OpenCloudOS-Kernel/drivers/net/ethernet/8390/ne2k-pci.c

748 lines
21 KiB
C
Raw Normal View History

/* A Linux device driver for PCI NE2000 clones.
*
* Authors and other copyright holders:
* 1992-2000 by Donald Becker, NE2000 core and various modifications.
* 1995-1998 by Paul Gortmaker, core modifications and PCI support.
* Copyright 1993 assigned to the United States Government as represented
* by the Director, National Security Agency.
*
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by reference.
* Drivers based on or derived from this code fall under the GPL and must
* retain the authorship, copyright and license notice. This file is not
* a complete program and may only be used when the entire operating
* system is licensed under the GPL.
*
* The author may be reached as becker@scyld.com, or C/O
* Scyld Computing Corporation
* 410 Severn Ave., Suite 210
* Annapolis MD 21403
*
* Issues remaining:
* People are making PCI NE2000 clones! Oh the horror, the horror...
* Limited full-duplex support.
*/
#define DRV_NAME "ne2k-pci"
#define DRV_DESCRIPTION "PCI NE2000 clone driver"
#define DRV_AUTHOR "Donald Becker / Paul Gortmaker"
#define DRV_VERSION "1.03"
#define DRV_RELDATE "9/22/2003"
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
/* The user-configurable values.
* These may be modified when a driver module is loaded.
*/
/* More are supported, limit only on options */
#define MAX_UNITS 8
/* Used to pass the full-duplex flag, etc. */
static int full_duplex[MAX_UNITS];
static int options[MAX_UNITS];
/* Force a non std. amount of memory. Units are 256 byte pages. */
/* #define PACKETBUF_MEMSIZE 0x40 */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/io.h>
#include <asm/irq.h>
#include <linux/uaccess.h>
#include "8390.h"
static int ne2k_msg_enable;
static const int default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR);
#if defined(__powerpc__)
#define inl_le(addr) le32_to_cpu(inl(addr))
#define inw_le(addr) le16_to_cpu(inw(addr))
#endif
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_VERSION(DRV_VERSION);
MODULE_LICENSE("GPL");
module_param_named(msg_enable, ne2k_msg_enable, int, 0444);
module_param_array(options, int, NULL, 0);
module_param_array(full_duplex, int, NULL, 0);
MODULE_PARM_DESC(msg_enable, "Debug message level (see linux/netdevice.h for bitmap)");
MODULE_PARM_DESC(options, "Bit 5: full duplex");
MODULE_PARM_DESC(full_duplex, "full duplex setting(s) (1)");
/* Some defines that people can play with if so inclined.
*/
/* Use 32 bit data-movement operations instead of 16 bit. */
#define USE_LONGIO
/* Do we implement the read before write bugfix ? */
/* #define NE_RW_BUGFIX */
/* Flags. We rename an existing ei_status field to store flags!
* Thus only the low 8 bits are usable for non-init-time flags.
*/
#define ne2k_flags reg0
enum {
/* Chip can do only 16/32-bit xfers. */
ONLY_16BIT_IO = 8, ONLY_32BIT_IO = 4,
/* User override. */
FORCE_FDX = 0x20,
REALTEK_FDX = 0x40, HOLTEK_FDX = 0x80,
STOP_PG_0x60 = 0x100,
};
enum ne2k_pci_chipsets {
CH_RealTek_RTL_8029 = 0,
CH_Winbond_89C940,
CH_Compex_RL2000,
CH_KTI_ET32P2,
CH_NetVin_NV5000SC,
CH_Via_86C926,
CH_SureCom_NE34,
CH_Winbond_W89C940F,
CH_Holtek_HT80232,
CH_Holtek_HT80229,
CH_Winbond_89C940_8c4a,
};
static struct {
char *name;
int flags;
