR_MASK(x) ((x) << 4)
#define EBU_ADDR_SEL_REGEN 0x1
#define EBU_BUSCON(n) (0x060 + (n) * 4)
#define EBU_BUSCON_CMULT_V4 0x1
#define EBU_BUSCON_RECOVC(n) ((n) << 2)
#define EBU_BUSCON_HOLDC(n) ((n) << 4)
#define EBU_BUSCON_WAITRDC(n) ((n) << 6)
#define EBU_BUSCON_WAITWRC(n) ((n) << 8)
#define EBU_BUSCON_BCGEN_CS 0x0
#define EBU_BUSCON_SETUP_EN BIT(22)
#define EBU_BUSCON_ALEC 0xC000
#define EBU_CON 0x0B0
#define EBU_CON_NANDM_EN BIT(0)
#define EBU_CON_NANDM_DIS 0x0
#define EBU_CON_CSMUX_E_EN BIT(1)
#define EBU_CON_ALE_P_LOW BIT(2)
#define EBU_CON_CLE_P_LOW BIT(3)
#define EBU_CON_CS_P_LOW BIT(4)
#define EBU_CON_SE_P_LOW BIT(5)
#define EBU_CON_WP_P_LOW BIT(6)
#define EBU_CON_PRE_P_LOW BIT(7)
#define EBU_CON_IN_CS_S(n) ((n) << 8)
#define EBU_CON_OUT_CS_S(n) ((n) << 10)
#define EBU_CON_LAT_EN_CS_P ((0x3D) << 18)
#define EBU_WAIT 0x0B4
#define EBU_WAIT_RDBY BIT(0)
#define EBU_WAIT_WR_C BIT(3)
#define HSNAND_CTL1 0x110
#define HSNAND_CTL1_ADDR_SHIFT 24
#define HSNAND_CTL2 0x114
#define HSNAND_CTL2_ADDR_SHIFT 8
#define HSNAND_CTL2_CYC_N_V5 (0x2 << 16)
#define HSNAND_INT_MSK_CTL 0x124
#define HSNAND_INT_MSK_CTL_WR_C BIT(4)
#define HSNAND_INT_STA 0x128
#define HSNAND_INT_STA_WR_C BIT(4)
#define HSNAND_CTL 0x130
#define HSNAND_CTL_ENABLE_ECC BIT(0)
#define HSNAND_CTL_GO BIT(2)
#define HSNAND_CTL_CE_SEL_CS(n) BIT(3 + (n))
#define HSNAND_CTL_RW_READ 0x0
#define HSNAND_CTL_RW_WRITE BIT(10)
#define HSNAND_CTL_ECC_OFF_V8TH BIT(11)
#define HSNAND_CTL_CKFF_EN 0x0
#define HSNAND_CTL_MSG_EN BIT(17)
#define HSNAND_PARA0 0x13c
#define HSNAND_PARA0_PAGE_V8192 0x3
#define HSNAND_PARA0_PIB_V256 (0x3 << 4)
#define HSNAND_PARA0_BYP_EN_NP 0x0
#define HSNAND_PARA0_BYP_DEC_NP 0x0
#define HSNAND_PARA0_TYPE_ONFI BIT(18)
#define HSNAND_PARA0_ADEP_EN BIT(21)
#define HSNAND_CMSG_0 0x150
#define HSNAND_CMSG_1 0x154
#define HSNAND_ALE_OFFS BIT(2)
#define HSNAND_CLE_OFFS BIT(3)
#define HSNAND_CS_OFFS BIT(4)
#define HSNAND_ECC_OFFSET 0x008
#define MAX_CS 2
#define USEC_PER_SEC 1000000L
struct ebu_nand_cs {
void __iomem *chipaddr;
u32 addr_sel;
};
struct ebu_nand_controller {
struct nand_controller controller;
struct nand_chip chip;
struct device *dev;
void __iomem *ebu;
void __iomem *hsnand;
struct dma_chan *dma_tx;
struct dma_chan *dma_rx;
struct completion dma_access_complete;
struct clk *clk;
u32 nd_para0;
u8 cs_num;
struct ebu_nand_cs cs[MAX_CS];
};
static inline struct ebu_nand_controller *nand_to_ebu(struct nand_chip *chip)
{
return container_of(chip, struct ebu_nand_controller, chip);
}
static int ebu_nand_waitrdy(struct nand_chip *chip, int timeout_ms)
{
struct ebu_nand_controller *ctrl = nand_to_ebu(chip);
u32 status;
return readl_poll_timeout(ctrl->ebu + EBU_WAIT, status,
(status & EBU_WAIT_RDBY) ||
(status & EBU_WAIT_WR_C), 20, timeout_ms);
