OpenCloudOS-Kernel/net/sched/Kconfig

813 lines
25 KiB
Plaintext
Raw Normal View History

#
# Traffic control configuration.
#
menuconfig NET_SCHED
bool "QoS and/or fair queueing"
select NET_SCH_FIFO
---help---
When the kernel has several packets to send out over a network
device, it has to decide which ones to send first, which ones to
delay, and which ones to drop. This is the job of the queueing
disciplines, several different algorithms for how to do this
"fairly" have been proposed.
If you say N here, you will get the standard packet scheduler, which
is a FIFO (first come, first served). If you say Y here, you will be
able to choose from among several alternative algorithms which can
then be attached to different network devices. This is useful for
example if some of your network devices are real time devices that
need a certain minimum data flow rate, or if you need to limit the
maximum data flow rate for traffic which matches specified criteria.
This code is considered to be experimental.
To administer these schedulers, you'll need the user-level utilities
from the package iproute2+tc at
<https://www.kernel.org/pub/linux/utils/net/iproute2/>. That package
also contains some documentation; for more, check out
Docs/Kconfig: Update: osdl.org -> linuxfoundation.org Some of the documentation refers to web pages under the domain `osdl.org'. However, `osdl.org' now redirects to `linuxfoundation.org'. Rather than rely on redirections, this patch updates the addresses appropriately; for the most part, only documentation that is meant to be current has been updated. The patch should be pretty quick to scan and check; each new web-page url was gotten by trying out the original URL in a browser and then simply copying the the redirected URL (formatting as necessary). There is some conflict as to which one of these domain names is preferred: linuxfoundation.org linux-foundation.org So, I wrote: info@linuxfoundation.org and got this reply: Message-ID: <4CE17EE6.9040807@linuxfoundation.org> Date: Mon, 15 Nov 2010 10:41:42 -0800 From: David Ames <david@linuxfoundation.org> ... linuxfoundation.org is preferred. The canonical name for our web site is www.linuxfoundation.org. Our list site is actually lists.linux-foundation.org. Regarding email linuxfoundation.org is preferred there are a few people who choose to use linux-foundation.org for their own reasons. Consequently, I used `linuxfoundation.org' for web pages and `lists.linux-foundation.org' for mailing-list web pages and email addresses; the only personal email address I updated from `@osdl.org' was that of Andrew Morton, who prefers `linux-foundation.org' according `git log'. Signed-off-by: Michael Witten <mfwitten@gmail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-11-16 03:55:34 +08:00
<http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2>.
This Quality of Service (QoS) support will enable you to use
Differentiated Services (diffserv) and Resource Reservation Protocol
(RSVP) on your Linux router if you also say Y to the corresponding
classifiers below. Documentation and software is at
<http://diffserv.sourceforge.net/>.
If you say Y here and to "/proc file system" below, you will be able
to read status information about packet schedulers from the file
/proc/net/psched.
The available schedulers are listed in the following questions; you
can say Y to as many as you like. If unsure, say N now.
if NET_SCHED
comment "Queueing/Scheduling"
config NET_SCH_CBQ
tristate "Class Based Queueing (CBQ)"
---help---
Say Y here if you want to use the Class-Based Queueing (CBQ) packet
scheduling algorithm. This algorithm classifies the waiting packets
into a tree-like hierarchy of classes; the leaves of this tree are
in turn scheduled by separate algorithms.
See the top of <file:net/sched/sch_cbq.c> for more details.
CBQ is a commonly used scheduler, so if you're unsure, you should
say Y here. Then say Y to all the queueing algorithms below that you
want to use as leaf disciplines.
To compile this code as a module, choose M here: the
module will be called sch_cbq.
config NET_SCH_HTB
tristate "Hierarchical Token Bucket (HTB)"
---help---
Say Y here if you want to use the Hierarchical Token Buckets (HTB)
packet scheduling algorithm. See
<http://luxik.cdi.cz/~devik/qos/htb/> for complete manual and
in-depth articles.
HTB is very similar to CBQ regarding its goals however is has
different properties and different algorithm.
To compile this code as a module, choose M here: the
module will be called sch_htb.
config NET_SCH_HFSC
tristate "Hierarchical Fair Service Curve (HFSC)"
---help---
Say Y here if you want to use the Hierarchical Fair Service Curve
(HFSC) packet scheduling algorithm.
To compile this code as a module, choose M here: the
module will be called sch_hfsc.
config NET_SCH_ATM
tristate "ATM Virtual Circuits (ATM)"
depends on ATM
---help---
Say Y here if you want to use the ATM pseudo-scheduler. This
provides a framework for invoking classifiers, which in turn
select classes of this queuing discipline. Each class maps
the flow(s) it is handling to a given virtual circuit.
See the top of <file:net/sched/sch_atm.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_atm.
config NET_SCH_PRIO
tristate "Multi Band Priority Queueing (PRIO)"
---help---
Say Y here if you want to use an n-band priority queue packet
scheduler.
To compile this code as a module, choose M here: the
module will be called sch_prio.
config NET_SCH_MULTIQ
tristate "Hardware Multiqueue-aware Multi Band Queuing (MULTIQ)"
---help---
Say Y here if you want to use an n-band queue packet scheduler
to support devices that have multiple hardware transmit queues.
To compile this code as a module, choose M here: the
module will be called sch_multiq.
config NET_SCH_RED
tristate "Random Early Detection (RED)"
---help---
Say Y here if you want to use the Random Early Detection (RED)
packet scheduling algorithm.
See the top of <file:net/sched/sch_red.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_red.
net_sched: SFB flow scheduler This is the Stochastic Fair Blue scheduler, based on work from : W. Feng, D. Kandlur, D. Saha, K. Shin. Blue: A New Class of Active Queue Management Algorithms. U. Michigan CSE-TR-387-99, April 1999. http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf This implementation is based on work done by Juliusz Chroboczek General SFB algorithm can be found in figure 14, page 15: B[l][n] : L x N array of bins (L levels, N bins per level) enqueue() Calculate hash function values h{0}, h{1}, .. h{L-1} Update bins at each level for i = 0 to L - 1 if (B[i][h{i}].qlen > bin_size) B[i][h{i}].p_mark += p_increment; else if (B[i][h{i}].qlen == 0) B[i][h{i}].p_mark -= p_decrement; p_min = min(B[0][h{0}].p_mark ... B[L-1][h{L-1}].p_mark); if (p_min == 1.0) ratelimit(); else mark/drop with probabilty p_min; I did the adaptation of Juliusz code to meet current kernel standards, and various changes to address previous comments : http://thread.gmane.org/gmane.linux.network/90225 http://thread.gmane.org/gmane.linux.network/90375 Default flow classifier is the rxhash introduced by RPS in 2.6.35, but we can use an external flow classifier if wanted. tc qdisc add dev $DEV parent 1:11 handle 11: \ est 0.5sec 2sec sfb limit 128 tc filter add dev $DEV protocol ip parent 11: handle 3 \ flow hash keys dst divisor 1024 Notes: 1) SFB default child qdisc is pfifo_fast. It can be changed by another qdisc but a child qdisc MUST not drop a packet previously queued. This is because SFB needs to handle a dequeued packet in order to maintain its virtual queue states. pfifo_head_drop or CHOKe should not be used. 2) ECN is enabled by default, unlike RED/CHOKe/GRED With help from Patrick McHardy & Andi Kleen Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Juliusz Chroboczek <Juliusz.Chroboczek@pps.jussieu.fr> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Patrick McHardy <kaber@trash.net> CC: Andi Kleen <andi@firstfloor.org> CC: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-02-23 18:56:17 +08:00
config NET_SCH_SFB
tristate "Stochastic Fair Blue (SFB)"
---help---
Say Y here if you want to use the Stochastic Fair Blue (SFB)
packet scheduling algorithm.
See the top of <file:net/sched/sch_sfb.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_sfb.
config NET_SCH_SFQ
tristate "Stochastic Fairness Queueing (SFQ)"
---help---
Say Y here if you want to use the Stochastic Fairness Queueing (SFQ)
packet scheduling algorithm.
See the top of <file:net/sched/sch_sfq.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_sfq.
config NET_SCH_TEQL
tristate "True Link Equalizer (TEQL)"
---help---
Say Y here if you want to use the True Link Equalizer (TLE) packet
scheduling algorithm. This queueing discipline allows the combination
of several physical devices into one virtual device.
See the top of <file:net/sched/sch_teql.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_teql.
config NET_SCH_TBF
tristate "Token Bucket Filter (TBF)"
---help---
Say Y here if you want to use the Token Bucket Filter (TBF) packet
scheduling algorithm.
