OpenCloudOS-Kernel/drivers/mfd/menelaus.c

1320 lines
31 KiB
C
Raw Normal View History

/*
* Copyright (C) 2004 Texas Instruments, Inc.
*
* Some parts based tps65010.c:
* Copyright (C) 2004 Texas Instruments and
* Copyright (C) 2004-2005 David Brownell
*
* Some parts based on tlv320aic24.c:
* Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
*
* Changes for interrupt handling and clean-up by
* Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
* Cleanup and generalized support for voltage setting by
* Juha Yrjola
* Added support for controlling VCORE and regulator sleep states,
* Amit Kucheria <amit.kucheria@nokia.com>
* Copyright (C) 2005, 2006 Nokia Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/rtc.h>
#include <linux/bcd.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <asm/mach/irq.h>
#include <asm/gpio.h>
#include <plat/menelaus.h>
#define DRIVER_NAME "menelaus"
#define MENELAUS_I2C_ADDRESS 0x72
#define MENELAUS_REV 0x01
#define MENELAUS_VCORE_CTRL1 0x02
#define MENELAUS_VCORE_CTRL2 0x03
#define MENELAUS_VCORE_CTRL3 0x04
#define MENELAUS_VCORE_CTRL4 0x05
#define MENELAUS_VCORE_CTRL5 0x06
#define MENELAUS_DCDC_CTRL1 0x07
#define MENELAUS_DCDC_CTRL2 0x08
#define MENELAUS_DCDC_CTRL3 0x09
#define MENELAUS_LDO_CTRL1 0x0A
#define MENELAUS_LDO_CTRL2 0x0B
#define MENELAUS_LDO_CTRL3 0x0C
#define MENELAUS_LDO_CTRL4 0x0D
#define MENELAUS_LDO_CTRL5 0x0E
#define MENELAUS_LDO_CTRL6 0x0F
#define MENELAUS_LDO_CTRL7 0x10
#define MENELAUS_LDO_CTRL8 0x11
#define MENELAUS_SLEEP_CTRL1 0x12
#define MENELAUS_SLEEP_CTRL2 0x13
#define MENELAUS_DEVICE_OFF 0x14
#define MENELAUS_OSC_CTRL 0x15
#define MENELAUS_DETECT_CTRL 0x16
#define MENELAUS_INT_MASK1 0x17
#define MENELAUS_INT_MASK2 0x18
#define MENELAUS_INT_STATUS1 0x19
#define MENELAUS_INT_STATUS2 0x1A
#define MENELAUS_INT_ACK1 0x1B
#define MENELAUS_INT_ACK2 0x1C
#define MENELAUS_GPIO_CTRL 0x1D
#define MENELAUS_GPIO_IN 0x1E
#define MENELAUS_GPIO_OUT 0x1F
#define MENELAUS_BBSMS 0x20
#define MENELAUS_RTC_CTRL 0x21
#define MENELAUS_RTC_UPDATE 0x22
#define MENELAUS_RTC_SEC 0x23
#define MENELAUS_RTC_MIN 0x24
#define MENELAUS_RTC_HR 0x25
#define MENELAUS_RTC_DAY 0x26
#define MENELAUS_RTC_MON 0x27
#define MENELAUS_RTC_YR 0x28
#define MENELAUS_RTC_WKDAY 0x29
#define MENELAUS_RTC_AL_SEC 0x2A
#define MENELAUS_RTC_AL_MIN 0x2B
#define MENELAUS_RTC_AL_HR 0x2C
#define MENELAUS_RTC_AL_DAY 0x2D
#define MENELAUS_RTC_AL_MON 0x2E
#define MENELAUS_RTC_AL_YR 0x2F
#define MENELAUS_RTC_COMP_MSB 0x30
#define MENELAUS_RTC_COMP_LSB 0x31
#define MENELAUS_S1_PULL_EN 0x32
#define MENELAUS_S1_PULL_DIR 0x33
#define MENELAUS_S2_PULL_EN 0x34
#define MENELAUS_S2_PULL_DIR 0x35
#define MENELAUS_MCT_CTRL1 0x36
#define MENELAUS_MCT_CTRL2 0x37
#define MENELAUS_MCT_CTRL3 0x38
#define MENELAUS_MCT_PIN_ST 0x39
#define MENELAUS_DEBOUNCE1 0x3A
#define IH_MENELAUS_IRQS 12
#define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */
#define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */
#define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */
#define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */
#define MENELAUS_LOWBAT_IRQ 4 /* Low battery */
#define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */
#define MENELAUS_UVLO_IRQ 6 /* UVLO detect */
#define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */
#define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */
#define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */
#define MENELAUS_RTCERR_IRQ 10 /* RTC error */
#define MENELAUS_PSHBTN_IRQ 11 /* Push button */
#define MENELAUS_RESERVED12_IRQ 12 /* Reserved */