}
static u8 ebu_nand_readb(struct nand_chip *chip)
{
struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
u8 cs_num = ebu_host->cs_num;
u8 val;
val = readb(ebu_host->cs[cs_num].chipaddr + HSNAND_CS_OFFS);
ebu_nand_waitrdy(chip, 1000);
return val;
}
static void ebu_nand_writeb(struct nand_chip *chip, u32 offset, u8 value)
{
struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
u8 cs_num = ebu_host->cs_num;
writeb(value, ebu_host->cs[cs_num].chipaddr + offset);
ebu_nand_waitrdy(chip, 1000);
}
static void ebu_read_buf(struct nand_chip *chip, u_char *buf, unsigned int len)
{
int i;
for (i = 0; i < len; i++)
buf[i] = ebu_nand_readb(chip);
}
static void ebu_write_buf(struct nand_chip *chip, const u_char *buf, int len)
{
int i;
for (i = 0; i < len; i++)
ebu_nand_writeb(chip, HSNAND_CS_OFFS, buf[i]);
}
static void ebu_nand_disable(struct nand_chip *chip)
{
struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
writel(0, ebu_host->ebu + EBU_CON);
}
static void ebu_select_chip(struct nand_chip *chip)
{
struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
void __iomem *nand_con = ebu_host->ebu + EBU_CON;
u32 cs = ebu_host->cs_num;
writel(EBU_CON_NANDM_EN | EBU_CON_CSMUX_E_EN | EBU_CON_CS_P_LOW |
EBU_CON_SE_P_LOW | EBU_CON_WP_P_LOW | EBU_CON_PRE_P_LOW |
EBU_CON_IN_CS_S(cs) | EBU_CON_OUT_CS_S(cs) |
EBU_CON_LAT_EN_CS_P, nand_con);
}
static int ebu_nand_set_timings(struct nand_chip *chip, int csline,
const struct nand_interface_config *conf)
{
struct ebu_nand_controller *ctrl = nand_to_ebu(chip);
unsigned int rate = clk_get_rate(ctrl->clk) / HZ_PER_MHZ;
unsigned int period = DIV_ROUND_UP(USEC_PER_SEC, rate);
const struct nand_sdr_timings *timings;
u32 trecov, thold, twrwait, trdwait;
u32 reg = 0;
timings = nand_get_sdr_timings(conf);
if (IS_ERR(timings))
return PTR_ERR(timings);
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
trecov = DIV_ROUND_UP(max(timings->tREA_max, timings->tREH_min),
period);
reg |= EBU_BUSCON_RECOVC(trecov);
thold = DIV_ROUND_UP(max(timings->tDH_min, timings->tDS_min), period);
reg |= EBU_BUSCON_HOLDC(thold);
trdwait = DIV_ROUND_UP(max(timings->tRC_min, timings->tREH_min),
period);
reg |= EBU_BUSCON_WAITRDC(trdwait);
twrwait = DIV_ROUND_UP(max(timings->tWC_min, timings->tWH_min), period);
reg |= EBU_BUSCON_WAITWRC(twrwait);
reg |= EBU_BUSCON_CMULT_V4 | EBU_BUSCON_BCGEN_CS | EBU_BUSCON_ALEC |
EBU_BUSCON_SETUP_EN;
writel(reg, ctrl->ebu + EBU_BUSCON(ctrl->cs_num));
return 0;
}
static int ebu_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oobregion->offset = HSNAND_ECC_OFFSET;
oobregion->length = chip->ecc.total;
return 0;
}
static int ebu_nand_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oobregion->offset = chip->ecc.total + HSNAND_ECC_OFFSET;
