OpenCloudOS-Kernel/drivers/pinctrl/pinctrl-microchip-sgpio.c

1012 lines
26 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Microsemi/Microchip SoCs serial gpio driver
*
* Author: Lars Povlsen <lars.povlsen@microchip.com>
*
* Copyright (c) 2020 Microchip Technology Inc. and its subsidiaries.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/gpio/driver.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/pinctrl/pinmux.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/spinlock.h>
#include "core.h"
#include "pinconf.h"
#define SGPIO_BITS_PER_WORD 32
#define SGPIO_MAX_BITS 4
#define SGPIO_SRC_BITS 3 /* 3 bit wide field per pin */
enum {
REG_INPUT_DATA,
REG_PORT_CONFIG,
REG_PORT_ENABLE,
REG_SIO_CONFIG,
REG_SIO_CLOCK,
REG_INT_POLARITY,
REG_INT_TRIGGER,
REG_INT_ACK,
REG_INT_ENABLE,
REG_INT_IDENT,
MAXREG
};
enum {
SGPIO_ARCH_LUTON,
SGPIO_ARCH_OCELOT,
SGPIO_ARCH_SPARX5,
};
enum {
SGPIO_FLAGS_HAS_IRQ = BIT(0),
};
struct sgpio_properties {
int arch;
int flags;
u8 regoff[MAXREG];
};
#define SGPIO_LUTON_AUTO_REPEAT BIT(5)
#define SGPIO_LUTON_PORT_WIDTH GENMASK(3, 2)
#define SGPIO_LUTON_CLK_FREQ GENMASK(11, 0)
#define SGPIO_LUTON_BIT_SOURCE GENMASK(11, 0)
#define SGPIO_OCELOT_AUTO_REPEAT BIT(10)
#define SGPIO_OCELOT_SINGLE_SHOT BIT(11)
#define SGPIO_OCELOT_PORT_WIDTH GENMASK(8, 7)
#define SGPIO_OCELOT_CLK_FREQ GENMASK(19, 8)
#define SGPIO_OCELOT_BIT_SOURCE GENMASK(23, 12)
#define SGPIO_SPARX5_AUTO_REPEAT BIT(6)
#define SGPIO_SPARX5_SINGLE_SHOT BIT(7)
#define SGPIO_SPARX5_PORT_WIDTH GENMASK(4, 3)
#define SGPIO_SPARX5_CLK_FREQ GENMASK(19, 8)
#define SGPIO_SPARX5_BIT_SOURCE GENMASK(23, 12)
#define SGPIO_MASTER_INTR_ENA BIT(0)
#define SGPIO_INT_TRG_LEVEL 0
#define SGPIO_INT_TRG_EDGE 1
#define SGPIO_INT_TRG_EDGE_FALL 2
#define SGPIO_INT_TRG_EDGE_RISE 3
#define SGPIO_TRG_LEVEL_HIGH 0
#define SGPIO_TRG_LEVEL_LOW 1
static const struct sgpio_properties properties_luton = {
.arch = SGPIO_ARCH_LUTON,
.regoff = { 0x00, 0x09, 0x29, 0x2a, 0x2b },
};
static const struct sgpio_properties properties_ocelot = {
.arch = SGPIO_ARCH_OCELOT,
.regoff = { 0x00, 0x06, 0x26, 0x04, 0x05 },
};
static const struct sgpio_properties properties_sparx5 = {
.arch = SGPIO_ARCH_SPARX5,
.flags = SGPIO_FLAGS_HAS_IRQ,
.regoff = { 0x00, 0x06, 0x26, 0x04, 0x05, 0x2a, 0x32, 0x3a, 0x3e, 0x42 },
};
static const char * const functions[] = { "gpio" };
struct sgpio_bank {
struct sgpio_priv *priv;
bool is_input;
struct gpio_chip gpio;
struct pinctrl_desc pctl_desc;
};
struct sgpio_priv {
struct device *dev;
struct sgpio_bank in;
struct sgpio_bank out;
u32 bitcount;
u32 ports;
u32 clock;
struct regmap *regs;
const struct sgpio_properties *properties;
spinlock_t lock;
/* protects the config register and single shot mode */
struct mutex poll_lock;
};
struct sgpio_port_addr {
u8 port;
u8 bit;
};
static inline void sgpio_pin_to_addr(struct sgpio_priv *priv, int pin,
struct sgpio_port_addr *addr)
{
addr->port = pin / priv->bitcount;
addr->bit = pin % priv->bitcount;
}