} pci_clone_list[] = {
{"RealTek RTL-8029(AS)", REALTEK_FDX},
{"Winbond 89C940", 0},
{"Compex RL2000", 0},
{"KTI ET32P2", 0},
{"NetVin NV5000SC", 0},
{"Via 86C926", ONLY_16BIT_IO},
{"SureCom NE34", 0},
{"Winbond W89C940F", 0},
{"Holtek HT80232", ONLY_16BIT_IO | HOLTEK_FDX},
{"Holtek HT80229", ONLY_32BIT_IO | HOLTEK_FDX | STOP_PG_0x60 },
{"Winbond W89C940(misprogrammed)", 0},
{NULL,}
};
static const struct pci_device_id ne2k_pci_tbl[] = {
{ 0x10ec, 0x8029, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_RealTek_RTL_8029 },
{ 0x1050, 0x0940, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_Winbond_89C940 },
{ 0x11f6, 0x1401, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_Compex_RL2000 },
{ 0x8e2e, 0x3000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_KTI_ET32P2 },
{ 0x4a14, 0x5000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_NetVin_NV5000SC },
{ 0x1106, 0x0926, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_Via_86C926 },
{ 0x10bd, 0x0e34, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_SureCom_NE34 },
{ 0x1050, 0x5a5a, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_Winbond_W89C940F },
{ 0x12c3, 0x0058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_Holtek_HT80232 },
{ 0x12c3, 0x5598, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_Holtek_HT80229 },
{ 0x8c4a, 0x1980, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_Winbond_89C940_8c4a },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, ne2k_pci_tbl);
/* ---- No user-serviceable parts below ---- */
#define NE_BASE (dev->base_addr)
#define NE_CMD 0x00
#define NE_DATAPORT 0x10 /* NatSemi-defined port window offset. */
#define NE_RESET 0x1f /* Issue a read to reset, a write to clear. */
#define NE_IO_EXTENT 0x20
#define NESM_START_PG 0x40 /* First page of TX buffer */
#define NESM_STOP_PG 0x80 /* Last page +1 of RX ring */
static int ne2k_pci_open(struct net_device *dev);
static int ne2k_pci_close(struct net_device *dev);
static void ne2k_pci_reset_8390(struct net_device *dev);
static void ne2k_pci_get_8390_hdr(struct net_device *dev,
struct e8390_pkt_hdr *hdr, int ring_page);
static void ne2k_pci_block_input(struct net_device *dev, int count,
struct sk_buff *skb, int ring_offset);
static void ne2k_pci_block_output(struct net_device *dev, const int count,
const unsigned char *buf,
const int start_page);
static const struct ethtool_ops ne2k_pci_ethtool_ops;
/* There is no room in the standard 8390 structure for extra info we need,
* so we build a meta/outer-wrapper structure..
*/
struct ne2k_pci_card {
struct net_device *dev;
struct pci_dev *pci_dev;
};
/* NEx000-clone boards have a Station Address (SA) PROM (SAPROM) in the packet
* buffer memory space. By-the-spec NE2000 clones have 0x57,0x57 in bytes
* 0x0e,0x0f of the SAPROM, while other supposed NE2000 clones must be
* detected by their SA prefix.
*
* Reading the SAPROM from a word-wide card with the 8390 set in byte-wide
* mode results in doubled values, which can be detected and compensated for.
*
* The probe is also responsible for initializing the card and filling
* in the 'dev' and 'ei_status' structures.
*/
static const struct net_device_ops ne2k_netdev_ops = {
.ndo_open = ne2k_pci_open,
.ndo_stop = ne2k_pci_close,
.ndo_start_xmit = ei_start_xmit,