#define MENELAUS_RESERVED13_IRQ 13 /* Reserved */
#define MENELAUS_RESERVED14_IRQ 14 /* Reserved */
#define MENELAUS_RESERVED15_IRQ 15 /* Reserved */
/* VCORE_CTRL1 register */
#define VCORE_CTRL1_BYP_COMP (1 << 5)
#define VCORE_CTRL1_HW_NSW (1 << 7)
/* GPIO_CTRL register */
#define GPIO_CTRL_SLOTSELEN (1 << 5)
#define GPIO_CTRL_SLPCTLEN (1 << 6)
#define GPIO1_DIR_INPUT (1 << 0)
#define GPIO2_DIR_INPUT (1 << 1)
#define GPIO3_DIR_INPUT (1 << 2)
/* MCT_CTRL1 register */
#define MCT_CTRL1_S1_CMD_OD (1 << 2)
#define MCT_CTRL1_S2_CMD_OD (1 << 3)
/* MCT_CTRL2 register */
#define MCT_CTRL2_VS2_SEL_D0 (1 << 0)
#define MCT_CTRL2_VS2_SEL_D1 (1 << 1)
#define MCT_CTRL2_S1CD_BUFEN (1 << 4)
#define MCT_CTRL2_S2CD_BUFEN (1 << 5)
#define MCT_CTRL2_S1CD_DBEN (1 << 6)
#define MCT_CTRL2_S2CD_BEN (1 << 7)
/* MCT_CTRL3 register */
#define MCT_CTRL3_SLOT1_EN (1 << 0)
#define MCT_CTRL3_SLOT2_EN (1 << 1)
#define MCT_CTRL3_S1_AUTO_EN (1 << 2)
#define MCT_CTRL3_S2_AUTO_EN (1 << 3)
/* MCT_PIN_ST register */
#define MCT_PIN_ST_S1_CD_ST (1 << 0)
#define MCT_PIN_ST_S2_CD_ST (1 << 1)
static void menelaus_work(struct work_struct *_menelaus);
struct menelaus_chip {
struct mutex lock;
struct i2c_client *client;
struct work_struct work;
#ifdef CONFIG_RTC_DRV_TWL92330
struct rtc_device *rtc;
u8 rtc_control;
unsigned uie:1;
#endif
unsigned vcore_hw_mode:1;
u8 mask1, mask2;
void (*handlers[16])(struct menelaus_chip *);
void (*mmc_callback)(void *data, u8 mask);
void *mmc_callback_data;
};
static struct menelaus_chip *the_menelaus;
static int menelaus_write_reg(int reg, u8 value)
{
int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
if (val < 0) {
pr_err(DRIVER_NAME ": write error");
return val;
}
return 0;
}
static int menelaus_read_reg(int reg)
{
int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
if (val < 0)
pr_err(DRIVER_NAME ": read error");
return val;
}
static int menelaus_enable_irq(int irq)
{
if (irq > 7) {
irq -= 8;
the_menelaus->mask2 &= ~(1 << irq);
return menelaus_write_reg(MENELAUS_INT_MASK2,
the_menelaus->mask2);
} else {
the_menelaus->mask1 &= ~(1 << irq);
return menelaus_write_reg(MENELAUS_INT_MASK1,
the_menelaus->mask1);
}
}
static int menelaus_disable_irq(int irq)
{
if (irq > 7) {
irq -= 8;
the_menelaus->mask2 |= (1 << irq);
return menelaus_write_reg(MENELAUS_INT_MASK2,
the_menelaus->mask2);
} else {
the_menelaus->mask1 |= (1 << irq);
return menelaus_write_reg(MENELAUS_INT_MASK1,
the_menelaus->mask1);
}
}
static int menelaus_ack_irq(int irq)
{
if (irq > 7)
return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
else
return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
}
/* Adds a handler for an interrupt. Does not run in interrupt context */
static int menelaus_add_irq_work(int irq,
void (*handler)(struct menelaus_chip *))
{
int ret = 0;
mutex_lock(&the_menelaus->lock);
the_menelaus->handlers[irq] = handler;
ret = menelaus_enable_irq(irq);
mutex_unlock(&the_menelaus->lock);
return ret;
}
/* Removes handler for an interrupt */
static int menelaus_remove_irq_work(int irq)
{
int ret = 0;
mutex_lock(&the_menelaus->lock);
ret = menelaus_disable_irq(irq);
the_menelaus->handlers[irq] = NULL;
mutex_unlock(&the_menelaus->lock);
return ret;
}
/*
* Gets scheduled when a card detect interrupt happens. Note that in some cases
* this line is wired to card cover switch rather than the card detect switch
* in each slot. In this case the cards are not seen by menelaus.
* FIXME: Add handling for D1 too
*/
static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
{
int reg;
unsigned char card_mask = 0;
reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
