OpenCloudOS-Kernel/drivers/platform/x86/amd/pmc.c

1138 lines
28 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD SoC Power Management Controller Driver
*
* Copyright (c) 2020, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Shyam Sundar S K <Shyam-sundar.S-k@amd.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <asm/amd_nb.h>
#include <linux/acpi.h>
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/limits.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
platform/x86/amd: pmc: Disable IRQ1 wakeup for RN/CZN By default when the system is configured for low power idle in the FADT the keyboard is set up as a wake source. This matches the behavior that Windows uses for Modern Standby as well. It has been reported that a variety of AMD based designs there are spurious wakeups are happening where two IRQ sources are active. For example: ``` PM: Triggering wakeup from IRQ 9 PM: Triggering wakeup from IRQ 1 ``` In these designs IRQ 9 is the ACPI SCI and IRQ 1 is the keyboard. One way to trigger this problem is to suspend the laptop and then unplug the AC adapter. The SOC will be in a hardware sleep state and plugging in the AC adapter returns control to the kernel's s2idle loop. Normally if just IRQ 9 was active the s2idle loop would advance any EC transactions and no other IRQ being active would cause the s2idle loop to put the SOC back into hardware sleep state. When this bug occurred IRQ 1 is also active even if no keyboard activity occurred. This causes the s2idle loop to break and the system to wake. This is a platform firmware bug triggering IRQ1 without keyboard activity. This occurs in Windows as well, but Windows will enter "SW DRIPS" and then with no activity enters back into "HW DRIPS" (hardware sleep state). This issue affects Renoir, Lucienne, Cezanne, and Barcelo platforms. It does not happen on newer systems such as Mendocino or Rembrandt. It's been fixed in newer platform firmware. To avoid triggering the bug on older systems check the SMU F/W version and adjust the policy at suspend time for s2idle wakeup from keyboard on these systems. A lot of thought and experimentation has been given around the timing of disabling IRQ1, and to make it work the "suspend" PM callback is restored. Reported-by: Kai-Heng Feng <kai.heng.feng@canonical.com> Reported-by: Xaver Hugl <xaver.hugl@gmail.com> Link: https://gitlab.freedesktop.org/drm/amd/-/issues/2115 Link: https://gitlab.freedesktop.org/drm/amd/-/issues/1951 Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Link: https://lore.kernel.org/r/20230120191519.15926-1-mario.limonciello@amd.com Reviewed-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2023-01-21 03:15:18 +08:00
#include <linux/serio.h>
#include <linux/suspend.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
/* SMU communication registers */
#define AMD_PMC_REGISTER_MESSAGE 0x538
#define AMD_PMC_REGISTER_RESPONSE 0x980
#define AMD_PMC_REGISTER_ARGUMENT 0x9BC
/* PMC Scratch Registers */
#define AMD_PMC_SCRATCH_REG_CZN 0x94
#define AMD_PMC_SCRATCH_REG_YC 0xD14
/* STB Registers */
#define AMD_PMC_STB_PMI_0 0x03E30600
#define AMD_PMC_STB_S2IDLE_PREPARE 0xC6000001
#define AMD_PMC_STB_S2IDLE_RESTORE 0xC6000002
#define AMD_PMC_STB_S2IDLE_CHECK 0xC6000003
#define AMD_PMC_STB_DUMMY_PC 0xC6000007
/* STB S2D(Spill to DRAM) has different message port offset */
#define AMD_S2D_REGISTER_MESSAGE 0xA20
#define AMD_S2D_REGISTER_RESPONSE 0xA80
#define AMD_S2D_REGISTER_ARGUMENT 0xA88
/* STB Spill to DRAM Parameters */
#define S2D_TELEMETRY_BYTES_MAX 0x100000
#define S2D_TELEMETRY_DRAMBYTES_MAX 0x1000000
/* Base address of SMU for mapping physical address to virtual address */
#define AMD_PMC_MAPPING_SIZE 0x01000
#define AMD_PMC_BASE_ADDR_OFFSET 0x10000
#define AMD_PMC_BASE_ADDR_LO 0x13B102E8
#define AMD_PMC_BASE_ADDR_HI 0x13B102EC
#define AMD_PMC_BASE_ADDR_LO_MASK GENMASK(15, 0)
#define AMD_PMC_BASE_ADDR_HI_MASK GENMASK(31, 20)
/* SMU Response Codes */
#define AMD_PMC_RESULT_OK 0x01
#define AMD_PMC_RESULT_CMD_REJECT_BUSY 0xFC
#define AMD_PMC_RESULT_CMD_REJECT_PREREQ 0xFD
#define AMD_PMC_RESULT_CMD_UNKNOWN 0xFE
#define AMD_PMC_RESULT_FAILED 0xFF
/* FCH SSC Registers */
#define FCH_S0I3_ENTRY_TIME_L_OFFSET 0x30
#define FCH_S0I3_ENTRY_TIME_H_OFFSET 0x34
#define FCH_S0I3_EXIT_TIME_L_OFFSET 0x38
#define FCH_S0I3_EXIT_TIME_H_OFFSET 0x3C
#define FCH_SSC_MAPPING_SIZE 0x800
#define FCH_BASE_PHY_ADDR_LOW 0xFED81100
#define FCH_BASE_PHY_ADDR_HIGH 0x00000000
/* SMU Message Definations */
#define SMU_MSG_GETSMUVERSION 0x02
#define SMU_MSG_LOG_GETDRAM_ADDR_HI 0x04
#define SMU_MSG_LOG_GETDRAM_ADDR_LO 0x05
#define SMU_MSG_LOG_START 0x06
#define SMU_MSG_LOG_RESET 0x07
#define SMU_MSG_LOG_DUMP_DATA 0x08
#define SMU_MSG_GET_SUP_CONSTRAINTS 0x09
/* List of supported CPU ids */
#define AMD_CPU_ID_RV 0x15D0
#define AMD_CPU_ID_RN 0x1630
#define AMD_CPU_ID_PCO AMD_CPU_ID_RV
#define AMD_CPU_ID_CZN AMD_CPU_ID_RN
#define AMD_CPU_ID_YC 0x14B5
#define AMD_CPU_ID_CB 0x14D8
#define AMD_CPU_ID_PS 0x14E8
#define AMD_CPU_ID_SP 0x14A4
#define PMC_MSG_DELAY_MIN_US 50
#define RESPONSE_REGISTER_LOOP_MAX 20000
#define DELAY_MIN_US 2000
#define DELAY_MAX_US 3000
#define FIFO_SIZE 4096
enum amd_pmc_def {
MSG_TEST = 0x01,
MSG_OS_HINT_PCO,
MSG_OS_HINT_RN,
};
enum s2d_arg {
S2D_TELEMETRY_SIZE = 0x01,
S2D_PHYS_ADDR_LOW,
S2D_PHYS_ADDR_HIGH,
S2D_NUM_SAMPLES,
S2D_DRAM_SIZE,
};
struct amd_pmc_bit_map {
const char *name;
u32 bit_mask;
