OpenCloudOS-Kernel/drivers/media/dvb/frontends/tda1004x.c

1246 lines
34 KiB
C
Raw Normal View History

/*
Driver for Philips tda1004xh OFDM Demodulator
(c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* This driver needs external firmware. Please use the commands
* "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
* "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
* download/extract them, and then copy them to /usr/lib/hotplug/firmware.
*/
#define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
#define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/device.h>
#include "dvb_frontend.h"
#include "tda1004x.h"
enum tda1004x_demod {
TDA1004X_DEMOD_TDA10045,
TDA1004X_DEMOD_TDA10046,
};
struct tda1004x_state {
struct i2c_adapter* i2c;
struct dvb_frontend_ops ops;
const struct tda1004x_config* config;
struct dvb_frontend frontend;
/* private demod data */
u8 initialised;
enum tda1004x_demod demod_type;
};
static int debug;
#define dprintk(args...) \
do { \
if (debug) printk(KERN_DEBUG "tda1004x: " args); \
} while (0)
#define TDA1004X_CHIPID 0x00
#define TDA1004X_AUTO 0x01
#define TDA1004X_IN_CONF1 0x02
#define TDA1004X_IN_CONF2 0x03
#define TDA1004X_OUT_CONF1 0x04
#define TDA1004X_OUT_CONF2 0x05
#define TDA1004X_STATUS_CD 0x06
#define TDA1004X_CONFC4 0x07
#define TDA1004X_DSSPARE2 0x0C
#define TDA10045H_CODE_IN 0x0D
#define TDA10045H_FWPAGE 0x0E
#define TDA1004X_SCAN_CPT 0x10
#define TDA1004X_DSP_CMD 0x11
#define TDA1004X_DSP_ARG 0x12
#define TDA1004X_DSP_DATA1 0x13
#define TDA1004X_DSP_DATA2 0x14
#define TDA1004X_CONFADC1 0x15
#define TDA1004X_CONFC1 0x16
#define TDA10045H_S_AGC 0x1a
#define TDA10046H_AGC_TUN_LEVEL 0x1a
#define TDA1004X_SNR 0x1c
#define TDA1004X_CONF_TS1 0x1e
#define TDA1004X_CONF_TS2 0x1f
#define TDA1004X_CBER_RESET 0x20
#define TDA1004X_CBER_MSB 0x21
#define TDA1004X_CBER_LSB 0x22
#define TDA1004X_CVBER_LUT 0x23
#define TDA1004X_VBER_MSB 0x24
#define TDA1004X_VBER_MID 0x25
#define TDA1004X_VBER_LSB 0x26
#define TDA1004X_UNCOR 0x27
#define TDA10045H_CONFPLL_P 0x2D
#define TDA10045H_CONFPLL_M_MSB 0x2E
#define TDA10045H_CONFPLL_M_LSB 0x2F
#define TDA10045H_CONFPLL_N 0x30
#define TDA10046H_CONFPLL1 0x2D
#define TDA10046H_CONFPLL2 0x2F
#define TDA10046H_CONFPLL3 0x30
#define TDA10046H_TIME_WREF1 0x31
#define TDA10046H_TIME_WREF2 0x32
#define TDA10046H_TIME_WREF3 0x33
#define TDA10046H_TIME_WREF4 0x34
#define TDA10046H_TIME_WREF5 0x35
#define TDA10045H_UNSURW_MSB 0x31
#define TDA10045H_UNSURW_LSB 0x32
#define TDA10045H_WREF_MSB 0x33
#define TDA10045H_WREF_MID 0x34
#define TDA10045H_WREF_LSB 0x35
#define TDA10045H_MUXOUT 0x36
#define TDA1004X_CONFADC2 0x37
#define TDA10045H_IOFFSET 0x38
#define TDA10046H_CONF_TRISTATE1 0x3B
#define TDA10046H_CONF_TRISTATE2 0x3C
#define TDA10046H_CONF_POLARITY 0x3D
#define TDA10046H_FREQ_OFFSET 0x3E
#define TDA10046H_GPIO_OUT_SEL 0x41
#define TDA10046H_GPIO_SELECT 0x42
#define TDA10046H_AGC_CONF 0x43
#define TDA10046H_AGC_GAINS 0x46
#define TDA10046H_AGC_TUN_MIN 0x47
#define TDA10046H_AGC_TUN_MAX 0x48
#define TDA10046H_AGC_IF_MIN 0x49
#define TDA10046H_AGC_IF_MAX 0x4A
#define TDA10046H_FREQ_PHY2_MSB 0x4D
#define TDA10046H_FREQ_PHY2_LSB 0x4E
#define TDA10046H_CVBER_CTRL 0x4F
#define TDA10046H_AGC_IF_LEVEL 0x52
#define TDA10046H_CODE_CPT 0x57
#define TDA10046H_CODE_IN 0x58
static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
{
int ret;
u8 buf[] = { reg, data };
struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
dprintk("%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data);
msg.addr = state->config->demod_address;
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1)
dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
__FUNCTION__, reg, data, ret);
dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
{ .flags = I2C_M_RD, .buf = b1, .len = 1 }};
dprintk("%s: reg=0x%x\n", __FUNCTION__, reg);
msg[0].addr = state->config->demod_address;
msg[1].addr = state->config->demod_address;
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2) {
dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
ret);
return -1;
}
dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
reg, b1[0], ret);
return b1[0];
}
static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
{
int val;
dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg,
mask, data);