.ndo_tx_timeout = ei_tx_timeout,
.ndo_get_stats = ei_get_stats,
.ndo_set_rx_mode = ei_set_multicast_list,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = ei_poll,
#endif
};
static int ne2k_pci_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev;
int i;
unsigned char SA_prom[32];
int start_page, stop_page;
int irq, reg0, chip_idx = ent->driver_data;
static unsigned int fnd_cnt;
long ioaddr;
int flags = pci_clone_list[chip_idx].flags;
struct ei_device *ei_local;
fnd_cnt++;
i = pci_enable_device(pdev);
if (i)
return i;
ioaddr = pci_resource_start(pdev, 0);
irq = pdev->irq;
if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) == 0)) {
dev_err(&pdev->dev, "no I/O resource at PCI BAR #0\n");
goto err_out;
}
if (!request_region(ioaddr, NE_IO_EXTENT, DRV_NAME)) {
dev_err(&pdev->dev, "I/O resource 0x%x @ 0x%lx busy\n",
NE_IO_EXTENT, ioaddr);
goto err_out;
}
reg0 = inb(ioaddr);
if (reg0 == 0xFF)
goto err_out_free_res;
/* Do a preliminary verification that we have a 8390. */
{
int regd;
outb(E8390_NODMA + E8390_PAGE1 + E8390_STOP, ioaddr + E8390_CMD);
regd = inb(ioaddr + 0x0d);
outb(0xff, ioaddr + 0x0d);
outb(E8390_NODMA + E8390_PAGE0, ioaddr + E8390_CMD);
/* Clear the counter by reading. */
inb(ioaddr + EN0_COUNTER0);
if (inb(ioaddr + EN0_COUNTER0) != 0) {
outb(reg0, ioaddr);
/* Restore the old values. */
outb(regd, ioaddr + 0x0d);
goto err_out_free_res;
}
}
/* Allocate net_device, dev->priv; fill in 8390 specific dev fields. */
dev = alloc_ei_netdev();
if (!dev) {
dev_err(&pdev->dev, "cannot allocate ethernet device\n");
goto err_out_free_res;
}
dev->netdev_ops = &ne2k_netdev_ops;
ei_local = netdev_priv(dev);
ei_local->msg_enable = netif_msg_init(ne2k_msg_enable, default_msg_level);
SET_NETDEV_DEV(dev, &pdev->dev);
/* Reset card. Who knows what dain-bramaged state it was left in. */
{
unsigned long reset_start_time = jiffies;
outb(inb(ioaddr + NE_RESET), ioaddr + NE_RESET);
/* This looks like a horrible timing loop, but it should never
* take more than a few cycles.
*/
while ((inb(ioaddr + EN0_ISR) & ENISR_RESET) == 0)
/* Limit wait: '2' avoids jiffy roll-over. */
if (jiffies - reset_start_time > 2) {
dev_err(&pdev->dev,
"Card failure (no reset ack).\n");
goto err_out_free_netdev;
}
/* Ack all intr. */
outb(0xff, ioaddr + EN0_ISR);
}
/* Read the 16 bytes of station address PROM.
* We must first initialize registers, similar
* to NS8390_init(eifdev, 0).
* We can't reliably read the SAPROM address without this.
* (I learned the hard way!).
*/
{
struct {unsigned char value, offset; } program_seq[] = {
/* Select page 0 */
{E8390_NODMA + E8390_PAGE0 + E8390_STOP, E8390_CMD},
/* Set word-wide access */
{0x49, EN0_DCFG},
/* Clear the count regs. */
{0x00, EN0_RCNTLO},
/* Mask completion IRQ */
{0x00, EN0_RCNTHI},
{0x00, EN0_IMR},
{0xFF, EN0_ISR},
/* 0x20 Set to monitor */
{E8390_RXOFF, EN0_RXCR},
/* 0x02 and loopback mode */
{E8390_TXOFF, EN0_TXCR},
{32, EN0_RCNTLO},
{0x00, EN0_RCNTHI},
/* DMA starting at 0x0000 */
{0x00, EN0_RSARLO},
{0x00, EN0_RSARHI},
{E8390_RREAD+E8390_START, E8390_CMD},
};
for (i = 0; i < ARRAY_SIZE(program_seq); i++)
outb(program_seq[i].value,
ioaddr + program_seq[i].offset);
}
/* Note: all PCI cards have at least 16 bit access, so we don't have
* to check for 8 bit cards. Most cards permit 32 bit access.