static inline int sgpio_addr_to_pin(struct sgpio_priv *priv, int port, int bit)
{
return bit + port * priv->bitcount;
}
static inline u32 sgpio_get_addr(struct sgpio_priv *priv, u32 rno, u32 off)
{
return (priv->properties->regoff[rno] + off) *
regmap_get_reg_stride(priv->regs);
}
static u32 sgpio_readl(struct sgpio_priv *priv, u32 rno, u32 off)
{
u32 addr = sgpio_get_addr(priv, rno, off);
u32 val = 0;
int ret;
ret = regmap_read(priv->regs, addr, &val);
WARN_ONCE(ret, "error reading sgpio reg %d\n", ret);
return val;
}
static void sgpio_writel(struct sgpio_priv *priv,
u32 val, u32 rno, u32 off)
{
u32 addr = sgpio_get_addr(priv, rno, off);
int ret;
ret = regmap_write(priv->regs, addr, val);
WARN_ONCE(ret, "error writing sgpio reg %d\n", ret);
}
static inline void sgpio_clrsetbits(struct sgpio_priv *priv,
u32 rno, u32 off, u32 clear, u32 set)
{
u32 addr = sgpio_get_addr(priv, rno, off);
int ret;
ret = regmap_update_bits(priv->regs, addr, clear | set, set);
WARN_ONCE(ret, "error updating sgpio reg %d\n", ret);
}
static inline void sgpio_configure_bitstream(struct sgpio_priv *priv)
{
int width = priv->bitcount - 1;
u32 clr, set;
switch (priv->properties->arch) {
case SGPIO_ARCH_LUTON:
clr = SGPIO_LUTON_PORT_WIDTH;
set = SGPIO_LUTON_AUTO_REPEAT |
FIELD_PREP(SGPIO_LUTON_PORT_WIDTH, width);
break;
case SGPIO_ARCH_OCELOT:
clr = SGPIO_OCELOT_PORT_WIDTH;
set = SGPIO_OCELOT_AUTO_REPEAT |
FIELD_PREP(SGPIO_OCELOT_PORT_WIDTH, width);
break;
case SGPIO_ARCH_SPARX5:
clr = SGPIO_SPARX5_PORT_WIDTH;
set = SGPIO_SPARX5_AUTO_REPEAT |
FIELD_PREP(SGPIO_SPARX5_PORT_WIDTH, width);
break;
default:
return;
}
sgpio_clrsetbits(priv, REG_SIO_CONFIG, 0, clr, set);
}
static inline void sgpio_configure_clock(struct sgpio_priv *priv, u32 clkfrq)
{
u32 clr, set;
switch (priv->properties->arch) {
case SGPIO_ARCH_LUTON:
clr = SGPIO_LUTON_CLK_FREQ;
set = FIELD_PREP(SGPIO_LUTON_CLK_FREQ, clkfrq);
break;
case SGPIO_ARCH_OCELOT:
clr = SGPIO_OCELOT_CLK_FREQ;
set = FIELD_PREP(SGPIO_OCELOT_CLK_FREQ, clkfrq);
break;
case SGPIO_ARCH_SPARX5:
clr = SGPIO_SPARX5_CLK_FREQ;
set = FIELD_PREP(SGPIO_SPARX5_CLK_FREQ, clkfrq);
break;
default:
return;
}
sgpio_clrsetbits(priv, REG_SIO_CLOCK, 0, clr, set);
}
static int sgpio_single_shot(struct sgpio_priv *priv)
{
u32 addr = sgpio_get_addr(priv, REG_SIO_CONFIG, 0);
int ret, ret2;
u32 ctrl;
unsigned int single_shot;
unsigned int auto_repeat;
switch (priv->properties->arch) {
case SGPIO_ARCH_LUTON:
/* not supported for now */
return 0;
case SGPIO_ARCH_OCELOT:
single_shot = SGPIO_OCELOT_SINGLE_SHOT;
auto_repeat = SGPIO_OCELOT_AUTO_REPEAT;
break;
case SGPIO_ARCH_SPARX5:
single_shot = SGPIO_SPARX5_SINGLE_SHOT;
auto_repeat = SGPIO_SPARX5_AUTO_REPEAT;
break;
default:
return -EINVAL;
}
/*
* Trigger immediate burst. This only works when auto repeat is turned
* off. Otherwise, the single shot bit will never be cleared by the
* hardware. Measurements showed that an update might take as long as
* the burst gap. On a LAN9668 this is about 50ms for the largest
* setting.
