OpenCloudOS-Kernel/drivers/infiniband/hw/amso1100/c2.h

549 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (c) 2005 Ammasso, Inc. All rights reserved.
* Copyright (c) 2005 Open Grid Computing, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __C2_H
#define __C2_H
#include <linux/netdevice.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include "c2_provider.h"
#include "c2_mq.h"
#include "c2_status.h"
#define DRV_NAME "c2"
#define DRV_VERSION "1.1"
#define PFX DRV_NAME ": "
#define BAR_0 0
#define BAR_2 2
#define BAR_4 4
#define RX_BUF_SIZE (1536 + 8)
#define ETH_JUMBO_MTU 9000
#define C2_MAGIC "CEPHEUS"
#define C2_VERSION 4
#define C2_IVN (18 & 0x7fffffff)
#define C2_REG0_SIZE (16 * 1024)
#define C2_REG2_SIZE (2 * 1024 * 1024)
#define C2_REG4_SIZE (256 * 1024 * 1024)
#define C2_NUM_TX_DESC 341
#define C2_NUM_RX_DESC 256
#define C2_PCI_REGS_OFFSET (0x10000)
#define C2_RXP_HRXDQ_OFFSET (((C2_REG4_SIZE)/2))
#define C2_RXP_HRXDQ_SIZE (4096)
#define C2_TXP_HTXDQ_OFFSET (((C2_REG4_SIZE)/2) + C2_RXP_HRXDQ_SIZE)
#define C2_TXP_HTXDQ_SIZE (4096)
#define C2_TX_TIMEOUT (6*HZ)
/* CEPHEUS */
static const u8 c2_magic[] = {
0x43, 0x45, 0x50, 0x48, 0x45, 0x55, 0x53
};
enum adapter_pci_regs {
C2_REGS_MAGIC = 0x0000,
C2_REGS_VERS = 0x0008,
C2_REGS_IVN = 0x000C,
C2_REGS_PCI_WINSIZE = 0x0010,
C2_REGS_Q0_QSIZE = 0x0014,
C2_REGS_Q0_MSGSIZE = 0x0018,
C2_REGS_Q0_POOLSTART = 0x001C,
C2_REGS_Q0_SHARED = 0x0020,
C2_REGS_Q1_QSIZE = 0x0024,
C2_REGS_Q1_MSGSIZE = 0x0028,
C2_REGS_Q1_SHARED = 0x0030,
C2_REGS_Q2_QSIZE = 0x0034,
C2_REGS_Q2_MSGSIZE = 0x0038,
C2_REGS_Q2_SHARED = 0x0040,
C2_REGS_ENADDR = 0x004C,
C2_REGS_RDMA_ENADDR = 0x0054,
C2_REGS_HRX_CUR = 0x006C,
};
struct c2_adapter_pci_regs {
char reg_magic[8];
u32 version;
u32 ivn;
u32 pci_window_size;
u32 q0_q_size;
u32 q0_msg_size;
u32 q0_pool_start;
u32 q0_shared;
u32 q1_q_size;
u32 q1_msg_size;
u32 q1_pool_start;
u32 q1_shared;
u32 q2_q_size;
u32 q2_msg_size;
u32 q2_pool_start;
u32 q2_shared;
u32 log_start;
u32 log_size;
u8 host_enaddr[8];
u8 rdma_enaddr[8];
u32 crash_entry;
u32 crash_ready[2];
u32 fw_txd_cur;
u32 fw_hrxd_cur;
u32 fw_rxd_cur;
};
enum pci_regs {
C2_HISR = 0x0000,
C2_DISR = 0x0004,
C2_HIMR = 0x0008,
C2_DIMR = 0x000C,
C2_NISR0 = 0x0010,
C2_NISR1 = 0x0014,
C2_NIMR0 = 0x0018,
C2_NIMR1 = 0x001C,
C2_IDIS = 0x0020,
};
enum {
C2_PCI_HRX_INT = 1 << 8,
C2_PCI_HTX_INT = 1 << 17,
C2_PCI_HRX_QUI = 1 << 31,
};
/*
* Cepheus registers in BAR0.