if (reg < 0)
return;
if (!(reg & 0x1))
card_mask |= MCT_PIN_ST_S1_CD_ST;
if (!(reg & 0x2))
card_mask |= MCT_PIN_ST_S2_CD_ST;
if (menelaus_hw->mmc_callback)
menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
card_mask);
}
/*
* Toggles the MMC slots between open-drain and push-pull mode.
*/
int menelaus_set_mmc_opendrain(int slot, int enable)
{
int ret, val;
if (slot != 1 && slot != 2)
return -EINVAL;
mutex_lock(&the_menelaus->lock);
ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
if (ret < 0) {
mutex_unlock(&the_menelaus->lock);
return ret;
}
val = ret;
if (slot == 1) {
if (enable)
val |= MCT_CTRL1_S1_CMD_OD;
else
val &= ~MCT_CTRL1_S1_CMD_OD;
} else {
if (enable)
val |= MCT_CTRL1_S2_CMD_OD;
else
val &= ~MCT_CTRL1_S2_CMD_OD;
}
ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
mutex_unlock(&the_menelaus->lock);
return ret;
}
EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
int menelaus_set_slot_sel(int enable)
{
int ret;
mutex_lock(&the_menelaus->lock);
ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
if (ret < 0)
goto out;
ret |= GPIO2_DIR_INPUT;
if (enable)
ret |= GPIO_CTRL_SLOTSELEN;
else
ret &= ~GPIO_CTRL_SLOTSELEN;
ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
out:
mutex_unlock(&the_menelaus->lock);
return ret;
}
EXPORT_SYMBOL(menelaus_set_slot_sel);
int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
{
int ret, val;
if (slot != 1 && slot != 2)
return -EINVAL;
if (power >= 3)
return -EINVAL;
mutex_lock(&the_menelaus->lock);
ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
if (ret < 0)
goto out;
val = ret;
if (slot == 1) {
if (cd_en)
val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN;
else
val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN);
} else {
if (cd_en)
val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN;
else
val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN);
}
ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
if (ret < 0)
goto out;
ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
if (ret < 0)
goto out;
val = ret;
if (slot == 1) {
if (enable)
val |= MCT_CTRL3_SLOT1_EN;
else
val &= ~MCT_CTRL3_SLOT1_EN;
} else {
int b;
if (enable)
val |= MCT_CTRL3_SLOT2_EN;
else
val &= ~MCT_CTRL3_SLOT2_EN;
b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1);
b |= power;
ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
if (ret < 0)
goto out;
}
/* Disable autonomous shutdown */
val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN);
ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
out:
mutex_unlock(&the_menelaus->lock);
return ret;
}
EXPORT_SYMBOL(menelaus_set_mmc_slot);
int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
void *data)
{
int ret = 0;
the_menelaus->mmc_callback_data = data;
the_menelaus->mmc_callback = callback;
ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
menelaus_mmc_cd_work);
if (ret < 0)
return ret;
ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
menelaus_mmc_cd_work);
if (ret < 0)
return ret;
ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
menelaus_mmc_cd_work);
if (ret < 0)
return ret;
ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
menelaus_mmc_cd_work);
return ret;
}
EXPORT_SYMBOL(menelaus_register_mmc_callback);
void menelaus_unregister_mmc_callback(void)
{
menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
the_menelaus->mmc_callback = NULL;
the_menelaus->mmc_callback_data = 0;
}
EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
struct menelaus_vtg {
const char *name;
u8 vtg_reg;
u8 vtg_shift;
u8 vtg_bits;
u8 mode_reg;
};
struct menelaus_vtg_value {
u16 vtg;
u16 val;