// read a byte and check
val = tda1004x_read_byte(state, reg);
if (val < 0)
return val;
// mask if off
val = val & ~mask;
val |= data & 0xff;
// write it out again
return tda1004x_write_byteI(state, reg, val);
}
static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
{
int i;
int result;
dprintk("%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len);
result = 0;
for (i = 0; i < len; i++) {
result = tda1004x_write_byteI(state, reg + i, buf[i]);
if (result != 0)
break;
}
return result;
}
static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
{
int result;
dprintk("%s\n", __FUNCTION__);
result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
msleep(1);
return result;
}
static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
{
dprintk("%s\n", __FUNCTION__);
return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
}
static int tda10045h_set_bandwidth(struct tda1004x_state *state,
fe_bandwidth_t bandwidth)
{
static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
switch (bandwidth) {
case BANDWIDTH_6_MHZ:
tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
break;
case BANDWIDTH_7_MHZ:
tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
break;
case BANDWIDTH_8_MHZ:
tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
break;
default:
return -EINVAL;
}
tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
return 0;
}
static int tda10046h_set_bandwidth(struct tda1004x_state *state,
fe_bandwidth_t bandwidth)
{
static u8 bandwidth_6mhz[] = { 0x80, 0x15, 0xfe, 0xab, 0x8e };
static u8 bandwidth_7mhz[] = { 0x6e, 0x02, 0x53, 0xc8, 0x25 };
static u8 bandwidth_8mhz[] = { 0x60, 0x12, 0xa8, 0xe4, 0xbd };
switch (bandwidth) {
case BANDWIDTH_6_MHZ:
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz, sizeof(bandwidth_6mhz));
break;
case BANDWIDTH_7_MHZ:
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz, sizeof(bandwidth_7mhz));
break;
case BANDWIDTH_8_MHZ:
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz, sizeof(bandwidth_8mhz));
break;
default:
return -EINVAL;
}
return 0;
}
static int tda1004x_do_upload(struct tda1004x_state *state,
unsigned char *mem, unsigned int len,
u8 dspCodeCounterReg, u8 dspCodeInReg)
{
u8 buf[65];
struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
int tx_size;
int pos = 0;
/* clear code counter */
tda1004x_write_byteI(state, dspCodeCounterReg, 0);
fw_msg.addr = state->config->demod_address;
buf[0] = dspCodeInReg;
while (pos != len) {
// work out how much to send this time
tx_size = len - pos;
if (tx_size > 0x10)
tx_size = 0x10;
// send the chunk
memcpy(buf + 1, mem + pos, tx_size);
fw_msg.len = tx_size + 1;
if (i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
printk(KERN_ERR "tda1004x: Error during firmware upload\n");
return -EIO;
}
pos += tx_size;
dprintk("%s: fw_pos=0x%x\n", __FUNCTION__, pos);
}
// give the DSP a chance to settle 03/10/05 Hac
msleep(100);
return 0;
}
static int tda1004x_check_upload_ok(struct tda1004x_state *state)
{
u8 data1, data2;
unsigned long timeout;
if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
timeout = jiffies + 2 * HZ;
while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
if (time_after(jiffies, timeout)) {
printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
break;
}
msleep(1);
}
} else
msleep(100);
// check upload was OK
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
return -EIO;
}
printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
return 0;
}
static int tda10045_fwupload(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
int ret;
const struct firmware *fw;
/* don't re-upload unless necessary */
if (tda1004x_check_upload_ok(state) == 0)
return 0;
/* request the firmware, this will block until someone uploads it */
printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
if (ret) {
printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
return ret;
}
/* reset chip */
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
msleep(10);
/* set parameters */
tda10045h_set_bandwidth(state, BANDWIDTH_8_MHZ);
ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
release_firmware(fw);
if (ret)
return ret;
printk(KERN_INFO "tda1004x: firmware upload complete\n");
/* wait for DSP to initialise */
/* DSPREADY doesn't seem to work on the TDA10045H */
msleep(100);
return tda1004x_check_upload_ok(state);
}