*/
struct c2_pci_regs {
u32 hostisr;
u32 dmaisr;
u32 hostimr;
u32 dmaimr;
u32 netisr0;
u32 netisr1;
u32 netimr0;
u32 netimr1;
u32 int_disable;
};
/* TXP flags */
enum c2_txp_flags {
TXP_HTXD_DONE = 0,
TXP_HTXD_READY = 1 << 0,
TXP_HTXD_UNINIT = 1 << 1,
};
/* RXP flags */
enum c2_rxp_flags {
RXP_HRXD_UNINIT = 0,
RXP_HRXD_READY = 1 << 0,
RXP_HRXD_DONE = 1 << 1,
};
/* RXP status */
enum c2_rxp_status {
RXP_HRXD_ZERO = 0,
RXP_HRXD_OK = 1 << 0,
RXP_HRXD_BUF_OV = 1 << 1,
};
/* TXP descriptor fields */
enum txp_desc {
C2_TXP_FLAGS = 0x0000,
C2_TXP_LEN = 0x0002,
C2_TXP_ADDR = 0x0004,
};
/* RXP descriptor fields */
enum rxp_desc {
C2_RXP_FLAGS = 0x0000,
C2_RXP_STATUS = 0x0002,
C2_RXP_COUNT = 0x0004,
C2_RXP_LEN = 0x0006,
C2_RXP_ADDR = 0x0008,
};
struct c2_txp_desc {
u16 flags;
u16 len;
u64 addr;
} __attribute__ ((packed));
struct c2_rxp_desc {
u16 flags;
u16 status;
u16 count;
u16 len;
u64 addr;
} __attribute__ ((packed));
struct c2_rxp_hdr {
u16 flags;
u16 status;
u16 len;
u16 rsvd;
} __attribute__ ((packed));
struct c2_tx_desc {
u32 len;
u32 status;
dma_addr_t next_offset;
};
struct c2_rx_desc {
u32 len;
u32 status;
dma_addr_t next_offset;
};
struct c2_alloc {
u32 last;
u32 max;
spinlock_t lock;
unsigned long *table;
};
struct c2_array {
struct {
void **page;
int used;
} *page_list;
};
/*
* The MQ shared pointer pool is organized as a linked list of
* chunks. Each chunk contains a linked list of free shared pointers
* that can be allocated to a given user mode client.
*
*/
struct sp_chunk {
struct sp_chunk *next;
dma_addr_t dma_addr;
DECLARE_PCI_UNMAP_ADDR(mapping);
u16 head;
u16 shared_ptr[0];
};
struct c2_pd_table {
u32 last;
u32 max;
spinlock_t lock;
unsigned long *table;
};
struct c2_qp_table {
struct idr idr;
spinlock_t lock;
int last;
};
struct c2_element {
struct c2_element *next;
void *ht_desc; /* host descriptor */
void __iomem *hw_desc; /* hardware descriptor */
struct sk_buff *skb;
dma_addr_t mapaddr;
u32 maplen;
};
struct c2_ring {
struct c2_element *to_clean;
struct c2_element *to_use;
struct c2_element *start;
unsigned long count;
};
struct c2_dev {
struct ib_device ibdev;
void __iomem *regs;
void __iomem *mmio_txp_ring; /* remapped adapter memory for hw rings */
void __iomem *mmio_rxp_ring;
spinlock_t lock;
struct pci_dev *pcidev;
struct net_device *netdev;
struct net_device *pseudo_netdev;
unsigned int cur_tx;
unsigned int cur_rx;
u32 adapter_handle;
int device_cap_flags;
void __iomem *kva; /* KVA device memory */
unsigned long pa; /* PA device memory */
void **qptr_array;
struct kmem_cache *host_msg_cache;
struct list_head cca_link; /* adapter list */
struct list_head eh_wakeup_list; /* event wakeup list */
wait_queue_head_t req_vq_wo;
/* Cached RNIC properties */
struct ib_device_attr props;
struct c2_pd_table pd_table;
struct c2_qp_table qp_table;
int ports; /* num of GigE ports */
int devnum;
spinlock_t vqlock; /* sync vbs req MQ */
/* Verbs Queues */
struct c2_mq req_vq; /* Verbs Request MQ */
struct c2_mq rep_vq; /* Verbs Reply MQ */
struct c2_mq aeq; /* Async Events MQ */
/* Kernel client MQs */
struct sp_chunk *kern_mqsp_pool;
/* Device updates these values when posting messages to a host
* target queue */
u16 req_vq_shared;
u16 rep_vq_shared;
u16 aeq_shared;
u16 irq_claimed;
/*
* Shared host target pages for user-accessible MQs.
*/
int hthead; /* index of first free entry */
void *htpages; /* kernel vaddr */
int htlen; /* length of htpages memory */
void *htuva; /* user mapped vaddr */
spinlock_t htlock; /* serialize allocation */
u64 adapter_hint_uva; /* access to the activity FIFO */
// spinlock_t aeq_lock;
// spinlock_t rnic_lock;
__be16 *hint_count;
dma_addr_t hint_count_dma;
u16 hints_read;
int init; /* TRUE if it's ready */
char ae_cache_name[16];
char vq_cache_name[16];
};
struct c2_port {
u32 msg_enable;
struct c2_dev *c2dev;
struct net_device *netdev;
spinlock_t tx_lock;
u32 tx_avail;
struct c2_ring tx_ring;
struct c2_ring rx_ring;
void *mem; /* PCI memory for host rings */
dma_addr_t dma;
unsigned long mem_size;
u32 rx_buf_size;
};
/*
* Activity FIFO registers in BAR0.