};
static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
int vtg_val, int mode)
{
int val, ret;
struct i2c_client *c = the_menelaus->client;
mutex_lock(&the_menelaus->lock);
if (vtg == 0)
goto set_voltage;
ret = menelaus_read_reg(vtg->vtg_reg);
if (ret < 0)
goto out;
val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
val |= vtg_val << vtg->vtg_shift;
dev_dbg(&c->dev, "Setting voltage '%s'"
"to %d mV (reg 0x%02x, val 0x%02x)\n",
vtg->name, mV, vtg->vtg_reg, val);
ret = menelaus_write_reg(vtg->vtg_reg, val);
if (ret < 0)
goto out;
set_voltage:
ret = menelaus_write_reg(vtg->mode_reg, mode);
out:
mutex_unlock(&the_menelaus->lock);
if (ret == 0) {
/* Wait for voltage to stabilize */
msleep(1);
}
return ret;
}
static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
int n)
{
int i;
for (i = 0; i < n; i++, tbl++)
if (tbl->vtg == vtg)
return tbl->val;
return -EINVAL;
}
/*
* Vcore can be programmed in two ways:
* SW-controlled: Required voltage is programmed into VCORE_CTRL1
* HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
* and VCORE_CTRL4
*
* Call correct 'set' function accordingly
*/
static const struct menelaus_vtg_value vcore_values[] = {
{ 1000, 0 },
{ 1025, 1 },
{ 1050, 2 },
{ 1075, 3 },
{ 1100, 4 },
{ 1125, 5 },
{ 1150, 6 },
{ 1175, 7 },
{ 1200, 8 },
{ 1225, 9 },
{ 1250, 10 },
{ 1275, 11 },
{ 1300, 12 },
{ 1325, 13 },
{ 1350, 14 },
{ 1375, 15 },
{ 1400, 16 },
{ 1425, 17 },
{ 1450, 18 },
};
int menelaus_set_vcore_sw(unsigned int mV)
{
int val, ret;
struct i2c_client *c = the_menelaus->client;
val = menelaus_get_vtg_value(mV, vcore_values,
ARRAY_SIZE(vcore_values));
if (val < 0)
return -EINVAL;
dev_dbg(&c->dev, "Setting VCORE to %d mV (val 0x%02x)\n", mV, val);
/* Set SW mode and the voltage in one go. */
mutex_lock(&the_menelaus->lock);
ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
if (ret == 0)
the_menelaus->vcore_hw_mode = 0;
mutex_unlock(&the_menelaus->lock);
msleep(1);
return ret;
}
int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
{
int fval, rval, val, ret;
struct i2c_client *c = the_menelaus->client;
rval = menelaus_get_vtg_value(roof_mV, vcore_values,
ARRAY_SIZE(vcore_values));
if (rval < 0)
return -EINVAL;
fval = menelaus_get_vtg_value(floor_mV, vcore_values,
ARRAY_SIZE(vcore_values));
if (fval < 0)
return -EINVAL;
dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
floor_mV, roof_mV);
mutex_lock(&the_menelaus->lock);
ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
if (ret < 0)
goto out;
ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
if (ret < 0)
goto out;
if (!the_menelaus->vcore_hw_mode) {
val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
/* HW mode, turn OFF byte comparator */
val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP);
ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
the_menelaus->vcore_hw_mode = 1;
}
msleep(1);
out:
mutex_unlock(&the_menelaus->lock);
return ret;
}
static const struct menelaus_vtg vmem_vtg = {
.name = "VMEM",
.vtg_reg = MENELAUS_LDO_CTRL1,
.vtg_shift = 0,
.vtg_bits = 2,
.mode_reg = MENELAUS_LDO_CTRL3,
};
static const struct menelaus_vtg_value vmem_values[] = {
{ 1500, 0 },
{ 1800, 1 },
{ 1900, 2 },
{ 2500, 3 },
};
int menelaus_set_vmem(unsigned int mV)
{
int val;
if (mV == 0)
return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
if (val < 0)
return -EINVAL;
return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
}
EXPORT_SYMBOL(menelaus_set_vmem);
static const struct menelaus_vtg vio_vtg = {
.name = "VIO",
.vtg_reg = MENELAUS_LDO_CTRL1,
.vtg_shift = 2,
.vtg_bits = 2,
.mode_reg = MENELAUS_LDO_CTRL4,
};