static void tda10046_init_plls(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 10); // PLL M = 10
if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __FUNCTION__);
tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
} else {
dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __FUNCTION__);
tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
}
tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 99);
switch (state->config->if_freq) {
case TDA10046_FREQ_3617:
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd4);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x2c);
break;
case TDA10046_FREQ_3613:
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd4);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x13);
break;
}
tda10046h_set_bandwidth(state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz
}
static int tda10046_fwupload(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
int ret;
const struct firmware *fw;
/* reset + wake up chip */
tda1004x_write_byteI(state, TDA1004X_CONFC4, 0);
tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
/* let the clocks recover from sleep */
msleep(5);
/* don't re-upload unless necessary */
if (tda1004x_check_upload_ok(state) == 0)
return 0;
/* set parameters */
tda10046_init_plls(fe);
if (state->config->request_firmware != NULL) {
/* request the firmware, this will block until someone uploads it */
printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
if (ret) {
printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
return ret;
}
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
release_firmware(fw);
if (ret)
return ret;
} else {
/* boot from firmware eeprom */
/* Hac Note: we might need to do some GPIO Magic here */
printk(KERN_INFO "tda1004x: booting from eeprom\n");
tda1004x_write_mask(state, TDA1004X_CONFC4, 4, 4);
msleep(300);
}
return tda1004x_check_upload_ok(state);
}
static int tda1004x_encode_fec(int fec)
{
// convert known FEC values
switch (fec) {
case FEC_1_2:
return 0;
case FEC_2_3:
return 1;
case FEC_3_4:
return 2;
case FEC_5_6:
return 3;
case FEC_7_8:
return 4;
}
// unsupported
return -EINVAL;
}
static int tda1004x_decode_fec(int tdafec)
{
// convert known FEC values
switch (tdafec) {
case 0:
return FEC_1_2;
case 1:
return FEC_2_3;
case 2:
return FEC_3_4;
case 3:
return FEC_5_6;
case 4:
return FEC_7_8;
}
// unsupported
return -1;
}
int tda1004x_write_byte(struct dvb_frontend* fe, int reg, int data)
{
struct tda1004x_state* state = fe->demodulator_priv;
return tda1004x_write_byteI(state, reg, data);
}
static int tda10045_init(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
dprintk("%s\n", __FUNCTION__);
if (state->initialised)
return 0;
if (tda10045_fwupload(fe)) {
printk("tda1004x: firmware upload failed\n");
return -EIO;
}
tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
// Init the PLL
if (state->config->pll_init) {
tda1004x_enable_tuner_i2c(state);
state->config->pll_init(fe);
tda1004x_disable_tuner_i2c(state);
}
// tda setup
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
state->initialised = 1;
return 0;
}
static int tda10046_init(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
dprintk("%s\n", __FUNCTION__);
if (state->initialised)
return 0;
if (tda10046_fwupload(fe)) {
printk("tda1004x: firmware upload failed\n");
return -EIO;
}
// Init the tuner PLL
if (state->config->pll_init) {
tda1004x_enable_tuner_i2c(state);
state->config->pll_init(fe);
tda1004x_disable_tuner_i2c(state);
}
// tda setup
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
tda1004x_write_byteI(state, TDA1004X_AUTO, 7); // select HP stream
tda1004x_write_byteI(state, TDA1004X_CONFC1, 8); // disable pulse killer
tda10046_init_plls(fe);
switch (state->config->agc_config) {
case TDA10046_AGC_DEFAULT:
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
break;
case TDA10046_AGC_IFO_AUTO_NEG:
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
break;
}
tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0x61); // Turn both AGC outputs on
tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0); // }
tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0); // }
tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff); // }
tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 1); // IF gain 2, TUN gain 1
tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE2, 0xe1); // tristate setup
tda1004x_write_byteI(state, TDA10046H_GPIO_OUT_SEL, 0xcc); // GPIO output config
tda1004x_write_byteI(state, TDA10046H_GPIO_SELECT, 8); // GPIO select
state->initialised = 1;
return 0;
}
static int tda1004x_set_fe(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fe_params)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
int inversion;
dprintk("%s\n", __FUNCTION__);
if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
// setup auto offset
tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
// disable agc_conf[2]
tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
}
// set frequency
tda1004x_enable_tuner_i2c(state);
state->config->pll_set(fe, fe_params);
tda1004x_disable_tuner_i2c(state);
// Hardcoded to use auto as much as possible on the TDA10045 as it
// is very unreliable if AUTO mode is _not_ used.
if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
}
// Set standard params.. or put them to auto
if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
(fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
(fe_params->u.ofdm.constellation == QAM_AUTO) ||
(fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) {
tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1); // enable auto
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
} else {
tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0); // disable auto
// set HP FEC
tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
if (tmp < 0)
return tmp;
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
// set LP FEC
tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
if (tmp < 0)
return tmp;
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
// set constellation
switch (fe_params->u.ofdm.constellation) {
case QPSK:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
break;
case QAM_16:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
break;
case QAM_64:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
break;
default:
return -EINVAL;
}
// set hierarchy
switch (fe_params->u.ofdm.hierarchy_information) {
case HIERARCHY_NONE:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
break;
case HIERARCHY_1:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
break;
case HIERARCHY_2:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
break;
case HIERARCHY_4:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
break;
default:
return -EINVAL;
}
}
// set bandwidth
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
tda10045h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
break;
case TDA1004X_DEMOD_TDA10046:
tda10046h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
break;
}
// set inversion
inversion = fe_params->inversion;
if (state->config->invert)
inversion = inversion ? INVERSION_OFF : INVERSION_ON;
switch (inversion) {
case INVERSION_OFF:
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
break;
case INVERSION_ON:
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
break;
default:
return -EINVAL;
}
// set guard interval
switch (fe_params->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_32:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
break;
case GUARD_INTERVAL_1_16:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
break;
case GUARD_INTERVAL_1_8:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
break;
case GUARD_INTERVAL_1_4:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
break;
case GUARD_INTERVAL_AUTO:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
break;
default:
return -EINVAL;
}
// set transmission mode
switch (fe_params->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K:
tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
break;
case TRANSMISSION_MODE_8K:
tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
break;
case TRANSMISSION_MODE_AUTO:
tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
break;
default:
return -EINVAL;
}
// start the lock
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
break;
case TDA1004X_DEMOD_TDA10046:
tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
break;
}
msleep(10);
return 0;
}
static int tda1004x_get_fe(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
{
struct tda1004x_state* state = fe->demodulator_priv;
dprintk("%s\n", __FUNCTION__);
// inversion status