};
static const struct amd_pmc_bit_map soc15_ip_blk[] = {
{"DISPLAY", BIT(0)},
{"CPU", BIT(1)},
{"GFX", BIT(2)},
{"VDD", BIT(3)},
{"ACP", BIT(4)},
{"VCN", BIT(5)},
{"ISP", BIT(6)},
{"NBIO", BIT(7)},
{"DF", BIT(8)},
{"USB3_0", BIT(9)},
{"USB3_1", BIT(10)},
{"LAPIC", BIT(11)},
{"USB3_2", BIT(12)},
{"USB3_3", BIT(13)},
{"USB3_4", BIT(14)},
{"USB4_0", BIT(15)},
{"USB4_1", BIT(16)},
{"MPM", BIT(17)},
{"JPEG", BIT(18)},
{"IPU", BIT(19)},
{"UMSCH", BIT(20)},
{}
};
struct amd_pmc_dev {
void __iomem *regbase;
void __iomem *smu_virt_addr;
void __iomem *stb_virt_addr;
void __iomem *fch_virt_addr;
bool msg_port;
u32 base_addr;
u32 cpu_id;
u32 active_ips;
u32 dram_size;
u32 num_ips;
u32 s2d_msg_id;
/* SMU version information */
u8 smu_program;
u8 major;
u8 minor;
u8 rev;
struct device *dev;
struct pci_dev *rdev;
struct mutex lock; /* generic mutex lock */
struct dentry *dbgfs_dir;
};
static bool enable_stb;
module_param(enable_stb, bool, 0644);
MODULE_PARM_DESC(enable_stb, "Enable the STB debug mechanism");
static bool disable_workarounds;
module_param(disable_workarounds, bool, 0644);
MODULE_PARM_DESC(disable_workarounds, "Disable workarounds for platform bugs");
static struct amd_pmc_dev pmc;
static int amd_pmc_send_cmd(struct amd_pmc_dev *dev, u32 arg, u32 *data, u8 msg, bool ret);
static int amd_pmc_read_stb(struct amd_pmc_dev *dev, u32 *buf);
static int amd_pmc_write_stb(struct amd_pmc_dev *dev, u32 data);
static inline u32 amd_pmc_reg_read(struct amd_pmc_dev *dev, int reg_offset)
{
return ioread32(dev->regbase + reg_offset);
}
static inline void amd_pmc_reg_write(struct amd_pmc_dev *dev, int reg_offset, u32 val)
{
iowrite32(val, dev->regbase + reg_offset);
}
struct smu_metrics {
u32 table_version;
u32 hint_count;
u32 s0i3_last_entry_status;
u32 timein_s0i2;
u64 timeentering_s0i3_lastcapture;
u64 timeentering_s0i3_totaltime;
u64 timeto_resume_to_os_lastcapture;
u64 timeto_resume_to_os_totaltime;
u64 timein_s0i3_lastcapture;
u64 timein_s0i3_totaltime;
u64 timein_swdrips_lastcapture;
u64 timein_swdrips_totaltime;
u64 timecondition_notmet_lastcapture[32];
u64 timecondition_notmet_totaltime[32];
} __packed;
static int amd_pmc_stb_debugfs_open(struct inode *inode, struct file *filp)
{
struct amd_pmc_dev *dev = filp->f_inode->i_private;
u32 size = FIFO_SIZE * sizeof(u32);
u32 *buf;
int rc;
buf = kzalloc(size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
rc = amd_pmc_read_stb(dev, buf);
if (rc) {
kfree(buf);
return rc;
}
filp->private_data = buf;
return rc;
}
static ssize_t amd_pmc_stb_debugfs_read(struct file *filp, char __user *buf, size_t size,
loff_t *pos)
{
if (!filp->private_data)
return -EINVAL;
return simple_read_from_buffer(buf, size, pos, filp->private_data,
FIFO_SIZE * sizeof(u32));
}
static int amd_pmc_stb_debugfs_release(struct inode *inode, struct file *filp)
{
kfree(filp->private_data);
return 0;
}
static const struct file_operations amd_pmc_stb_debugfs_fops = {
.owner = THIS_MODULE,
.open = amd_pmc_stb_debugfs_open,
.read = amd_pmc_stb_debugfs_read,
.release = amd_pmc_stb_debugfs_release,
};
static int amd_pmc_stb_debugfs_open_v2(struct inode *inode, struct file *filp)
{
struct amd_pmc_dev *dev = filp->f_inode->i_private;
u32 *buf, fsize, num_samples, stb_rdptr_offset = 0;
int ret;
/* Write dummy postcode while reading the STB buffer */
ret = amd_pmc_write_stb(dev, AMD_PMC_STB_DUMMY_PC);
if (ret)
dev_err(dev->dev, "error writing to STB: %d\n", ret);
buf = kzalloc(S2D_TELEMETRY_BYTES_MAX, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Spill to DRAM num_samples uses separate SMU message port */
dev->msg_port = 1;
/* Get the num_samples to calculate the last push location */
ret = amd_pmc_send_cmd(dev, S2D_NUM_SAMPLES, &num_samples, dev->s2d_msg_id, true);
/* Clear msg_port for other SMU operation */
dev->msg_port = 0;
if (ret) {
dev_err(dev->dev, "error: S2D_NUM_SAMPLES not supported : %d\n", ret);
kfree(buf);
return ret;
}
/* Start capturing data from the last push location */
if (num_samples > S2D_TELEMETRY_BYTES_MAX) {
fsize = S2D_TELEMETRY_BYTES_MAX;
stb_rdptr_offset = num_samples - fsize;
} else {
fsize = num_samples;
stb_rdptr_offset = 0;
}
memcpy_fromio(buf, dev->stb_virt_addr + stb_rdptr_offset, fsize);
filp->private_data = buf;
return 0;
}
static ssize_t amd_pmc_stb_debugfs_read_v2(struct file *filp, char __user *buf, size_t size,
loff_t *pos)
{
if (!filp->private_data)
return -EINVAL;
return simple_read_from_buffer(buf, size, pos, filp->private_data,
S2D_TELEMETRY_BYTES_MAX);
}
static int amd_pmc_stb_debugfs_release_v2(struct inode *inode, struct file *filp)
{
kfree(filp->private_data);
return 0;
}
static const struct file_operations amd_pmc_stb_debugfs_fops_v2 = {
.owner = THIS_MODULE,
.open = amd_pmc_stb_debugfs_open_v2,
.read = amd_pmc_stb_debugfs_read_v2,
.release = amd_pmc_stb_debugfs_release_v2,
};
static void amd_pmc_get_ip_info(struct amd_pmc_dev *dev)
{
switch (dev->cpu_id) {
case AMD_CPU_ID_PCO:
case AMD_CPU_ID_RN:
case AMD_CPU_ID_YC:
case AMD_CPU_ID_CB:
dev->num_ips = 12;
dev->s2d_msg_id = 0xBE;
break;
case AMD_CPU_ID_PS:
dev->num_ips = 21;
dev->s2d_msg_id = 0x85;
break;
}
}
static int amd_pmc_setup_smu_logging(struct amd_pmc_dev *dev)
{
if (dev->cpu_id == AMD_CPU_ID_PCO) {
dev_warn_once(dev->dev, "SMU debugging info not supported on this platform\n");
return -EINVAL;
}
/* Get Active devices list from SMU */
if (!dev->active_ips)