* After the manual burst, reenable the auto repeat mode again.
*/
mutex_lock(&priv->poll_lock);
ret = regmap_update_bits(priv->regs, addr, single_shot | auto_repeat,
single_shot);
if (ret)
goto out;
ret = regmap_read_poll_timeout(priv->regs, addr, ctrl,
!(ctrl & single_shot), 100, 60000);
/* reenable auto repeat mode even if there was an error */
ret2 = regmap_update_bits(priv->regs, addr, auto_repeat, auto_repeat);
out:
mutex_unlock(&priv->poll_lock);
return ret ?: ret2;
}
static int sgpio_output_set(struct sgpio_priv *priv,
struct sgpio_port_addr *addr,
int value)
{
unsigned int bit = SGPIO_SRC_BITS * addr->bit;
u32 reg = sgpio_get_addr(priv, REG_PORT_CONFIG, addr->port);
bool changed;
u32 clr, set;
int ret;
switch (priv->properties->arch) {
case SGPIO_ARCH_LUTON:
clr = FIELD_PREP(SGPIO_LUTON_BIT_SOURCE, BIT(bit));
set = FIELD_PREP(SGPIO_LUTON_BIT_SOURCE, value << bit);
break;
case SGPIO_ARCH_OCELOT:
clr = FIELD_PREP(SGPIO_OCELOT_BIT_SOURCE, BIT(bit));
set = FIELD_PREP(SGPIO_OCELOT_BIT_SOURCE, value << bit);
break;
case SGPIO_ARCH_SPARX5:
clr = FIELD_PREP(SGPIO_SPARX5_BIT_SOURCE, BIT(bit));
set = FIELD_PREP(SGPIO_SPARX5_BIT_SOURCE, value << bit);
break;
default:
return -EINVAL;
}
ret = regmap_update_bits_check(priv->regs, reg, clr | set, set,
&changed);
if (ret)
return ret;
if (changed) {
ret = sgpio_single_shot(priv);
if (ret)
return ret;
}
return 0;
}
static int sgpio_output_get(struct sgpio_priv *priv,
struct sgpio_port_addr *addr)
{
u32 val, portval = sgpio_readl(priv, REG_PORT_CONFIG, addr->port);
unsigned int bit = SGPIO_SRC_BITS * addr->bit;
switch (priv->properties->arch) {
case SGPIO_ARCH_LUTON:
val = FIELD_GET(SGPIO_LUTON_BIT_SOURCE, portval);
break;
case SGPIO_ARCH_OCELOT:
val = FIELD_GET(SGPIO_OCELOT_BIT_SOURCE, portval);
break;
case SGPIO_ARCH_SPARX5:
val = FIELD_GET(SGPIO_SPARX5_BIT_SOURCE, portval);
break;
default:
val = 0;
break;
}
return !!(val & BIT(bit));
}
static int sgpio_input_get(struct sgpio_priv *priv,
struct sgpio_port_addr *addr)
{
return !!(sgpio_readl(priv, REG_INPUT_DATA, addr->bit) & BIT(addr->port));
}
static int sgpio_pinconf_get(struct pinctrl_dev *pctldev,
unsigned int pin, unsigned long *config)
{
struct sgpio_bank *bank = pinctrl_dev_get_drvdata(pctldev);
u32 param = pinconf_to_config_param(*config);
struct sgpio_priv *priv = bank->priv;
struct sgpio_port_addr addr;
int val;
sgpio_pin_to_addr(priv, pin, &addr);
switch (param) {
case PIN_CONFIG_INPUT_ENABLE:
val = bank->is_input;
break;
case PIN_CONFIG_OUTPUT_ENABLE:
val = !bank->is_input;
break;
case PIN_CONFIG_OUTPUT:
if (bank->is_input)
return -EINVAL;
val = sgpio_output_get(priv, &addr);
break;
default:
return -ENOTSUPP;
}
*config = pinconf_to_config_packed(param, val);
return 0;
}
static int sgpio_pinconf_set(struct pinctrl_dev *pctldev, unsigned int pin,
unsigned long *configs, unsigned int num_configs)
{
struct sgpio_bank *bank = pinctrl_dev_get_drvdata(pctldev);
struct sgpio_priv *priv = bank->priv;
struct sgpio_port_addr addr;
int cfg, err = 0;
u32 param, arg;
sgpio_pin_to_addr(priv, pin, &addr);
for (cfg = 0; cfg < num_configs; cfg++) {
