OpenCloudOS-Kernel/arch/arm64/mm/fault.c

858 lines
24 KiB
C
Raw Normal View History

/*
* Based on arch/arm/mm/fault.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1995-2004 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/extable.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
#include <linux/sched/signal.h>
#include <linux/sched/debug.h>
#include <linux/highmem.h>
#include <linux/perf_event.h>
#include <linux/preempt.h>
#include <linux/hugetlb.h>
#include <asm/bug.h>
#include <asm/cmpxchg.h>
#include <asm/cpufeature.h>
#include <asm/exception.h>
#include <asm/daifflags.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/kasan.h>
#include <asm/sysreg.h>
#include <asm/system_misc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/traps.h>
#include <acpi/ghes.h>
struct fault_info {
int (*fn)(unsigned long addr, unsigned int esr,
struct pt_regs *regs);
int sig;
int code;
const char *name;
};
static const struct fault_info fault_info[];
static struct fault_info debug_fault_info[];
static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
{
return fault_info + (esr & ESR_ELx_FSC);
}
static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
{
return debug_fault_info + DBG_ESR_EVT(esr);
}
arm64: Kprobes with single stepping support Add support for basic kernel probes(kprobes) and jump probes (jprobes) for ARM64. Kprobes utilizes software breakpoint and single step debug exceptions supported on ARM v8. A software breakpoint is placed at the probe address to trap the kernel execution into the kprobe handler. ARM v8 supports enabling single stepping before the break exception return (ERET), with next PC in exception return address (ELR_EL1). The kprobe handler prepares an executable memory slot for out-of-line execution with a copy of the original instruction being probed, and enables single stepping. The PC is set to the out-of-line slot address before the ERET. With this scheme, the instruction is executed with the exact same register context except for the PC (and DAIF) registers. Debug mask (PSTATE.D) is enabled only when single stepping a recursive kprobe, e.g.: during kprobes reenter so that probed instruction can be single stepped within the kprobe handler -exception- context. The recursion depth of kprobe is always 2, i.e. upon probe re-entry, any further re-entry is prevented by not calling handlers and the case counted as a missed kprobe). Single stepping from the x-o-l slot has a drawback for PC-relative accesses like branching and symbolic literals access as the offset from the new PC (slot address) may not be ensured to fit in the immediate value of the opcode. Such instructions need simulation, so reject probing them. Instructions generating exceptions or cpu mode change are rejected for probing. Exclusive load/store instructions are rejected too. Additionally, the code is checked to see if it is inside an exclusive load/store sequence (code from Pratyush). System instructions are mostly enabled for stepping, except MSR/MRS accesses to "DAIF" flags in PSTATE, which are not safe for probing. This also changes arch/arm64/include/asm/ptrace.h to use include/asm-generic/ptrace.h. Thanks to Steve Capper and Pratyush Anand for several suggested Changes. Signed-off-by: Sandeepa Prabhu <sandeepa.s.prabhu@gmail.com> Signed-off-by: David A. Long <dave.long@linaro.org> Signed-off-by: Pratyush Anand <panand@redhat.com> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-09 00:35:48 +08:00
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
int ret = 0;
/* kprobe_running() needs smp_processor_id() */
if (!user_mode(regs)) {
preempt_disable();
if (kprobe_running() && kprobe_fault_handler(regs, esr))
ret = 1;
preempt_enable();
}
return ret;
}
#else
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
return 0;
}
#endif
static void data_abort_decode(unsigned int esr)
{
pr_alert("Data abort info:\n");
if (esr & ESR_ELx_ISV) {
pr_alert(" Access size = %u byte(s)\n",
1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
pr_alert(" SSE = %lu, SRT = %lu\n",
(esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
(esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
pr_alert(" SF = %lu, AR = %lu\n",
(esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
(esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
} else {
pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
}
pr_alert(" CM = %lu, WnR = %lu\n",
(esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
(esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
}
static void mem_abort_decode(unsigned int esr)
{
pr_alert("Mem abort info:\n");
pr_alert(" ESR = 0x%08x\n", esr);
pr_alert(" Exception class = %s, IL = %u bits\n",
esr_get_class_string(esr),
(esr & ESR_ELx_IL) ? 32 : 16);
pr_alert(" SET = %lu, FnV = %lu\n",
(esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
(esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
pr_alert(" EA = %lu, S1PTW = %lu\n",
(esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
(esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
if (esr_is_data_abort(esr))
data_abort_decode(esr);
}
static inline bool is_ttbr0_addr(unsigned long addr)
{
/* entry assembly clears tags for TTBR0 addrs */
return addr < TASK_SIZE;
}
static inline bool is_ttbr1_addr(unsigned long addr)
{
/* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
return arch_kasan_reset_tag(addr) >= VA_START;
}
/*
* Dump out the page tables associated with 'addr' in the currently active mm.
*/
void show_pte(unsigned long addr)
{
struct mm_struct *mm;
pgd_t *pgdp;
pgd_t pgd;
if (is_ttbr0_addr(addr)) {
/* TTBR0 */
mm = current->active_mm;
if (mm == &init_mm) {
pr_alert("[%016lx] user address but active_mm is swapper\n",
addr);
return;
}
} else if (is_ttbr1_addr(addr)) {
/* TTBR1 */
mm = &init_mm;
} else {
pr_alert("[%016lx] address between user and kernel address ranges\n",
addr);
return;
}
pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n",
mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
mm == &init_mm ? VA_BITS : (int) vabits_user, mm->pgd);
pgdp = pgd_offset(mm, addr);
pgd = READ_ONCE(*pgdp);
pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
do {
pud_t *pudp, pud;
pmd_t *pmdp, pmd;
pte_t *ptep, pte;
if (pgd_none(pgd) || pgd_bad(pgd))
break;
pudp = pud_offset(pgdp, addr);
pud = READ_ONCE(*pudp);
pr_cont(", pud=%016llx", pud_val(pud));
if (pud_none(pud) || pud_bad(pud))
break;
pmdp = pmd_offset(pudp, addr);
pmd = READ_ONCE(*pmdp);
pr_cont(", pmd=%016llx", pmd_val(pmd));
if (pmd_none(pmd) || pmd_bad(pmd))
break;
ptep = pte_offset_map(pmdp, addr);
pte = READ_ONCE(*ptep);
pr_cont(", pte=%016llx", pte_val(pte));
pte_unmap(ptep);
} while(0);
pr_cont("\n");
}
arm64: Implement ptep_set_access_flags() for hardware AF/DBM When hardware updates of the access and dirty states are enabled, the default ptep_set_access_flags() implementation based on calling set_pte_at() directly is potentially racy. This triggers the "racy dirty state clearing" warning in set_pte_at() because an existing writable PTE is overridden with a clean entry. There are two main scenarios for this situation: 1. The CPU getting an access fault does not support hardware updates of the access/dirty flags. However, a different agent in the system (e.g. SMMU) can do this, therefore overriding a writable entry with a clean one could potentially lose the automatically updated dirty status 2. A more complex situation is possible when all CPUs support hardware AF/DBM: a) Initial state: shareable + writable vma and pte_none(pte) b) Read fault taken by two threads of the same process on different CPUs c) CPU0 takes the mmap_sem and proceeds to handling the fault. It eventually reaches do_set_pte() which sets a writable + clean pte. CPU0 releases the mmap_sem d) CPU1 acquires the mmap_sem and proceeds to handle_pte_fault(). The pte entry it reads is present, writable and clean and it continues to pte_mkyoung() e) CPU1 calls ptep_set_access_flags() If between (d) and (e) the hardware (another CPU) updates the dirty state (clears PTE_RDONLY), CPU1 will override the PTR_RDONLY bit marking the entry clean again. This patch implements an arm64-specific ptep_set_access_flags() function to perform an atomic update of the PTE flags. Fixes: 2f4b829c625e ("arm64: Add support for hardware updates of the access and dirty pte bits") Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: Ming Lei <tom.leiming@gmail.com> Tested-by: Julien Grall <julien.grall@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> # 4.3+ [will: reworded comment] Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-13 23:01:22 +08:00
/*
* This function sets the access flags (dirty, accessed), as well as write
* permission, and only to a more permissive setting.
*
* It needs to cope with hardware update of the accessed/dirty state by other
* agents in the system and can safely skip the __sync_icache_dcache() call as,
* like set_pte_at(), the PTE is never changed from no-exec to exec here.
*
* Returns whether or not the PTE actually changed.