static const struct menelaus_vtg_value vio_values[] = {
{ 1500, 0 },
{ 1800, 1 },
{ 2500, 2 },
{ 2800, 3 },
};
int menelaus_set_vio(unsigned int mV)
{
int val;
if (mV == 0)
return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
if (val < 0)
return -EINVAL;
return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
}
EXPORT_SYMBOL(menelaus_set_vio);
static const struct menelaus_vtg_value vdcdc_values[] = {
{ 1500, 0 },
{ 1800, 1 },
{ 2000, 2 },
{ 2200, 3 },
{ 2400, 4 },
{ 2800, 5 },
{ 3000, 6 },
{ 3300, 7 },
};
static const struct menelaus_vtg vdcdc2_vtg = {
.name = "VDCDC2",
.vtg_reg = MENELAUS_DCDC_CTRL1,
.vtg_shift = 0,
.vtg_bits = 3,
.mode_reg = MENELAUS_DCDC_CTRL2,
};
static const struct menelaus_vtg vdcdc3_vtg = {
.name = "VDCDC3",
.vtg_reg = MENELAUS_DCDC_CTRL1,
.vtg_shift = 3,
.vtg_bits = 3,
.mode_reg = MENELAUS_DCDC_CTRL3,
};
int menelaus_set_vdcdc(int dcdc, unsigned int mV)
{
const struct menelaus_vtg *vtg;
int val;
if (dcdc != 2 && dcdc != 3)
return -EINVAL;
if (dcdc == 2)
vtg = &vdcdc2_vtg;
else
vtg = &vdcdc3_vtg;
if (mV == 0)
return menelaus_set_voltage(vtg, 0, 0, 0);
val = menelaus_get_vtg_value(mV, vdcdc_values,
ARRAY_SIZE(vdcdc_values));
if (val < 0)
return -EINVAL;
return menelaus_set_voltage(vtg, mV, val, 0x03);
}
static const struct menelaus_vtg_value vmmc_values[] = {
{ 1850, 0 },
{ 2800, 1 },
{ 3000, 2 },
{ 3100, 3 },
};
static const struct menelaus_vtg vmmc_vtg = {
.name = "VMMC",
.vtg_reg = MENELAUS_LDO_CTRL1,
.vtg_shift = 6,
.vtg_bits = 2,
.mode_reg = MENELAUS_LDO_CTRL7,
};
int menelaus_set_vmmc(unsigned int mV)
{
int val;
if (mV == 0)
return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
if (val < 0)
return -EINVAL;
return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
}
EXPORT_SYMBOL(menelaus_set_vmmc);
static const struct menelaus_vtg_value vaux_values[] = {
{ 1500, 0 },
{ 1800, 1 },
{ 2500, 2 },
{ 2800, 3 },
};
static const struct menelaus_vtg vaux_vtg = {
.name = "VAUX",
.vtg_reg = MENELAUS_LDO_CTRL1,
.vtg_shift = 4,
.vtg_bits = 2,
.mode_reg = MENELAUS_LDO_CTRL6,
};
int menelaus_set_vaux(unsigned int mV)
{
int val;
if (mV == 0)
return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
if (val < 0)
return -EINVAL;
return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
}
EXPORT_SYMBOL(menelaus_set_vaux);
int menelaus_get_slot_pin_states(void)
{
return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
}
EXPORT_SYMBOL(menelaus_get_slot_pin_states);
int menelaus_set_regulator_sleep(int enable, u32 val)
{
int t, ret;
struct i2c_client *c = the_menelaus->client;
mutex_lock(&the_menelaus->lock);
ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
if (ret < 0)
goto out;
dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
if (ret < 0)
goto out;
t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT);
if (enable)
ret |= t;
else
ret &= ~t;
ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
out:
mutex_unlock(&the_menelaus->lock);
return ret;
}
/*-----------------------------------------------------------------------*/
/* Handles Menelaus interrupts. Does not run in interrupt context */
static void menelaus_work(struct work_struct *_menelaus)
{
struct menelaus_chip *menelaus =
container_of(_menelaus, struct menelaus_chip, work);
void (*handler)(struct menelaus_chip *menelaus);
while (1) {
unsigned isr;
isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
& ~menelaus->mask2) << 8;
isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
& ~menelaus->mask1;
if (!isr)
break;
while (isr) {
int irq = fls(isr) - 1;
isr &= ~(1 << irq);
mutex_lock(&menelaus->lock);