param = pinconf_to_config_param(configs[cfg]);
arg = pinconf_to_config_argument(configs[cfg]);
switch (param) {
case PIN_CONFIG_OUTPUT:
if (bank->is_input)
return -EINVAL;
err = sgpio_output_set(priv, &addr, arg);
break;
default:
err = -ENOTSUPP;
}
}
return err;
}
static const struct pinconf_ops sgpio_confops = {
.is_generic = true,
.pin_config_get = sgpio_pinconf_get,
.pin_config_set = sgpio_pinconf_set,
.pin_config_config_dbg_show = pinconf_generic_dump_config,
};
static int sgpio_get_functions_count(struct pinctrl_dev *pctldev)
{
return 1;
}
static const char *sgpio_get_function_name(struct pinctrl_dev *pctldev,
unsigned int function)
{
return functions[0];
}
static int sgpio_get_function_groups(struct pinctrl_dev *pctldev,
unsigned int function,
const char *const **groups,
unsigned *const num_groups)
{
*groups = functions;
*num_groups = ARRAY_SIZE(functions);
return 0;
}
static int sgpio_pinmux_set_mux(struct pinctrl_dev *pctldev,
unsigned int selector, unsigned int group)
{
return 0;
}
static int sgpio_gpio_set_direction(struct pinctrl_dev *pctldev,
struct pinctrl_gpio_range *range,
unsigned int pin, bool input)
{
struct sgpio_bank *bank = pinctrl_dev_get_drvdata(pctldev);
return (input == bank->is_input) ? 0 : -EINVAL;
}
static int sgpio_gpio_request_enable(struct pinctrl_dev *pctldev,
struct pinctrl_gpio_range *range,
unsigned int offset)
{
struct sgpio_bank *bank = pinctrl_dev_get_drvdata(pctldev);
struct sgpio_priv *priv = bank->priv;
struct sgpio_port_addr addr;
sgpio_pin_to_addr(priv, offset, &addr);
if ((priv->ports & BIT(addr.port)) == 0) {
dev_warn(priv->dev, "Request port %d.%d: Port is not enabled\n",
addr.port, addr.bit);
return -EINVAL;
}
return 0;
}
static const struct pinmux_ops sgpio_pmx_ops = {
.get_functions_count = sgpio_get_functions_count,
.get_function_name = sgpio_get_function_name,
.get_function_groups = sgpio_get_function_groups,
.set_mux = sgpio_pinmux_set_mux,
.gpio_set_direction = sgpio_gpio_set_direction,
.gpio_request_enable = sgpio_gpio_request_enable,
};
static int sgpio_pctl_get_groups_count(struct pinctrl_dev *pctldev)
{
struct sgpio_bank *bank = pinctrl_dev_get_drvdata(pctldev);
return bank->pctl_desc.npins;
}
static const char *sgpio_pctl_get_group_name(struct pinctrl_dev *pctldev,
unsigned int group)
{
struct sgpio_bank *bank = pinctrl_dev_get_drvdata(pctldev);
return bank->pctl_desc.pins[group].name;
}
static int sgpio_pctl_get_group_pins(struct pinctrl_dev *pctldev,
unsigned int group,
const unsigned int **pins,
unsigned int *num_pins)
{
struct sgpio_bank *bank = pinctrl_dev_get_drvdata(pctldev);
*pins = &bank->pctl_desc.pins[group].number;
*num_pins = 1;
return 0;
}
static const struct pinctrl_ops sgpio_pctl_ops = {
.get_groups_count = sgpio_pctl_get_groups_count,
.get_group_name = sgpio_pctl_get_group_name,
.get_group_pins = sgpio_pctl_get_group_pins,
.dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
.dt_free_map = pinconf_generic_dt_free_map,
};
static int microchip_sgpio_direction_input(struct gpio_chip *gc, unsigned int gpio)
{
struct sgpio_bank *bank = gpiochip_get_data(gc);