fe_params->inversion = INVERSION_OFF;
if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
fe_params->inversion = INVERSION_ON;
if (state->config->invert)
fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
// bandwidth
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
case 0x14:
fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
break;
case 0xdb:
fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
break;
case 0x4f:
fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
break;
}
break;
case TDA1004X_DEMOD_TDA10046:
switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
case 0x60:
fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
break;
case 0x6e:
fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
break;
case 0x80:
fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
break;
}
break;
}
// FEC
fe_params->u.ofdm.code_rate_HP =
tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
fe_params->u.ofdm.code_rate_LP =
tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
// constellation
switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
case 0:
fe_params->u.ofdm.constellation = QPSK;
break;
case 1:
fe_params->u.ofdm.constellation = QAM_16;
break;
case 2:
fe_params->u.ofdm.constellation = QAM_64;
break;
}
// transmission mode
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
// guard interval
switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
case 0:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
break;
}
// hierarchy
switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
case 0:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
break;
case 1:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
break;
case 2:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
break;
case 3:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
break;
}
return 0;
}
static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status)
{
struct tda1004x_state* state = fe->demodulator_priv;
int status;
int cber;
int vber;
dprintk("%s\n", __FUNCTION__);
// read status
status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
if (status == -1)
return -EIO;
// decode
*fe_status = 0;
if (status & 4)
*fe_status |= FE_HAS_SIGNAL;
if (status & 2)
*fe_status |= FE_HAS_CARRIER;
if (status & 8)
*fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
// if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
// is getting anything valid
if (!(*fe_status & FE_HAS_VITERBI)) {
// read the CBER
cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
if (cber == -1)
return -EIO;
status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
if (status == -1)
return -EIO;
cber |= (status << 8);
tda1004x_read_byte(state, TDA1004X_CBER_RESET);
if (cber != 65535)
*fe_status |= FE_HAS_VITERBI;
}
// if we DO have some valid VITERBI output, but don't already have SYNC
// bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
// read the VBER
vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
if (vber == -1)
return -EIO;
status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
if (status == -1)
return -EIO;
vber |= (status << 8);
status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
if (status == -1)
return -EIO;
vber |= ((status << 16) & 0x0f);
tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
// if RS has passed some valid TS packets, then we must be
// getting some SYNC bytes
if (vber < 16632)
*fe_status |= FE_HAS_SYNC;
}
// success
dprintk("%s: fe_status=0x%x\n", __FUNCTION__, *fe_status);
return 0;
}
static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
int reg = 0;
dprintk("%s\n", __FUNCTION__);
// determine the register to use
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
reg = TDA10045H_S_AGC;
break;
case TDA1004X_DEMOD_TDA10046:
reg = TDA10046H_AGC_IF_LEVEL;
break;
}
// read it
tmp = tda1004x_read_byte(state, reg);
if (tmp < 0)
return -EIO;
*signal = (tmp << 8) | tmp;
dprintk("%s: signal=0x%x\n", __FUNCTION__, *signal);
return 0;
}
static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
dprintk("%s\n", __FUNCTION__);
// read it
tmp = tda1004x_read_byte(state, TDA1004X_SNR);
if (tmp < 0)
return -EIO;
if (tmp)
tmp = 255 - tmp;
*snr = ((tmp << 8) | tmp);
dprintk("%s: snr=0x%x\n", __FUNCTION__, *snr);
return 0;
}
static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
int tmp2;