*/
if (flags & ONLY_32BIT_IO) {
for (i = 0; i < 4 ; i++)
((u32 *)SA_prom)[i] = le32_to_cpu(inl(ioaddr + NE_DATAPORT));
} else
for (i = 0; i < 32 /* sizeof(SA_prom )*/; i++)
SA_prom[i] = inb(ioaddr + NE_DATAPORT);
/* We always set the 8390 registers for word mode. */
outb(0x49, ioaddr + EN0_DCFG);
start_page = NESM_START_PG;
stop_page = flags & STOP_PG_0x60 ? 0x60 : NESM_STOP_PG;
/* Set up the rest of the parameters. */
dev->irq = irq;
dev->base_addr = ioaddr;
pci_set_drvdata(pdev, dev);
ei_status.name = pci_clone_list[chip_idx].name;
ei_status.tx_start_page = start_page;
ei_status.stop_page = stop_page;
ei_status.word16 = 1;
ei_status.ne2k_flags = flags;
if (fnd_cnt < MAX_UNITS) {
if (full_duplex[fnd_cnt] > 0 || (options[fnd_cnt] & FORCE_FDX))
ei_status.ne2k_flags |= FORCE_FDX;
}
ei_status.rx_start_page = start_page + TX_PAGES;
#ifdef PACKETBUF_MEMSIZE
/* Allow the packet buffer size to be overridden by know-it-alls. */
ei_status.stop_page = ei_status.tx_start_page + PACKETBUF_MEMSIZE;
#endif
ei_status.reset_8390 = &ne2k_pci_reset_8390;
ei_status.block_input = &ne2k_pci_block_input;
ei_status.block_output = &ne2k_pci_block_output;
ei_status.get_8390_hdr = &ne2k_pci_get_8390_hdr;
ei_status.priv = (unsigned long) pdev;
dev->ethtool_ops = &ne2k_pci_ethtool_ops;
NS8390_init(dev, 0);
memcpy(dev->dev_addr, SA_prom, dev->addr_len);
i = register_netdev(dev);
if (i)
goto err_out_free_netdev;
netdev_info(dev, "%s found at %#lx, IRQ %d, %pM.\n",
pci_clone_list[chip_idx].name, ioaddr, dev->irq,
dev->dev_addr);
return 0;
err_out_free_netdev:
free_netdev(dev);
err_out_free_res:
release_region(ioaddr, NE_IO_EXTENT);
err_out:
pci_disable_device(pdev);
return -ENODEV;
}
/* Magic incantation sequence for full duplex on the supported cards.
*/
static inline int set_realtek_fdx(struct net_device *dev)
{
long ioaddr = dev->base_addr;
outb(0xC0 + E8390_NODMA, ioaddr + NE_CMD); /* Page 3 */
outb(0xC0, ioaddr + 0x01); /* Enable writes to CONFIG3 */
outb(0x40, ioaddr + 0x06); /* Enable full duplex */
outb(0x00, ioaddr + 0x01); /* Disable writes to CONFIG3 */
outb(E8390_PAGE0 + E8390_NODMA, ioaddr + NE_CMD); /* Page 0 */
return 0;
}
static inline int set_holtek_fdx(struct net_device *dev)
{
long ioaddr = dev->base_addr;
outb(inb(ioaddr + 0x20) | 0x80, ioaddr + 0x20);
return 0;
}
static int ne2k_pci_set_fdx(struct net_device *dev)
{
if (ei_status.ne2k_flags & REALTEK_FDX)
return set_realtek_fdx(dev);
else if (ei_status.ne2k_flags & HOLTEK_FDX)
return set_holtek_fdx(dev);
return -EOPNOTSUPP;
}
static int ne2k_pci_open(struct net_device *dev)
{
int ret = request_irq(dev->irq, ei_interrupt, IRQF_SHARED,
dev->name, dev);
if (ret)
return ret;
if (ei_status.ne2k_flags & FORCE_FDX)
ne2k_pci_set_fdx(dev);
ei_open(dev);
return 0;
}
static int ne2k_pci_close(struct net_device *dev)
{
ei_close(dev);
free_irq(dev->irq, dev);
return 0;
}
/* Hard reset the card. This used to pause for the same period that a
* 8390 reset command required, but that shouldn't be necessary.
*/
static void ne2k_pci_reset_8390(struct net_device *dev)
{
unsigned long reset_start_time = jiffies;
struct ei_device *ei_local = netdev_priv(dev);
netif_dbg(ei_local, hw, dev, "resetting the 8390 t=%ld...\n",
jiffies);
outb(inb(NE_BASE + NE_RESET), NE_BASE + NE_RESET);
ei_status.txing = 0;
ei_status.dmaing = 0;
/* This check _should_not_ be necessary, omit eventually. */
while ((inb(NE_BASE+EN0_ISR) & ENISR_RESET) == 0)
if (jiffies - reset_start_time > 2) {
netdev_err(dev, "%s did not complete.\n", __func__);
break;
}
/* Ack intr. */
outb(ENISR_RESET, NE_BASE + EN0_ISR);
}
/* Grab the 8390 specific header. Similar to the block_input routine, but
* we don't need to be concerned with ring wrap as the header will be at
* the start of a page, so we optimize accordingly.