/* Fixed-position function */
return bank->is_input ? 0 : -EINVAL;
}
static int microchip_sgpio_direction_output(struct gpio_chip *gc,
unsigned int gpio, int value)
{
struct sgpio_bank *bank = gpiochip_get_data(gc);
struct sgpio_priv *priv = bank->priv;
struct sgpio_port_addr addr;
/* Fixed-position function */
if (bank->is_input)
return -EINVAL;
sgpio_pin_to_addr(priv, gpio, &addr);
return sgpio_output_set(priv, &addr, value);
}
static int microchip_sgpio_get_direction(struct gpio_chip *gc, unsigned int gpio)
{
struct sgpio_bank *bank = gpiochip_get_data(gc);
return bank->is_input ? GPIO_LINE_DIRECTION_IN : GPIO_LINE_DIRECTION_OUT;
}
static void microchip_sgpio_set_value(struct gpio_chip *gc,
unsigned int gpio, int value)
{
microchip_sgpio_direction_output(gc, gpio, value);
}
static int microchip_sgpio_get_value(struct gpio_chip *gc, unsigned int gpio)
{
struct sgpio_bank *bank = gpiochip_get_data(gc);
struct sgpio_priv *priv = bank->priv;
struct sgpio_port_addr addr;
sgpio_pin_to_addr(priv, gpio, &addr);
return bank->is_input ? sgpio_input_get(priv, &addr) : sgpio_output_get(priv, &addr);
}
static int microchip_sgpio_of_xlate(struct gpio_chip *gc,
const struct of_phandle_args *gpiospec,
u32 *flags)
{
struct sgpio_bank *bank = gpiochip_get_data(gc);
struct sgpio_priv *priv = bank->priv;
int pin;
/*
* Note that the SGIO pin is defined by *2* numbers, a port
* number between 0 and 31, and a bit index, 0 to 3.
*/
if (gpiospec->args[0] > SGPIO_BITS_PER_WORD ||
gpiospec->args[1] > priv->bitcount)
return -EINVAL;
pin = sgpio_addr_to_pin(priv, gpiospec->args[0], gpiospec->args[1]);
if (pin > gc->ngpio)
return -EINVAL;
if (flags)
*flags = gpiospec->args[2];
return pin;
}
static int microchip_sgpio_get_ports(struct sgpio_priv *priv)
{
const char *range_property_name = "microchip,sgpio-port-ranges";
struct device *dev = priv->dev;
u32 range_params[64];
int i, nranges, ret;
/* Calculate port mask */
nranges = device_property_count_u32(dev, range_property_name);
if (nranges < 2 || nranges % 2 || nranges > ARRAY_SIZE(range_params)) {
dev_err(dev, "%s port range: '%s' property\n",
nranges == -EINVAL ? "Missing" : "Invalid",
range_property_name);
return -EINVAL;
}
ret = device_property_read_u32_array(dev, range_property_name,
range_params, nranges);
if (ret) {
dev_err(dev, "failed to parse '%s' property: %d\n",
range_property_name, ret);
return ret;
}
for (i = 0; i < nranges; i += 2) {
int start, end;
start = range_params[i];
end = range_params[i + 1];
if (start > end || end >= SGPIO_BITS_PER_WORD) {
dev_err(dev, "Ill-formed port-range [%d:%d]\n",
start, end);
}
priv->ports |= GENMASK(end, start);
}
return 0;
}
static void microchip_sgpio_irq_settype(struct irq_data *data,
int type,
int polarity)
{
struct gpio_chip *chip = irq_data_get_irq_chip_data(data);
struct sgpio_bank *bank = gpiochip_get_data(chip);
unsigned int gpio = irqd_to_hwirq(data);
struct sgpio_port_addr addr;
unsigned long flags;
u32 ena;
sgpio_pin_to_addr(bank->priv, gpio, &addr);
spin_lock_irqsave(&bank->priv->lock, flags);
/* Disable interrupt while changing type */
ena = sgpio_readl(bank->priv, REG_INT_ENABLE, addr.bit);