See the top of <file:net/sched/sch_tbf.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_tbf.
config NET_SCH_GRED
tristate "Generic Random Early Detection (GRED)"
---help---
Say Y here if you want to use the Generic Random Early Detection
(GRED) packet scheduling algorithm for some of your network devices
(see the top of <file:net/sched/sch_red.c> for details and
references about the algorithm).
To compile this code as a module, choose M here: the
module will be called sch_gred.
config NET_SCH_DSMARK
tristate "Differentiated Services marker (DSMARK)"
---help---
Say Y if you want to schedule packets according to the
Differentiated Services architecture proposed in RFC 2475.
Technical information on this method, with pointers to associated
RFCs, is available at <http://www.gta.ufrj.br/diffserv/>.
To compile this code as a module, choose M here: the
module will be called sch_dsmark.
config NET_SCH_NETEM
tristate "Network emulator (NETEM)"
---help---
Say Y if you want to emulate network delay, loss, and packet
re-ordering. This is often useful to simulate networks when
testing applications or protocols.
To compile this driver as a module, choose M here: the module
will be called sch_netem.
If unsure, say N.
config NET_SCH_DRR
tristate "Deficit Round Robin scheduler (DRR)"
help
Say Y here if you want to use the Deficit Round Robin (DRR) packet
scheduling algorithm.
To compile this driver as a module, choose M here: the module
will be called sch_drr.
If unsure, say N.
net_sched: implement a root container qdisc sch_mqprio This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-17 16:06:09 +08:00
config NET_SCH_MQPRIO
tristate "Multi-queue priority scheduler (MQPRIO)"
help
Say Y here if you want to use the Multi-queue Priority scheduler.
This scheduler allows QOS to be offloaded on NICs that have support
for offloading QOS schedulers.
To compile this driver as a module, choose M here: the module will
be called sch_mqprio.
If unsure, say N.
config NET_SCH_CHOKE
tristate "CHOose and Keep responsive flow scheduler (CHOKE)"
help
Say Y here if you want to use the CHOKe packet scheduler (CHOose
and Keep for responsive flows, CHOose and Kill for unresponsive
flows). This is a variation of RED which trys to penalize flows
that monopolize the queue.
To compile this code as a module, choose M here: the
module will be called sch_choke.
config NET_SCH_QFQ
tristate "Quick Fair Queueing scheduler (QFQ)"
help
Say Y here if you want to use the Quick Fair Queueing Scheduler (QFQ)
packet scheduling algorithm.
To compile this driver as a module, choose M here: the module
will be called sch_qfq.
If unsure, say N.
codel: Controlled Delay AQM An implementation of CoDel AQM, from Kathleen Nichols and Van Jacobson. http://queue.acm.org/detail.cfm?id=2209336 This AQM main input is no longer queue size in bytes or packets, but the delay packets stay in (FIFO) queue. As we don't have infinite memory, we still can drop packets in enqueue() in case of massive load, but mean of CoDel is to drop packets in dequeue(), using a control law based on two simple parameters : target : target sojourn time (default 5ms) interval : width of moving time window (default 100ms) Based on initial work from Dave Taht. Refactored to help future codel inclusion as a plugin for other linux qdisc (FQ_CODEL, ...), like RED. include/net/codel.h contains codel algorithm as close as possible than Kathleen reference. net/sched/sch_codel.c contains the linux qdisc specific glue. Separate structures permit a memory efficient implementation of fq_codel (to be sent as a separate work) : Each flow has its own struct codel_vars. timestamps are taken at enqueue() time with 1024 ns precision, allowing a range of 2199 seconds in queue, and 100Gb links support. iproute2 uses usec as base unit. Selected packets are dropped, unless ECN is enabled and packets can get ECN mark instead. Tested from 2Mb to 10Gb speeds with no particular problems, on ixgbe and tg3 drivers (BQL enabled). Usage: tc qdisc ... codel [ limit PACKETS ] [ target TIME ] [ interval TIME ] [ ecn ] qdisc codel 10: parent 1:1 limit 2000p target 3.0ms interval 60.0ms ecn Sent 13347099587 bytes 8815805 pkt (dropped 0, overlimits 0 requeues 0) rate 202365Kbit 16708pps backlog 113550b 75p requeues 0 count 116 lastcount 98 ldelay 4.3ms dropping drop_next 816us maxpacket 1514 ecn_mark 84399 drop_overlimit 0 CoDel must be seen as a base module, and should be used keeping in mind there is still a FIFO queue. So a typical setup will probably need a hierarchy of several qdiscs and packet classifiers to be able to meet whatever constraints a user might have. One possible example would be to use fq_codel, which combines Fair Queueing and CoDel, in replacement of sfq / sfq_red. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Dave Taht <dave.taht@bufferbloat.net> Cc: Kathleen Nichols <nichols@pollere.com> Cc: Van Jacobson <van@pollere.net> Cc: Tom Herbert <therbert@google.com> Cc: Matt Mathis <mattmathis@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-05-10 15:51:25 +08:00
config NET_SCH_CODEL
tristate "Controlled Delay AQM (CODEL)"
help
Say Y here if you want to use the Controlled Delay (CODEL)
packet scheduling algorithm.
To compile this driver as a module, choose M here: the module
will be called sch_codel.
If unsure, say N.
fq_codel: Fair Queue Codel AQM Fair Queue Codel packet scheduler Principles : - Packets are classified (internal classifier or external) on flows. - This is a Stochastic model (as we use a hash, several flows might be hashed on same slot) - Each flow has a CoDel managed queue. - Flows are linked onto two (Round Robin) lists, so that new flows have priority on old ones. - For a given flow, packets are not reordered (CoDel uses a FIFO) - head drops only. - ECN capability is on by default. - Very low memory footprint (64 bytes per flow) tc qdisc ... fq_codel [ limit PACKETS ] [ flows number ] [ target TIME ] [ interval TIME ] [ noecn ] [ quantum BYTES ] defaults : 1024 flows, 10240 packets limit, quantum : device MTU target : 5ms (CoDel default) interval : 100ms (CoDel default) Impressive results on load : class htb 1:1 root leaf 10: prio 0 quantum 1514 rate 200000Kbit ceil 200000Kbit burst 1475b/8 mpu 0b overhead 0b cburst 1475b/8 mpu 0b overhead 0b level 0 Sent 43304920109 bytes 33063109 pkt (dropped 0, overlimits 0 requeues 0) rate 201691Kbit 28595pps backlog 0b 312p requeues 0 lended: 33063109 borrowed: 0 giants: 0 tokens: -912 ctokens: -912 class fq_codel 10:1735 parent 10: (dropped 1292, overlimits 0 requeues 0) backlog 15140b 10p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms class fq_codel 10:4524 parent 10: (dropped 1291, overlimits 0 requeues 0) backlog 16654b 11p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms class fq_codel 10:4e74 parent 10: (dropped 1290, overlimits 0 requeues 0) backlog 6056b 4p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 6.4ms dropping drop_next 92.0ms class fq_codel 10:628a parent 10: (dropped 1289, overlimits 0 requeues 0) backlog 7570b 5p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 5.4ms dropping drop_next 90.9ms class fq_codel 10:a4b3 parent 10: (dropped 302, overlimits 0 requeues 0) backlog 16654b 11p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms class fq_codel 10:c3c2 parent 10: (dropped 1284, overlimits 0 requeues 0) backlog 13626b 9p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 5.9ms class fq_codel 10:d331 parent 10: (dropped 299, overlimits 0 requeues 0) backlog 15140b 10p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.0ms class fq_codel 10:d526 parent 10: (dropped 12160, overlimits 0 requeues 0) backlog 35870b 211p requeues 0 deficit 1508 count 12160 lastcount 1 ldelay 15.3ms dropping drop_next 247us class fq_codel 10:e2c6 parent 10: (dropped 1288, overlimits 0 requeues 0) backlog 15140b 10p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms class fq_codel 10:eab5 parent 10: (dropped 1285, overlimits 0 requeues 0) backlog 16654b 11p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 5.9ms class fq_codel 10:f220 parent 10: (dropped 1289, overlimits 0 requeues 0) backlog 15140b 10p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms qdisc htb 1: root refcnt 6 r2q 10 default 1 direct_packets_stat 0 ver 3.17 Sent 43331086547 bytes 33092812 pkt (dropped 0, overlimits 66063544 requeues 71) rate 201697Kbit 28602pps backlog 0b 260p requeues 71 qdisc fq_codel 10: parent 1:1 limit 10240p flows 65536 target 5.0ms interval 100.0ms ecn Sent 43331086547 bytes 33092812 pkt (dropped 949359, overlimits 0 requeues 0) rate 201697Kbit 28602pps backlog 189352b 260p requeues 0 maxpacket 1514 drop_overlimit 0 new_flow_count 5582 ecn_mark 125593 new_flows_len 0 old_flows_len 11 PING 172.30.42.18 (172.30.42.18) 56(84) bytes of data. 64 bytes from 172.30.42.18: icmp_req=1 ttl=64 time=0.227 ms 64 bytes from 172.30.42.18: icmp_req=2 ttl=64 time=0.165 ms 64 bytes from 172.30.42.18: icmp_req=3 ttl=64 time=0.166 ms 64 bytes from 172.30.42.18: icmp_req=4 ttl=64 time=0.151 ms 64 bytes from 172.30.42.18: icmp_req=5 ttl=64 time=0.164 ms 64 bytes from 172.30.42.18: icmp_req=6 ttl=64 time=0.172 ms 64 bytes from 172.30.42.18: icmp_req=7 ttl=64 time=0.175 ms 64 bytes from 172.30.42.18: icmp_req=8 ttl=64 time=0.183 ms 64 bytes from 172.30.42.18: icmp_req=9 ttl=64 time=0.158 ms 64 bytes from 172.30.42.18: icmp_req=10 ttl=64 time=0.200 ms 10 packets transmitted, 10 received, 0% packet loss, time 8999ms rtt min/avg/max/mdev = 0.151/0.176/0.227/0.022 ms Much better than SFQ because of priority given to new flows, and fast path dirtying less cache lines. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-05-11 17:30:50 +08:00
config NET_SCH_FQ_CODEL
tristate "Fair Queue Controlled Delay AQM (FQ_CODEL)"
help
Say Y here if you want to use the FQ Controlled Delay (FQ_CODEL)
packet scheduling algorithm.