*/
int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty)
{
pteval_t old_pteval, pteval;
pte_t pte = READ_ONCE(*ptep);
arm64: Implement ptep_set_access_flags() for hardware AF/DBM When hardware updates of the access and dirty states are enabled, the default ptep_set_access_flags() implementation based on calling set_pte_at() directly is potentially racy. This triggers the "racy dirty state clearing" warning in set_pte_at() because an existing writable PTE is overridden with a clean entry. There are two main scenarios for this situation: 1. The CPU getting an access fault does not support hardware updates of the access/dirty flags. However, a different agent in the system (e.g. SMMU) can do this, therefore overriding a writable entry with a clean one could potentially lose the automatically updated dirty status 2. A more complex situation is possible when all CPUs support hardware AF/DBM: a) Initial state: shareable + writable vma and pte_none(pte) b) Read fault taken by two threads of the same process on different CPUs c) CPU0 takes the mmap_sem and proceeds to handling the fault. It eventually reaches do_set_pte() which sets a writable + clean pte. CPU0 releases the mmap_sem d) CPU1 acquires the mmap_sem and proceeds to handle_pte_fault(). The pte entry it reads is present, writable and clean and it continues to pte_mkyoung() e) CPU1 calls ptep_set_access_flags() If between (d) and (e) the hardware (another CPU) updates the dirty state (clears PTE_RDONLY), CPU1 will override the PTR_RDONLY bit marking the entry clean again. This patch implements an arm64-specific ptep_set_access_flags() function to perform an atomic update of the PTE flags. Fixes: 2f4b829c625e ("arm64: Add support for hardware updates of the access and dirty pte bits") Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: Ming Lei <tom.leiming@gmail.com> Tested-by: Julien Grall <julien.grall@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> # 4.3+ [will: reworded comment] Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-13 23:01:22 +08:00
if (pte_same(pte, entry))
arm64: Implement ptep_set_access_flags() for hardware AF/DBM When hardware updates of the access and dirty states are enabled, the default ptep_set_access_flags() implementation based on calling set_pte_at() directly is potentially racy. This triggers the "racy dirty state clearing" warning in set_pte_at() because an existing writable PTE is overridden with a clean entry. There are two main scenarios for this situation: 1. The CPU getting an access fault does not support hardware updates of the access/dirty flags. However, a different agent in the system (e.g. SMMU) can do this, therefore overriding a writable entry with a clean one could potentially lose the automatically updated dirty status 2. A more complex situation is possible when all CPUs support hardware AF/DBM: a) Initial state: shareable + writable vma and pte_none(pte) b) Read fault taken by two threads of the same process on different CPUs c) CPU0 takes the mmap_sem and proceeds to handling the fault. It eventually reaches do_set_pte() which sets a writable + clean pte. CPU0 releases the mmap_sem d) CPU1 acquires the mmap_sem and proceeds to handle_pte_fault(). The pte entry it reads is present, writable and clean and it continues to pte_mkyoung() e) CPU1 calls ptep_set_access_flags() If between (d) and (e) the hardware (another CPU) updates the dirty state (clears PTE_RDONLY), CPU1 will override the PTR_RDONLY bit marking the entry clean again. This patch implements an arm64-specific ptep_set_access_flags() function to perform an atomic update of the PTE flags. Fixes: 2f4b829c625e ("arm64: Add support for hardware updates of the access and dirty pte bits") Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: Ming Lei <tom.leiming@gmail.com> Tested-by: Julien Grall <julien.grall@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> # 4.3+ [will: reworded comment] Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-13 23:01:22 +08:00
return 0;
/* only preserve the access flags and write permission */
pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
arm64: Implement ptep_set_access_flags() for hardware AF/DBM When hardware updates of the access and dirty states are enabled, the default ptep_set_access_flags() implementation based on calling set_pte_at() directly is potentially racy. This triggers the "racy dirty state clearing" warning in set_pte_at() because an existing writable PTE is overridden with a clean entry. There are two main scenarios for this situation: 1. The CPU getting an access fault does not support hardware updates of the access/dirty flags. However, a different agent in the system (e.g. SMMU) can do this, therefore overriding a writable entry with a clean one could potentially lose the automatically updated dirty status 2. A more complex situation is possible when all CPUs support hardware AF/DBM: a) Initial state: shareable + writable vma and pte_none(pte) b) Read fault taken by two threads of the same process on different CPUs c) CPU0 takes the mmap_sem and proceeds to handling the fault. It eventually reaches do_set_pte() which sets a writable + clean pte. CPU0 releases the mmap_sem d) CPU1 acquires the mmap_sem and proceeds to handle_pte_fault(). The pte entry it reads is present, writable and clean and it continues to pte_mkyoung() e) CPU1 calls ptep_set_access_flags() If between (d) and (e) the hardware (another CPU) updates the dirty state (clears PTE_RDONLY), CPU1 will override the PTR_RDONLY bit marking the entry clean again. This patch implements an arm64-specific ptep_set_access_flags() function to perform an atomic update of the PTE flags. Fixes: 2f4b829c625e ("arm64: Add support for hardware updates of the access and dirty pte bits") Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: Ming Lei <tom.leiming@gmail.com> Tested-by: Julien Grall <julien.grall@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> # 4.3+ [will: reworded comment] Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-13 23:01:22 +08:00
/*
* Setting the flags must be done atomically to avoid racing with the
* hardware update of the access/dirty state. The PTE_RDONLY bit must
* be set to the most permissive (lowest value) of *ptep and entry
* (calculated as: a & b == ~(~a | ~b)).
arm64: Implement ptep_set_access_flags() for hardware AF/DBM When hardware updates of the access and dirty states are enabled, the default ptep_set_access_flags() implementation based on calling set_pte_at() directly is potentially racy. This triggers the "racy dirty state clearing" warning in set_pte_at() because an existing writable PTE is overridden with a clean entry. There are two main scenarios for this situation: 1. The CPU getting an access fault does not support hardware updates of the access/dirty flags. However, a different agent in the system (e.g. SMMU) can do this, therefore overriding a writable entry with a clean one could potentially lose the automatically updated dirty status 2. A more complex situation is possible when all CPUs support hardware AF/DBM: a) Initial state: shareable + writable vma and pte_none(pte) b) Read fault taken by two threads of the same process on different CPUs c) CPU0 takes the mmap_sem and proceeds to handling the fault. It eventually reaches do_set_pte() which sets a writable + clean pte. CPU0 releases the mmap_sem d) CPU1 acquires the mmap_sem and proceeds to handle_pte_fault(). The pte entry it reads is present, writable and clean and it continues to pte_mkyoung() e) CPU1 calls ptep_set_access_flags() If between (d) and (e) the hardware (another CPU) updates the dirty state (clears PTE_RDONLY), CPU1 will override the PTR_RDONLY bit marking the entry clean again. This patch implements an arm64-specific ptep_set_access_flags() function to perform an atomic update of the PTE flags. Fixes: 2f4b829c625e ("arm64: Add support for hardware updates of the access and dirty pte bits") Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: Ming Lei <tom.leiming@gmail.com> Tested-by: Julien Grall <julien.grall@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> # 4.3+ [will: reworded comment] Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-13 23:01:22 +08:00
*/
pte_val(entry) ^= PTE_RDONLY;
pteval = pte_val(pte);
do {
old_pteval = pteval;
pteval ^= PTE_RDONLY;
pteval |= pte_val(entry);
pteval ^= PTE_RDONLY;
pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
} while (pteval != old_pteval);
arm64: Implement ptep_set_access_flags() for hardware AF/DBM When hardware updates of the access and dirty states are enabled, the default ptep_set_access_flags() implementation based on calling set_pte_at() directly is potentially racy. This triggers the "racy dirty state clearing" warning in set_pte_at() because an existing writable PTE is overridden with a clean entry. There are two main scenarios for this situation: 1. The CPU getting an access fault does not support hardware updates of the access/dirty flags. However, a different agent in the system (e.g. SMMU) can do this, therefore overriding a writable entry with a clean one could potentially lose the automatically updated dirty status 2. A more complex situation is possible when all CPUs support hardware AF/DBM: a) Initial state: shareable + writable vma and pte_none(pte) b) Read fault taken by two threads of the same process on different CPUs c) CPU0 takes the mmap_sem and proceeds to handling the fault. It eventually reaches do_set_pte() which sets a writable + clean pte. CPU0 releases the mmap_sem d) CPU1 acquires the mmap_sem and proceeds to handle_pte_fault(). The pte entry it reads is present, writable and clean and it continues to pte_mkyoung() e) CPU1 calls ptep_set_access_flags() If between (d) and (e) the hardware (another CPU) updates the dirty state (clears PTE_RDONLY), CPU1 will override the PTR_RDONLY bit marking the entry clean again. This patch implements an arm64-specific ptep_set_access_flags() function to perform an atomic update of the PTE flags. Fixes: 2f4b829c625e ("arm64: Add support for hardware updates of the access and dirty pte bits") Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: Ming Lei <tom.leiming@gmail.com> Tested-by: Julien Grall <julien.grall@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> # 4.3+ [will: reworded comment] Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-13 23:01:22 +08:00
flush_tlb_fix_spurious_fault(vma, address);
return 1;
}
arm64: Handle el1 synchronous instruction aborts cleanly Executing from a non-executable area gives an ugly message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0e08 lkdtm: attempting bad execution at ffff000008880700 Bad mode in Synchronous Abort handler detected on CPU2, code 0x8400000e -- IABT (current EL) CPU: 2 PID: 998 Comm: sh Not tainted 4.7.0-rc2+ #13 Hardware name: linux,dummy-virt (DT) task: ffff800077e35780 ti: ffff800077970000 task.ti: ffff800077970000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 The 'IABT (current EL)' indicates the error but it's a bit cryptic without knowledge of the ARM ARM. There is also no indication of the specific address which triggered the fault. The increase in kernel page permissions makes hitting this case more likely as well. Handling the case in the vectors gives a much more familiar looking error message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0840 lkdtm: attempting bad execution at ffff000008880680 Unable to handle kernel paging request at virtual address ffff000008880680 pgd = ffff8000089b2000 [ffff000008880680] *pgd=00000000489b4003, *pud=0000000048904003, *pmd=0000000000000000 Internal error: Oops: 8400000e [#1] PREEMPT SMP Modules linked in: CPU: 1 PID: 997 Comm: sh Not tainted 4.7.0-rc1+ #24 Hardware name: linux,dummy-virt (DT) task: ffff800077f9f080 ti: ffff800008a1c000 task.ti: ffff800008a1c000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-08-10 09:25:26 +08:00
static bool is_el1_instruction_abort(unsigned int esr)
{
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
}
static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
unsigned int ec = ESR_ELx_EC(esr);
unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
return false;
if (fsc_type == ESR_ELx_FSC_PERM)
return true;
if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
return fsc_type == ESR_ELx_FSC_FAULT &&
(regs->pstate & PSR_PAN_BIT);
return false;
}
static void die_kernel_fault(const char *msg, unsigned long addr,
unsigned int esr, struct pt_regs *regs)
{
bust_spinlocks(1);
pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
addr);
mem_abort_decode(esr);
show_pte(addr);
die("Oops", regs, esr);
bust_spinlocks(0);
do_exit(SIGKILL);
}
static void __do_kernel_fault(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
const char *msg;
/*
* Are we prepared to handle this kernel fault?
arm64: Handle el1 synchronous instruction aborts cleanly Executing from a non-executable area gives an ugly message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0e08 lkdtm: attempting bad execution at ffff000008880700 Bad mode in Synchronous Abort handler detected on CPU2, code 0x8400000e -- IABT (current EL) CPU: 2 PID: 998 Comm: sh Not tainted 4.7.0-rc2+ #13 Hardware name: linux,dummy-virt (DT) task: ffff800077e35780 ti: ffff800077970000 task.ti: ffff800077970000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 The 'IABT (current EL)' indicates the error but it's a bit cryptic without knowledge of the ARM ARM. There is also no indication of the specific address which triggered the fault. The increase in kernel page permissions makes hitting this case more likely as well. Handling the case in the vectors gives a much more familiar looking error message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0840 lkdtm: attempting bad execution at ffff000008880680 Unable to handle kernel paging request at virtual address ffff000008880680 pgd = ffff8000089b2000 [ffff000008880680] *pgd=00000000489b4003, *pud=0000000048904003, *pmd=0000000000000000 Internal error: Oops: 8400000e [#1] PREEMPT SMP Modules linked in: CPU: 1 PID: 997 Comm: sh Not tainted 4.7.0-rc1+ #24 Hardware name: linux,dummy-virt (DT) task: ffff800077f9f080 ti: ffff800008a1c000 task.ti: ffff800008a1c000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-08-10 09:25:26 +08:00
* We are almost certainly not prepared to handle instruction faults.