oobregion->length = mtd->oobsize - oobregion->offset;
return 0;
}
static const struct mtd_ooblayout_ops ebu_nand_ooblayout_ops = {
.ecc = ebu_nand_ooblayout_ecc,
.free = ebu_nand_ooblayout_free,
};
static void ebu_dma_rx_callback(void *cookie)
{
struct ebu_nand_controller *ebu_host = cookie;
dmaengine_terminate_async(ebu_host->dma_rx);
complete(&ebu_host->dma_access_complete);
}
static void ebu_dma_tx_callback(void *cookie)
{
struct ebu_nand_controller *ebu_host = cookie;
dmaengine_terminate_async(ebu_host->dma_tx);
complete(&ebu_host->dma_access_complete);
}
static int ebu_dma_start(struct ebu_nand_controller *ebu_host, u32 dir,
const u8 *buf, u32 len)
{
struct dma_async_tx_descriptor *tx;
struct completion *dma_completion;
dma_async_tx_callback callback;
struct dma_chan *chan;
dma_cookie_t cookie;
unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
dma_addr_t buf_dma;
int ret;
u32 timeout;
if (dir == DMA_DEV_TO_MEM) {
chan = ebu_host->dma_rx;
dma_completion = &ebu_host->dma_access_complete;
callback = ebu_dma_rx_callback;
} else {
chan = ebu_host->dma_tx;
dma_completion = &ebu_host->dma_access_complete;
callback = ebu_dma_tx_callback;
}
buf_dma = dma_map_single(chan->device->dev, (void *)buf, len, dir);
if (dma_mapping_error(chan->device->dev, buf_dma)) {
dev_err(ebu_host->dev, "Failed to map DMA buffer\n");
ret = -EIO;
goto err_unmap;
}
tx = dmaengine_prep_slave_single(chan, buf_dma, len, dir, flags);
if (!tx) {
ret = -ENXIO;
goto err_unmap;
}
tx->callback = callback;
tx->callback_param = ebu_host;
cookie = tx->tx_submit(tx);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(ebu_host->dev, "dma_submit_error %d\n", cookie);
ret = -EIO;
goto err_unmap;
}
init_completion(dma_completion);
dma_async_issue_pending(chan);
/* Wait DMA to finish the data transfer.*/
timeout = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
if (!timeout) {
dev_err(ebu_host->dev, "I/O Error in DMA RX (status %d)\n",
dmaengine_tx_status(chan, cookie, NULL));
dmaengine_terminate_sync(chan);
ret = -ETIMEDOUT;
goto err_unmap;
}
return 0;
err_unmap:
dma_unmap_single(ebu_host->dev, buf_dma, len, dir);
return ret;
}
static void ebu_nand_trigger(struct ebu_nand_controller *ebu_host,
int page, u32 cmd)
{
unsigned int val;
val = cmd | (page & 0xFF) << HSNAND_CTL1_ADDR_SHIFT;
writel(val, ebu_host->hsnand + HSNAND_CTL1);
val = (page & 0xFFFF00) >> 8 | HSNAND_CTL2_CYC_N_V5;
writel(val, ebu_host->hsnand + HSNAND_CTL2);
writel(ebu_host->nd_para0, ebu_host->hsnand + HSNAND_PARA0);
/* clear first, will update later */
writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_0);
writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_1);
writel(HSNAND_INT_MSK_CTL_WR_C,
ebu_host->hsnand + HSNAND_INT_MSK_CTL);
if (!cmd)