To compile this driver as a module, choose M here: the module
will be called sch_fq_codel.
If unsure, say N.
pkt_sched: fq: Fair Queue packet scheduler - Uses perfect flow match (not stochastic hash like SFQ/FQ_codel) - Uses the new_flow/old_flow separation from FQ_codel - New flows get an initial credit allowing IW10 without added delay. - Special FIFO queue for high prio packets (no need for PRIO + FQ) - Uses a hash table of RB trees to locate the flows at enqueue() time - Smart on demand gc (at enqueue() time, RB tree lookup evicts old unused flows) - Dynamic memory allocations. - Designed to allow millions of concurrent flows per Qdisc. - Small memory footprint : ~8K per Qdisc, and 104 bytes per flow. - Single high resolution timer for throttled flows (if any). - One RB tree to link throttled flows. - Ability to have a max rate per flow. We might add a socket option to add per socket limitation. Attempts have been made to add TCP pacing in TCP stack, but this seems to add complex code to an already complex stack. TCP pacing is welcomed for flows having idle times, as the cwnd permits TCP stack to queue a possibly large number of packets. This removes the 'slow start after idle' choice, hitting badly large BDP flows, and applications delivering chunks of data as video streams. Nicely spaced packets : Here interface is 10Gbit, but flow bottleneck is ~20Mbit cwin is big, yet FQ avoids the typical bursts generated by TCP (as in netperf TCP_RR -- -r 100000,100000) 15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115> 15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115> 15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115> 15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115> 15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115> 15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115> 15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115> 15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805> 15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115> 15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115> 15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115> 15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115> 15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115> 15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115> 15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> 15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115> TCP timestamps show that most packets from B were queued in the same ms timeframe (TSval 1159799{3,4}), but FQ managed to send them right in time to avoid a big burst. In slow start or steady state, very few packets are throttled [1] FQ gets a bunch of tunables as : limit : max number of packets on whole Qdisc (default 10000) flow_limit : max number of packets per flow (default 100) quantum : the credit per RR round (default is 2 MTU) initial_quantum : initial credit for new flows (default is 10 MTU) maxrate : max per flow rate (default : unlimited) buckets : number of RB trees (default : 1024) in hash table. (consumes 8 bytes per bucket) [no]pacing : disable/enable pacing (default is enable) All of them can be changed on a live qdisc. $ tc qd add dev eth0 root fq help Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ] [ quantum BYTES ] [ initial_quantum BYTES ] [ maxrate RATE ] [ buckets NUMBER ] [ [no]pacing ] $ tc -s -d qd qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140 Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14) backlog 0b 0p requeues 14 511 flows, 511 inactive, 0 throttled 110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit [1] Except if initial srtt is overestimated, as if using cached srtt in tcp metrics. We'll provide a fix for this issue. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-30 06:49:55 +08:00
config NET_SCH_FQ
tristate "Fair Queue"
help
Say Y here if you want to use the FQ packet scheduling algorithm.
FQ does flow separation, and is able to respect pacing requirements
set by TCP stack into sk->sk_pacing_rate (for localy generated
traffic)
To compile this driver as a module, choose M here: the module
will be called sch_fq.
If unsure, say N.
net-qdisc-hhf: Heavy-Hitter Filter (HHF) qdisc This patch implements the first size-based qdisc that attempts to differentiate between small flows and heavy-hitters. The goal is to catch the heavy-hitters and move them to a separate queue with less priority so that bulk traffic does not affect the latency of critical traffic. Currently "less priority" means less weight (2:1 in particular) in a Weighted Deficit Round Robin (WDRR) scheduler. In essence, this patch addresses the "delay-bloat" problem due to bloated buffers. In some systems, large queues may be necessary for obtaining CPU efficiency, or due to the presence of unresponsive traffic like UDP, or just a large number of connections with each having a small amount of outstanding traffic. In these circumstances, HHF aims to reduce the HoL blocking for latency sensitive traffic, while not impacting the queues built up by bulk traffic. HHF can also be used in conjunction with other AQM mechanisms such as CoDel. To capture heavy-hitters, we implement the "multi-stage filter" design in the following paper: C. Estan and G. Varghese, "New Directions in Traffic Measurement and Accounting", in ACM SIGCOMM, 2002. Some configurable qdisc settings through 'tc': - hhf_reset_timeout: period to reset counter values in the multi-stage filter (default 40ms) - hhf_admit_bytes: threshold to classify heavy-hitters (default 128KB) - hhf_evict_timeout: threshold to evict idle heavy-hitters (default 1s) - hhf_non_hh_weight: Weighted Deficit Round Robin (WDRR) weight for non-heavy-hitters (default 2) - hh_flows_limit: max number of heavy-hitter flow entries (default 2048) Note that the ratio between hhf_admit_bytes and hhf_reset_timeout reflects the bandwidth of heavy-hitters that we attempt to capture (25Mbps with the above default settings). The false negative rate (heavy-hitter flows getting away unclassified) is zero by the design of the multi-stage filter algorithm. With 100 heavy-hitter flows, using four hashes and 4000 counters yields a false positive rate (non-heavy-hitters mistakenly classified as heavy-hitters) of less than 1e-4. Signed-off-by: Terry Lam <vtlam@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-15 16:30:21 +08:00
config NET_SCH_HHF
tristate "Heavy-Hitter Filter (HHF)"
help
Say Y here if you want to use the Heavy-Hitter Filter (HHF)
packet scheduling algorithm.
To compile this driver as a module, choose M here: the module
will be called sch_hhf.
net: pkt_sched: PIE AQM scheme Proportional Integral controller Enhanced (PIE) is a scheduler to address the bufferbloat problem. >From the IETF draft below: " Bufferbloat is a phenomenon where excess buffers in the network cause high latency and jitter. As more and more interactive applications (e.g. voice over IP, real time video streaming and financial transactions) run in the Internet, high latency and jitter degrade application performance. There is a pressing need to design intelligent queue management schemes that can control latency and jitter; and hence provide desirable quality of service to users. We present here a lightweight design, PIE(Proportional Integral controller Enhanced) that can effectively control the average queueing latency to a target value. Simulation results, theoretical analysis and Linux testbed results have shown that PIE can ensure low latency and achieve high link utilization under various congestion situations. The design does not require per-packet timestamp, so it incurs very small overhead and is simple enough to implement in both hardware and software. " Many thanks to Dave Taht for extensive feedback, reviews, testing and suggestions. Thanks also to Stephen Hemminger and Eric Dumazet for reviews and suggestions. Naeem Khademi and Dave Taht independently contributed to ECN support. For more information, please see technical paper about PIE in the IEEE Conference on High Performance Switching and Routing 2013. A copy of the paper can be found at ftp://ftpeng.cisco.com/pie/. Please also refer to the IETF draft submission at http://tools.ietf.org/html/draft-pan-tsvwg-pie-00 All relevant code, documents and test scripts and results can be found at ftp://ftpeng.cisco.com/pie/. For problems with the iproute2/tc or Linux kernel code, please contact Vijay Subramanian (vijaynsu@cisco.com or subramanian.vijay@gmail.com) Mythili Prabhu (mysuryan@cisco.com) Signed-off-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: Mythili Prabhu <mysuryan@cisco.com> CC: Dave Taht <dave.taht@bufferbloat.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-05 09:33:55 +08:00
config NET_SCH_PIE
tristate "Proportional Integral controller Enhanced (PIE) scheduler"
help
Say Y here if you want to use the Proportional Integral controller
Enhanced scheduler packet scheduling algorithm.