*/
arm64: Handle el1 synchronous instruction aborts cleanly Executing from a non-executable area gives an ugly message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0e08 lkdtm: attempting bad execution at ffff000008880700 Bad mode in Synchronous Abort handler detected on CPU2, code 0x8400000e -- IABT (current EL) CPU: 2 PID: 998 Comm: sh Not tainted 4.7.0-rc2+ #13 Hardware name: linux,dummy-virt (DT) task: ffff800077e35780 ti: ffff800077970000 task.ti: ffff800077970000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 The 'IABT (current EL)' indicates the error but it's a bit cryptic without knowledge of the ARM ARM. There is also no indication of the specific address which triggered the fault. The increase in kernel page permissions makes hitting this case more likely as well. Handling the case in the vectors gives a much more familiar looking error message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0840 lkdtm: attempting bad execution at ffff000008880680 Unable to handle kernel paging request at virtual address ffff000008880680 pgd = ffff8000089b2000 [ffff000008880680] *pgd=00000000489b4003, *pud=0000000048904003, *pmd=0000000000000000 Internal error: Oops: 8400000e [#1] PREEMPT SMP Modules linked in: CPU: 1 PID: 997 Comm: sh Not tainted 4.7.0-rc1+ #24 Hardware name: linux,dummy-virt (DT) task: ffff800077f9f080 ti: ffff800008a1c000 task.ti: ffff800008a1c000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-08-10 09:25:26 +08:00
if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
return;
if (is_el1_permission_fault(addr, esr, regs)) {
if (esr & ESR_ELx_WNR)
msg = "write to read-only memory";
else
msg = "read from unreadable memory";
} else if (addr < PAGE_SIZE) {
msg = "NULL pointer dereference";
} else {
msg = "paging request";
}
die_kernel_fault(msg, addr, esr, regs);
}
static void set_thread_esr(unsigned long address, unsigned int esr)
{
current->thread.fault_address = address;
arm64: fault: Don't leak data in ESR context for user fault on kernel VA If userspace faults on a kernel address, handing them the raw ESR value on the sigframe as part of the delivered signal can leak data useful to attackers who are using information about the underlying hardware fault type (e.g. translation vs permission) as a mechanism to defeat KASLR. However there are also legitimate uses for the information provided in the ESR -- notably the GCC and LLVM sanitizers use this to report whether wild pointer accesses by the application are reads or writes (since a wild write is a more serious bug than a wild read), so we don't want to drop the ESR information entirely. For faulting addresses in the kernel, sanitize the ESR. We choose to present userspace with the illusion that there is nothing mapped in the kernel's part of the address space at all, by reporting all faults as level 0 translation faults taken to EL1. These fields are safe to pass through to userspace as they depend only on the instruction that userspace used to provoke the fault: EC IL (always) ISV CM WNR (for all data aborts) All the other fields in ESR except DFSC are architecturally RES0 for an L0 translation fault taken to EL1, so can be zeroed out without confusing userspace. The illusion is not entirely perfect, as there is a tiny wrinkle where we will report an alignment fault that was not due to the memory type (for instance a LDREX to an unaligned address) as a translation fault, whereas if you do this on real unmapped memory the alignment fault takes precedence. This is not likely to trip anybody up in practice, as the only users we know of for the ESR information who care about the behaviour for kernel addresses only really want to know about the WnR bit. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-05-23 00:11:20 +08:00
/*
* If the faulting address is in the kernel, we must sanitize the ESR.
* From userspace's point of view, kernel-only mappings don't exist
* at all, so we report them as level 0 translation faults.
* (This is not quite the way that "no mapping there at all" behaves:
* an alignment fault not caused by the memory type would take
* precedence over translation fault for a real access to empty
* space. Unfortunately we can't easily distinguish "alignment fault
* not caused by memory type" from "alignment fault caused by memory
* type", so we ignore this wrinkle and just return the translation
* fault.)
*/
if (!is_ttbr0_addr(current->thread.fault_address)) {
arm64: fault: Don't leak data in ESR context for user fault on kernel VA If userspace faults on a kernel address, handing them the raw ESR value on the sigframe as part of the delivered signal can leak data useful to attackers who are using information about the underlying hardware fault type (e.g. translation vs permission) as a mechanism to defeat KASLR. However there are also legitimate uses for the information provided in the ESR -- notably the GCC and LLVM sanitizers use this to report whether wild pointer accesses by the application are reads or writes (since a wild write is a more serious bug than a wild read), so we don't want to drop the ESR information entirely. For faulting addresses in the kernel, sanitize the ESR. We choose to present userspace with the illusion that there is nothing mapped in the kernel's part of the address space at all, by reporting all faults as level 0 translation faults taken to EL1. These fields are safe to pass through to userspace as they depend only on the instruction that userspace used to provoke the fault: EC IL (always) ISV CM WNR (for all data aborts) All the other fields in ESR except DFSC are architecturally RES0 for an L0 translation fault taken to EL1, so can be zeroed out without confusing userspace. The illusion is not entirely perfect, as there is a tiny wrinkle where we will report an alignment fault that was not due to the memory type (for instance a LDREX to an unaligned address) as a translation fault, whereas if you do this on real unmapped memory the alignment fault takes precedence. This is not likely to trip anybody up in practice, as the only users we know of for the ESR information who care about the behaviour for kernel addresses only really want to know about the WnR bit. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-05-23 00:11:20 +08:00
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_DABT_LOW:
/*
* These bits provide only information about the
* faulting instruction, which userspace knows already.
* We explicitly clear bits which are architecturally
* RES0 in case they are given meanings in future.
* We always report the ESR as if the fault was taken
* to EL1 and so ISV and the bits in ISS[23:14] are
* clear. (In fact it always will be a fault to EL1.)
*/
esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
ESR_ELx_CM | ESR_ELx_WNR;
esr |= ESR_ELx_FSC_FAULT;
break;
case ESR_ELx_EC_IABT_LOW:
/*
* Claim a level 0 translation fault.
* All other bits are architecturally RES0 for faults
* reported with that DFSC value, so we clear them.
*/
esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
esr |= ESR_ELx_FSC_FAULT;
break;
default:
/*
* This should never happen (entry.S only brings us
* into this code for insn and data aborts from a lower
* exception level). Fail safe by not providing an ESR
* context record at all.
*/
WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
esr = 0;
break;
}
}
current->thread.fault_code = esr;
}
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
/*
* If we are in kernel mode at this point, we have no context to
* handle this fault with.
*/
if (user_mode(regs)) {
const struct fault_info *inf = esr_to_fault_info(esr);
set_thread_esr(addr, esr);
arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
inf->name);
} else {
__do_kernel_fault(addr, esr, regs);
}
}
#define VM_FAULT_BADMAP 0x010000
#define VM_FAULT_BADACCESS 0x020000
mm: convert return type of handle_mm_fault() caller to vm_fault_t Use new return type vm_fault_t for fault handler. For now, this is just documenting that the function returns a VM_FAULT value rather than an errno. Once all instances are converted, vm_fault_t will become a distinct type. Ref-> commit 1c8f422059ae ("mm: change return type to vm_fault_t") In this patch all the caller of handle_mm_fault() are changed to return vm_fault_t type. Link: http://lkml.kernel.org/r/20180617084810.GA6730@jordon-HP-15-Notebook-PC Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Tony Luck <tony.luck@intel.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Michal Simek <monstr@monstr.eu> Cc: James Hogan <jhogan@kernel.org> Cc: Ley Foon Tan <lftan@altera.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: James E.J. Bottomley <jejb@parisc-linux.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: David S. Miller <davem@davemloft.net> Cc: Richard Weinberger <richard@nod.at> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Levin, Alexander (Sasha Levin)" <alexander.levin@verizon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:44:47 +08:00
static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
unsigned int mm_flags, unsigned long vm_flags,
struct task_struct *tsk)
{
struct vm_area_struct *vma;
mm: convert return type of handle_mm_fault() caller to vm_fault_t Use new return type vm_fault_t for fault handler. For now, this is just documenting that the function returns a VM_FAULT value rather than an errno. Once all instances are converted, vm_fault_t will become a distinct type. Ref-> commit 1c8f422059ae ("mm: change return type to vm_fault_t") In this patch all the caller of handle_mm_fault() are changed to return vm_fault_t type. Link: http://lkml.kernel.org/r/20180617084810.GA6730@jordon-HP-15-Notebook-PC Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Tony Luck <tony.luck@intel.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Michal Simek <monstr@monstr.eu> Cc: James Hogan <jhogan@kernel.org> Cc: Ley Foon Tan <lftan@altera.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: James E.J. Bottomley <jejb@parisc-linux.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: David S. Miller <davem@davemloft.net> Cc: Richard Weinberger <richard@nod.at> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Levin, Alexander (Sasha Levin)" <alexander.levin@verizon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:44:47 +08:00
vm_fault_t fault;
vma = find_vma(mm, addr);
fault = VM_FAULT_BADMAP;
if (unlikely(!vma))
goto out;
if (unlikely(vma->vm_start > addr))
goto check_stack;
/*
* Ok, we have a good vm_area for this memory access, so we can handle
* it.
*/
good_area:
/*
* Check that the permissions on the VMA allow for the fault which
* occurred.