sgpio_writel(bank->priv, ena & ~BIT(addr.port), REG_INT_ENABLE, addr.bit);
/* Type value spread over 2 registers sets: low, high bit */
sgpio_clrsetbits(bank->priv, REG_INT_TRIGGER, addr.bit,
BIT(addr.port), (!!(type & 0x1)) << addr.port);
sgpio_clrsetbits(bank->priv, REG_INT_TRIGGER, SGPIO_MAX_BITS + addr.bit,
BIT(addr.port), (!!(type & 0x2)) << addr.port);
if (type == SGPIO_INT_TRG_LEVEL)
sgpio_clrsetbits(bank->priv, REG_INT_POLARITY, addr.bit,
BIT(addr.port), polarity << addr.port);
/* Possibly re-enable interrupts */
sgpio_writel(bank->priv, ena, REG_INT_ENABLE, addr.bit);
spin_unlock_irqrestore(&bank->priv->lock, flags);
}
static void microchip_sgpio_irq_setreg(struct irq_data *data,
int reg,
bool clear)
{
struct gpio_chip *chip = irq_data_get_irq_chip_data(data);
struct sgpio_bank *bank = gpiochip_get_data(chip);
unsigned int gpio = irqd_to_hwirq(data);
struct sgpio_port_addr addr;
sgpio_pin_to_addr(bank->priv, gpio, &addr);
if (clear)
sgpio_clrsetbits(bank->priv, reg, addr.bit, BIT(addr.port), 0);
else
sgpio_clrsetbits(bank->priv, reg, addr.bit, 0, BIT(addr.port));
}
static void microchip_sgpio_irq_mask(struct irq_data *data)
{
struct gpio_chip *chip = irq_data_get_irq_chip_data(data);
microchip_sgpio_irq_setreg(data, REG_INT_ENABLE, true);
gpiochip_disable_irq(chip, data->hwirq);
}
static void microchip_sgpio_irq_unmask(struct irq_data *data)
{
struct gpio_chip *chip = irq_data_get_irq_chip_data(data);
gpiochip_enable_irq(chip, data->hwirq);
microchip_sgpio_irq_setreg(data, REG_INT_ENABLE, false);
}
static void microchip_sgpio_irq_ack(struct irq_data *data)
{
struct gpio_chip *chip = irq_data_get_irq_chip_data(data);
struct sgpio_bank *bank = gpiochip_get_data(chip);
unsigned int gpio = irqd_to_hwirq(data);
struct sgpio_port_addr addr;
sgpio_pin_to_addr(bank->priv, gpio, &addr);
sgpio_writel(bank->priv, BIT(addr.port), REG_INT_ACK, addr.bit);
}
static int microchip_sgpio_irq_set_type(struct irq_data *data, unsigned int type)
{
type &= IRQ_TYPE_SENSE_MASK;
switch (type) {
case IRQ_TYPE_EDGE_BOTH:
irq_set_handler_locked(data, handle_edge_irq);
microchip_sgpio_irq_settype(data, SGPIO_INT_TRG_EDGE, 0);
break;
case IRQ_TYPE_EDGE_RISING:
irq_set_handler_locked(data, handle_edge_irq);
microchip_sgpio_irq_settype(data, SGPIO_INT_TRG_EDGE_RISE, 0);
break;
case IRQ_TYPE_EDGE_FALLING:
irq_set_handler_locked(data, handle_edge_irq);
microchip_sgpio_irq_settype(data, SGPIO_INT_TRG_EDGE_FALL, 0);
break;
case IRQ_TYPE_LEVEL_HIGH:
irq_set_handler_locked(data, handle_level_irq);
microchip_sgpio_irq_settype(data, SGPIO_INT_TRG_LEVEL, SGPIO_TRG_LEVEL_HIGH);
break;
case IRQ_TYPE_LEVEL_LOW:
irq_set_handler_locked(data, handle_level_irq);
microchip_sgpio_irq_settype(data, SGPIO_INT_TRG_LEVEL, SGPIO_TRG_LEVEL_LOW);
break;
default:
return -EINVAL;
}
return 0;
}
static const struct irq_chip microchip_sgpio_irqchip = {
.name = "gpio",
.irq_mask = microchip_sgpio_irq_mask,
.irq_ack = microchip_sgpio_irq_ack,
.irq_unmask = microchip_sgpio_irq_unmask,
.irq_set_type = microchip_sgpio_irq_set_type,
.flags = IRQCHIP_IMMUTABLE,