For more information, please see
http://tools.ietf.org/html/draft-pan-tsvwg-pie-00
To compile this driver as a module, choose M here: the module
will be called sch_pie.
If unsure, say N.
config NET_SCH_INGRESS
net, sched: add clsact qdisc This work adds a generalization of the ingress qdisc as a qdisc holding only classifiers. The clsact qdisc works on ingress, but also on egress. In both cases, it's execution happens without taking the qdisc lock, and the main difference for the egress part compared to prior version of [1] is that this can be applied with _any_ underlying real egress qdisc (also classless ones). Besides solving the use-case of [1], that is, allowing for more programmability on assigning skb->priority for the mqprio case that is supported by most popular 10G+ NICs, it also opens up a lot more flexibility for other tc applications. The main work on classification can already be done at clsact egress time if the use-case allows and state stored for later retrieval f.e. again in skb->priority with major/minors (which is checked by most classful qdiscs before consulting tc_classify()) and/or in other skb fields like skb->tc_index for some light-weight post-processing to get to the eventual classid in case of a classful qdisc. Another use case is that the clsact egress part allows to have a central egress counterpart to the ingress classifiers, so that classifiers can easily share state (e.g. in cls_bpf via eBPF maps) for ingress and egress. Currently, default setups like mq + pfifo_fast would require for this to use, for example, prio qdisc instead (to get a tc_classify() run) and to duplicate the egress classifier for each queue. With clsact, it allows for leaving the setup as is, it can additionally assign skb->priority to put the skb in one of pfifo_fast's bands and it can share state with maps. Moreover, we can access the skb's dst entry (f.e. to retrieve tclassid) w/o the need to perform a skb_dst_force() to hold on to it any longer. In lwt case, we can also use this facility to setup dst metadata via cls_bpf (bpf_skb_set_tunnel_key()) without needing a real egress qdisc just for that (case of IFF_NO_QUEUE devices, for example). The realization can be done without any changes to the scheduler core framework. All it takes is that we have two a-priori defined minors/child classes, where we can mux between ingress and egress classifier list (dev->ingress_cl_list and dev->egress_cl_list, latter stored close to dev->_tx to avoid extra cacheline miss for moderate loads). The egress part is a bit similar modelled to handle_ing() and patched to a noop in case the functionality is not used. Both handlers are now called sch_handle_ingress() and sch_handle_egress(), code sharing among the two doesn't seem practical as there are various minor differences in both paths, so that making them conditional in a single handler would rather slow things down. Full compatibility to ingress qdisc is provided as well. Since both piggyback on TC_H_CLSACT, only one of them (ingress/clsact) can exist per netdevice, and thus ingress qdisc specific behaviour can be retained for user space. This means, either a user does 'tc qdisc add dev foo ingress' and configures ingress qdisc as usual, or the 'tc qdisc add dev foo clsact' alternative, where both, ingress and egress classifier can be configured as in the below example. ingress qdisc supports attaching classifier to any minor number whereas clsact has two fixed minors for muxing between the lists, therefore to not break user space setups, they are better done as two separate qdiscs. I decided to extend the sch_ingress module with clsact functionality so that commonly used code can be reused, the module is being aliased with sch_clsact so that it can be auto-loaded properly. Alternative would have been to add a flag when initializing ingress to alter its behaviour plus aliasing to a different name (as it's more than just ingress). However, the first would end up, based on the flag, choosing the new/old behaviour by calling different function implementations to handle each anyway, the latter would require to register ingress qdisc once again under different alias. So, this really begs to provide a minimal, cleaner approach to have Qdisc_ops and Qdisc_class_ops by its own that share callbacks used by both. Example, adding qdisc: # tc qdisc add dev foo clsact # tc qdisc show dev foo qdisc mq 0: root qdisc pfifo_fast 0: parent :1 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc pfifo_fast 0: parent :2 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc pfifo_fast 0: parent :3 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc pfifo_fast 0: parent :4 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc clsact ffff: parent ffff:fff1 Adding filters (deleting, etc works analogous by specifying ingress/egress): # tc filter add dev foo ingress bpf da obj bar.o sec ingress # tc filter add dev foo egress bpf da obj bar.o sec egress # tc filter show dev foo ingress filter protocol all pref 49152 bpf filter protocol all pref 49152 bpf handle 0x1 bar.o:[ingress] direct-action # tc filter show dev foo egress filter protocol all pref 49152 bpf filter protocol all pref 49152 bpf handle 0x1 bar.o:[egress] direct-action A 'tc filter show dev foo' or 'tc filter show dev foo parent ffff:' will show an empty list for clsact. Either using the parent names (ingress/egress) or specifying the full major/minor will then show the related filter lists. Prior work on a mqprio prequeue() facility [1] was done mainly by John Fastabend. [1] http://patchwork.ozlabs.org/patch/512949/ Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-08 05:29:47 +08:00
tristate "Ingress/classifier-action Qdisc"
depends on NET_CLS_ACT
select NET_INGRESS
net, sched: add clsact qdisc This work adds a generalization of the ingress qdisc as a qdisc holding only classifiers. The clsact qdisc works on ingress, but also on egress. In both cases, it's execution happens without taking the qdisc lock, and the main difference for the egress part compared to prior version of [1] is that this can be applied with _any_ underlying real egress qdisc (also classless ones). Besides solving the use-case of [1], that is, allowing for more programmability on assigning skb->priority for the mqprio case that is supported by most popular 10G+ NICs, it also opens up a lot more flexibility for other tc applications. The main work on classification can already be done at clsact egress time if the use-case allows and state stored for later retrieval f.e. again in skb->priority with major/minors (which is checked by most classful qdiscs before consulting tc_classify()) and/or in other skb fields like skb->tc_index for some light-weight post-processing to get to the eventual classid in case of a classful qdisc. Another use case is that the clsact egress part allows to have a central egress counterpart to the ingress classifiers, so that classifiers can easily share state (e.g. in cls_bpf via eBPF maps) for ingress and egress. Currently, default setups like mq + pfifo_fast would require for this to use, for example, prio qdisc instead (to get a tc_classify() run) and to duplicate the egress classifier for each queue. With clsact, it allows for leaving the setup as is, it can additionally assign skb->priority to put the skb in one of pfifo_fast's bands and it can share state with maps. Moreover, we can access the skb's dst entry (f.e. to retrieve tclassid) w/o the need to perform a skb_dst_force() to hold on to it any longer. In lwt case, we can also use this facility to setup dst metadata via cls_bpf (bpf_skb_set_tunnel_key()) without needing a real egress qdisc just for that (case of IFF_NO_QUEUE devices, for example). The realization can be done without any changes to the scheduler core framework. All it takes is that we have two a-priori defined minors/child classes, where we can mux between ingress and egress classifier list (dev->ingress_cl_list and dev->egress_cl_list, latter stored close to dev->_tx to avoid extra cacheline miss for moderate loads). The egress part is a bit similar modelled to handle_ing() and patched to a noop in case the functionality is not used. Both handlers are now called sch_handle_ingress() and sch_handle_egress(), code sharing among the two doesn't seem practical as there are various minor differences in both paths, so that making them conditional in a single handler would rather slow things down. Full compatibility to ingress qdisc is provided as well. Since both piggyback on