*/
if (!(vma->vm_flags & vm_flags)) {
fault = VM_FAULT_BADACCESS;
goto out;
}
return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
check_stack:
if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
goto good_area;
out:
return fault;
}
static bool is_el0_instruction_abort(unsigned int esr)
{
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
}
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
const struct fault_info *inf;
struct task_struct *tsk;
struct mm_struct *mm;
mm: convert return type of handle_mm_fault() caller to vm_fault_t Use new return type vm_fault_t for fault handler. For now, this is just documenting that the function returns a VM_FAULT value rather than an errno. Once all instances are converted, vm_fault_t will become a distinct type. Ref-> commit 1c8f422059ae ("mm: change return type to vm_fault_t") In this patch all the caller of handle_mm_fault() are changed to return vm_fault_t type. Link: http://lkml.kernel.org/r/20180617084810.GA6730@jordon-HP-15-Notebook-PC Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Tony Luck <tony.luck@intel.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Michal Simek <monstr@monstr.eu> Cc: James Hogan <jhogan@kernel.org> Cc: Ley Foon Tan <lftan@altera.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: James E.J. Bottomley <jejb@parisc-linux.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: David S. Miller <davem@davemloft.net> Cc: Richard Weinberger <richard@nod.at> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Levin, Alexander (Sasha Levin)" <alexander.levin@verizon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:44:47 +08:00
vm_fault_t fault, major = 0;
unsigned long vm_flags = VM_READ | VM_WRITE;
unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
arm64: Kprobes with single stepping support Add support for basic kernel probes(kprobes) and jump probes (jprobes) for ARM64. Kprobes utilizes software breakpoint and single step debug exceptions supported on ARM v8. A software breakpoint is placed at the probe address to trap the kernel execution into the kprobe handler. ARM v8 supports enabling single stepping before the break exception return (ERET), with next PC in exception return address (ELR_EL1). The kprobe handler prepares an executable memory slot for out-of-line execution with a copy of the original instruction being probed, and enables single stepping. The PC is set to the out-of-line slot address before the ERET. With this scheme, the instruction is executed with the exact same register context except for the PC (and DAIF) registers. Debug mask (PSTATE.D) is enabled only when single stepping a recursive kprobe, e.g.: during kprobes reenter so that probed instruction can be single stepped within the kprobe handler -exception- context. The recursion depth of kprobe is always 2, i.e. upon probe re-entry, any further re-entry is prevented by not calling handlers and the case counted as a missed kprobe). Single stepping from the x-o-l slot has a drawback for PC-relative accesses like branching and symbolic literals access as the offset from the new PC (slot address) may not be ensured to fit in the immediate value of the opcode. Such instructions need simulation, so reject probing them. Instructions generating exceptions or cpu mode change are rejected for probing. Exclusive load/store instructions are rejected too. Additionally, the code is checked to see if it is inside an exclusive load/store sequence (code from Pratyush). System instructions are mostly enabled for stepping, except MSR/MRS accesses to "DAIF" flags in PSTATE, which are not safe for probing. This also changes arch/arm64/include/asm/ptrace.h to use include/asm-generic/ptrace.h. Thanks to Steve Capper and Pratyush Anand for several suggested Changes. Signed-off-by: Sandeepa Prabhu <sandeepa.s.prabhu@gmail.com> Signed-off-by: David A. Long <dave.long@linaro.org> Signed-off-by: Pratyush Anand <panand@redhat.com> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-09 00:35:48 +08:00
if (notify_page_fault(regs, esr))
return 0;
tsk = current;
mm = tsk->mm;
/*
* If we're in an interrupt or have no user context, we must not take
* the fault.
*/
mm/fault, arch: Use pagefault_disable() to check for disabled pagefaults in the handler Introduce faulthandler_disabled() and use it to check for irq context and disabled pagefaults (via pagefault_disable()) in the pagefault handlers. Please note that we keep the in_atomic() checks in place - to detect whether in irq context (in which case preemption is always properly disabled). In contrast, preempt_disable() should never be used to disable pagefaults. With !CONFIG_PREEMPT_COUNT, preempt_disable() doesn't modify the preempt counter, and therefore the result of in_atomic() differs. We validate that condition by using might_fault() checks when calling might_sleep(). Therefore, add a comment to faulthandler_disabled(), describing why this is needed. faulthandler_disabled() and pagefault_disable() are defined in linux/uaccess.h, so let's properly add that include to all relevant files. This patch is based on a patch from Thomas Gleixner. Reviewed-and-tested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David.Laight@ACULAB.COM Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: airlied@linux.ie Cc: akpm@linux-foundation.org Cc: benh@kernel.crashing.org Cc: bigeasy@linutronix.de Cc: borntraeger@de.ibm.com Cc: daniel.vetter@intel.com Cc: heiko.carstens@de.ibm.com Cc: herbert@gondor.apana.org.au Cc: hocko@suse.cz Cc: hughd@google.com Cc: mst@redhat.com Cc: paulus@samba.org Cc: ralf@linux-mips.org Cc: schwidefsky@de.ibm.com Cc: yang.shi@windriver.com Link: http://lkml.kernel.org/r/1431359540-32227-7-git-send-email-dahi@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-11 23:52:11 +08:00
if (faulthandler_disabled() || !mm)
goto no_context;
if (user_mode(regs))
mm_flags |= FAULT_FLAG_USER;
if (is_el0_instruction_abort(esr)) {
vm_flags = VM_EXEC;
} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
vm_flags = VM_WRITE;
mm_flags |= FAULT_FLAG_WRITE;
}
if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
/* regs->orig_addr_limit may be 0 if we entered from EL0 */
if (regs->orig_addr_limit == KERNEL_DS)
die_kernel_fault("access to user memory with fs=KERNEL_DS",
addr, esr, regs);
arm64: Handle el1 synchronous instruction aborts cleanly Executing from a non-executable area gives an ugly message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0e08 lkdtm: attempting bad execution at ffff000008880700 Bad mode in Synchronous Abort handler detected on CPU2, code 0x8400000e -- IABT (current EL) CPU: 2 PID: 998 Comm: sh Not tainted 4.7.0-rc2+ #13 Hardware name: linux,dummy-virt (DT) task: ffff800077e35780 ti: ffff800077970000 task.ti: ffff800077970000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 The 'IABT (current EL)' indicates the error but it's a bit cryptic without knowledge of the ARM ARM. There is also no indication of the specific address which triggered the fault. The increase in kernel page permissions makes hitting this case more likely as well. Handling the case in the vectors gives a much more familiar looking error message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0840 lkdtm: attempting bad execution at ffff000008880680 Unable to handle kernel paging request at virtual address ffff000008880680 pgd = ffff8000089b2000 [ffff000008880680] *pgd=00000000489b4003, *pud=0000000048904003, *pmd=0000000000000000 Internal error: Oops: 8400000e [#1] PREEMPT SMP Modules linked in: CPU: 1 PID: 997 Comm: sh Not tainted 4.7.0-rc1+ #24 Hardware name: linux,dummy-virt (DT) task: ffff800077f9f080 ti: ffff800008a1c000 task.ti: ffff800008a1c000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-08-10 09:25:26 +08:00
if (is_el1_instruction_abort(esr))
die_kernel_fault("execution of user memory",
addr, esr, regs);
arm64: Handle el1 synchronous instruction aborts cleanly Executing from a non-executable area gives an ugly message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0e08 lkdtm: attempting bad execution at ffff000008880700 Bad mode in Synchronous Abort handler detected on CPU2, code 0x8400000e -- IABT (current EL) CPU: 2 PID: 998 Comm: sh Not tainted 4.7.0-rc2+ #13 Hardware name: linux,dummy-virt (DT) task: ffff800077e35780 ti: ffff800077970000 task.ti: ffff800077970000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 The 'IABT (current EL)' indicates the error but it's a bit cryptic without knowledge of the ARM ARM. There is also no indication of the specific address which triggered the fault. The increase in kernel page permissions makes hitting this case more likely as well. Handling the case in the vectors gives a much more familiar looking error message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0840 lkdtm: attempting bad execution at ffff000008880680 Unable to handle kernel paging request at virtual address ffff000008880680 pgd = ffff8000089b2000 [ffff000008880680] *pgd=00000000489b4003, *pud=0000000048904003, *pmd=0000000000000000 Internal error: Oops: 8400000e [#1] PREEMPT SMP Modules linked in: CPU: 1 PID: 997 Comm: sh Not tainted 4.7.0-rc1+ #24 Hardware name: linux,dummy-virt (DT) task: ffff800077f9f080 ti: ffff800008a1c000 task.ti: ffff800008a1c000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-08-10 09:25:26 +08:00
if (!search_exception_tables(regs->pc))
die_kernel_fault("access to user memory outside uaccess routines",
addr, esr, regs);
}
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
/*
* As per x86, we may deadlock here. However, since the kernel only
* validly references user space from well defined areas of the code,
* we can bug out early if this is from code which shouldn't.
*/
if (!down_read_trylock(&mm->mmap_sem)) {
if (!user_mode(regs) && !search_exception_tables(regs->pc))
goto no_context;
retry:
down_read(&mm->mmap_sem);
} else {
/*
* The above down_read_trylock() might have succeeded in which
* case, we'll have missed the might_sleep() from down_read().
*/
might_sleep();
#ifdef CONFIG_DEBUG_VM
if (!user_mode(regs) && !search_exception_tables(regs->pc))
goto no_context;
#endif
}
fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
major |= fault & VM_FAULT_MAJOR;
if (fault & VM_FAULT_RETRY) {
/*
* If we need to retry but a fatal signal is pending,
* handle the signal first. We do not need to release
* the mmap_sem because it would already be released
* in __lock_page_or_retry in mm/filemap.c.
*/
if (fatal_signal_pending(current)) {
if (!user_mode(regs))
goto no_context;
return 0;
}
/*
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
* starvation.
*/
if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
mm_flags |= FAULT_FLAG_TRIED;
goto retry;
}
}
up_read(&mm->mmap_sem);
/*
* Handle the "normal" (no error) case first.
*/
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
VM_FAULT_BADACCESS)))) {
/*
* Major/minor page fault accounting is only done
* once. If we go through a retry, it is extremely
* likely that the page will be found in page cache at
* that point.
*/
if (major) {
tsk->maj_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
addr);
} else {
tsk->min_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
addr);
}
return 0;
}
/*
* If we are in kernel mode at this point, we have no context to
* handle this fault with.
*/
if (!user_mode(regs))
goto no_context;
if (fault & VM_FAULT_OOM) {
/*
* We ran out of memory, call the OOM killer, and return to
* userspace (which will retry the fault, or kill us if we got
* oom-killed).
*/
pagefault_out_of_memory();
return 0;
}
inf = esr_to_fault_info(esr);
set_thread_esr(addr, esr);
if (fault & VM_FAULT_SIGBUS) {
/*
* We had some memory, but were unable to successfully fix up
* this page fault.
*/
arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
inf->name);
} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
unsigned int lsb;
lsb = PAGE_SHIFT;
if (fault & VM_FAULT_HWPOISON_LARGE)
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
inf->name);
} else {
/*
* Something tried to access memory that isn't in our memory
* map.
*/
arm64_force_sig_fault(SIGSEGV,
fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
(void __user *)addr,
inf->name);
}
return 0;
no_context:
__do_kernel_fault(addr, esr, regs);
return 0;
}
static int __kprobes do_translation_fault(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
{
if (is_ttbr0_addr(addr))
return do_page_fault(addr, esr, regs);
do_bad_area(addr, esr, regs);
return 0;
}
static int do_alignment_fault(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
do_bad_area(addr, esr, regs);
return 0;
}
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
return 1; /* "fault" */
}
static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
const struct fault_info *inf;
void __user *siaddr;
inf = esr_to_fault_info(esr);
/*
* Synchronous aborts may interrupt code which had interrupts masked.