menelaus_disable_irq(irq);
menelaus_ack_irq(irq);
handler = menelaus->handlers[irq];
if (handler)
handler(menelaus);
menelaus_enable_irq(irq);
mutex_unlock(&menelaus->lock);
}
}
enable_irq(menelaus->client->irq);
}
/*
* We cannot use I2C in interrupt context, so we just schedule work.
*/
static irqreturn_t menelaus_irq(int irq, void *_menelaus)
{
struct menelaus_chip *menelaus = _menelaus;
disable_irq_nosync(irq);
(void)schedule_work(&menelaus->work);
return IRQ_HANDLED;
}
/*-----------------------------------------------------------------------*/
/*
* The RTC needs to be set once, then it runs on backup battery power.
* It supports alarms, including system wake alarms (from some modes);
* and 1/second IRQs if requested.
*/
#ifdef CONFIG_RTC_DRV_TWL92330
#define RTC_CTRL_RTC_EN (1 << 0)
#define RTC_CTRL_AL_EN (1 << 1)
#define RTC_CTRL_MODE12 (1 << 2)
#define RTC_CTRL_EVERY_MASK (3 << 3)
#define RTC_CTRL_EVERY_SEC (0 << 3)
#define RTC_CTRL_EVERY_MIN (1 << 3)
#define RTC_CTRL_EVERY_HR (2 << 3)
#define RTC_CTRL_EVERY_DAY (3 << 3)
#define RTC_UPDATE_EVERY 0x08
#define RTC_HR_PM (1 << 7)
static void menelaus_to_time(char *regs, struct rtc_time *t)
{
t->tm_sec = bcd2bin(regs[0]);
t->tm_min = bcd2bin(regs[1]);
if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
if (regs[2] & RTC_HR_PM)
t->tm_hour += 12;
} else
t->tm_hour = bcd2bin(regs[2] & 0x3f);
t->tm_mday = bcd2bin(regs[3]);
t->tm_mon = bcd2bin(regs[4]) - 1;
t->tm_year = bcd2bin(regs[5]) + 100;
}
static int time_to_menelaus(struct rtc_time *t, int regnum)
{
int hour, status;
status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
if (status < 0)
goto fail;
status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
if (status < 0)
goto fail;
if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
hour = t->tm_hour + 1;
if (hour > 12)
hour = RTC_HR_PM | bin2bcd(hour - 12);
else
hour = bin2bcd(hour);
} else
hour = bin2bcd(t->tm_hour);
status = menelaus_write_reg(regnum++, hour);
if (status < 0)
goto fail;
status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
if (status < 0)
goto fail;
status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
if (status < 0)
goto fail;
status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
if (status < 0)
goto fail;
return 0;
fail:
dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
--regnum, status);
return status;
}
static int menelaus_read_time(struct device *dev, struct rtc_time *t)
{
struct i2c_msg msg[2];
char regs[7];
int status;
/* block read date and time registers */
regs[0] = MENELAUS_RTC_SEC;
msg[0].addr = MENELAUS_I2C_ADDRESS;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = regs;
msg[1].addr = MENELAUS_I2C_ADDRESS;
msg[1].flags = I2C_M_RD;
msg[1].len = sizeof(regs);
msg[1].buf = regs;
status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
if (status != 2) {
dev_err(dev, "%s error %d\n", "read", status);
return -EIO;
}
menelaus_to_time(regs, t);
t->tm_wday = bcd2bin(regs[6]);
return 0;
}
static int menelaus_set_time(struct device *dev, struct rtc_time *t)
{
int status;
/* write date and time registers */
status = time_to_menelaus(t, MENELAUS_RTC_SEC);
if (status < 0)
return status;
status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
if (status < 0) {
dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
"err %d\n", MENELAUS_RTC_WKDAY, status);
return status;
}
/* now commit the write */
status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
if (status < 0)
dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
status);
return 0;
}
static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
{