TC_H_CLSACT, only one of them (ingress/clsact) can exist per netdevice, and thus ingress qdisc specific behaviour can be retained for user space. This means, either a user does 'tc qdisc add dev foo ingress' and configures ingress qdisc as usual, or the 'tc qdisc add dev foo clsact' alternative, where both, ingress and egress classifier can be configured as in the below example. ingress qdisc supports attaching classifier to any minor number whereas clsact has two fixed minors for muxing between the lists, therefore to not break user space setups, they are better done as two separate qdiscs. I decided to extend the sch_ingress module with clsact functionality so that commonly used code can be reused, the module is being aliased with sch_clsact so that it can be auto-loaded properly. Alternative would have been to add a flag when initializing ingress to alter its behaviour plus aliasing to a different name (as it's more than just ingress). However, the first would end up, based on the flag, choosing the new/old behaviour by calling different function implementations to handle each anyway, the latter would require to register ingress qdisc once again under different alias. So, this really begs to provide a minimal, cleaner approach to have Qdisc_ops and Qdisc_class_ops by its own that share callbacks used by both. Example, adding qdisc: # tc qdisc add dev foo clsact # tc qdisc show dev foo qdisc mq 0: root qdisc pfifo_fast 0: parent :1 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc pfifo_fast 0: parent :2 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc pfifo_fast 0: parent :3 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc pfifo_fast 0: parent :4 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc clsact ffff: parent ffff:fff1 Adding filters (deleting, etc works analogous by specifying ingress/egress): # tc filter add dev foo ingress bpf da obj bar.o sec ingress # tc filter add dev foo egress bpf da obj bar.o sec egress # tc filter show dev foo ingress filter protocol all pref 49152 bpf filter protocol all pref 49152 bpf handle 0x1 bar.o:[ingress] direct-action # tc filter show dev foo egress filter protocol all pref 49152 bpf filter protocol all pref 49152 bpf handle 0x1 bar.o:[egress] direct-action A 'tc filter show dev foo' or 'tc filter show dev foo parent ffff:' will show an empty list for clsact. Either using the parent names (ingress/egress) or specifying the full major/minor will then show the related filter lists. Prior work on a mqprio prequeue() facility [1] was done mainly by John Fastabend. [1] http://patchwork.ozlabs.org/patch/512949/ Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-08 05:29:47 +08:00
select NET_EGRESS
---help---
net, sched: add clsact qdisc This work adds a generalization of the ingress qdisc as a qdisc holding only classifiers. The clsact qdisc works on ingress, but also on egress. In both cases, it's execution happens without taking the qdisc lock, and the main difference for the egress part compared to prior version of [1] is that this can be applied with _any_ underlying real egress qdisc (also classless ones). Besides solving the use-case of [1], that is, allowing for more programmability on assigning skb->priority for the mqprio case that is supported by most popular 10G+ NICs, it also opens up a lot more flexibility for other tc applications. The main work on classification can already be done at clsact egress time if the use-case allows and state stored for later retrieval f.e. again in skb->priority with major/minors (which is checked by most classful qdiscs before consulting tc_classify()) and/or in other skb fields like skb->tc_index for some light-weight post-processing to get to the eventual classid in case of a classful qdisc. Another use case is that the clsact egress part allows to have a central egress counterpart to the ingress classifiers, so that classifiers can easily share state (e.g. in cls_bpf via eBPF maps) for ingress and egress. Currently, default setups like mq + pfifo_fast would require for this to use, for example, prio qdisc instead (to get a tc_classify() run) and to duplicate the egress classifier for each queue. With clsact, it allows for leaving the setup as is, it can additionally assign skb->priority to put the skb in one of pfifo_fast's bands and it can share state with maps. Moreover, we can access the skb's dst entry (f.e. to retrieve tclassid) w/o the need to perform a skb_dst_force() to hold on to it any longer. In lwt case, we can also use this facility to setup dst metadata via cls_bpf (bpf_skb_set_tunnel_key()) without needing a real egress qdisc just for that (case of IFF_NO_QUEUE devices, for example). The realization can be done without any changes to the scheduler core framework. All it takes is that we have two a-priori defined minors/child classes, where we can mux between ingress and egress classifier list (dev->ingress_cl_list and dev->egress_cl_list, latter stored close to dev->_tx to avoid extra cacheline miss for moderate loads). The egress part is a bit similar modelled to handle_ing() and patched to a noop in case the functionality is not used. Both handlers are now called sch_handle_ingress() and sch_handle_egress(), code sharing among the two doesn't seem practical as there are various minor differences in both paths, so that making them conditional in a single handler would rather slow things down. Full compatibility to ingress qdisc is provided as well. Since both piggyback on TC_H_CLSACT, only one of them (ingress/clsact) can exist per netdevice, and thus ingress qdisc specific behaviour can be retained for user space. This means, either a user does 'tc qdisc add dev foo ingress' and configures ingress qdisc as usual, or the 'tc qdisc add dev foo clsact' alternative, where both, ingress and egress classifier can be configured as in the below example. ingress qdisc supports attaching classifier to any minor number whereas clsact has two fixed minors for muxing between the lists, therefore to not break user space setups, they are better done as two separate qdiscs. I decided to extend the sch_ingress module with clsact functionality so that commonly used code can be reused, the module is being aliased with sch_clsact so that it can be auto-loaded properly. Alternative would have been to add a flag when initializing ingress to alter its behaviour plus aliasing to a different name (as it's more than just ingress). However, the first would end up, based on the flag, choosing the new/old behaviour by calling different function implementations to handle each anyway, the latter would require to register ingress qdisc once again under different alias. So, this really begs to provide a minimal, cleaner approach to have Qdisc_ops and Qdisc_class_ops by its own that share callbacks used by both. Example, adding qdisc: # tc qdisc add dev foo clsact # tc qdisc show dev foo qdisc mq 0: root qdisc pfifo_fast 0: parent :1 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc pfifo_fast 0: parent :2 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc pfifo_fast 0: parent :3 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc pfifo_fast 0: parent :4 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc clsact ffff: parent ffff:fff1 Adding filters (deleting, etc works analogous by specifying ingress/egress): # tc filter add dev foo ingress bpf da obj bar.o sec ingress # tc filter add dev foo egress bpf da obj bar.o sec egress # tc filter show dev foo ingress filter protocol all pref 49152 bpf filter protocol all pref 49152 bpf handle 0x1 bar.o:[ingress] direct-action # tc filter show dev foo egress filter protocol all pref 49152 bpf filter protocol all pref 49152 bpf handle 0x1 bar.o:[egress] direct-action A 'tc filter show dev foo' or 'tc filter show dev foo parent ffff:' will show an empty list for clsact. Either using the parent names (ingress/egress) or specifying the full major/minor will then show the related filter lists. Prior work on a mqprio prequeue() facility [1] was done mainly by John Fastabend. [1] http://patchwork.ozlabs.org/patch/512949/ Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-08 05:29:47 +08:00
Say Y here if you want to use classifiers for incoming and/or outgoing
packets. This qdisc doesn't do anything else besides running classifiers,
which can also have actions attached to them. In case of outgoing packets,
classifiers that this qdisc holds are executed in the transmit path
before real enqueuing to an egress qdisc happens.
If unsure, say Y.