val = HSNAND_CTL_RW_READ;
else
val = HSNAND_CTL_RW_WRITE;
writel(HSNAND_CTL_MSG_EN | HSNAND_CTL_CKFF_EN |
HSNAND_CTL_ECC_OFF_V8TH | HSNAND_CTL_CE_SEL_CS(ebu_host->cs_num) |
HSNAND_CTL_ENABLE_ECC | HSNAND_CTL_GO | val,
ebu_host->hsnand + HSNAND_CTL);
}
static int ebu_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
int ret, reg_data;
ebu_nand_trigger(ebu_host, page, NAND_CMD_READ0);
ret = ebu_dma_start(ebu_host, DMA_DEV_TO_MEM, buf, mtd->writesize);
if (ret)
return ret;
if (oob_required)
chip->ecc.read_oob(chip, page);
reg_data = readl(ebu_host->hsnand + HSNAND_CTL);
reg_data &= ~HSNAND_CTL_GO;
writel(reg_data, ebu_host->hsnand + HSNAND_CTL);
return 0;
}
static int ebu_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
void __iomem *int_sta = ebu_host->hsnand + HSNAND_INT_STA;
int reg_data, ret, val;
u32 reg;
ebu_nand_trigger(ebu_host, page, NAND_CMD_SEQIN);
ret = ebu_dma_start(ebu_host, DMA_MEM_TO_DEV, buf, mtd->writesize);
if (ret)
return ret;
if (oob_required) {
reg = get_unaligned_le32(chip->oob_poi);
writel(reg, ebu_host->hsnand + HSNAND_CMSG_0);
reg = get_unaligned_le32(chip->oob_poi + 4);
writel(reg, ebu_host->hsnand + HSNAND_CMSG_1);
}
ret = readl_poll_timeout_atomic(int_sta, val, !(val & HSNAND_INT_STA_WR_C),
10, 1000);
if (ret)
return ret;
reg_data = readl(ebu_host->hsnand + HSNAND_CTL);
reg_data &= ~HSNAND_CTL_GO;
writel(reg_data, ebu_host->hsnand + HSNAND_CTL);
return 0;
}
static const u8 ecc_strength[] = { 1, 1, 4, 8, 24, 32, 40, 60, };
static int ebu_nand_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
u32 ecc_steps, ecc_bytes, ecc_total, pagesize, pg_per_blk;
u32 ecc_strength_ds = chip->ecc.strength;
u32 ecc_size = chip->ecc.size;
u32 writesize = mtd->writesize;
u32 blocksize = mtd->erasesize;
int bch_algo, start, val;
/* Default to an ECC size of 512 */
if (!chip->ecc.size)
chip->ecc.size = 512;
switch (ecc_size) {
case 512:
start = 1;
if (!ecc_strength_ds)
ecc_strength_ds = 4;
break;
case 1024:
start = 4;
if (!ecc_strength_ds)
ecc_strength_ds = 32;
break;
default:
return -EINVAL;
}
/* BCH ECC algorithm Settings for number of bits per 512B/1024B */
bch_algo = round_up(start + 1, 4);
for (val = start; val < bch_algo; val++) {
if (ecc_strength_ds == ecc_strength[val])
break;
}
if (val == bch_algo)
return -EINVAL;
if (ecc_strength_ds == 8)
ecc_bytes = 14;
else
ecc_bytes = DIV_ROUND_UP(ecc_strength_ds * fls(8 * ecc_size), 8);
ecc_steps = writesize / ecc_size;
ecc_total = ecc_steps * ecc_bytes;
if ((ecc_total + 8) > mtd->oobsize)
return -ERANGE;
chip->ecc.total = ecc_total;
pagesize = fls(writesize >> 11);
if (pagesize > HSNAND_PARA0_PAGE_V8192)
return -ERANGE;
pg_per_blk = fls((blocksize / writesize) >> 6) / 8;
if (pg_per_blk > HSNAND_PARA0_PIB_V256)
return -ERANGE;