amd_pmc_send_cmd(dev, 0, &dev->active_ips, SMU_MSG_GET_SUP_CONSTRAINTS, true);
/* Get dram address */
if (!dev->smu_virt_addr) {
u32 phys_addr_low, phys_addr_hi;
u64 smu_phys_addr;
amd_pmc_send_cmd(dev, 0, &phys_addr_low, SMU_MSG_LOG_GETDRAM_ADDR_LO, true);
amd_pmc_send_cmd(dev, 0, &phys_addr_hi, SMU_MSG_LOG_GETDRAM_ADDR_HI, true);
smu_phys_addr = ((u64)phys_addr_hi << 32 | phys_addr_low);
dev->smu_virt_addr = devm_ioremap(dev->dev, smu_phys_addr,
sizeof(struct smu_metrics));
if (!dev->smu_virt_addr)
return -ENOMEM;
}
/* Start the logging */
amd_pmc_send_cmd(dev, 0, NULL, SMU_MSG_LOG_RESET, false);
amd_pmc_send_cmd(dev, 0, NULL, SMU_MSG_LOG_START, false);
return 0;
}
static int get_metrics_table(struct amd_pmc_dev *pdev, struct smu_metrics *table)
{
if (!pdev->smu_virt_addr) {
int ret = amd_pmc_setup_smu_logging(pdev);
if (ret)
return ret;
}
if (pdev->cpu_id == AMD_CPU_ID_PCO)
return -ENODEV;
memcpy_fromio(table, pdev->smu_virt_addr, sizeof(struct smu_metrics));
return 0;
}
static void amd_pmc_validate_deepest(struct amd_pmc_dev *pdev)
{
struct smu_metrics table;
if (get_metrics_table(pdev, &table))
return;
if (!table.s0i3_last_entry_status)
dev_warn(pdev->dev, "Last suspend didn't reach deepest state\n");
pm_report_hw_sleep_time(table.s0i3_last_entry_status ?
table.timein_s0i3_lastcapture : 0);
}
static int amd_pmc_get_smu_version(struct amd_pmc_dev *dev)
{
int rc;
u32 val;
if (dev->cpu_id == AMD_CPU_ID_PCO)
return -ENODEV;
rc = amd_pmc_send_cmd(dev, 0, &val, SMU_MSG_GETSMUVERSION, true);
if (rc)
return rc;
dev->smu_program = (val >> 24) & GENMASK(7, 0);
dev->major = (val >> 16) & GENMASK(7, 0);
dev->minor = (val >> 8) & GENMASK(7, 0);
dev->rev = (val >> 0) & GENMASK(7, 0);
dev_dbg(dev->dev, "SMU program %u version is %u.%u.%u\n",
dev->smu_program, dev->major, dev->minor, dev->rev);
return 0;
}
static ssize_t smu_fw_version_show(struct device *d, struct device_attribute *attr,
char *buf)
{
struct amd_pmc_dev *dev = dev_get_drvdata(d);
if (!dev->major) {
int rc = amd_pmc_get_smu_version(dev);
if (rc)
return rc;
}
return sysfs_emit(buf, "%u.%u.%u\n", dev->major, dev->minor, dev->rev);
}
static ssize_t smu_program_show(struct device *d, struct device_attribute *attr,
char *buf)
{
struct amd_pmc_dev *dev = dev_get_drvdata(d);
if (!dev->major) {
int rc = amd_pmc_get_smu_version(dev);
if (rc)
return rc;
}
return sysfs_emit(buf, "%u\n", dev->smu_program);
}
static DEVICE_ATTR_RO(smu_fw_version);
static DEVICE_ATTR_RO(smu_program);
static umode_t pmc_attr_is_visible(struct kobject *kobj, struct attribute *attr, int idx)
{
struct device *dev = kobj_to_dev(kobj);
struct amd_pmc_dev *pdev = dev_get_drvdata(dev);
if (pdev->cpu_id == AMD_CPU_ID_PCO)
return 0;
return 0444;
}
static struct attribute *pmc_attrs[] = {
&dev_attr_smu_fw_version.attr,
&dev_attr_smu_program.attr,
NULL,
};
static struct attribute_group pmc_attr_group = {
.attrs = pmc_attrs,
.is_visible = pmc_attr_is_visible,
};
static const struct attribute_group *pmc_groups[] = {
&pmc_attr_group,
NULL,
};
static int smu_fw_info_show(struct seq_file *s, void *unused)
{
struct amd_pmc_dev *dev = s->private;
struct smu_metrics table;
int idx;
if (get_metrics_table(dev, &table))
return -EINVAL;
seq_puts(s, "\n=== SMU Statistics ===\n");
seq_printf(s, "Table Version: %d\n", table.table_version);
seq_printf(s, "Hint Count: %d\n", table.hint_count);
seq_printf(s, "Last S0i3 Status: %s\n", table.s0i3_last_entry_status ? "Success" :
"Unknown/Fail");
seq_printf(s, "Time (in us) to S0i3: %lld\n", table.timeentering_s0i3_lastcapture);
seq_printf(s, "Time (in us) in S0i3: %lld\n", table.timein_s0i3_lastcapture);
seq_printf(s, "Time (in us) to resume from S0i3: %lld\n",
table.timeto_resume_to_os_lastcapture);
seq_puts(s, "\n=== Active time (in us) ===\n");
for (idx = 0 ; idx < dev->num_ips ; idx++) {
if (soc15_ip_blk[idx].bit_mask & dev->active_ips)
seq_printf(s, "%-8s : %lld\n", soc15_ip_blk[idx].name,
table.timecondition_notmet_lastcapture[idx]);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(smu_fw_info);
static int s0ix_stats_show(struct seq_file *s, void *unused)
{
struct amd_pmc_dev *dev = s->private;
u64 entry_time, exit_time, residency;
/* Use FCH registers to get the S0ix stats */
if (!dev->fch_virt_addr) {
u32 base_addr_lo = FCH_BASE_PHY_ADDR_LOW;
u32 base_addr_hi = FCH_BASE_PHY_ADDR_HIGH;
u64 fch_phys_addr = ((u64)base_addr_hi << 32 | base_addr_lo);
dev->fch_virt_addr = devm_ioremap(dev->dev, fch_phys_addr, FCH_SSC_MAPPING_SIZE);
if (!dev->fch_virt_addr)
return -ENOMEM;
}
entry_time = ioread32(dev->fch_virt_addr + FCH_S0I3_ENTRY_TIME_H_OFFSET);
entry_time = entry_time << 32 | ioread32(dev->fch_virt_addr + FCH_S0I3_ENTRY_TIME_L_OFFSET);
exit_time = ioread32(dev->fch_virt_addr + FCH_S0I3_EXIT_TIME_H_OFFSET);
exit_time = exit_time << 32 | ioread32(dev->fch_virt_addr + FCH_S0I3_EXIT_TIME_L_OFFSET);
/* It's in 48MHz. We need to convert it */
residency = exit_time - entry_time;
do_div(residency, 48);
seq_puts(s, "=== S0ix statistics ===\n");
seq_printf(s, "S0ix Entry Time: %lld\n", entry_time);
seq_printf(s, "S0ix Exit Time: %lld\n", exit_time);
seq_printf(s, "Residency Time: %lld\n", residency);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(s0ix_stats);
static int amd_pmc_idlemask_read(struct amd_pmc_dev *pdev, struct device *dev,
struct seq_file *s)
{
u32 val;
int rc;
switch (pdev->cpu_id) {
case AMD_CPU_ID_CZN:
/* we haven't yet read SMU version */
if (!pdev->major) {