* Before calling out into the wider kernel tell the interested
* subsystems.
*/
if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
if (interrupts_enabled(regs))
nmi_enter();
ghes_notify_sea();
if (interrupts_enabled(regs))
nmi_exit();
}
if (esr & ESR_ELx_FnV)
siaddr = NULL;
else
siaddr = (void __user *)addr;
arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
return 0;
}
static const struct fault_info fault_info[] = {
arm64: signal: Ensure si_code is valid for all fault signals Currently, as reported by Eric, an invalid si_code value 0 is passed in many signals delivered to userspace in response to faults and other kernel errors. Typically 0 is passed when the fault is insufficiently diagnosable or when there does not appear to be any sensible alternative value to choose. This appears to violate POSIX, and is intuitively wrong for at least two reasons arising from the fact that 0 == SI_USER: 1) si_code is a union selector, and SI_USER (and si_code <= 0 in general) implies the existence of a different set of fields (siginfo._kill) from that which exists for a fault signal (siginfo._sigfault). However, the code raising the signal typically writes only the _sigfault fields, and the _kill fields make no sense in this case. Thus when userspace sees si_code == 0 (SI_USER) it may legitimately inspect fields in the inactive union member _kill and obtain garbage as a result. There appears to be software in the wild relying on this, albeit generally only for printing diagnostic messages. 2) Software that wants to be robust against spurious signals may discard signals where si_code == SI_USER (or <= 0), or may filter such signals based on the si_uid and si_pid fields of siginfo._sigkill. In the case of fault signals, this means that important (and usually fatal) error conditions may be silently ignored. In practice, many of the faults for which arm64 passes si_code == 0 are undiagnosable conditions such as exceptions with syndrome values in ESR_ELx to which the architecture does not yet assign any meaning, or conditions indicative of a bug or error in the kernel or system and thus that are unrecoverable and should never occur in normal operation. The approach taken in this patch is to translate all such undiagnosable or "impossible" synchronous fault conditions to SIGKILL, since these are at least probably localisable to a single process. Some of these conditions should really result in a kernel panic, but due to the lack of diagnostic information it is difficult to be certain: this patch does not add any calls to panic(), but this could change later if justified. Although si_code will not reach userspace in the case of SIGKILL, it is still desirable to pass a nonzero value so that the common siginfo handling code can detect incorrect use of si_code == 0 without false positives. In this case the si_code dependent siginfo fields will not be correctly initialised, but since they are not passed to userspace I deem this not to matter. A few faults can reasonably occur in realistic userspace scenarios, and _should_ raise a regular, handleable (but perhaps not ignorable/blockable) signal: for these, this patch attempts to choose a suitable standard si_code value for the raised signal in each case instead of 0. arm64 was the only arch to define a BUS_FIXME code, so after this patch nobody defines it. This patch therefore also removes the relevant code from siginfo_layout(). Cc: James Morse <james.morse@arm.com> Reported-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 01:41:05 +08:00
{ do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
{ do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
{ do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
{ do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
arm64: fault: Route pte translation faults via do_translation_fault We currently route pte translation faults via do_page_fault, which elides the address check against TASK_SIZE before invoking the mm fault handling code. However, this can cause issues with the path walking code in conjunction with our word-at-a-time implementation because load_unaligned_zeropad can end up faulting in kernel space if it reads across a page boundary and runs into a page fault (e.g. by attempting to read from a guard region). In the case of such a fault, load_unaligned_zeropad has registered a fixup to shift the valid data and pad with zeroes, however the abort is reported as a level 3 translation fault and we dispatch it straight to do_page_fault, despite it being a kernel address. This results in calling a sleeping function from atomic context: BUG: sleeping function called from invalid context at arch/arm64/mm/fault.c:313 in_atomic(): 0, irqs_disabled(): 0, pid: 10290 Internal error: Oops - BUG: 0 [#1] PREEMPT SMP [...] [<ffffff8e016cd0cc>] ___might_sleep+0x134/0x144 [<ffffff8e016cd158>] __might_sleep+0x7c/0x8c [<ffffff8e016977f0>] do_page_fault+0x140/0x330 [<ffffff8e01681328>] do_mem_abort+0x54/0xb0 Exception stack(0xfffffffb20247a70 to 0xfffffffb20247ba0) [...] [<ffffff8e016844fc>] el1_da+0x18/0x78 [<ffffff8e017f399c>] path_parentat+0x44/0x88 [<ffffff8e017f4c9c>] filename_parentat+0x5c/0xd8 [<ffffff8e017f5044>] filename_create+0x4c/0x128 [<ffffff8e017f59e4>] SyS_mkdirat+0x50/0xc8 [<ffffff8e01684e30>] el0_svc_naked+0x24/0x28 Code: 36380080 d5384100 f9400800 9402566d (d4210000) ---[ end trace 2d01889f2bca9b9f ]--- Fix this by dispatching all translation faults to do_translation_faults, which avoids invoking the page fault logic for faults on kernel addresses. Cc: <stable@vger.kernel.org> Reported-by: Ankit Jain <ankijain@codeaurora.org> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-09-29 19:27:41 +08:00
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
arm64: signal: Ensure si_code is valid for all fault signals Currently, as reported by Eric, an invalid si_code value 0 is passed in many signals delivered to userspace in response to faults and other kernel errors. Typically 0 is passed when the fault is insufficiently diagnosable or when there does not appear to be any sensible alternative value to choose. This appears to violate POSIX, and is intuitively wrong for at least two reasons arising from the fact that 0 == SI_USER: 1) si_code is a union selector, and SI_USER (and si_code <= 0 in general) implies the existence of a different set of fields (siginfo._kill) from that which exists for a fault signal (siginfo._sigfault). However, the code raising the signal typically writes only the _sigfault fields, and the _kill fields make no sense in this case. Thus when userspace sees si_code == 0 (SI_USER) it may legitimately inspect fields in the inactive union member _kill and obtain garbage as a result. There appears to be software in the wild relying on this, albeit generally only for printing diagnostic messages. 2) Software that wants to be robust against spurious signals may discard signals where si_code == SI_USER (or <= 0), or may filter such signals based on the si_uid and si_pid fields of siginfo._sigkill. In the case of fault signals, this means that important (and usually fatal) error conditions may be silently ignored. In practice, many of the faults for which arm64 passes si_code == 0 are undiagnosable conditions such as exceptions with syndrome values in ESR_ELx to which the architecture does not yet assign any meaning, or conditions indicative of a bug or error in the kernel or system and thus that are unrecoverable and should never occur in normal operation. The approach taken in this patch is to translate all such undiagnosable or "impossible" synchronous fault conditions to SIGKILL, since these are at least probably localisable to a single process. Some of these conditions should really result in a kernel panic, but due to the lack of diagnostic information it is difficult to be certain: this patch does not add any calls to panic(), but this could change later if justified. Although si_code will not reach userspace in the case of SIGKILL, it is still desirable to pass a nonzero value so that the common siginfo handling code can detect incorrect use of si_code == 0 without false positives. In this case the si_code dependent siginfo fields will not be correctly initialised, but since they are not passed to userspace I deem this not to matter. A few faults can reasonably occur in realistic userspace scenarios, and _should_ raise a regular, handleable (but perhaps not ignorable/blockable) signal: for these, this patch attempts to choose a suitable standard si_code value for the raised signal in each case instead of 0. arm64 was the only arch to define a BUS_FIXME code, so after this patch nobody defines it. This patch therefore also removes the relevant code from siginfo_layout(). Cc: James Morse <james.morse@arm.com> Reported-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 01:41:05 +08:00
{ do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
arm64: signal: Ensure si_code is valid for all fault signals Currently, as reported by Eric, an invalid si_code value 0 is passed in many signals delivered to userspace in response to faults and other kernel errors. Typically 0 is passed when the fault is insufficiently diagnosable or when there does not appear to be any sensible alternative value to choose. This appears to violate POSIX, and is intuitively wrong for at least two reasons arising from the fact that 0 == SI_USER: 1) si_code is a union selector, and SI_USER (and si_code <= 0 in general) implies the existence of a different set of fields (siginfo._kill) from that which exists for a fault signal (siginfo._sigfault). However, the code raising the signal typically writes only the _sigfault fields, and the _kill fields make no sense in this case. Thus when userspace sees si_code == 0 (SI_USER) it may legitimately inspect fields in the inactive union member _kill and obtain garbage as a result. There appears to be software in the wild relying on this, albeit generally only for printing diagnostic messages. 2) Software that wants to be robust against spurious signals may discard signals where si_code == SI_USER (or <= 0), or may filter such signals based on the si_uid and si_pid fields of siginfo._sigkill. In the case of fault signals, this means that important (and usually fatal) error conditions may be silently ignored. In practice, many of the faults for which arm64 passes si_code == 0 are undiagnosable conditions such as exceptions with syndrome values in ESR_ELx to which the architecture does not yet assign any meaning, or conditions indicative of a bug or error in the kernel or system and thus that are unrecoverable and should never occur in normal operation. The approach taken in this patch is to translate all such undiagnosable or "impossible" synchronous fault conditions to SIGKILL, since these are at least probably localisable to a single process. Some of these conditions should really result in a kernel panic, but due to the lack of diagnostic information it is difficult to be certain: this patch does not add any calls to panic(), but this could change later if justified. Although si_code will not reach userspace in the case of SIGKILL, it is still desirable to pass a nonzero value so that the common siginfo handling code can detect incorrect use of si_code == 0 without false positives. In this case the si_code dependent siginfo fields will not be correctly initialised, but since they are not passed to userspace I deem this not to matter. A few faults can reasonably occur in realistic userspace scenarios, and _should_ raise a regular, handleable (but perhaps not ignorable/blockable) signal: for these, this patch attempts to choose a suitable standard si_code value for the raised signal in each case instead of 0. arm64 was the only arch to define a BUS_FIXME code, so after this patch nobody defines it. This patch therefore also removes the relevant code from siginfo_layout(). Cc: James Morse <james.morse@arm.com> Reported-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 01:41:05 +08:00