*/
static void ne2k_pci_get_8390_hdr(struct net_device *dev,
struct e8390_pkt_hdr *hdr, int ring_page)
{
long nic_base = dev->base_addr;
/* This *shouldn't* happen. If it does, it's the last thing you'll see
*/
if (ei_status.dmaing) {
netdev_err(dev, "DMAing conflict in %s [DMAstat:%d][irqlock:%d].\n",
__func__, ei_status.dmaing, ei_status.irqlock);
return;
}
ei_status.dmaing |= 0x01;
outb(E8390_NODMA + E8390_PAGE0 + E8390_START, nic_base + NE_CMD);
outb(sizeof(struct e8390_pkt_hdr), nic_base + EN0_RCNTLO);
outb(0, nic_base + EN0_RCNTHI);
outb(0, nic_base + EN0_RSARLO); /* On page boundary */
outb(ring_page, nic_base + EN0_RSARHI);
outb(E8390_RREAD+E8390_START, nic_base + NE_CMD);
if (ei_status.ne2k_flags & ONLY_16BIT_IO) {
insw(NE_BASE + NE_DATAPORT, hdr,
sizeof(struct e8390_pkt_hdr) >> 1);
} else {
*(u32 *)hdr = le32_to_cpu(inl(NE_BASE + NE_DATAPORT));
le16_to_cpus(&hdr->count);
}
/* Ack intr. */
outb(ENISR_RDC, nic_base + EN0_ISR);
ei_status.dmaing &= ~0x01;
}
/* Block input and output, similar to the Crynwr packet driver. If you
*are porting to a new ethercard, look at the packet driver source for hints.
*The NEx000 doesn't share the on-board packet memory -- you have to put
*the packet out through the "remote DMA" dataport using outb.
*/
static void ne2k_pci_block_input(struct net_device *dev, int count,
struct sk_buff *skb, int ring_offset)
{
long nic_base = dev->base_addr;
char *buf = skb->data;
/* This *shouldn't* happen.
* If it does, it's the last thing you'll see.
*/
if (ei_status.dmaing) {
netdev_err(dev, "DMAing conflict in %s [DMAstat:%d][irqlock:%d]\n",
__func__, ei_status.dmaing, ei_status.irqlock);
return;
}
ei_status.dmaing |= 0x01;
if (ei_status.ne2k_flags & ONLY_32BIT_IO)
count = (count + 3) & 0xFFFC;
outb(E8390_NODMA + E8390_PAGE0 + E8390_START, nic_base + NE_CMD);
outb(count & 0xff, nic_base + EN0_RCNTLO);
outb(count >> 8, nic_base + EN0_RCNTHI);
outb(ring_offset & 0xff, nic_base + EN0_RSARLO);
outb(ring_offset >> 8, nic_base + EN0_RSARHI);
outb(E8390_RREAD + E8390_START, nic_base + NE_CMD);
if (ei_status.ne2k_flags & ONLY_16BIT_IO) {
insw(NE_BASE + NE_DATAPORT, buf, count >> 1);
if (count & 0x01)
buf[count-1] = inb(NE_BASE + NE_DATAPORT);
} else {
insl(NE_BASE + NE_DATAPORT, buf, count >> 2);
if (count & 3) {
buf += count & ~3;
if (count & 2) {
__le16 *b = (__le16 *)buf;
*b++ = cpu_to_le16(inw(NE_BASE + NE_DATAPORT));
buf = (char *)b;
}
if (count & 1)
*buf = inb(NE_BASE + NE_DATAPORT);
}
}
/* Ack intr. */
outb(ENISR_RDC, nic_base + EN0_ISR);
ei_status.dmaing &= ~0x01;
}
static void ne2k_pci_block_output(struct net_device *dev, int count,
const unsigned char *buf, const int start_page)
{
long nic_base = NE_BASE;
unsigned long dma_start;
/* On little-endian it's always safe to round the count up for
* word writes.
*/
if (ei_status.ne2k_flags & ONLY_32BIT_IO)
count = (count + 3) & 0xFFFC;
else
if (count & 0x01)
count++;
/* This *shouldn't* happen.
* If it does, it's the last thing you'll see.
*/
if (ei_status.dmaing) {
netdev_err(dev, "DMAing conflict in %s [DMAstat:%d][irqlock:%d]\n",
__func__, ei_status.dmaing, ei_status.irqlock);
return;
}
ei_status.dmaing |= 0x01;
/* We should already be in page 0, but to be safe... */
outb(E8390_PAGE0+E8390_START+E8390_NODMA, nic_base + NE_CMD);
#ifdef NE8390_RW_BUGFIX
/* Handle the read-before-write bug the same way as the
* Crynwr packet driver -- the NatSemi method doesn't work.