ebu_host->nd_para0 = pagesize | pg_per_blk | HSNAND_PARA0_BYP_EN_NP |
HSNAND_PARA0_BYP_DEC_NP | HSNAND_PARA0_ADEP_EN |
HSNAND_PARA0_TYPE_ONFI | (val << 29);
mtd_set_ooblayout(mtd, &ebu_nand_ooblayout_ops);
chip->ecc.read_page = ebu_nand_read_page_hwecc;
chip->ecc.write_page = ebu_nand_write_page_hwecc;
return 0;
}
static int ebu_nand_exec_op(struct nand_chip *chip,
const struct nand_operation *op, bool check_only)
{
const struct nand_op_instr *instr = NULL;
unsigned int op_id;
int i, timeout_ms, ret = 0;
if (check_only)
return 0;
ebu_select_chip(chip);
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
ebu_nand_writeb(chip, HSNAND_CLE_OFFS | HSNAND_CS_OFFS,
instr->ctx.cmd.opcode);
break;
case NAND_OP_ADDR_INSTR:
for (i = 0; i < instr->ctx.addr.naddrs; i++)
ebu_nand_writeb(chip,
HSNAND_ALE_OFFS | HSNAND_CS_OFFS,
instr->ctx.addr.addrs[i]);
break;
case NAND_OP_DATA_IN_INSTR:
ebu_read_buf(chip, instr->ctx.data.buf.in,
instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
ebu_write_buf(chip, instr->ctx.data.buf.out,
instr->ctx.data.len);
break;
case NAND_OP_WAITRDY_INSTR:
timeout_ms = instr->ctx.waitrdy.timeout_ms * 1000;
ret = ebu_nand_waitrdy(chip, timeout_ms);
break;
}
}
return ret;
}
static const struct nand_controller_ops ebu_nand_controller_ops = {
.attach_chip = ebu_nand_attach_chip,
.setup_interface = ebu_nand_set_timings,
.exec_op = ebu_nand_exec_op,
};
static void ebu_dma_cleanup(struct ebu_nand_controller *ebu_host)
{
if (ebu_host->dma_rx)
dma_release_channel(ebu_host->dma_rx);
if (ebu_host->dma_tx)
dma_release_channel(ebu_host->dma_tx);
}
static int ebu_nand_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct ebu_nand_controller *ebu_host;
struct device_node *chip_np;
struct nand_chip *nand;
struct mtd_info *mtd;
struct resource *res;
char *resname;
int ret;
u32 cs;
ebu_host = devm_kzalloc(dev, sizeof(*ebu_host), GFP_KERNEL);
if (!ebu_host)
return -ENOMEM;
ebu_host->dev = dev;
nand_controller_init(&ebu_host->controller);
ebu_host->ebu = devm_platform_ioremap_resource_byname(pdev, "ebunand");
if (IS_ERR(ebu_host->ebu))
return PTR_ERR(ebu_host->ebu);
ebu_host->hsnand = devm_platform_ioremap_resource_byname(pdev, "hsnand");
if (IS_ERR(ebu_host->hsnand))
return PTR_ERR(ebu_host->hsnand);
chip_np = of_get_next_child(dev->of_node, NULL);
if (!chip_np)
return dev_err_probe(dev, -EINVAL,
"Could not find child node for the NAND chip\n");
ret = of_property_read_u32(chip_np, "reg", &cs);
if (ret) {
dev_err(dev, "failed to get chip select: %d\n", ret);
return ret;
}
if (cs >= MAX_CS) {
dev_err(dev, "got invalid chip select: %d\n", cs);
return -EINVAL;
}
ebu_host->cs_num = cs;
resname = devm_kasprintf(dev, GFP_KERNEL, "nand_cs%d", cs);
ebu_host->cs[cs].chipaddr = devm_platform_ioremap_resource_byname(pdev,