{ do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
arm64: signal: Ensure si_code is valid for all fault signals Currently, as reported by Eric, an invalid si_code value 0 is passed in many signals delivered to userspace in response to faults and other kernel errors. Typically 0 is passed when the fault is insufficiently diagnosable or when there does not appear to be any sensible alternative value to choose. This appears to violate POSIX, and is intuitively wrong for at least two reasons arising from the fact that 0 == SI_USER: 1) si_code is a union selector, and SI_USER (and si_code <= 0 in general) implies the existence of a different set of fields (siginfo._kill) from that which exists for a fault signal (siginfo._sigfault). However, the code raising the signal typically writes only the _sigfault fields, and the _kill fields make no sense in this case. Thus when userspace sees si_code == 0 (SI_USER) it may legitimately inspect fields in the inactive union member _kill and obtain garbage as a result. There appears to be software in the wild relying on this, albeit generally only for printing diagnostic messages. 2) Software that wants to be robust against spurious signals may discard signals where si_code == SI_USER (or <= 0), or may filter such signals based on the si_uid and si_pid fields of siginfo._sigkill. In the case of fault signals, this means that important (and usually fatal) error conditions may be silently ignored. In practice, many of the faults for which arm64 passes si_code == 0 are undiagnosable conditions such as exceptions with syndrome values in ESR_ELx to which the architecture does not yet assign any meaning, or conditions indicative of a bug or error in the kernel or system and thus that are unrecoverable and should never occur in normal operation. The approach taken in this patch is to translate all such undiagnosable or "impossible" synchronous fault conditions to SIGKILL, since these are at least probably localisable to a single process. Some of these conditions should really result in a kernel panic, but due to the lack of diagnostic information it is difficult to be certain: this patch does not add any calls to panic(), but this could change later if justified. Although si_code will not reach userspace in the case of SIGKILL, it is still desirable to pass a nonzero value so that the common siginfo handling code can detect incorrect use of si_code == 0 without false positives. In this case the si_code dependent siginfo fields will not be correctly initialised, but since they are not passed to userspace I deem this not to matter. A few faults can reasonably occur in realistic userspace scenarios, and _should_ raise a regular, handleable (but perhaps not ignorable/blockable) signal: for these, this patch attempts to choose a suitable standard si_code value for the raised signal in each case instead of 0. arm64 was the only arch to define a BUS_FIXME code, so after this patch nobody defines it. This patch therefore also removes the relevant code from siginfo_layout(). Cc: James Morse <james.morse@arm.com> Reported-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 01:41:05 +08:00
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
{ do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
{ do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
{ do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
{ do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
{ do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
{ do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
{ do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
arm64: signal: Ensure si_code is valid for all fault signals Currently, as reported by Eric, an invalid si_code value 0 is passed in many signals delivered to userspace in response to faults and other kernel errors. Typically 0 is passed when the fault is insufficiently diagnosable or when there does not appear to be any sensible alternative value to choose. This appears to violate POSIX, and is intuitively wrong for at least two reasons arising from the fact that 0 == SI_USER: 1) si_code is a union selector, and SI_USER (and si_code <= 0 in general) implies the existence of a different set of fields (siginfo._kill) from that which exists for a fault signal (siginfo._sigfault). However, the code raising the signal typically writes only the _sigfault fields, and the _kill fields make no sense in this case. Thus when userspace sees si_code == 0 (SI_USER) it may legitimately inspect fields in the inactive union member _kill and obtain garbage as a result. There appears to be software in the wild relying on this, albeit generally only for printing diagnostic messages. 2) Software that wants to be robust against spurious signals may discard signals where si_code == SI_USER (or <= 0), or may filter such signals based on the si_uid and si_pid fields of siginfo._sigkill. In the case of fault signals, this means that important (and usually fatal) error conditions may be silently ignored. In practice, many of the faults for which arm64 passes si_code == 0 are undiagnosable conditions such as exceptions with syndrome values in ESR_ELx to which the architecture does not yet assign any meaning, or conditions indicative of a bug or error in the kernel or system and thus that are unrecoverable and should never occur in normal operation. The approach taken in this patch is to translate all such undiagnosable or "impossible" synchronous fault conditions to SIGKILL, since these are at least probably localisable to a single process. Some of these conditions should really result in a kernel panic, but due to the lack of diagnostic information it is difficult to be certain: this patch does not add any calls to panic(), but this could change later if justified. Although si_code will not reach userspace in the case of SIGKILL, it is still desirable to pass a nonzero value so that the common siginfo handling code can detect incorrect use of si_code == 0 without false positives. In this case the si_code dependent siginfo fields will not be correctly initialised, but since they are not passed to userspace I deem this not to matter. A few faults can reasonably occur in realistic userspace scenarios, and _should_ raise a regular, handleable (but perhaps not ignorable/blockable) signal: for these, this patch attempts to choose a suitable standard si_code value for the raised signal in each case instead of 0. arm64 was the only arch to define a BUS_FIXME code, so after this patch nobody defines it. This patch therefore also removes the relevant code from siginfo_layout(). Cc: James Morse <james.morse@arm.com> Reported-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 01:41:05 +08:00
{ do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
{ do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
{ do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
{ do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
{ do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
{ do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
{ do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
};
int kvm_handle_guest_sea(phys_addr_t addr, unsigned int esr)
{
return ghes_notify_sea();
}
asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
const struct fault_info *inf = esr_to_fault_info(esr);
if (!inf->fn(addr, esr, regs))
return;
if (!user_mode(regs)) {
pr_alert("Unhandled fault at 0x%016lx\n", addr);
mem_abort_decode(esr);
show_pte(addr);
}
arm64_notify_die(inf->name, regs,
inf->sig, inf->code, (void __user *)addr, esr);
}
asmlinkage void __exception do_el0_irq_bp_hardening(void)
{
/* PC has already been checked in entry.S */
arm64_apply_bp_hardening();
}
asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
{
/*
* We've taken an instruction abort from userspace and not yet
* re-enabled IRQs. If the address is a kernel address, apply
* BP hardening prior to enabling IRQs and pre-emption.
*/
if (!is_ttbr0_addr(addr))
arm64_apply_bp_hardening();
local_daif_restore(DAIF_PROCCTX);
do_mem_abort(addr, esr, regs);
}
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
{
if (user_mode(regs)) {
if (!is_ttbr0_addr(instruction_pointer(regs)))
arm64_apply_bp_hardening();
local_daif_restore(DAIF_PROCCTX);
}
arm64_notify_die("SP/PC alignment exception", regs,
SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
}
int __init early_brk64(unsigned long addr, unsigned int esr,
struct pt_regs *regs);
/*
* __refdata because early_brk64 is __init, but the reference to it is
* clobbered at arch_initcall time.
* See traps.c and debug-monitors.c:debug_traps_init().
*/
static struct fault_info __refdata debug_fault_info[] = {
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
arm64: signal: Ensure si_code is valid for all fault signals Currently, as reported by Eric, an invalid si_code value 0 is passed in many signals delivered to userspace in response to faults and other kernel errors. Typically 0 is passed when the fault is insufficiently diagnosable or when there does not appear to be any sensible alternative value to choose. This appears to violate POSIX, and is intuitively wrong for at least two reasons arising from the fact that 0 == SI_USER: 1) si_code is a union selector, and SI_USER (and si_code <= 0 in general) implies the existence of a different set of fields (siginfo._kill) from that which exists for a fault signal (siginfo._sigfault). However, the code raising the signal typically writes only the _sigfault fields, and the _kill fields make no sense in this case. Thus when userspace sees si_code == 0 (SI_USER) it may legitimately inspect fields in the inactive union member _kill and obtain garbage as a result. There appears to be software in the wild relying on this, albeit generally only for printing diagnostic messages. 2) Software that wants to be robust against spurious signals may discard signals where si_code == SI_USER (or <= 0), or may filter such signals based on the si_uid and si_pid fields of siginfo._sigkill. In the case of fault signals, this means that important (and usually fatal) error conditions may be silently ignored. In practice, many of the faults for which arm64 passes si_code == 0 are undiagnosable conditions such as exceptions with syndrome values in ESR_ELx to which the architecture does not yet assign any meaning, or conditions indicative of a bug or error in the kernel or system and thus that are unrecoverable and should never occur in normal operation. The approach taken in this patch is to translate all such undiagnosable or "impossible" synchronous fault conditions to SIGKILL, since these are at least probably localisable to a single process. Some of these conditions should really result in a kernel panic, but due to the lack of diagnostic information it is difficult to be certain: this patch does not add any calls to panic(), but this could change later if justified. Although si_code will not reach userspace in the case of SIGKILL, it is still desirable to pass a nonzero value so that the common siginfo handling code can detect incorrect use of si_code == 0 without false positives. In this case the si_code dependent siginfo fields will not be correctly initialised, but since they are not passed to userspace I deem this not to matter. A few faults can reasonably occur in realistic userspace scenarios, and _should_ raise a regular, handleable (but perhaps not ignorable/blockable) signal: for these, this patch attempts to choose a suitable standard si_code value for the raised signal in each case instead of 0. arm64 was the only arch to define a BUS_FIXME code, so after this patch nobody defines it. This patch therefore also removes the relevant code from siginfo_layout(). Cc: James Morse <james.morse@arm.com> Reported-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 01:41:05 +08:00