rc = amd_pmc_get_smu_version(pdev);
if (rc)
return rc;
}
if (pdev->major > 56 || (pdev->major >= 55 && pdev->minor >= 37))
val = amd_pmc_reg_read(pdev, AMD_PMC_SCRATCH_REG_CZN);
else
return -EINVAL;
break;
case AMD_CPU_ID_YC:
case AMD_CPU_ID_CB:
case AMD_CPU_ID_PS:
val = amd_pmc_reg_read(pdev, AMD_PMC_SCRATCH_REG_YC);
break;
default:
return -EINVAL;
}
if (dev)
pm_pr_dbg("SMU idlemask s0i3: 0x%x\n", val);
if (s)
seq_printf(s, "SMU idlemask : 0x%x\n", val);
return 0;
}
static int amd_pmc_idlemask_show(struct seq_file *s, void *unused)
{
return amd_pmc_idlemask_read(s->private, NULL, s);
}
DEFINE_SHOW_ATTRIBUTE(amd_pmc_idlemask);
static void amd_pmc_dbgfs_unregister(struct amd_pmc_dev *dev)
{
debugfs_remove_recursive(dev->dbgfs_dir);
}
static bool amd_pmc_is_stb_supported(struct amd_pmc_dev *dev)
{
switch (dev->cpu_id) {
case AMD_CPU_ID_YC:
case AMD_CPU_ID_CB:
case AMD_CPU_ID_PS:
return true;
default:
return false;
}
}
static void amd_pmc_dbgfs_register(struct amd_pmc_dev *dev)
{
dev->dbgfs_dir = debugfs_create_dir("amd_pmc", NULL);
debugfs_create_file("smu_fw_info", 0644, dev->dbgfs_dir, dev,
&smu_fw_info_fops);
debugfs_create_file("s0ix_stats", 0644, dev->dbgfs_dir, dev,
&s0ix_stats_fops);
debugfs_create_file("amd_pmc_idlemask", 0644, dev->dbgfs_dir, dev,
&amd_pmc_idlemask_fops);
/* Enable STB only when the module_param is set */
if (enable_stb) {
if (amd_pmc_is_stb_supported(dev))
debugfs_create_file("stb_read", 0644, dev->dbgfs_dir, dev,
&amd_pmc_stb_debugfs_fops_v2);
else
debugfs_create_file("stb_read", 0644, dev->dbgfs_dir, dev,
&amd_pmc_stb_debugfs_fops);
}
}
static void amd_pmc_dump_registers(struct amd_pmc_dev *dev)
{
u32 value, message, argument, response;
if (dev->msg_port) {
message = AMD_S2D_REGISTER_MESSAGE;
argument = AMD_S2D_REGISTER_ARGUMENT;
response = AMD_S2D_REGISTER_RESPONSE;
} else {
message = AMD_PMC_REGISTER_MESSAGE;
argument = AMD_PMC_REGISTER_ARGUMENT;
response = AMD_PMC_REGISTER_RESPONSE;
}
value = amd_pmc_reg_read(dev, response);
dev_dbg(dev->dev, "AMD_%s_REGISTER_RESPONSE:%x\n", dev->msg_port ? "S2D" : "PMC", value);
value = amd_pmc_reg_read(dev, argument);
dev_dbg(dev->dev, "AMD_%s_REGISTER_ARGUMENT:%x\n", dev->msg_port ? "S2D" : "PMC", value);
value = amd_pmc_reg_read(dev, message);
dev_dbg(dev->dev, "AMD_%s_REGISTER_MESSAGE:%x\n", dev->msg_port ? "S2D" : "PMC", value);
}
static int amd_pmc_send_cmd(struct amd_pmc_dev *dev, u32 arg, u32 *data, u8 msg, bool ret)
{
int rc;
u32 val, message, argument, response;
mutex_lock(&dev->lock);
if (dev->msg_port) {
message = AMD_S2D_REGISTER_MESSAGE;
argument = AMD_S2D_REGISTER_ARGUMENT;
response = AMD_S2D_REGISTER_RESPONSE;
} else {
message = AMD_PMC_REGISTER_MESSAGE;
argument = AMD_PMC_REGISTER_ARGUMENT;
response = AMD_PMC_REGISTER_RESPONSE;
}
/* Wait until we get a valid response */
rc = readx_poll_timeout(ioread32, dev->regbase + response,
val, val != 0, PMC_MSG_DELAY_MIN_US,
PMC_MSG_DELAY_MIN_US * RESPONSE_REGISTER_LOOP_MAX);
if (rc) {
dev_err(dev->dev, "failed to talk to SMU\n");
goto out_unlock;
}
/* Write zero to response register */
amd_pmc_reg_write(dev, response, 0);
/* Write argument into response register */
amd_pmc_reg_write(dev, argument, arg);
/* Write message ID to message ID register */
amd_pmc_reg_write(dev, message, msg);
/* Wait until we get a valid response */
rc = readx_poll_timeout(ioread32, dev->regbase + response,
val, val != 0, PMC_MSG_DELAY_MIN_US,
PMC_MSG_DELAY_MIN_US * RESPONSE_REGISTER_LOOP_MAX);
if (rc) {
dev_err(dev->dev, "SMU response timed out\n");
goto out_unlock;
}
switch (val) {
case AMD_PMC_RESULT_OK:
if (ret) {
/* PMFW may take longer time to return back the data */
usleep_range(DELAY_MIN_US, 10 * DELAY_MAX_US);
*data = amd_pmc_reg_read(dev, argument);
}
break;
case AMD_PMC_RESULT_CMD_REJECT_BUSY:
dev_err(dev->dev, "SMU not ready. err: 0x%x\n", val);
rc = -EBUSY;
goto out_unlock;
case AMD_PMC_RESULT_CMD_UNKNOWN:
dev_err(dev->dev, "SMU cmd unknown. err: 0x%x\n", val);
rc = -EINVAL;
goto out_unlock;
case AMD_PMC_RESULT_CMD_REJECT_PREREQ:
case AMD_PMC_RESULT_FAILED:
default:
dev_err(dev->dev, "SMU cmd failed. err: 0x%x\n", val);
rc = -EIO;
goto out_unlock;
}
out_unlock:
mutex_unlock(&dev->lock);
amd_pmc_dump_registers(dev);
return rc;
}
static int amd_pmc_get_os_hint(struct amd_pmc_dev *dev)
{
switch (dev->cpu_id) {
case AMD_CPU_ID_PCO:
return MSG_OS_HINT_PCO;
case AMD_CPU_ID_RN:
case AMD_CPU_ID_YC:
case AMD_CPU_ID_CB:
case AMD_CPU_ID_PS:
return MSG_OS_HINT_RN;
}
return -EINVAL;
}
platform/x86/amd: pmc: Disable IRQ1 wakeup for RN/CZN By default when the system is configured for low power idle in the FADT the keyboard is set up as a wake source. This matches the behavior that Windows uses for Modern Standby as well. It has been reported that a variety of AMD based designs there are spurious wakeups are happening where two IRQ sources are active. For example: ``` PM: Triggering wakeup from IRQ 9 PM: Triggering wakeup from IRQ 1 ``` In these designs IRQ 9 is the ACPI SCI and IRQ 1 is the keyboard. One way to trigger this problem is to suspend the laptop and then unplug the AC adapter. The SOC will be in a hardware sleep state and plugging in the AC adapter returns control to the kernel's s2idle loop. Normally if just IRQ 9 was active the s2idle loop would advance any EC transactions and no other IRQ being active would cause the s2idle loop to put the SOC back into hardware sleep state. When this bug occurred IRQ 1 is