struct i2c_msg msg[2];
char regs[6];
int status;
/* block read alarm registers */
regs[0] = MENELAUS_RTC_AL_SEC;
msg[0].addr = MENELAUS_I2C_ADDRESS;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = regs;
msg[1].addr = MENELAUS_I2C_ADDRESS;
msg[1].flags = I2C_M_RD;
msg[1].len = sizeof(regs);
msg[1].buf = regs;
status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
if (status != 2) {
dev_err(dev, "%s error %d\n", "alarm read", status);
return -EIO;
}
menelaus_to_time(regs, &w->time);
w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
/* NOTE we *could* check if actually pending... */
w->pending = 0;
return 0;
}
static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
{
int status;
if (the_menelaus->client->irq <= 0 && w->enabled)
return -ENODEV;
/* clear previous alarm enable */
if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
status = menelaus_write_reg(MENELAUS_RTC_CTRL,
the_menelaus->rtc_control);
if (status < 0)
return status;
}
/* write alarm registers */
status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
if (status < 0)
return status;
/* enable alarm if requested */
if (w->enabled) {
the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
status = menelaus_write_reg(MENELAUS_RTC_CTRL,
the_menelaus->rtc_control);
}
return status;
}
#ifdef CONFIG_RTC_INTF_DEV
static void menelaus_rtc_update_work(struct menelaus_chip *m)
{
/* report 1/sec update */
local_irq_disable();
rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
local_irq_enable();
}
static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
{
int status;
if (the_menelaus->client->irq <= 0)
return -ENOIOCTLCMD;
switch (cmd) {
/* alarm IRQ */
case RTC_AIE_ON:
if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
return 0;
the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
break;
case RTC_AIE_OFF:
if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
return 0;
the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
break;
/* 1/second "update" IRQ */
case RTC_UIE_ON:
if (the_menelaus->uie)
return 0;
status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
menelaus_rtc_update_work);
if (status == 0)
the_menelaus->uie = 1;
return status;
case RTC_UIE_OFF:
if (!the_menelaus->uie)
return 0;
status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
if (status == 0)
the_menelaus->uie = 0;
return status;
default:
return -ENOIOCTLCMD;
}
return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
}
#else
#define menelaus_ioctl NULL
#endif
/* REVISIT no compensation register support ... */
static const struct rtc_class_ops menelaus_rtc_ops = {
.ioctl = menelaus_ioctl,
.read_time = menelaus_read_time,
.set_time = menelaus_set_time,
.read_alarm = menelaus_read_alarm,
.set_alarm = menelaus_set_alarm,
};
static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
{
/* report alarm */
local_irq_disable();
rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
local_irq_enable();
/* then disable it; alarms are oneshot */
the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
}
static inline void menelaus_rtc_init(struct menelaus_chip *m)
{
int alarm = (m->client->irq > 0);
/* assume 32KDETEN pin is pulled high */
if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
dev_dbg(&m->client->dev, "no 32k oscillator\n");
return;
}
/* support RTC alarm; it can issue wakeups */
if (alarm) {
if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
menelaus_rtc_alarm_work) < 0) {
dev_err(&m->client->dev, "can't handle RTC alarm\n");
return;
}
device_init_wakeup(&m->client->dev, 1);
}
/* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
