OpenCloudOS-Kernel/drivers/video/fbdev/i810/i810-i2c.c

176 lines
5.0 KiB
C
Raw Normal View History

/*-*- linux-c -*-
* linux/drivers/video/i810-i2c.c -- Intel 810/815 I2C support
*
* Copyright (C) 2004 Antonino Daplas<adaplas@pol.net>
* All Rights Reserved
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include <linux/pci.h>
#include <linux/fb.h>
#include "i810.h"
#include "i810_regs.h"
#include "i810_main.h"
#include "../edid.h"
/* bit locations in the registers */
#define SCL_DIR_MASK 0x0001
#define SCL_DIR 0x0002
#define SCL_VAL_MASK 0x0004
#define SCL_VAL_OUT 0x0008
#define SCL_VAL_IN 0x0010
#define SDA_DIR_MASK 0x0100
#define SDA_DIR 0x0200
#define SDA_VAL_MASK 0x0400
#define SDA_VAL_OUT 0x0800
#define SDA_VAL_IN 0x1000
#define DEBUG /* define this for verbose EDID parsing output */
#ifdef DEBUG
#define DPRINTK(fmt, args...) printk(fmt,## args)
#else
#define DPRINTK(fmt, args...)
#endif
static void i810i2c_setscl(void *data, int state)
{
struct i810fb_i2c_chan *chan = data;
struct i810fb_par *par = chan->par;
u8 __iomem *mmio = par->mmio_start_virtual;
if (state)
i810_writel(mmio, chan->ddc_base, SCL_DIR_MASK | SCL_VAL_MASK);
else
i810_writel(mmio, chan->ddc_base, SCL_DIR | SCL_DIR_MASK | SCL_VAL_MASK);
i810_readl(mmio, chan->ddc_base); /* flush posted write */
}
static void i810i2c_setsda(void *data, int state)
{
struct i810fb_i2c_chan *chan = data;
struct i810fb_par *par = chan->par;
u8 __iomem *mmio = par->mmio_start_virtual;
if (state)
i810_writel(mmio, chan->ddc_base, SDA_DIR_MASK | SDA_VAL_MASK);
else
i810_writel(mmio, chan->ddc_base, SDA_DIR | SDA_DIR_MASK | SDA_VAL_MASK);
i810_readl(mmio, chan->ddc_base); /* flush posted write */
}
static int i810i2c_getscl(void *data)
{
struct i810fb_i2c_chan *chan = data;
struct i810fb_par *par = chan->par;
u8 __iomem *mmio = par->mmio_start_virtual;
i810_writel(mmio, chan->ddc_base, SCL_DIR_MASK);
i810_writel(mmio, chan->ddc_base, 0);
return ((i810_readl(mmio, chan->ddc_base) & SCL_VAL_IN) != 0);
}
static int i810i2c_getsda(void *data)
{
struct i810fb_i2c_chan *chan = data;
struct i810fb_par *par = chan->par;
u8 __iomem *mmio = par->mmio_start_virtual;
i810_writel(mmio, chan->ddc_base, SDA_DIR_MASK);
i810_writel(mmio, chan->ddc_base, 0);
return ((i810_readl(mmio, chan->ddc_base) & SDA_VAL_IN) != 0);
}
static int i810_setup_i2c_bus(struct i810fb_i2c_chan *chan, const char *name)
{
int rc;
strcpy(chan->adapter.name, name);
chan->adapter.owner = THIS_MODULE;
chan->adapter.algo_data = &chan->algo;
chan->adapter.dev.parent = &chan->par->dev->dev;
chan->algo.setsda = i810i2c_setsda;
chan->algo.setscl = i810i2c_setscl;
chan->algo.getsda = i810i2c_getsda;
chan->algo.getscl = i810i2c_getscl;
chan->algo.udelay = 10;
chan->algo.timeout = (HZ/2);
chan->algo.data = chan;
i2c_set_adapdata(&chan->adapter, chan);
/* Raise SCL and SDA */
chan->algo.setsda(chan, 1);
chan->algo.setscl(chan, 1);
udelay(20);
rc = i2c_bit_add_bus(&chan->adapter);
if (rc == 0)
dev_dbg(&chan->par->dev->dev, "I2C bus %s registered.\n",name);
else {
dev_warn(&chan->par->dev->dev, "Failed to register I2C bus "
"%s.\n", name);
chan->par = NULL;
}
return rc;
}
void i810_create_i2c_busses(struct i810fb_par *par)
{
par->chan[0].par = par;
par->chan[1].par = par;
par->chan[2].par = par;
par->chan[0].ddc_base = GPIOA;
i810_setup_i2c_bus(&par->chan[0], "I810-DDC");
par->chan[1].ddc_base = GPIOB;
i810_setup_i2c_bus(&par->chan[1], "I810-I2C");
par->chan[2].ddc_base = GPIOC;
i810_setup_i2c_bus(&par->chan[2], "I810-GPIOC");
}
void i810_delete_i2c_busses(struct i810fb_par *par)
{
if (par->chan[0].par)
i2c_del_adapter(&par->chan[0].adapter);
par->chan[0].par = NULL;
if (par->chan[1].par)
i2c_del_adapter(&par->chan[1].adapter);
par->chan[1].par = NULL;
if (par->chan[2].par)
i2c_del_adapter(&par->chan[2].adapter);
par->chan[2].par = NULL;
}
int i810_probe_i2c_connector(struct fb_info *info, u8 **out_edid, int conn)
{
struct i810fb_par *par = info->par;
u8 *edid = NULL;
DPRINTK("i810-i2c: Probe DDC%i Bus\n", conn+1);
if (conn < par->ddc_num) {
edid = fb_ddc_read(&par->chan[conn].adapter);
} else {
const u8 *e = fb_firmware_edid(info->device);
if (e != NULL) {
DPRINTK("i810-i2c: Getting EDID from BIOS\n");
edid = kmemdup(e, EDID_LENGTH, GFP_KERNEL);
}
}
*out_edid = edid;
return (edid) ? 0 : 1;
}