also active even if no keyboard activity occurred. This causes the s2idle loop to break and the system to wake. This is a platform firmware bug triggering IRQ1 without keyboard activity. This occurs in Windows as well, but Windows will enter "SW DRIPS" and then with no activity enters back into "HW DRIPS" (hardware sleep state). This issue affects Renoir, Lucienne, Cezanne, and Barcelo platforms. It does not happen on newer systems such as Mendocino or Rembrandt. It's been fixed in newer platform firmware. To avoid triggering the bug on older systems check the SMU F/W version and adjust the policy at suspend time for s2idle wakeup from keyboard on these systems. A lot of thought and experimentation has been given around the timing of disabling IRQ1, and to make it work the "suspend" PM callback is restored. Reported-by: Kai-Heng Feng <kai.heng.feng@canonical.com> Reported-by: Xaver Hugl <xaver.hugl@gmail.com> Link: https://gitlab.freedesktop.org/drm/amd/-/issues/2115 Link: https://gitlab.freedesktop.org/drm/amd/-/issues/1951 Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Link: https://lore.kernel.org/r/20230120191519.15926-1-mario.limonciello@amd.com Reviewed-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2023-01-21 03:15:18 +08:00
static int amd_pmc_czn_wa_irq1(struct amd_pmc_dev *pdev)
{
struct device *d;
int rc;
if (!pdev->major) {
rc = amd_pmc_get_smu_version(pdev);
if (rc)
return rc;
}
if (pdev->major > 64 || (pdev->major == 64 && pdev->minor > 65))
return 0;
d = bus_find_device_by_name(&serio_bus, NULL, "serio0");
if (!d)
return 0;
if (device_may_wakeup(d)) {
dev_info_once(d, "Disabling IRQ1 wakeup source to avoid platform firmware bug\n");
disable_irq_wake(1);
device_set_wakeup_enable(d, false);
}
put_device(d);
return 0;
}
static int amd_pmc_verify_czn_rtc(struct amd_pmc_dev *pdev, u32 *arg)
{
struct rtc_device *rtc_device;
time64_t then, now, duration;
struct rtc_wkalrm alarm;
struct rtc_time tm;
int rc;
/* we haven't yet read SMU version */
if (!pdev->major) {
rc = amd_pmc_get_smu_version(pdev);
if (rc)
return rc;
}
if (pdev->major < 64 || (pdev->major == 64 && pdev->minor < 53))
return 0;
rtc_device = rtc_class_open("rtc0");
if (!rtc_device)
return 0;
rc = rtc_read_alarm(rtc_device, &alarm);
if (rc)
return rc;
if (!alarm.enabled) {
dev_dbg(pdev->dev, "alarm not enabled\n");
return 0;
}
rc = rtc_read_time(rtc_device, &tm);
if (rc)
return rc;
then = rtc_tm_to_time64(&alarm.time);
now = rtc_tm_to_time64(&tm);
duration = then-now;
/* in the past */
if (then < now)
return 0;
/* will be stored in upper 16 bits of s0i3 hint argument,
* so timer wakeup from s0i3 is limited to ~18 hours or less
*/
if (duration <= 4 || duration > U16_MAX)
return -EINVAL;
*arg |= (duration << 16);
rc = rtc_alarm_irq_enable(rtc_device, 0);
pm_pr_dbg("wakeup timer programmed for %lld seconds\n", duration);
return rc;
}
static void amd_pmc_s2idle_prepare(void)
{
struct amd_pmc_dev *pdev = &pmc;
int rc;
u8 msg;
u32 arg = 1;
/* Reset and Start SMU logging - to monitor the s0i3 stats */
amd_pmc_setup_smu_logging(pdev);
/* Activate CZN specific platform bug workarounds */
if (pdev->cpu_id == AMD_CPU_ID_CZN && !disable_workarounds) {
rc = amd_pmc_verify_czn_rtc(pdev, &arg);
if (rc) {
dev_err(pdev->dev, "failed to set RTC: %d\n", rc);
return;
}
}
msg = amd_pmc_get_os_hint(pdev);
rc = amd_pmc_send_cmd(pdev, arg, NULL, msg, false);
platform/x86: amd-pmc: Set QOS during suspend on CZN w/ timer wakeup commit 59348401ebed ("platform/x86: amd-pmc: Add special handling for timer based S0i3 wakeup") adds support for using another platform timer in lieu of the RTC which doesn't work properly on some systems. This path was validated and worked well before submission. During the 5.16-rc1 merge window other patches were merged that caused this to stop working properly. When this feature was used with 5.16-rc1 or later some OEM laptops with the matching firmware requirements from that commit would shutdown instead of program a timer based wakeup. This was bisected to commit 8d89835b0467 ("PM: suspend: Do not pause cpuidle in the suspend-to-idle path"). This wasn't supposed to cause any negative impacts and also tested well on both Intel and ARM platforms. However this changed the semantics of when CPUs are allowed to be in the deepest state. For the AMD systems in question it appears this causes a firmware crash for timer based wakeup. It's hypothesized to be caused by the `amd-pmc` driver sending `OS_HINT` and all the CPUs going into a deep state while the timer is still being programmed. It's likely a firmware bug, but to avoid it don't allow setting CPUs into the deepest state while using CZN timer wakeup path. If later it's discovered that this also occurs from "regular" suspends without a timer as well or on other silicon, this may be later expanded to run in the suspend path for more scenarios. Cc: stable@vger.kernel.org # 5.16+ Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lore.kernel.org/linux-acpi/BL1PR12MB51570F5BD05980A0DCA1F3F4E23A9@BL1PR12MB5157.namprd12.prod.outlook.com/T/#mee35f39c41a04b624700ab2621c795367f19c90e Fixes: 8d89835b0467 ("PM: suspend: Do not pause cpuidle in the suspend-to-idle path") Fixes: 23f62d7ab25b ("PM: sleep: Pause cpuidle later and resume it earlier during system transitions") Fixes: 59348401ebed ("platform/x86: amd-pmc: Add special handling for timer based S0i3 wakeup") Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Link: https://lore.kernel.org/r/20220223175237.6209-1-mario.limonciello@amd.com Reviewed-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2022-02-24 01:52:37 +08:00