net, sched: add clsact qdisc This work adds a generalization of the ingress qdisc as a qdisc holding only classifiers. The clsact qdisc works on ingress, but also on egress. In both cases, it's execution happens without taking the qdisc lock, and the main difference for the egress part compared to prior version of [1] is that this can be applied with _any_ underlying real egress qdisc (also classless ones). Besides solving the use-case of [1], that is, allowing for more programmability on assigning skb->priority for the mqprio case that is supported by most popular 10G+ NICs, it also opens up a lot more flexibility for other tc applications. The main work on classification can already be done at clsact egress time if the use-case allows and state stored for later retrieval f.e. again in skb->priority with major/minors (which is checked by most classful qdiscs before consulting tc_classify()) and/or in other skb fields like skb->tc_index for some light-weight post-processing to get to the eventual classid in case of a classful qdisc. Another use case is that the clsact egress part allows to have a central egress counterpart to the ingress classifiers, so that classifiers can easily share state (e.g. in cls_bpf via eBPF maps) for ingress and egress. Currently, default setups like mq + pfifo_fast would require for this to use, for example, prio qdisc instead (to get a tc_classify() run) and to duplicate the egress classifier for each queue. With clsact, it allows for leaving the setup as is, it can additionally assign skb->priority to put the skb in one of pfifo_fast's bands and it can share state with maps. Moreover, we can access the skb's dst entry (f.e. to retrieve tclassid) w/o the need to perform a skb_dst_force() to hold on to it any longer. In lwt case, we can also use this facility to setup dst metadata via cls_bpf (bpf_skb_set_tunnel_key()) without needing a real egress qdisc just for that (case of IFF_NO_QUEUE devices, for example). The realization can be done without any changes to the scheduler core framework. All it takes is that we have two a-priori defined minors/child classes, where we can mux between ingress and egress classifier list (dev->ingress_cl_list and dev->egress_cl_list, latter stored close to dev->_tx to avoid extra cacheline miss for moderate loads). The egress part is a bit similar modelled to handle_ing() and patched to a noop in case the functionality is not used. Both handlers are now called sch_handle_ingress() and sch_handle_egress(), code sharing among the two doesn't seem practical as there are various minor differences in both paths, so that making them conditional in a single handler would rather slow things down. Full compatibility to ingress qdisc is provided as well. Since both piggyback on TC_H_CLSACT, only one of them (ingress/clsact) can exist per netdevice, and thus ingress qdisc specific behaviour can be retained for user space. This means, either a user does 'tc qdisc add dev foo ingress' and configures ingress qdisc as usual, or the 'tc qdisc add dev foo clsact' alternative, where both, ingress and egress classifier can be configured as in the below example. ingress qdisc supports attaching classifier to any minor number whereas clsact has two fixed minors for muxing between the lists, therefore to not break user space setups, they are better done as two separate qdiscs. I decided to extend the sch_ingress module with clsact functionality so that commonly used code can be reused, the module is being aliased with sch_clsact so that it can be auto-loaded properly. Alternative would have been to add a flag when initializing ingress to alter its behaviour plus aliasing to a different name (as it's more than just ingress). However, the first would end up, based on the flag, choosing the new/old behaviour by calling different function implementations to handle each anyway, the latter would require to register ingress qdisc once again under different alias. So, this really begs to provide a minimal, cleaner approach to have Qdisc_ops and Qdisc_class_ops by its own that share callbacks used by both. Example, adding qdisc: # tc qdisc add dev foo clsact # tc qdisc show dev foo qdisc mq 0: root qdisc pfifo_fast 0: parent :1 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc pfifo_fast 0: parent :2 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc pfifo_fast 0: parent :3 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc pfifo_fast 0: parent :4 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 qdisc clsact ffff: parent ffff:fff1 Adding filters (deleting, etc works analogous by specifying ingress/egress): # tc filter add dev foo ingress bpf da obj bar.o sec ingress # tc filter add dev foo egress bpf da obj bar.o sec egress # tc filter show dev foo ingress filter protocol all pref 49152 bpf filter protocol all pref 49152 bpf handle 0x1 bar.o:[ingress] direct-action # tc filter show dev foo egress filter protocol all pref 49152 bpf filter protocol all pref 49152 bpf handle 0x1 bar.o:[egress] direct-action A 'tc filter show dev foo' or 'tc filter show dev foo parent ffff:' will show an empty list for clsact. Either using the parent names (ingress/egress) or specifying the full major/minor will then show the related filter lists. Prior work on a mqprio prequeue() facility [1] was done mainly by John Fastabend. [1] http://patchwork.ozlabs.org/patch/512949/ Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-08 05:29:47 +08:00
To compile this code as a module, choose M here: the module will be
called sch_ingress with alias of sch_clsact.
net/sched: sch_plug - Queue traffic until an explicit release command The qdisc supports two operations - plug and unplug. When the qdisc receives a plug command via netlink request, packets arriving henceforth are buffered until a corresponding unplug command is received. Depending on the type of unplug command, the queue can be unplugged indefinitely or selectively. This qdisc can be used to implement output buffering, an essential functionality required for consistent recovery in checkpoint based fault-tolerance systems. Output buffering enables speculative execution by allowing generated network traffic to be rolled back. It is used to provide network protection for Xen Guests in the Remus high availability project, available as part of Xen. This module is generic enough to be used by any other system that wishes to add speculative execution and output buffering to its applications. This module was originally available in the linux 2.6.32 PV-OPS tree, used as dom0 for Xen. For more information, please refer to http://nss.cs.ubc.ca/remus/ and http://wiki.xensource.com/xenwiki/Remus Changes in V3: * Removed debug output (printk) on queue overflow * Added TCQ_PLUG_RELEASE_INDEFINITE - that allows the user to use this qdisc, for simple plug/unplug operations. * Use of packet counts instead of pointers to keep track of the buffers in the queue. Signed-off-by: Shriram Rajagopalan <rshriram@cs.ubc.ca> Signed-off-by: Brendan Cully <brendan@cs.ubc.ca> [author of the code in the linux 2.6.32 pvops tree] Signed-off-by: David S. Miller <davem@davemloft.net>
2012-02-05 21:51:32 +08:00
config NET_SCH_PLUG
tristate "Plug network traffic until release (PLUG)"
---help---
This queuing discipline allows userspace to plug/unplug a network
output queue, using the netlink interface. When it receives an
enqueue command it inserts a plug into the outbound queue that
causes following packets to enqueue until a dequeue command arrives
over netlink, causing the plug to be removed and resuming the normal
packet flow.
This module also provides a generic "network output buffering"
functionality (aka output commit), wherein upon arrival of a dequeue
command, only packets up to the first plug are released for delivery.
The Remus HA project uses this module to enable speculative execution
of virtual machines by allowing the generated network output to be rolled
back if needed.
For more information, please refer to <http://wiki.xenproject.org/wiki/Remus>
net/sched: sch_plug - Queue traffic until an explicit release command The qdisc supports two operations - plug and unplug. When the qdisc receives a plug command via netlink request, packets arriving henceforth are buffered until a corresponding unplug command is received. Depending on the type of unplug command, the queue can be unplugged indefinitely or selectively. This qdisc can be used to implement output buffering, an essential functionality required for consistent recovery in checkpoint based fault-tolerance systems. Output buffering enables speculative execution by allowing generated network traffic to be rolled back. It is used to provide network protection for Xen Guests in the Remus high availability project, available as part of Xen. This module is generic enough to be used by any other system that wishes to add speculative execution and output buffering to its applications. This module was originally available in the linux 2.6.32 PV-OPS tree, used as dom0 for Xen. For more information, please refer to http://nss.cs.ubc.ca/remus/ and http://wiki.xensource.com/xenwiki/Remus Changes in V3: * Removed debug output (printk) on queue overflow * Added TCQ_PLUG_RELEASE_INDEFINITE - that allows the user to use this qdisc, for simple plug/unplug operations. * Use of packet counts instead of pointers to keep track of the buffers in the queue. Signed-off-by: Shriram Rajagopalan <rshriram@cs.ubc.ca> Signed-off-by: Brendan Cully <brendan@cs.ubc.ca> [author of the code in the linux 2.6.32 pvops tree] Signed-off-by: David S. Miller <davem@davemloft.net>
2012-02-05 21:51:32 +08:00
Say Y here if you are using this kernel for Xen dom0 and
want to protect Xen guests with Remus.
To compile this code as a module, choose M here: the
module will be called sch_plug.
comment "Classification"
config NET_CLS
bool
config NET_CLS_BASIC
tristate "Elementary classification (BASIC)"
select NET_CLS
---help---
Say Y here if you want to be able to classify packets using
only extended matches and actions.
To compile this code as a module, choose M here: the
module will be called cls_basic.
config NET_CLS_TCINDEX
tristate "Traffic-Control Index (TCINDEX)"
select NET_CLS
---help---
Say Y here if you want to be able to classify packets based on
traffic control indices. You will want this feature if you want
to implement Differentiated Services together with DSMARK.
To compile this code as a module, choose M here: the
module will be called cls_tcindex.
config NET_CLS_ROUTE4
tristate "Routing decision (ROUTE)"
depends on INET
select IP_ROUTE_CLASSID
select NET_CLS
---help---
If you say Y here, you will be able to classify packets
according to the route table entry they matched.
To compile this code as a module, choose M here: the
module will be called cls_route.
config NET_CLS_FW
tristate "Netfilter mark (FW)"
select NET_CLS
---help---
If you say Y here, you will be able to classify packets
according to netfilter/firewall marks.
To compile this code as a module, choose M here: the
module will be called cls_fw.
config NET_CLS_U32
tristate "Universal 32bit comparisons w/ hashing (U32)"
select NET_CLS
---help---
Say Y here to be able to classify packets using a universal
32bit pieces based comparison scheme.
To compile this code as a module, choose M here: the
module will be called cls_u32.
config CLS_U32_PERF
bool "Performance counters support"
depends on NET_CLS_U32
---help---
Say Y here to make u32 gather additional statistics useful for
fine tuning u32 classifiers.
config CLS_U32_MARK
bool "Netfilter marks support"
depends on NET_CLS_U32
---help---
Say Y here to be able to use netfilter marks as u32 key.
config NET_CLS_RSVP
tristate "IPv4 Resource Reservation Protocol (RSVP)"
select NET_CLS
---help---
The Resource Reservation Protocol (RSVP) permits end systems to
request a minimum and maximum data flow rate for a connection; this
is important for real time data such as streaming sound or video.
Say Y here if you want to be able to classify outgoing packets based
on their RSVP requests.