int counter;
dprintk("%s\n", __FUNCTION__);
// read the UCBLOCKS and reset
counter = 0;
tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
if (tmp < 0)
return -EIO;
tmp &= 0x7f;
while (counter++ < 5) {
tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
if (tmp2 < 0)
return -EIO;
tmp2 &= 0x7f;
if ((tmp2 < tmp) || (tmp2 == 0))
break;
}
if (tmp != 0x7f)
*ucblocks = tmp;
else
*ucblocks = 0xffffffff;
dprintk("%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks);
return 0;
}
static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
dprintk("%s\n", __FUNCTION__);
// read it in
tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
if (tmp < 0)
return -EIO;
*ber = tmp << 1;
tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
if (tmp < 0)
return -EIO;
*ber |= (tmp << 9);
tda1004x_read_byte(state, TDA1004X_CBER_RESET);
dprintk("%s: ber=0x%x\n", __FUNCTION__, *ber);
return 0;
}
static int tda1004x_sleep(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
break;
case TDA1004X_DEMOD_TDA10046:
tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
if (state->config->pll_sleep != NULL)
state->config->pll_sleep(fe);
break;
}
state->initialised = 0;
return 0;
}
static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
{
fesettings->min_delay_ms = 800;
fesettings->step_size = 166667;
fesettings->max_drift = 166667*2;
return 0;
}
static void tda1004x_release(struct dvb_frontend* fe)
{
struct tda1004x_state *state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops tda10045_ops = {
.info = {
.name = "Philips TDA10045H DVB-T",
.type = FE_OFDM,
.frequency_min = 51000000,
.frequency_max = 858000000,
.frequency_stepsize = 166667,
.caps =
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
},
.release = tda1004x_release,
.init = tda10045_init,
.sleep = tda1004x_sleep,
.set_frontend = tda1004x_set_fe,
.get_frontend = tda1004x_get_fe,
.get_tune_settings = tda1004x_get_tune_settings,
.read_status = tda1004x_read_status,
.read_ber = tda1004x_read_ber,
.read_signal_strength = tda1004x_read_signal_strength,
.read_snr = tda1004x_read_snr,
.read_ucblocks = tda1004x_read_ucblocks,
};
struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
struct i2c_adapter* i2c)
{
struct tda1004x_state *state;
/* allocate memory for the internal state */
state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
if (!state)
return NULL;
/* setup the state */
state->config = config;
state->i2c = i2c;
memcpy(&state->ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
state->initialised = 0;
state->demod_type = TDA1004X_DEMOD_TDA10045;
/* check if the demod is there */
if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x25) {
kfree(state);
return NULL;
}
/* create dvb_frontend */
state->frontend.ops = &state->ops;
state->frontend.demodulator_priv = state;
return &state->frontend;
}
static struct dvb_frontend_ops tda10046_ops = {
.info = {
.name = "Philips TDA10046H DVB-T",
.type = FE_OFDM,
.frequency_min = 51000000,
.frequency_max = 858000000,
.frequency_stepsize = 166667,
.caps =
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
},
.release = tda1004x_release,
.init = tda10046_init,
.sleep = tda1004x_sleep,
.set_frontend = tda1004x_set_fe,
.get_frontend = tda1004x_get_fe,
.get_tune_settings = tda1004x_get_tune_settings,
.read_status = tda1004x_read_status,
.read_ber = tda1004x_read_ber,
.read_signal_strength = tda1004x_read_signal_strength,
.read_snr = tda1004x_read_snr,
.read_ucblocks = tda1004x_read_ucblocks,
};
struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
struct i2c_adapter* i2c)
{
struct tda1004x_state *state;
/* allocate memory for the internal state */
state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
if (!state)
return NULL;
/* setup the state */
state->config = config;
state->i2c = i2c;
memcpy(&state->ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
state->initialised = 0;
state->demod_type = TDA1004X_DEMOD_TDA10046;
/* check if the demod is there */
if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x46) {
kfree(state);
return NULL;
}
/* create dvb_frontend */
state->frontend.ops = &state->ops;
state->frontend.demodulator_priv = state;
return &state->frontend;
}
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(tda10045_attach);
EXPORT_SYMBOL(tda10046_attach);
EXPORT_SYMBOL(tda1004x_write_byte);