if (rc) {
dev_err(pdev->dev, "suspend failed: %d\n", rc);
return;
platform/x86: amd-pmc: Set QOS during suspend on CZN w/ timer wakeup commit 59348401ebed ("platform/x86: amd-pmc: Add special handling for timer based S0i3 wakeup") adds support for using another platform timer in lieu of the RTC which doesn't work properly on some systems. This path was validated and worked well before submission. During the 5.16-rc1 merge window other patches were merged that caused this to stop working properly. When this feature was used with 5.16-rc1 or later some OEM laptops with the matching firmware requirements from that commit would shutdown instead of program a timer based wakeup. This was bisected to commit 8d89835b0467 ("PM: suspend: Do not pause cpuidle in the suspend-to-idle path"). This wasn't supposed to cause any negative impacts and also tested well on both Intel and ARM platforms. However this changed the semantics of when CPUs are allowed to be in the deepest state. For the AMD systems in question it appears this causes a firmware crash for timer based wakeup. It's hypothesized to be caused by the `amd-pmc` driver sending `OS_HINT` and all the CPUs going into a deep state while the timer is still being programmed. It's likely a firmware bug, but to avoid it don't allow setting CPUs into the deepest state while using CZN timer wakeup path. If later it's discovered that this also occurs from "regular" suspends without a timer as well or on other silicon, this may be later expanded to run in the suspend path for more scenarios. Cc: stable@vger.kernel.org # 5.16+ Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lore.kernel.org/linux-acpi/BL1PR12MB51570F5BD05980A0DCA1F3F4E23A9@BL1PR12MB5157.namprd12.prod.outlook.com/T/#mee35f39c41a04b624700ab2621c795367f19c90e Fixes: 8d89835b0467 ("PM: suspend: Do not pause cpuidle in the suspend-to-idle path") Fixes: 23f62d7ab25b ("PM: sleep: Pause cpuidle later and resume it earlier during system transitions") Fixes: 59348401ebed ("platform/x86: amd-pmc: Add special handling for timer based S0i3 wakeup") Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Link: https://lore.kernel.org/r/20220223175237.6209-1-mario.limonciello@amd.com Reviewed-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2022-02-24 01:52:37 +08:00
}
rc = amd_pmc_write_stb(pdev, AMD_PMC_STB_S2IDLE_PREPARE);
if (rc)
dev_err(pdev->dev, "error writing to STB: %d\n", rc);
}
static void amd_pmc_s2idle_check(void)
{
struct amd_pmc_dev *pdev = &pmc;
struct smu_metrics table;
int rc;
/* CZN: Ensure that future s0i3 entry attempts at least 10ms passed */
if (pdev->cpu_id == AMD_CPU_ID_CZN && !get_metrics_table(pdev, &table) &&
table.s0i3_last_entry_status)
usleep_range(10000, 20000);
/* Dump the IdleMask before we add to the STB */
amd_pmc_idlemask_read(pdev, pdev->dev, NULL);
rc = amd_pmc_write_stb(pdev, AMD_PMC_STB_S2IDLE_CHECK);
if (rc)
dev_err(pdev->dev, "error writing to STB: %d\n", rc);
}
static int amd_pmc_dump_data(struct amd_pmc_dev *pdev)
{
if (pdev->cpu_id == AMD_CPU_ID_PCO)
return -ENODEV;
return amd_pmc_send_cmd(pdev, 0, NULL, SMU_MSG_LOG_DUMP_DATA, false);
}
static void amd_pmc_s2idle_restore(void)
{
struct amd_pmc_dev *pdev = &pmc;
int rc;
u8 msg;
msg = amd_pmc_get_os_hint(pdev);
rc = amd_pmc_send_cmd(pdev, 0, NULL, msg, false);
if (rc)
dev_err(pdev->dev, "resume failed: %d\n", rc);
/* Let SMU know that we are looking for stats */
amd_pmc_dump_data(pdev);
rc = amd_pmc_write_stb(pdev, AMD_PMC_STB_S2IDLE_RESTORE);
if (rc)
dev_err(pdev->dev, "error writing to STB: %d\n", rc);
/* Notify on failed entry */
amd_pmc_validate_deepest(pdev);
}
static struct acpi_s2idle_dev_ops amd_pmc_s2idle_dev_ops = {
.prepare = amd_pmc_s2idle_prepare,
.check = amd_pmc_s2idle_check,
.restore = amd_pmc_s2idle_restore,
};
platform/x86/amd: pmc: Disable IRQ1 wakeup for RN/CZN By default when the system is configured for low power idle in the FADT the keyboard is set up as a wake source. This matches the behavior that Windows uses for Modern Standby as well. It has been reported that a variety of AMD based designs there are spurious wakeups are happening where two IRQ sources are active. For example: ``` PM: Triggering wakeup from IRQ 9 PM: Triggering wakeup from IRQ 1 ``` In these designs IRQ 9 is the ACPI SCI and IRQ 1 is the keyboard. One way to trigger this problem is to suspend the laptop and then unplug the AC adapter. The SOC will be in a hardware sleep state and plugging in the AC adapter returns control to the kernel's s2idle loop. Normally if just IRQ 9 was active the s2idle loop would advance any EC transactions and no other IRQ being active would cause the s2idle loop to put the SOC back into hardware sleep state. When this bug occurred IRQ 1 is also active even if no keyboard activity occurred. This causes the s2idle loop to break and the system to wake. This is a platform firmware bug triggering IRQ1 without keyboard activity. This occurs in Windows as well, but Windows will enter "SW DRIPS" and then with no activity enters back into "HW DRIPS" (hardware sleep state). This issue affects Renoir, Lucienne, Cezanne, and Barcelo platforms. It does not happen on newer systems such as Mendocino or Rembrandt. It's been fixed in newer platform firmware. To avoid triggering the bug on older systems check the SMU F/W version and adjust the policy at suspend time for s2idle wakeup from keyboard on these systems. A lot of thought and experimentation has been given around the timing of disabling IRQ1, and to make it work the "suspend" PM callback is restored. Reported-by: Kai-Heng Feng <kai.heng.feng@canonical.com> Reported-by: Xaver Hugl <xaver.hugl@gmail.com> Link: https://gitlab.freedesktop.org/drm/amd/-/issues/2115 Link: https://gitlab.freedesktop.org/drm/amd/-/issues/1951 Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Link: https://lore.kernel.org/r/20230120191519.15926-1-mario.limonciello@amd.com Reviewed-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2023-01-21 03:15:18 +08:00