resname);
if (IS_ERR(ebu_host->cs[cs].chipaddr))
return PTR_ERR(ebu_host->cs[cs].chipaddr);
ebu_host->clk = devm_clk_get(dev, NULL);
if (IS_ERR(ebu_host->clk))
return dev_err_probe(dev, PTR_ERR(ebu_host->clk),
"failed to get clock\n");
ret = clk_prepare_enable(ebu_host->clk);
if (ret) {
dev_err(dev, "failed to enable clock: %d\n", ret);
return ret;
}
ebu_host->dma_tx = dma_request_chan(dev, "tx");
if (IS_ERR(ebu_host->dma_tx)) {
ret = dev_err_probe(dev, PTR_ERR(ebu_host->dma_tx),
"failed to request DMA tx chan!.\n");
goto err_disable_unprepare_clk;
}
ebu_host->dma_rx = dma_request_chan(dev, "rx");
if (IS_ERR(ebu_host->dma_rx)) {
ret = dev_err_probe(dev, PTR_ERR(ebu_host->dma_rx),
"failed to request DMA rx chan!.\n");
ebu_host->dma_rx = NULL;
goto err_cleanup_dma;
}
resname = devm_kasprintf(dev, GFP_KERNEL, "addr_sel%d", cs);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, resname);
if (!res) {
ret = -EINVAL;
goto err_cleanup_dma;
}
ebu_host->cs[cs].addr_sel = res->start;
writel(ebu_host->cs[cs].addr_sel | EBU_ADDR_MASK(5) | EBU_ADDR_SEL_REGEN,
ebu_host->ebu + EBU_ADDR_SEL(cs));
nand_set_flash_node(&ebu_host->chip, chip_np);
mtd = nand_to_mtd(&ebu_host->chip);
if (!mtd->name) {
dev_err(ebu_host->dev, "NAND label property is mandatory\n");
ret = -EINVAL;
goto err_cleanup_dma;
}
mtd->dev.parent = dev;
ebu_host->dev = dev;
platform_set_drvdata(pdev, ebu_host);
nand_set_controller_data(&ebu_host->chip, ebu_host);
nand = &ebu_host->chip;
nand->controller = &ebu_host->controller;
nand->controller->ops = &ebu_nand_controller_ops;
/* Scan to find existence of the device */
ret = nand_scan(&ebu_host->chip, 1);
if (ret)
goto err_cleanup_dma;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto err_clean_nand;
return 0;
err_clean_nand:
nand_cleanup(&ebu_host->chip);
err_cleanup_dma:
ebu_dma_cleanup(ebu_host);
err_disable_unprepare_clk:
clk_disable_unprepare(ebu_host->clk);
return ret;
}
static int ebu_nand_remove(struct platform_device *pdev)
{
struct ebu_nand_controller *ebu_host = platform_get_drvdata(pdev);
int ret;
ret = mtd_device_unregister(nand_to_mtd(&ebu_host->chip));
WARN_ON(ret);
nand_cleanup(&ebu_host->chip);
ebu_nand_disable(&ebu_host->chip);
ebu_dma_cleanup(ebu_host);
clk_disable_unprepare(ebu_host->clk);
return 0;
}
static const struct of_device_id ebu_nand_match[] = {
{ .compatible = "intel,lgm-ebunand" },
{}
};
MODULE_DEVICE_TABLE(of, ebu_nand_match);
static struct platform_driver ebu_nand_driver = {
.probe = ebu_nand_probe,
.remove = ebu_nand_remove,
.driver = {
.name = "intel-nand-controller",
.of_match_table = ebu_nand_match,
},
};
module_platform_driver(ebu_nand_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
MODULE_DESCRIPTION("Intel's LGM External Bus NAND Controller driver");