GPIOCHIP_IRQ_RESOURCE_HELPERS,
};
static void sgpio_irq_handler(struct irq_desc *desc)
{
struct irq_chip *parent_chip = irq_desc_get_chip(desc);
struct gpio_chip *chip = irq_desc_get_handler_data(desc);
struct sgpio_bank *bank = gpiochip_get_data(chip);
struct sgpio_priv *priv = bank->priv;
int bit, port, gpio;
long val;
for (bit = 0; bit < priv->bitcount; bit++) {
val = sgpio_readl(priv, REG_INT_IDENT, bit);
if (!val)
continue;
chained_irq_enter(parent_chip, desc);
for_each_set_bit(port, &val, SGPIO_BITS_PER_WORD) {
gpio = sgpio_addr_to_pin(priv, port, bit);
generic_handle_domain_irq(chip->irq.domain, gpio);
}
chained_irq_exit(parent_chip, desc);
}
}
static int microchip_sgpio_register_bank(struct device *dev,
struct sgpio_priv *priv,
struct fwnode_handle *fwnode,
int bankno)
{
struct pinctrl_pin_desc *pins;
struct pinctrl_desc *pctl_desc;
struct pinctrl_dev *pctldev;
struct sgpio_bank *bank;
struct gpio_chip *gc;
u32 ngpios;
int i, ret;
/* Get overall bank struct */
bank = (bankno == 0) ? &priv->in : &priv->out;
bank->priv = priv;
if (fwnode_property_read_u32(fwnode, "ngpios", &ngpios)) {
dev_info(dev, "failed to get number of gpios for bank%d\n",
bankno);
ngpios = 64;
}
priv->bitcount = ngpios / SGPIO_BITS_PER_WORD;
if (priv->bitcount > SGPIO_MAX_BITS) {
dev_err(dev, "Bit width exceeds maximum (%d)\n",
SGPIO_MAX_BITS);
return -EINVAL;
}
pctl_desc = &bank->pctl_desc;
pctl_desc->name = devm_kasprintf(dev, GFP_KERNEL, "%s-%sput",
dev_name(dev),
bank->is_input ? "in" : "out");
pctl_desc->pctlops = &sgpio_pctl_ops;
pctl_desc->pmxops = &sgpio_pmx_ops;
pctl_desc->confops = &sgpio_confops;
pctl_desc->owner = THIS_MODULE;
pins = devm_kzalloc(dev, sizeof(*pins)*ngpios, GFP_KERNEL);
if (!pins)
return -ENOMEM;
pctl_desc->npins = ngpios;
pctl_desc->pins = pins;
for (i = 0; i < ngpios; i++) {
struct sgpio_port_addr addr;
sgpio_pin_to_addr(priv, i, &addr);
pins[i].number = i;
pins[i].name = devm_kasprintf(dev, GFP_KERNEL,
"SGPIO_%c_p%db%d",
bank->is_input ? 'I' : 'O',
addr.port, addr.bit);
if (!pins[i].name)
return -ENOMEM;
}
pctldev = devm_pinctrl_register(dev, pctl_desc, bank);
if (IS_ERR(pctldev))
return dev_err_probe(dev, PTR_ERR(pctldev), "Failed to register pinctrl\n");
gc = &bank->gpio;
gc->label = pctl_desc->name;
gc->parent = dev;
gc->fwnode = fwnode;
gc->owner = THIS_MODULE;
gc->get_direction = microchip_sgpio_get_direction;
gc->direction_input = microchip_sgpio_direction_input;
gc->direction_output = microchip_sgpio_direction_output;
gc->get = microchip_sgpio_get_value;
gc->set = microchip_sgpio_set_value;
gc->request = gpiochip_generic_request;
gc->free = gpiochip_generic_free;
gc->of_xlate = microchip_sgpio_of_xlate;
gc->of_gpio_n_cells = 3;
gc->base = -1;
gc->ngpio = ngpios;
gc->can_sleep = !bank->is_input;
if (bank->is_input && priv->properties->flags & SGPIO_FLAGS_HAS_IRQ) {
int irq = fwnode_irq_get(fwnode, 0);
if (irq) {
struct gpio_irq_chip *girq = &gc->irq;
gpio_irq_chip_set_chip(girq, &microchip_sgpio_irqchip);
girq->parent_handler = sgpio_irq_handler;
girq->num_parents = 1;
girq->parents = devm_kcalloc(dev, 1,
sizeof(*girq->parents),
GFP_KERNEL);