if (!(m->rtc_control & RTC_CTRL_RTC_EN)
|| (m->rtc_control & RTC_CTRL_AL_EN)
|| (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
dev_warn(&m->client->dev, "rtc clock needs setting\n");
m->rtc_control |= RTC_CTRL_RTC_EN;
}
m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
m->rtc_control &= ~RTC_CTRL_AL_EN;
menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
}
m->rtc = rtc_device_register(DRIVER_NAME,
&m->client->dev,
&menelaus_rtc_ops, THIS_MODULE);
if (IS_ERR(m->rtc)) {
if (alarm) {
menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
device_init_wakeup(&m->client->dev, 0);
}
dev_err(&m->client->dev, "can't register RTC: %d\n",
(int) PTR_ERR(m->rtc));
the_menelaus->rtc = NULL;
}
}
#else
static inline void menelaus_rtc_init(struct menelaus_chip *m)
{
/* nothing */
}
#endif
/*-----------------------------------------------------------------------*/
static struct i2c_driver menelaus_i2c_driver;
static int menelaus_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct menelaus_chip *menelaus;
int rev = 0, val;
int err = 0;
struct menelaus_platform_data *menelaus_pdata =
client->dev.platform_data;
if (the_menelaus) {
dev_dbg(&client->dev, "only one %s for now\n",
DRIVER_NAME);
return -ENODEV;
}
menelaus = kzalloc(sizeof *menelaus, GFP_KERNEL);
if (!menelaus)
return -ENOMEM;
i2c_set_clientdata(client, menelaus);
the_menelaus = menelaus;
menelaus->client = client;
/* If a true probe check the device */
rev = menelaus_read_reg(MENELAUS_REV);
if (rev < 0) {
pr_err(DRIVER_NAME ": device not found");
err = -ENODEV;
goto fail1;
}
/* Ack and disable all Menelaus interrupts */
menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
menelaus->mask1 = 0xff;
menelaus->mask2 = 0xff;
/* Set output buffer strengths */
menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
if (client->irq > 0) {
err = request_irq(client->irq, menelaus_irq, IRQF_DISABLED,
DRIVER_NAME, menelaus);
if (err) {
dev_dbg(&client->dev, "can't get IRQ %d, err %d\n",
client->irq, err);
goto fail1;
}
}
mutex_init(&menelaus->lock);
INIT_WORK(&menelaus->work, menelaus_work);
pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
if (val < 0)
goto fail2;
if (val & (1 << 7))
menelaus->vcore_hw_mode = 1;
else
menelaus->vcore_hw_mode = 0;
if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
err = menelaus_pdata->late_init(&client->dev);
if (err < 0)
goto fail2;
}
menelaus_rtc_init(menelaus);
return 0;
fail2:
free_irq(client->irq, menelaus);
flush_work_sync(&menelaus->work);
fail1:
kfree(menelaus);
return err;
}
static int __exit menelaus_remove(struct i2c_client *client)
{
struct menelaus_chip *menelaus = i2c_get_clientdata(client);
free_irq(client->irq, menelaus);
flush_work_sync(&menelaus->work);
kfree(menelaus);
the_menelaus = NULL;
return 0;
}
static const struct i2c_device_id menelaus_id[] = {
{ "menelaus", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, menelaus_id);
static struct i2c_driver menelaus_i2c_driver = {
.driver = {
.name = DRIVER_NAME,
},
.probe = menelaus_probe,
.remove = __exit_p(menelaus_remove),
.id_table = menelaus_id,
};
static int __init menelaus_init(void)
{
int res;
res = i2c_add_driver(&menelaus_i2c_driver);
if (res < 0) {
pr_err(DRIVER_NAME ": driver registration failed\n");
return res;
}
return 0;
}
static void __exit menelaus_exit(void)
{
i2c_del_driver(&menelaus_i2c_driver);
/* FIXME: Shutdown menelaus parts that can be shut down */
}
MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
MODULE_DESCRIPTION("I2C interface for Menelaus.");
MODULE_LICENSE("GPL");
module_init(menelaus_init);
module_exit(menelaus_exit);