static int amd_pmc_suspend_handler(struct device *dev)
platform/x86/amd: pmc: Disable IRQ1 wakeup for RN/CZN By default when the system is configured for low power idle in the FADT the keyboard is set up as a wake source. This matches the behavior that Windows uses for Modern Standby as well. It has been reported that a variety of AMD based designs there are spurious wakeups are happening where two IRQ sources are active. For example: ``` PM: Triggering wakeup from IRQ 9 PM: Triggering wakeup from IRQ 1 ``` In these designs IRQ 9 is the ACPI SCI and IRQ 1 is the keyboard. One way to trigger this problem is to suspend the laptop and then unplug the AC adapter. The SOC will be in a hardware sleep state and plugging in the AC adapter returns control to the kernel's s2idle loop. Normally if just IRQ 9 was active the s2idle loop would advance any EC transactions and no other IRQ being active would cause the s2idle loop to put the SOC back into hardware sleep state. When this bug occurred IRQ 1 is also active even if no keyboard activity occurred. This causes the s2idle loop to break and the system to wake. This is a platform firmware bug triggering IRQ1 without keyboard activity. This occurs in Windows as well, but Windows will enter "SW DRIPS" and then with no activity enters back into "HW DRIPS" (hardware sleep state). This issue affects Renoir, Lucienne, Cezanne, and Barcelo platforms. It does not happen on newer systems such as Mendocino or Rembrandt. It's been fixed in newer platform firmware. To avoid triggering the bug on older systems check the SMU F/W version and adjust the policy at suspend time for s2idle wakeup from keyboard on these systems. A lot of thought and experimentation has been given around the timing of disabling IRQ1, and to make it work the "suspend" PM callback is restored. Reported-by: Kai-Heng Feng <kai.heng.feng@canonical.com> Reported-by: Xaver Hugl <xaver.hugl@gmail.com> Link: https://gitlab.freedesktop.org/drm/amd/-/issues/2115 Link: https://gitlab.freedesktop.org/drm/amd/-/issues/1951 Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Link: https://lore.kernel.org/r/20230120191519.15926-1-mario.limonciello@amd.com Reviewed-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2023-01-21 03:15:18 +08:00
{
struct amd_pmc_dev *pdev = dev_get_drvdata(dev);
if (pdev->cpu_id == AMD_CPU_ID_CZN && !disable_workarounds) {
platform/x86/amd: pmc: Disable IRQ1 wakeup for RN/CZN By default when the system is configured for low power idle in the FADT the keyboard is set up as a wake source. This matches the behavior that Windows uses for Modern Standby as well. It has been reported that a variety of AMD based designs there are spurious wakeups are happening where two IRQ sources are active. For example: ``` PM: Triggering wakeup from IRQ 9 PM: Triggering wakeup from IRQ 1 ``` In these designs IRQ 9 is the ACPI SCI and IRQ 1 is the keyboard. One way to trigger this problem is to suspend the laptop and then unplug the AC adapter. The SOC will be in a hardware sleep state and plugging in the AC adapter returns control to the kernel's s2idle loop. Normally if just IRQ 9 was active the s2idle loop would advance any EC transactions and no other IRQ being active would cause the s2idle loop to put the SOC back into hardware sleep state. When this bug occurred IRQ 1 is also active even if no keyboard activity occurred. This causes the s2idle loop to break and the system to wake. This is a platform firmware bug triggering IRQ1 without keyboard activity. This occurs in Windows as well, but Windows will enter "SW DRIPS" and then with no activity enters back into "HW DRIPS" (hardware sleep state). This issue affects Renoir, Lucienne, Cezanne, and Barcelo platforms. It does not happen on newer systems such as Mendocino or Rembrandt. It's been fixed in newer platform firmware. To avoid triggering the bug on older systems check the SMU F/W version and adjust the policy at suspend time for s2idle wakeup from keyboard on these systems. A lot of thought and experimentation has been given around the timing of disabling IRQ1, and to make it work the "suspend" PM callback is restored. Reported-by: Kai-Heng Feng <kai.heng.feng@canonical.com> Reported-by: Xaver Hugl <xaver.hugl@gmail.com> Link: https://gitlab.freedesktop.org/drm/amd/-/issues/2115 Link: https://gitlab.freedesktop.org/drm/amd/-/issues/1951 Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Link: https://lore.kernel.org/r/20230120191519.15926-1-mario.limonciello@amd.com Reviewed-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2023-01-21 03:15:18 +08:00