{ do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
{ do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
arm64: signal: Ensure si_code is valid for all fault signals Currently, as reported by Eric, an invalid si_code value 0 is passed in many signals delivered to userspace in response to faults and other kernel errors. Typically 0 is passed when the fault is insufficiently diagnosable or when there does not appear to be any sensible alternative value to choose. This appears to violate POSIX, and is intuitively wrong for at least two reasons arising from the fact that 0 == SI_USER: 1) si_code is a union selector, and SI_USER (and si_code <= 0 in general) implies the existence of a different set of fields (siginfo._kill) from that which exists for a fault signal (siginfo._sigfault). However, the code raising the signal typically writes only the _sigfault fields, and the _kill fields make no sense in this case. Thus when userspace sees si_code == 0 (SI_USER) it may legitimately inspect fields in the inactive union member _kill and obtain garbage as a result. There appears to be software in the wild relying on this, albeit generally only for printing diagnostic messages. 2) Software that wants to be robust against spurious signals may discard signals where si_code == SI_USER (or <= 0), or may filter such signals based on the si_uid and si_pid fields of siginfo._sigkill. In the case of fault signals, this means that important (and usually fatal) error conditions may be silently ignored. In practice, many of the faults for which arm64 passes si_code == 0 are undiagnosable conditions such as exceptions with syndrome values in ESR_ELx to which the architecture does not yet assign any meaning, or conditions indicative of a bug or error in the kernel or system and thus that are unrecoverable and should never occur in normal operation. The approach taken in this patch is to translate all such undiagnosable or "impossible" synchronous fault conditions to SIGKILL, since these are at least probably localisable to a single process. Some of these conditions should really result in a kernel panic, but due to the lack of diagnostic information it is difficult to be certain: this patch does not add any calls to panic(), but this could change later if justified. Although si_code will not reach userspace in the case of SIGKILL, it is still desirable to pass a nonzero value so that the common siginfo handling code can detect incorrect use of si_code == 0 without false positives. In this case the si_code dependent siginfo fields will not be correctly initialised, but since they are not passed to userspace I deem this not to matter. A few faults can reasonably occur in realistic userspace scenarios, and _should_ raise a regular, handleable (but perhaps not ignorable/blockable) signal: for these, this patch attempts to choose a suitable standard si_code value for the raised signal in each case instead of 0. arm64 was the only arch to define a BUS_FIXME code, so after this patch nobody defines it. This patch therefore also removes the relevant code from siginfo_layout(). Cc: James Morse <james.morse@arm.com> Reported-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 01:41:05 +08:00
{ do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
{ early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
arm64: signal: Ensure si_code is valid for all fault signals Currently, as reported by Eric, an invalid si_code value 0 is passed in many signals delivered to userspace in response to faults and other kernel errors. Typically 0 is passed when the fault is insufficiently diagnosable or when there does not appear to be any sensible alternative value to choose. This appears to violate POSIX, and is intuitively wrong for at least two reasons arising from the fact that 0 == SI_USER: 1) si_code is a union selector, and SI_USER (and si_code <= 0 in general) implies the existence of a different set of fields (siginfo._kill) from that which exists for a fault signal (siginfo._sigfault). However, the code raising the signal typically writes only the _sigfault fields, and the _kill fields make no sense in this case. Thus when userspace sees si_code == 0 (SI_USER) it may legitimately inspect fields in the inactive union member _kill and obtain garbage as a result. There appears to be software in the wild relying on this, albeit generally only for printing diagnostic messages. 2) Software that wants to be robust against spurious signals may discard signals where si_code == SI_USER (or <= 0), or may filter such signals based on the si_uid and si_pid fields of siginfo._sigkill. In the case of fault signals, this means that important (and usually fatal) error conditions may be silently ignored. In practice, many of the faults for which arm64 passes si_code == 0 are undiagnosable conditions such as exceptions with syndrome values in ESR_ELx to which the architecture does not yet assign any meaning, or conditions indicative of a bug or error in the kernel or system and thus that are unrecoverable and should never occur in normal operation. The approach taken in this patch is to translate all such undiagnosable or "impossible" synchronous fault conditions to SIGKILL, since these are at least probably localisable to a single process. Some of these conditions should really result in a kernel panic, but due to the lack of diagnostic information it is difficult to be certain: this patch does not add any calls to panic(), but this could change later if justified. Although si_code will not reach userspace in the case of SIGKILL, it is still desirable to pass a nonzero value so that the common siginfo handling code can detect incorrect use of si_code == 0 without false positives. In this case the si_code dependent siginfo fields will not be correctly initialised, but since they are not passed to userspace I deem this not to matter. A few faults can reasonably occur in realistic userspace scenarios, and _should_ raise a regular, handleable (but perhaps not ignorable/blockable) signal: for these, this patch attempts to choose a suitable standard si_code value for the raised signal in each case instead of 0. arm64 was the only arch to define a BUS_FIXME code, so after this patch nobody defines it. This patch therefore also removes the relevant code from siginfo_layout(). Cc: James Morse <james.morse@arm.com> Reported-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 01:41:05 +08:00
{ do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
};
void __init hook_debug_fault_code(int nr,
int (*fn)(unsigned long, unsigned int, struct pt_regs *),
int sig, int code, const char *name)
{
BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
debug_fault_info[nr].fn = fn;
debug_fault_info[nr].sig = sig;
debug_fault_info[nr].code = code;
debug_fault_info[nr].name = name;
}
asmlinkage int __exception do_debug_exception(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
{
const struct fault_info *inf = esr_to_debug_fault_info(esr);
arm64: mm: Add trace_irqflags annotations to do_debug_exception() With CONFIG_PROVE_LOCKING, CONFIG_DEBUG_LOCKDEP and CONFIG_TRACE_IRQFLAGS enabled, lockdep will compare current->hardirqs_enabled with the flags from local_irq_save(). When a debug exception occurs, interrupts are disabled in entry.S, but lockdep isn't told, resulting in: DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled) ------------[ cut here ]------------ WARNING: at ../kernel/locking/lockdep.c:3523 Modules linked in: CPU: 3 PID: 1752 Comm: perf Not tainted 4.5.0-rc4+ #2204 Hardware name: ARM Juno development board (r1) (DT) task: ffffffc974868000 ti: ffffffc975f40000 task.ti: ffffffc975f40000 PC is at check_flags.part.35+0x17c/0x184 LR is at check_flags.part.35+0x17c/0x184 pc : [<ffffff80080fc93c>] lr : [<ffffff80080fc93c>] pstate: 600003c5 [...] ---[ end trace 74631f9305ef5020 ]--- Call trace: [<ffffff80080fc93c>] check_flags.part.35+0x17c/0x184 [<ffffff80080ffe30>] lock_acquire+0xa8/0xc4 [<ffffff8008093038>] breakpoint_handler+0x118/0x288 [<ffffff8008082434>] do_debug_exception+0x3c/0xa8 [<ffffff80080854b4>] el1_dbg+0x18/0x6c [<ffffff80081e82f4>] do_filp_open+0x64/0xdc [<ffffff80081d6e60>] do_sys_open+0x140/0x204 [<ffffff80081d6f58>] SyS_openat+0x10/0x18 [<ffffff8008085d30>] el0_svc_naked+0x24/0x28 possible reason: unannotated irqs-off. irq event stamp: 65857 hardirqs last enabled at (65857): [<ffffff80081fb1c0>] lookup_mnt+0xf4/0x1b4 hardirqs last disabled at (65856): [<ffffff80081fb188>] lookup_mnt+0xbc/0x1b4 softirqs last enabled at (65790): [<ffffff80080bdca4>] __do_softirq+0x1f8/0x290 softirqs last disabled at (65757): [<ffffff80080be038>] irq_exit+0x9c/0xd0 This patch adds the annotations to do_debug_exception(), while trying not to call trace_hardirqs_off() if el1_dbg() interrupted a task that already had irqs disabled. Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-13 20:40:00 +08:00
int rv;
arm64: mm: Add trace_irqflags annotations to do_debug_exception() With CONFIG_PROVE_LOCKING, CONFIG_DEBUG_LOCKDEP and CONFIG_TRACE_IRQFLAGS enabled, lockdep will compare current->hardirqs_enabled with the flags from local_irq_save(). When a debug exception occurs, interrupts are disabled in entry.S, but lockdep isn't told, resulting in: DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled) ------------[ cut here ]------------ WARNING: at ../kernel/locking/lockdep.c:3523 Modules linked in: CPU: 3 PID: 1752 Comm: perf Not tainted 4.5.0-rc4+ #2204 Hardware name: ARM Juno development board (r1) (DT) task: ffffffc974868000 ti: ffffffc975f40000 task.ti: ffffffc975f40000 PC is at check_flags.part.35+0x17c/0x184 LR is at check_flags.part.35+0x17c/0x184 pc : [<ffffff80080fc93c>] lr : [<ffffff80080fc93c>] pstate: 600003c5 [...] ---[ end trace 74631f9305ef5020 ]--- Call trace: [<ffffff80080fc93c>] check_flags.part.35+0x17c/0x184 [<ffffff80080ffe30>] lock_acquire+0xa8/0xc4 [<ffffff8008093038>] breakpoint_handler+0x118/0x288 [<ffffff8008082434>] do_debug_exception+0x3c/0xa8 [<ffffff80080854b4>] el1_dbg+0x18/0x6c [<ffffff80081e82f4>] do_filp_open+0x64/0xdc [<ffffff80081d6e60>] do_sys_open+0x140/0x204 [<ffffff80081d6f58>] SyS_openat+0x10/0x18 [<ffffff8008085d30>] el0_svc_naked+0x24/0x28 possible reason: unannotated irqs-off. irq event stamp: 65857 hardirqs last enabled at (65857): [<ffffff80081fb1c0>] lookup_mnt+0xf4/0x1b4 hardirqs last disabled at (65856): [<ffffff80081fb188>] lookup_mnt+0xbc/0x1b4 softirqs last enabled at (65790): [<ffffff80080bdca4>] __do_softirq+0x1f8/0x290 softirqs last disabled at (65757): [<ffffff80080be038>] irq_exit+0x9c/0xd0 This patch adds the annotations to do_debug_exception(), while trying not to call trace_hardirqs_off() if el1_dbg() interrupted a task that already had irqs disabled. Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-13 20:40:00 +08:00
/*
* Tell lockdep we disabled irqs in entry.S. Do nothing if they were
* already disabled to preserve the last enabled/disabled addresses.