if (!girq->parents)
return -ENOMEM;
girq->parents[0] = irq;
girq->default_type = IRQ_TYPE_NONE;
girq->handler = handle_bad_irq;
/* Disable all individual pins */
for (i = 0; i < SGPIO_MAX_BITS; i++)
sgpio_writel(priv, 0, REG_INT_ENABLE, i);
/* Master enable */
sgpio_clrsetbits(priv, REG_SIO_CONFIG, 0, 0, SGPIO_MASTER_INTR_ENA);
}
}
ret = devm_gpiochip_add_data(dev, gc, bank);
if (ret)
dev_err(dev, "Failed to register: ret %d\n", ret);
return ret;
}
static int microchip_sgpio_probe(struct platform_device *pdev)
{
int div_clock = 0, ret, port, i, nbanks;
struct device *dev = &pdev->dev;
struct fwnode_handle *fwnode;
struct reset_control *reset;
struct sgpio_priv *priv;
struct clk *clk;
u32 __iomem *regs;
u32 val;
struct regmap_config regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
};
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
spin_lock_init(&priv->lock);
mutex_init(&priv->poll_lock);
reset = devm_reset_control_get_optional_shared(&pdev->dev, "switch");
if (IS_ERR(reset))
return dev_err_probe(dev, PTR_ERR(reset), "Failed to get reset\n");
reset_control_reset(reset);
clk = devm_clk_get(dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk), "Failed to get clock\n");
div_clock = clk_get_rate(clk);
if (device_property_read_u32(dev, "bus-frequency", &priv->clock))
priv->clock = 12500000;
if (priv->clock == 0 || priv->clock > (div_clock / 2)) {
dev_err(dev, "Invalid frequency %d\n", priv->clock);
return -EINVAL;
}
regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(regs))
return PTR_ERR(regs);
priv->regs = devm_regmap_init_mmio(dev, regs, &regmap_config);
if (IS_ERR(priv->regs))
return PTR_ERR(priv->regs);
priv->properties = device_get_match_data(dev);
priv->in.is_input = true;
/* Get rest of device properties */
ret = microchip_sgpio_get_ports(priv);
if (ret)
return ret;
nbanks = device_get_child_node_count(dev);
if (nbanks != 2) {
dev_err(dev, "Must have 2 banks (have %d)\n", nbanks);
return -EINVAL;
}
i = 0;
device_for_each_child_node(dev, fwnode) {
ret = microchip_sgpio_register_bank(dev, priv, fwnode, i++);
if (ret) {
fwnode_handle_put(fwnode);
return ret;
}
}
if (priv->in.gpio.ngpio != priv->out.gpio.ngpio) {
dev_err(dev, "Banks must have same GPIO count\n");
return -ERANGE;
}
sgpio_configure_bitstream(priv);
val = max(2U, div_clock / priv->clock);
sgpio_configure_clock(priv, val);
for (port = 0; port < SGPIO_BITS_PER_WORD; port++)
sgpio_writel(priv, 0, REG_PORT_CONFIG, port);
sgpio_writel(priv, priv->ports, REG_PORT_ENABLE, 0);
return 0;
}
static const struct of_device_id microchip_sgpio_gpio_of_match[] = {
{
.compatible = "microchip,sparx5-sgpio",
.data = &properties_sparx5,
}, {
.compatible = "mscc,luton-sgpio",
.data = &properties_luton,
}, {
.compatible = "mscc,ocelot-sgpio",
.data = &properties_ocelot,
}, {
/* sentinel */
}
};
static struct platform_driver microchip_sgpio_pinctrl_driver = {
.driver = {
.name = "pinctrl-microchip-sgpio",
.of_match_table = microchip_sgpio_gpio_of_match,
.suppress_bind_attrs = true,
},
.probe = microchip_sgpio_probe,
};
builtin_platform_driver(microchip_sgpio_pinctrl_driver);