* Actually this doesn't always work either, but if you have
* problems with your NEx000 this is better than nothing!
*/
outb(0x42, nic_base + EN0_RCNTLO);
outb(0x00, nic_base + EN0_RCNTHI);
outb(0x42, nic_base + EN0_RSARLO);
outb(0x00, nic_base + EN0_RSARHI);
outb(E8390_RREAD+E8390_START, nic_base + NE_CMD);
#endif
outb(ENISR_RDC, nic_base + EN0_ISR);
/* Now the normal output. */
outb(count & 0xff, nic_base + EN0_RCNTLO);
outb(count >> 8, nic_base + EN0_RCNTHI);
outb(0x00, nic_base + EN0_RSARLO);
outb(start_page, nic_base + EN0_RSARHI);
outb(E8390_RWRITE+E8390_START, nic_base + NE_CMD);
if (ei_status.ne2k_flags & ONLY_16BIT_IO) {
outsw(NE_BASE + NE_DATAPORT, buf, count >> 1);
} else {
outsl(NE_BASE + NE_DATAPORT, buf, count >> 2);
if (count & 3) {
buf += count & ~3;
if (count & 2) {
__le16 *b = (__le16 *)buf;
outw(le16_to_cpu(*b++), NE_BASE + NE_DATAPORT);
buf = (char *)b;
}
}
}
dma_start = jiffies;
while ((inb(nic_base + EN0_ISR) & ENISR_RDC) == 0)
/* Avoid clock roll-over. */
if (jiffies - dma_start > 2) {
netdev_warn(dev, "timeout waiting for Tx RDC.\n");
ne2k_pci_reset_8390(dev);
NS8390_init(dev, 1);
break;
}
/* Ack intr. */
outb(ENISR_RDC, nic_base + EN0_ISR);
ei_status.dmaing &= ~0x01;
}
static void ne2k_pci_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct ei_device *ei = netdev_priv(dev);
struct pci_dev *pci_dev = (struct pci_dev *) ei->priv;
strscpy(info->driver, DRV_NAME, sizeof(info->driver));
strscpy(info->version, DRV_VERSION, sizeof(info->version));
strscpy(info->bus_info, pci_name(pci_dev), sizeof(info->bus_info));
}
static u32 ne2k_pci_get_msglevel(struct net_device *dev)
{
struct ei_device *ei_local = netdev_priv(dev);
return ei_local->msg_enable;
}
static void ne2k_pci_set_msglevel(struct net_device *dev, u32 v)
{
struct ei_device *ei_local = netdev_priv(dev);
ei_local->msg_enable = v;
}
static const struct ethtool_ops ne2k_pci_ethtool_ops = {
.get_drvinfo = ne2k_pci_get_drvinfo,
.get_msglevel = ne2k_pci_get_msglevel,
.set_msglevel = ne2k_pci_set_msglevel,
};
static void ne2k_pci_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
BUG_ON(!dev);
unregister_netdev(dev);
release_region(dev->base_addr, NE_IO_EXTENT);
free_netdev(dev);
pci_disable_device(pdev);
}
static int __maybe_unused ne2k_pci_suspend(struct device *dev_d)
{
struct net_device *dev = dev_get_drvdata(dev_d);
netif_device_detach(dev);
return 0;
}
static int __maybe_unused ne2k_pci_resume(struct device *dev_d)
{
struct net_device *dev = dev_get_drvdata(dev_d);
NS8390_init(dev, 1);
netif_device_attach(dev);
return 0;
}
static SIMPLE_DEV_PM_OPS(ne2k_pci_pm_ops, ne2k_pci_suspend, ne2k_pci_resume);
static struct pci_driver ne2k_driver = {
.name = DRV_NAME,
.probe = ne2k_pci_init_one,
.remove = ne2k_pci_remove_one,
.id_table = ne2k_pci_tbl,
.driver.pm = &ne2k_pci_pm_ops,
};
static int __init ne2k_pci_init(void)
{
return pci_register_driver(&ne2k_driver);
}
static void __exit ne2k_pci_cleanup(void)
{
pci_unregister_driver(&ne2k_driver);
}
module_init(ne2k_pci_init);
module_exit(ne2k_pci_cleanup);