To compile this code as a module, choose M here: the
module will be called cls_rsvp.
config NET_CLS_RSVP6
tristate "IPv6 Resource Reservation Protocol (RSVP6)"
select NET_CLS
---help---
The Resource Reservation Protocol (RSVP) permits end systems to
request a minimum and maximum data flow rate for a connection; this
is important for real time data such as streaming sound or video.
Say Y here if you want to be able to classify outgoing packets based
on their RSVP requests and you are using the IPv6 protocol.
To compile this code as a module, choose M here: the
module will be called cls_rsvp6.
config NET_CLS_FLOW
tristate "Flow classifier"
select NET_CLS
---help---
If you say Y here, you will be able to classify packets based on
a configurable combination of packet keys. This is mostly useful
in combination with SFQ.
To compile this code as a module, choose M here: the
module will be called cls_flow.
config NET_CLS_CGROUP
tristate "Control Group Classifier"
select NET_CLS
select CGROUP_NET_CLASSID
depends on CGROUPS
---help---
Say Y here if you want to classify packets based on the control
cgroup of their process.
To compile this code as a module, choose M here: the
module will be called cls_cgroup.
net: sched: cls_bpf: add BPF-based classifier This work contains a lightweight BPF-based traffic classifier that can serve as a flexible alternative to ematch-based tree classification, i.e. now that BPF filter engine can also be JITed in the kernel. Naturally, tc actions and policies are supported as well with cls_bpf. Multiple BPF programs/filter can be attached for a class, or they can just as well be written within a single BPF program, that's really up to the user how he wishes to run/optimize the code, e.g. also for inversion of verdicts etc. The notion of a BPF program's return/exit codes is being kept as follows: 0: No match -1: Select classid given in "tc filter ..." command else: flowid, overwrite the default one As a minimal usage example with iproute2, we use a 3 band prio root qdisc on a router with sfq each as leave, and assign ssh and icmp bpf-based filters to band 1, http traffic to band 2 and the rest to band 3. For the first two bands we load the bytecode from a file, in the 2nd we load it inline as an example: echo 1 > /proc/sys/net/core/bpf_jit_enable tc qdisc del dev em1 root tc qdisc add dev em1 root handle 1: prio bands 3 priomap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 tc qdisc add dev em1 parent 1:1 sfq perturb 16 tc qdisc add dev em1 parent 1:2 sfq perturb 16 tc qdisc add dev em1 parent 1:3 sfq perturb 16 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/ssh.bpf flowid 1:1 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/icmp.bpf flowid 1:1 tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/http.bpf flowid 1:2 tc filter add dev em1 parent 1: bpf run bytecode "`bpfc -f tc -i misc.ops`" flowid 1:3 BPF programs can be easily created and passed to tc, either as inline 'bytecode' or 'bytecode-file'. There are a couple of front-ends that can compile opcodes, for example: 1) People familiar with tcpdump-like filters: tcpdump -iem1 -ddd port 22 | tr '\n' ',' > /etc/tc/ssh.bpf 2) People that want to low-level program their filters or use BPF extensions that lack support by libpcap's compiler: bpfc -f tc -i ssh.ops > /etc/tc/ssh.bpf ssh.ops example code: ldh [12] jne #0x800, drop ldb [23] jneq #6, drop ldh [20] jset #0x1fff, drop ldxb 4 * ([14] & 0xf) ldh [%x + 14] jeq #0x16, pass ldh [%x + 16] jne #0x16, drop pass: ret #-1 drop: ret #0 It was chosen to load bytecode into tc, since the reverse operation, tc filter list dev em1, is then able to show the exact commands again. Possible follow-up work could also include a small expression compiler for iproute2. Tested with the help of bmon. This idea came up during the Netfilter Workshop 2013 in Copenhagen. Also thanks to feedback from Eric Dumazet! Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-28 23:43:02 +08:00
config NET_CLS_BPF
tristate "BPF-based classifier"
select NET_CLS
---help---
If you say Y here, you will be able to classify packets based on
programmable BPF (JIT'ed) filters as an alternative to ematches.
To compile this code as a module, choose M here: the module will
be called cls_bpf.
config NET_CLS_FLOWER
tristate "Flower classifier"
select NET_CLS
---help---
If you say Y here, you will be able to classify packets based on
a configurable combination of packet keys and masks.
To compile this code as a module, choose M here: the module will
be called cls_flower.
config NET_CLS_MATCHALL
tristate "Match-all classifier"
select NET_CLS
---help---
If you say Y here, you will be able to classify packets based on
nothing. Every packet will match.
To compile this code as a module, choose M here: the module will
be called cls_matchall.
config NET_EMATCH
bool "Extended Matches"
select NET_CLS
---help---
Say Y here if you want to use extended matches on top of classifiers
and select the extended matches below.
Extended matches are small classification helpers not worth writing
a separate classifier for.
A recent version of the iproute2 package is required to use
extended matches.
config NET_EMATCH_STACK
int "Stack size"
depends on NET_EMATCH
default "32"
---help---
Size of the local stack variable used while evaluating the tree of
ematches. Limits the depth of the tree, i.e. the number of
encapsulated precedences. Every level requires 4 bytes of additional
stack space.
config NET_EMATCH_CMP
tristate "Simple packet data comparison"
depends on NET_EMATCH
---help---
Say Y here if you want to be able to classify packets based on
simple packet data comparisons for 8, 16, and 32bit values.
To compile this code as a module, choose M here: the
module will be called em_cmp.
config NET_EMATCH_NBYTE
tristate "Multi byte comparison"
depends on NET_EMATCH
---help---
Say Y here if you want to be able to classify packets based on
multiple byte comparisons mainly useful for IPv6 address comparisons.
To compile this code as a module, choose M here: the
module will be called em_nbyte.
config NET_EMATCH_U32
tristate "U32 key"
depends on NET_EMATCH
---help---
Say Y here if you want to be able to classify packets using
the famous u32 key in combination with logic relations.
To compile this code as a module, choose M here: the
module will be called em_u32.
config NET_EMATCH_META
tristate "Metadata"
depends on NET_EMATCH
---help---
Say Y here if you want to be able to classify packets based on
metadata such as load average, netfilter attributes, socket
attributes and routing decisions.
To compile this code as a module, choose M here: the
module will be called em_meta.
config NET_EMATCH_TEXT
tristate "Textsearch"
depends on NET_EMATCH
select TEXTSEARCH
select TEXTSEARCH_KMP
select TEXTSEARCH_BM
select TEXTSEARCH_FSM
---help---
Say Y here if you want to be able to classify packets based on
textsearch comparisons.
To compile this code as a module, choose M here: the
module will be called em_text.
config NET_EMATCH_CANID
tristate "CAN Identifier"
depends on NET_EMATCH && (CAN=y || CAN=m)
---help---
Say Y here if you want to be able to classify CAN frames based
on CAN Identifier.
To compile this code as a module, choose M here: the
module will be called em_canid.
config NET_EMATCH_IPSET
tristate "IPset"
depends on NET_EMATCH && IP_SET
---help---
Say Y here if you want to be able to classify packets based on
ipset membership.
To compile this code as a module, choose M here: the
module will be called em_ipset.
config NET_CLS_ACT
bool "Actions"
---help---
Say Y here if you want to use traffic control actions. Actions
get attached to classifiers and are invoked after a successful
classification. They are used to overwrite the classification
result, instantly drop or redirect packets, etc.
A recent version of the iproute2 package is required to use
extended matches.
config NET_ACT_POLICE
tristate "Traffic Policing"
depends on NET_CLS_ACT
---help---
Say Y here if you want to do traffic policing, i.e. strict
bandwidth limiting. This action replaces the existing policing
module.
To compile this code as a module, choose M here: the
module will be called act_police.
config NET_ACT_GACT
tristate "Generic actions"
depends on NET_CLS_ACT
---help---
Say Y here to take generic actions such as dropping and
accepting packets.
To compile this code as a module, choose M here: the
module will be called act_gact.
config GACT_PROB
bool "Probability support"
depends on NET_ACT_GACT
---help---
Say Y here to use the generic action randomly or deterministically.
config NET_ACT_MIRRED
tristate "Redirecting and Mirroring"
depends on NET_CLS_ACT
---help---
Say Y here to allow packets to be mirrored or redirected to
other devices.
To compile this code as a module, choose M here: the
module will be called act_mirred.
config NET_ACT_IPT
tristate "IPtables targets"
depends on NET_CLS_ACT && NETFILTER && IP_NF_IPTABLES
---help---
Say Y here to be able to invoke iptables targets after successful
classification.