*/
#define PCI_BAR0_HOST_HINT 0x100
#define PCI_BAR0_ADAPTER_HINT 0x2000
/*
* Ammasso PCI vendor id and Cepheus PCI device id.
*/
#define CQ_ARMED 0x01
#define CQ_WAIT_FOR_DMA 0x80
/*
* The format of a hint is as follows:
* Lower 16 bits are the count of hints for the queue.
* Next 15 bits are the qp_index
* Upper most bit depends on who reads it:
* If read by producer, then it means Full (1) or Not-Full (0)
* If read by consumer, then it means Empty (1) or Not-Empty (0)
*/
#define C2_HINT_MAKE(q_index, hint_count) (((q_index) << 16) | hint_count)
#define C2_HINT_GET_INDEX(hint) (((hint) & 0x7FFF0000) >> 16)
#define C2_HINT_GET_COUNT(hint) ((hint) & 0x0000FFFF)
/*
* The following defines the offset in SDRAM for the c2_adapter_pci_regs_t
* struct.
*/
#define C2_ADAPTER_PCI_REGS_OFFSET 0x10000
#ifndef readq
static inline u64 readq(const void __iomem * addr)
{
u64 ret = readl(addr + 4);
ret <<= 32;
ret |= readl(addr);
return ret;
}
#endif
#ifndef writeq
static inline void __raw_writeq(u64 val, void __iomem * addr)
{
__raw_writel((u32) (val), addr);
__raw_writel((u32) (val >> 32), (addr + 4));
}
#endif
#define C2_SET_CUR_RX(c2dev, cur_rx) \
__raw_writel((__force u32) cpu_to_be32(cur_rx), c2dev->mmio_txp_ring + 4092)
#define C2_GET_CUR_RX(c2dev) \
be32_to_cpu((__force __be32) readl(c2dev->mmio_txp_ring + 4092))
static inline struct c2_dev *to_c2dev(struct ib_device *ibdev)
{
return container_of(ibdev, struct c2_dev, ibdev);
}
static inline int c2_errno(void *reply)
{
switch (c2_wr_get_result(reply)) {
case C2_OK:
return 0;
case CCERR_NO_BUFS:
case CCERR_INSUFFICIENT_RESOURCES:
case CCERR_ZERO_RDMA_READ_RESOURCES:
return -ENOMEM;
case CCERR_MR_IN_USE:
case CCERR_QP_IN_USE:
return -EBUSY;
case CCERR_ADDR_IN_USE:
return -EADDRINUSE;
case CCERR_ADDR_NOT_AVAIL:
return -EADDRNOTAVAIL;
case CCERR_CONN_RESET:
return -ECONNRESET;
case CCERR_NOT_IMPLEMENTED:
case CCERR_INVALID_WQE:
return -ENOSYS;
case CCERR_QP_NOT_PRIVILEGED:
return -EPERM;
case CCERR_STACK_ERROR:
return -EPROTO;
case CCERR_ACCESS_VIOLATION:
case CCERR_BASE_AND_BOUNDS_VIOLATION:
return -EFAULT;
case CCERR_STAG_STATE_NOT_INVALID:
case CCERR_INVALID_ADDRESS:
case CCERR_INVALID_CQ:
case CCERR_INVALID_EP:
case CCERR_INVALID_MODIFIER:
case CCERR_INVALID_MTU:
case CCERR_INVALID_PD_ID:
case CCERR_INVALID_QP:
case CCERR_INVALID_RNIC:
case CCERR_INVALID_STAG:
return -EINVAL;
default:
return -EAGAIN;
}
}
/* Device */
extern int c2_register_device(struct c2_dev *c2dev);
extern void c2_unregister_device(struct c2_dev *c2dev);
extern int c2_rnic_init(struct c2_dev *c2dev);
extern void c2_rnic_term(struct c2_dev *c2dev);
extern void c2_rnic_interrupt(struct c2_dev *c2dev);
extern int c2_del_addr(struct c2_dev *c2dev, __be32 inaddr, __be32 inmask);
extern int c2_add_addr(struct c2_dev *c2dev, __be32 inaddr, __be32 inmask);
/* QPs */
extern int c2_alloc_qp(struct c2_dev *c2dev, struct c2_pd *pd,
struct ib_qp_init_attr *qp_attrs, struct c2_qp *qp);
extern void c2_free_qp(struct c2_dev *c2dev, struct c2_qp *qp);
extern struct ib_qp *c2_get_qp(struct ib_device *device, int qpn);
extern int c2_qp_modify(struct c2_dev *c2dev, struct c2_qp *qp,
struct ib_qp_attr *attr, int attr_mask);
extern int c2_qp_set_read_limits(struct c2_dev *c2dev, struct c2_qp *qp,
int ord, int ird);
extern int c2_post_send(struct ib_qp *ibqp, struct ib_send_wr *ib_wr,
struct ib_send_wr **bad_wr);
extern int c2_post_receive(struct ib_qp *ibqp, struct ib_recv_wr *ib_wr,
struct ib_recv_wr **bad_wr);
extern void __devinit c2_init_qp_table(struct c2_dev *c2dev);
extern void __devexit c2_cleanup_qp_table(struct c2_dev *c2dev);
extern void c2_set_qp_state(struct c2_qp *, int);
extern struct c2_qp *c2_find_qpn(struct c2_dev *c2dev, int qpn);
/* PDs */
extern int c2_pd_alloc(struct c2_dev *c2dev, int privileged, struct c2_pd *pd);