*/
if (interrupts_enabled(regs))
trace_hardirqs_off();
if (user_mode(regs) && !is_ttbr0_addr(instruction_pointer(regs)))
arm64_apply_bp_hardening();
arm64: mm: Add trace_irqflags annotations to do_debug_exception() With CONFIG_PROVE_LOCKING, CONFIG_DEBUG_LOCKDEP and CONFIG_TRACE_IRQFLAGS enabled, lockdep will compare current->hardirqs_enabled with the flags from local_irq_save(). When a debug exception occurs, interrupts are disabled in entry.S, but lockdep isn't told, resulting in: DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled) ------------[ cut here ]------------ WARNING: at ../kernel/locking/lockdep.c:3523 Modules linked in: CPU: 3 PID: 1752 Comm: perf Not tainted 4.5.0-rc4+ #2204 Hardware name: ARM Juno development board (r1) (DT) task: ffffffc974868000 ti: ffffffc975f40000 task.ti: ffffffc975f40000 PC is at check_flags.part.35+0x17c/0x184 LR is at check_flags.part.35+0x17c/0x184 pc : [<ffffff80080fc93c>] lr : [<ffffff80080fc93c>] pstate: 600003c5 [...] ---[ end trace 74631f9305ef5020 ]--- Call trace: [<ffffff80080fc93c>] check_flags.part.35+0x17c/0x184 [<ffffff80080ffe30>] lock_acquire+0xa8/0xc4 [<ffffff8008093038>] breakpoint_handler+0x118/0x288 [<ffffff8008082434>] do_debug_exception+0x3c/0xa8 [<ffffff80080854b4>] el1_dbg+0x18/0x6c [<ffffff80081e82f4>] do_filp_open+0x64/0xdc [<ffffff80081d6e60>] do_sys_open+0x140/0x204 [<ffffff80081d6f58>] SyS_openat+0x10/0x18 [<ffffff8008085d30>] el0_svc_naked+0x24/0x28 possible reason: unannotated irqs-off. irq event stamp: 65857 hardirqs last enabled at (65857): [<ffffff80081fb1c0>] lookup_mnt+0xf4/0x1b4 hardirqs last disabled at (65856): [<ffffff80081fb188>] lookup_mnt+0xbc/0x1b4 softirqs last enabled at (65790): [<ffffff80080bdca4>] __do_softirq+0x1f8/0x290 softirqs last disabled at (65757): [<ffffff80080be038>] irq_exit+0x9c/0xd0 This patch adds the annotations to do_debug_exception(), while trying not to call trace_hardirqs_off() if el1_dbg() interrupted a task that already had irqs disabled. Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-13 20:40:00 +08:00
if (!inf->fn(addr, esr, regs)) {
rv = 1;
} else {
arm64_notify_die(inf->name, regs,
inf->sig, inf->code, (void __user *)addr, esr);
arm64: mm: Add trace_irqflags annotations to do_debug_exception() With CONFIG_PROVE_LOCKING, CONFIG_DEBUG_LOCKDEP and CONFIG_TRACE_IRQFLAGS enabled, lockdep will compare current->hardirqs_enabled with the flags from local_irq_save(). When a debug exception occurs, interrupts are disabled in entry.S, but lockdep isn't told, resulting in: DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled) ------------[ cut here ]------------ WARNING: at ../kernel/locking/lockdep.c:3523 Modules linked in: CPU: 3 PID: 1752 Comm: perf Not tainted 4.5.0-rc4+ #2204 Hardware name: ARM Juno development board (r1) (DT) task: ffffffc974868000 ti: ffffffc975f40000 task.ti: ffffffc975f40000 PC is at check_flags.part.35+0x17c/0x184 LR is at check_flags.part.35+0x17c/0x184 pc : [<ffffff80080fc93c>] lr : [<ffffff80080fc93c>] pstate: 600003c5 [...] ---[ end trace 74631f9305ef5020 ]--- Call trace: [<ffffff80080fc93c>] check_flags.part.35+0x17c/0x184 [<ffffff80080ffe30>] lock_acquire+0xa8/0xc4 [<ffffff8008093038>] breakpoint_handler+0x118/0x288 [<ffffff8008082434>] do_debug_exception+0x3c/0xa8 [<ffffff80080854b4>] el1_dbg+0x18/0x6c [<ffffff80081e82f4>] do_filp_open+0x64/0xdc [<ffffff80081d6e60>] do_sys_open+0x140/0x204 [<ffffff80081d6f58>] SyS_openat+0x10/0x18 [<ffffff8008085d30>] el0_svc_naked+0x24/0x28 possible reason: unannotated irqs-off. irq event stamp: 65857 hardirqs last enabled at (65857): [<ffffff80081fb1c0>] lookup_mnt+0xf4/0x1b4 hardirqs last disabled at (65856): [<ffffff80081fb188>] lookup_mnt+0xbc/0x1b4 softirqs last enabled at (65790): [<ffffff80080bdca4>] __do_softirq+0x1f8/0x290 softirqs last disabled at (65757): [<ffffff80080be038>] irq_exit+0x9c/0xd0 This patch adds the annotations to do_debug_exception(), while trying not to call trace_hardirqs_off() if el1_dbg() interrupted a task that already had irqs disabled. Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-13 20:40:00 +08:00
rv = 0;
}
arm64: mm: Add trace_irqflags annotations to do_debug_exception() With CONFIG_PROVE_LOCKING, CONFIG_DEBUG_LOCKDEP and CONFIG_TRACE_IRQFLAGS enabled, lockdep will compare current->hardirqs_enabled with the flags from local_irq_save(). When a debug exception occurs, interrupts are disabled in entry.S, but lockdep isn't told, resulting in: DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled) ------------[ cut here ]------------ WARNING: at ../kernel/locking/lockdep.c:3523 Modules linked in: CPU: 3 PID: 1752 Comm: perf Not tainted 4.5.0-rc4+ #2204 Hardware name: ARM Juno development board (r1) (DT) task: ffffffc974868000 ti: ffffffc975f40000 task.ti: ffffffc975f40000 PC is at check_flags.part.35+0x17c/0x184 LR is at check_flags.part.35+0x17c/0x184 pc : [<ffffff80080fc93c>] lr : [<ffffff80080fc93c>] pstate: 600003c5 [...] ---[ end trace 74631f9305ef5020 ]--- Call trace: [<ffffff80080fc93c>] check_flags.part.35+0x17c/0x184 [<ffffff80080ffe30>] lock_acquire+0xa8/0xc4 [<ffffff8008093038>] breakpoint_handler+0x118/0x288 [<ffffff8008082434>] do_debug_exception+0x3c/0xa8 [<ffffff80080854b4>] el1_dbg+0x18/0x6c [<ffffff80081e82f4>] do_filp_open+0x64/0xdc [<ffffff80081d6e60>] do_sys_open+0x140/0x204 [<ffffff80081d6f58>] SyS_openat+0x10/0x18 [<ffffff8008085d30>] el0_svc_naked+0x24/0x28 possible reason: unannotated irqs-off. irq event stamp: 65857 hardirqs last enabled at (65857): [<ffffff80081fb1c0>] lookup_mnt+0xf4/0x1b4 hardirqs last disabled at (65856): [<ffffff80081fb188>] lookup_mnt+0xbc/0x1b4 softirqs last enabled at (65790): [<ffffff80080bdca4>] __do_softirq+0x1f8/0x290 softirqs last disabled at (65757): [<ffffff80080be038>] irq_exit+0x9c/0xd0 This patch adds the annotations to do_debug_exception(), while trying not to call trace_hardirqs_off() if el1_dbg() interrupted a task that already had irqs disabled. Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-13 20:40:00 +08:00
if (interrupts_enabled(regs))
trace_hardirqs_on();
arm64: mm: Add trace_irqflags annotations to do_debug_exception() With CONFIG_PROVE_LOCKING, CONFIG_DEBUG_LOCKDEP and CONFIG_TRACE_IRQFLAGS enabled, lockdep will compare current->hardirqs_enabled with the flags from local_irq_save(). When a debug exception occurs, interrupts are disabled in entry.S, but lockdep isn't told, resulting in: DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled) ------------[ cut here ]------------ WARNING: at ../kernel/locking/lockdep.c:3523 Modules linked in: CPU: 3 PID: 1752 Comm: perf Not tainted 4.5.0-rc4+ #2204 Hardware name: ARM Juno development board (r1) (DT) task: ffffffc974868000 ti: ffffffc975f40000 task.ti: ffffffc975f40000 PC is at check_flags.part.35+0x17c/0x184 LR is at check_flags.part.35+0x17c/0x184 pc : [<ffffff80080fc93c>] lr : [<ffffff80080fc93c>] pstate: 600003c5 [...] ---[ end trace 74631f9305ef5020 ]--- Call trace: [<ffffff80080fc93c>] check_flags.part.35+0x17c/0x184 [<ffffff80080ffe30>] lock_acquire+0xa8/0xc4 [<ffffff8008093038>] breakpoint_handler+0x118/0x288 [<ffffff8008082434>] do_debug_exception+0x3c/0xa8 [<ffffff80080854b4>] el1_dbg+0x18/0x6c [<ffffff80081e82f4>] do_filp_open+0x64/0xdc [<ffffff80081d6e60>] do_sys_open+0x140/0x204 [<ffffff80081d6f58>] SyS_openat+0x10/0x18 [<ffffff8008085d30>] el0_svc_naked+0x24/0x28 possible reason: unannotated irqs-off. irq event stamp: 65857 hardirqs last enabled at (65857): [<ffffff80081fb1c0>] lookup_mnt+0xf4/0x1b4 hardirqs last disabled at (65856): [<ffffff80081fb188>] lookup_mnt+0xbc/0x1b4 softirqs last enabled at (65790): [<ffffff80080bdca4>] __do_softirq+0x1f8/0x290 softirqs last disabled at (65757): [<ffffff80080be038>] irq_exit+0x9c/0xd0 This patch adds the annotations to do_debug_exception(), while trying not to call trace_hardirqs_off() if el1_dbg() interrupted a task that already had irqs disabled. Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-13 20:40:00 +08:00
return rv;
}
arm64: Kprobes with single stepping support Add support for basic kernel probes(kprobes) and jump probes (jprobes) for ARM64. Kprobes utilizes software breakpoint and single step debug exceptions supported on ARM v8. A software breakpoint is placed at the probe address to trap the kernel execution into the kprobe handler. ARM v8 supports enabling single stepping before the break exception return (ERET), with next PC in exception return address (ELR_EL1). The kprobe handler prepares an executable memory slot for out-of-line execution with a copy of the original instruction being probed, and enables single stepping. The PC is set to the out-of-line slot address before the ERET. With this scheme, the instruction is executed with the exact same register context except for the PC (and DAIF) registers. Debug mask (PSTATE.D) is enabled only when single stepping a recursive kprobe, e.g.: during kprobes reenter so that probed instruction can be single stepped within the kprobe handler -exception- context. The recursion depth of kprobe is always 2, i.e. upon probe re-entry, any further re-entry is prevented by not calling handlers and the case counted as a missed kprobe). Single stepping from the x-o-l slot has a drawback for PC-relative accesses like branching and symbolic literals access as the offset from the new PC (slot address) may not be ensured to fit in the immediate value of the opcode. Such instructions need simulation, so reject probing them. Instructions generating exceptions or cpu mode change are rejected for probing. Exclusive load/store instructions are rejected too. Additionally, the code is checked to see if it is inside an exclusive load/store sequence (code from Pratyush). System instructions are mostly enabled for stepping, except MSR/MRS accesses to "DAIF" flags in PSTATE, which are not safe for probing. This also changes arch/arm64/include/asm/ptrace.h to use include/asm-generic/ptrace.h. Thanks to Steve Capper and Pratyush Anand for several suggested Changes. Signed-off-by: Sandeepa Prabhu <sandeepa.s.prabhu@gmail.com> Signed-off-by: David A. Long <dave.long@linaro.org> Signed-off-by: Pratyush Anand <panand@redhat.com> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-09 00:35:48 +08:00
NOKPROBE_SYMBOL(do_debug_exception);