int rc = amd_pmc_czn_wa_irq1(pdev);
if (rc) {
dev_err(pdev->dev, "failed to adjust keyboard wakeup: %d\n", rc);
return rc;
}
}
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(amd_pmc_pm, amd_pmc_suspend_handler, NULL);
static const struct pci_device_id pmc_pci_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, AMD_CPU_ID_PS) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, AMD_CPU_ID_CB) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, AMD_CPU_ID_YC) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, AMD_CPU_ID_CZN) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, AMD_CPU_ID_RN) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, AMD_CPU_ID_PCO) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, AMD_CPU_ID_RV) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, AMD_CPU_ID_SP) },
{ }
};
static int amd_pmc_get_dram_size(struct amd_pmc_dev *dev)
{
int ret;
switch (dev->cpu_id) {
case AMD_CPU_ID_YC:
if (!(dev->major > 90 || (dev->major == 90 && dev->minor > 39))) {
ret = -EINVAL;
goto err_dram_size;
}
break;
default:
ret = -EINVAL;
goto err_dram_size;
}
ret = amd_pmc_send_cmd(dev, S2D_DRAM_SIZE, &dev->dram_size, dev->s2d_msg_id, true);
if (ret || !dev->dram_size)
goto err_dram_size;
return 0;
err_dram_size:
dev_err(dev->dev, "DRAM size command not supported for this platform\n");
return ret;
}
static int amd_pmc_s2d_init(struct amd_pmc_dev *dev)
{
u32 phys_addr_low, phys_addr_hi;
u64 stb_phys_addr;
u32 size = 0;
int ret;
/* Spill to DRAM feature uses separate SMU message port */
dev->msg_port = 1;
/* Get num of IP blocks within the SoC */
amd_pmc_get_ip_info(dev);
amd_pmc_send_cmd(dev, S2D_TELEMETRY_SIZE, &size, dev->s2d_msg_id, true);
if (size != S2D_TELEMETRY_BYTES_MAX)
return -EIO;
/* Get DRAM size */
ret = amd_pmc_get_dram_size(dev);
if (ret)
dev->dram_size = S2D_TELEMETRY_DRAMBYTES_MAX;
/* Get STB DRAM address */
amd_pmc_send_cmd(dev, S2D_PHYS_ADDR_LOW, &phys_addr_low, dev->s2d_msg_id, true);
amd_pmc_send_cmd(dev, S2D_PHYS_ADDR_HIGH, &phys_addr_hi, dev->s2d_msg_id, true);
stb_phys_addr = ((u64)phys_addr_hi << 32 | phys_addr_low);
/* Clear msg_port for other SMU operation */
dev->msg_port = 0;
dev->stb_virt_addr = devm_ioremap(dev->dev, stb_phys_addr, dev->dram_size);
if (!dev->stb_virt_addr)
return -ENOMEM;
return 0;
}
static int amd_pmc_write_stb(struct amd_pmc_dev *dev, u32 data)
{
int err;
err = amd_smn_write(0, AMD_PMC_STB_PMI_0, data);
if (err) {
dev_err(dev->dev, "failed to write data in stb: 0x%X\n", AMD_PMC_STB_PMI_0);
return pcibios_err_to_errno(err);
}
return 0;
}
static int amd_pmc_read_stb(struct amd_pmc_dev *dev, u32 *buf)
{
int i, err;
for (i = 0; i < FIFO_SIZE; i++) {
err = amd_smn_read(0, AMD_PMC_STB_PMI_0, buf++);
if (err) {
dev_err(dev->dev, "error reading data from stb: 0x%X\n", AMD_PMC_STB_PMI_0);
return pcibios_err_to_errno(err);
}
}
return 0;
}
static int amd_pmc_probe(struct platform_device *pdev)
{
struct amd_pmc_dev *dev = &pmc;
struct pci_dev *rdev;
u32 base_addr_lo, base_addr_hi;
u64 base_addr;
int err;
u32 val;
dev->dev = &pdev->dev;
rdev = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0, 0));
if (!rdev || !pci_match_id(pmc_pci_ids, rdev)) {
err = -ENODEV;
goto err_pci_dev_put;
}
dev->cpu_id = rdev->device;
if (dev->cpu_id == AMD_CPU_ID_SP) {
dev_warn_once(dev->dev, "S0i3 is not supported on this hardware\n");
err = -ENODEV;
goto err_pci_dev_put;
}
dev->rdev = rdev;
err = amd_smn_read(0, AMD_PMC_BASE_ADDR_LO, &val);
if (err) {
dev_err(dev->dev, "error reading 0x%x\n", AMD_PMC_BASE_ADDR_LO);
err = pcibios_err_to_errno(err);
goto err_pci_dev_put;
}
base_addr_lo = val & AMD_PMC_BASE_ADDR_HI_MASK;
err = amd_smn_read(0, AMD_PMC_BASE_ADDR_HI, &val);
if (err) {
dev_err(dev->dev, "error reading 0x%x\n", AMD_PMC_BASE_ADDR_HI);
err = pcibios_err_to_errno(err);
goto err_pci_dev_put;
}
base_addr_hi = val & AMD_PMC_BASE_ADDR_LO_MASK;
base_addr = ((u64)base_addr_hi << 32 | base_addr_lo);
dev->regbase = devm_ioremap(dev->dev, base_addr + AMD_PMC_BASE_ADDR_OFFSET,
AMD_PMC_MAPPING_SIZE);
if (!dev->regbase) {
err = -ENOMEM;
goto err_pci_dev_put;
}
mutex_init(&dev->lock);
if (enable_stb && amd_pmc_is_stb_supported(dev)) {
err = amd_pmc_s2d_init(dev);
if (err)
goto err_pci_dev_put;
}
platform_set_drvdata(pdev, dev);
if (IS_ENABLED(CONFIG_SUSPEND)) {
err = acpi_register_lps0_dev(&amd_pmc_s2idle_dev_ops);
if (err)
dev_warn(dev->dev, "failed to register LPS0 sleep handler, expect increased power consumption\n");
}
amd_pmc_dbgfs_register(dev);
pm_report_max_hw_sleep(U64_MAX);
return 0;
err_pci_dev_put:
pci_dev_put(rdev);
return err;
}
static void amd_pmc_remove(struct platform_device *pdev)
{
struct amd_pmc_dev *dev = platform_get_drvdata(pdev);
if (IS_ENABLED(CONFIG_SUSPEND))
acpi_unregister_lps0_dev(&amd_pmc_s2idle_dev_ops);
amd_pmc_dbgfs_unregister(dev);
pci_dev_put(dev->rdev);
mutex_destroy(&dev->lock);
}
static const struct acpi_device_id amd_pmc_acpi_ids[] = {
{"AMDI0005", 0},
{"AMDI0006", 0},
{"AMDI0007", 0},
{"AMDI0008", 0},
{"AMDI0009", 0},
{"AMD0004", 0},
{"AMD0005", 0},
{ }
};
MODULE_DEVICE_TABLE(acpi, amd_pmc_acpi_ids);
static struct platform_driver amd_pmc_driver = {
.driver = {
.name = "amd_pmc",
.acpi_match_table = amd_pmc_acpi_ids,
.dev_groups = pmc_groups,
.pm = pm_sleep_ptr(&amd_pmc_pm),
},
.probe = amd_pmc_probe,
.remove_new = amd_pmc_remove,
};
module_platform_driver(amd_pmc_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("AMD PMC Driver");