extern void c2_pd_free(struct c2_dev *c2dev, struct c2_pd *pd);
extern int __devinit c2_init_pd_table(struct c2_dev *c2dev);
extern void __devexit c2_cleanup_pd_table(struct c2_dev *c2dev);
/* CQs */
extern int c2_init_cq(struct c2_dev *c2dev, int entries,
struct c2_ucontext *ctx, struct c2_cq *cq);
extern void c2_free_cq(struct c2_dev *c2dev, struct c2_cq *cq);
extern void c2_cq_event(struct c2_dev *c2dev, u32 mq_index);
extern void c2_cq_clean(struct c2_dev *c2dev, struct c2_qp *qp, u32 mq_index);
extern int c2_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *entry);
IB: Return "maybe missed event" hint from ib_req_notify_cq() The semantics defined by the InfiniBand specification say that completion events are only generated when a completions is added to a completion queue (CQ) after completion notification is requested. In other words, this means that the following race is possible: while (CQ is not empty) ib_poll_cq(CQ); // new completion is added after while loop is exited ib_req_notify_cq(CQ); // no event is generated for the existing completion To close this race, the IB spec recommends doing another poll of the CQ after requesting notification. However, it is not always possible to arrange code this way (for example, we have found that NAPI for IPoIB cannot poll after requesting notification). Also, some hardware (eg Mellanox HCAs) actually will generate an event for completions added before the call to ib_req_notify_cq() -- which is allowed by the spec, since there's no way for any upper-layer consumer to know exactly when a completion was really added -- so the extra poll of the CQ is just a waste. Motivated by this, we add a new flag "IB_CQ_REPORT_MISSED_EVENTS" for ib_req_notify_cq() so that it can return a hint about whether the a completion may have been added before the request for notification. The return value of ib_req_notify_cq() is extended so: < 0 means an error occurred while requesting notification == 0 means notification was requested successfully, and if IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events were missed and it is safe to wait for another event. > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed in. It means that the consumer must poll the CQ again to make sure it is empty to avoid the race described above. We add a flag to enable this behavior rather than turning it on unconditionally, because checking for missed events may incur significant overhead for some low-level drivers, and consumers that don't care about the results of this test shouldn't be forced to pay for the test. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-05-07 12:02:48 +08:00
extern int c2_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags);
/* CM */
extern int c2_llp_connect(struct iw_cm_id *cm_id,
struct iw_cm_conn_param *iw_param);
extern int c2_llp_accept(struct iw_cm_id *cm_id,
struct iw_cm_conn_param *iw_param);
extern int c2_llp_reject(struct iw_cm_id *cm_id, const void *pdata,
u8 pdata_len);
extern int c2_llp_service_create(struct iw_cm_id *cm_id, int backlog);
extern int c2_llp_service_destroy(struct iw_cm_id *cm_id);
/* MM */
extern int c2_nsmr_register_phys_kern(struct c2_dev *c2dev, u64 *addr_list,
int page_size, int pbl_depth, u32 length,
u32 off, u64 *va, enum c2_acf acf,
struct c2_mr *mr);
extern int c2_stag_dealloc(struct c2_dev *c2dev, u32 stag_index);
/* AE */
extern void c2_ae_event(struct c2_dev *c2dev, u32 mq_index);
/* MQSP Allocator */
extern int c2_init_mqsp_pool(struct c2_dev *c2dev, gfp_t gfp_mask,
struct sp_chunk **root);
extern void c2_free_mqsp_pool(struct c2_dev *c2dev, struct sp_chunk *root);
extern __be16 *c2_alloc_mqsp(struct c2_dev *c2dev, struct sp_chunk *head,
dma_addr_t *dma_addr, gfp_t gfp_mask);
extern void c2_free_mqsp(__be16* mqsp);
#endif