To compile this code as a module, choose M here: the
module will be called act_ipt.
[PKT_SCHED]: Add stateless NAT Stateless NAT is useful in controlled environments where restrictions are placed on through traffic such that we don't need connection tracking to correctly NAT protocol-specific data. In particular, this is of interest when the number of flows or the number of addresses being NATed is large, or if connection tracking information has to be replicated and where it is not practical to do so. Previously we had stateless NAT functionality which was integrated into the IPv4 routing subsystem. This was a great solution as long as the NAT worked on a subnet to subnet basis such that the number of NAT rules was relatively small. The reason is that for SNAT the routing based system had to perform a linear scan through the rules. If the number of rules is large then major renovations would have take place in the routing subsystem to make this practical. For the time being, the least intrusive way of achieving this is to use the u32 classifier written by Alexey Kuznetsov along with the actions infrastructure implemented by Jamal Hadi Salim. The following patch is an attempt at this problem by creating a new nat action that can be invoked from u32 hash tables which would allow large number of stateless NAT rules that can be used/updated in constant time. The actual NAT code is mostly based on the previous stateless NAT code written by Alexey. In future we might be able to utilise the protocol NAT code from netfilter to improve support for other protocols. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-28 03:48:05 +08:00
config NET_ACT_NAT
tristate "Stateless NAT"
depends on NET_CLS_ACT
---help---
Say Y here to do stateless NAT on IPv4 packets. You should use
netfilter for NAT unless you know what you are doing.
To compile this code as a module, choose M here: the
module will be called act_nat.
[PKT_SCHED]: Add stateless NAT Stateless NAT is useful in controlled environments where restrictions are placed on through traffic such that we don't need connection tracking to correctly NAT protocol-specific data. In particular, this is of interest when the number of flows or the number of addresses being NATed is large, or if connection tracking information has to be replicated and where it is not practical to do so. Previously we had stateless NAT functionality which was integrated into the IPv4 routing subsystem. This was a great solution as long as the NAT worked on a subnet to subnet basis such that the number of NAT rules was relatively small. The reason is that for SNAT the routing based system had to perform a linear scan through the rules. If the number of rules is large then major renovations would have take place in the routing subsystem to make this practical. For the time being, the least intrusive way of achieving this is to use the u32 classifier written by Alexey Kuznetsov along with the actions infrastructure implemented by Jamal Hadi Salim. The following patch is an attempt at this problem by creating a new nat action that can be invoked from u32 hash tables which would allow large number of stateless NAT rules that can be used/updated in constant time. The actual NAT code is mostly based on the previous stateless NAT code written by Alexey. In future we might be able to utilise the protocol NAT code from netfilter to improve support for other protocols. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-28 03:48:05 +08:00
config NET_ACT_PEDIT
tristate "Packet Editing"
depends on NET_CLS_ACT
---help---
Say Y here if you want to mangle the content of packets.
To compile this code as a module, choose M here: the
module will be called act_pedit.
config NET_ACT_SIMP
tristate "Simple Example (Debug)"
depends on NET_CLS_ACT
---help---
Say Y here to add a simple action for demonstration purposes.
It is meant as an example and for debugging purposes. It will
print a configured policy string followed by the packet count
to the console for every packet that passes by.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_simple.
config NET_ACT_SKBEDIT
tristate "SKB Editing"
depends on NET_CLS_ACT
---help---
Say Y here to change skb priority or queue_mapping settings.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_skbedit.
config NET_ACT_CSUM
tristate "Checksum Updating"
depends on NET_CLS_ACT && INET
---help---
Say Y here to update some common checksum after some direct
packet alterations.
To compile this code as a module, choose M here: the
module will be called act_csum.
config NET_ACT_VLAN
tristate "Vlan manipulation"
depends on NET_CLS_ACT
---help---
Say Y here to push or pop vlan headers.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_vlan.
config NET_ACT_BPF
tristate "BPF based action"
depends on NET_CLS_ACT
---help---
Say Y here to execute BPF code on packets. The BPF code will decide
if the packet should be dropped or not.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_bpf.
config NET_ACT_CONNMARK
tristate "Netfilter Connection Mark Retriever"
depends on NET_CLS_ACT && NETFILTER && IP_NF_IPTABLES
depends on NF_CONNTRACK && NF_CONNTRACK_MARK
---help---
Say Y here to allow retrieving of conn mark
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_connmark.
config NET_ACT_SKBMOD
tristate "skb data modification action"
depends on NET_CLS_ACT
---help---
Say Y here to allow modification of skb data
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_skbmod.
introduce IFE action This action allows for a sending side to encapsulate arbitrary metadata which is decapsulated by the receiving end. The sender runs in encoding mode and the receiver in decode mode. Both sender and receiver must specify the same ethertype. At some point we hope to have a registered ethertype and we'll then provide a default so the user doesnt have to specify it. For now we enforce the user specify it. Lets show example usage where we encode icmp from a sender towards a receiver with an skbmark of 17; both sender and receiver use ethertype of 0xdead to interop. YYYY: Lets start with Receiver-side policy config: xxx: add an ingress qdisc sudo tc qdisc add dev $ETH ingress xxx: any packets with ethertype 0xdead will be subjected to ife decoding xxx: we then restart the classification so we can match on icmp at prio 3 sudo $TC filter add dev $ETH parent ffff: prio 2 protocol 0xdead \ u32 match u32 0 0 flowid 1:1 \ action ife decode reclassify xxx: on restarting the classification from above if it was an icmp xxx: packet, then match it here and continue to the next rule at prio 4 xxx: which will match based on skb mark of 17 sudo tc filter add dev $ETH parent ffff: prio 3 protocol ip \ u32 match ip protocol 1 0xff flowid 1:1 \ action continue xxx: match on skbmark of 0x11 (decimal 17) and accept sudo tc filter add dev $ETH parent ffff: prio 4 protocol ip \ handle 0x11 fw flowid 1:1 \ action ok xxx: Lets show the decoding policy sudo tc -s filter ls dev $ETH parent ffff: protocol 0xdead xxx: filter pref 2 u32 filter pref 2 u32 fh 800: ht divisor 1 filter pref 2 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:1 (rule hit 0 success 0) match 00000000/00000000 at 0 (success 0 ) action order 1: ife decode action reclassify index 1 ref 1 bind 1 installed 14 sec used 14 sec type: 0x0 Metadata: allow mark allow hash allow prio allow qmap Action statistics: Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 xxx: Observe that above lists all metadatum it can decode. Typically these submodules will already be compiled into a monolithic kernel or loaded as modules YYYY: Lets show the sender side now .. xxx: Add an egress qdisc on the sender netdev sudo tc qdisc add dev $ETH root handle 1: prio xxx: xxx: Match all icmp packets to 192.168.122.237/24, then xxx: tag the packet with skb mark of decimal 17, then xxx: Encode it with: xxx: ethertype 0xdead xxx: add skb->mark to whitelist of metadatum to send xxx: rewrite target dst MAC address to 02:15:15:15:15:15 xxx: sudo $TC filter add dev $ETH parent 1: protocol ip prio 10 u32 \ match ip dst 192.168.122.237/24 \ match ip protocol 1 0xff \ flowid 1:2 \ action skbedit mark 17 \ action ife encode \ type 0xDEAD \ allow mark \ dst 02:15:15:15:15:15 xxx: Lets show the encoding policy sudo tc -s filter ls dev $ETH parent 1: protocol ip xxx: filter pref 10 u32 filter pref 10 u32 fh 800: ht divisor 1 filter pref 10 u32 fh 800::800 order 2048 key ht 800 bkt 0 flowid 1:2 (rule hit 0 success 0) match c0a87aed/ffffffff at 16 (success 0 ) match 00010000/00ff0000 at 8 (success 0 ) action order 1: skbedit mark 17 index 6 ref 1 bind 1 Action statistics: Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 action order 2: ife encode action pipe index 3 ref 1 bind 1 dst MAC: 02:15:15:15:15:15 type: 0xDEAD Metadata: allow mark Action statistics: Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 xxx: test by sending ping from sender to destination Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-27 21:08:54 +08:00
config NET_ACT_IFE
tristate "Inter-FE action based on IETF ForCES InterFE LFB"
depends on NET_CLS_ACT
---help---
Say Y here to allow for sourcing and terminating metadata
For details refer to netdev01 paper:
"Distributing Linux Traffic Control Classifier-Action Subsystem"
Authors: Jamal Hadi Salim and Damascene M. Joachimpillai
To compile this code as a module, choose M here: the
module will be called act_ife.
config NET_ACT_TUNNEL_KEY
tristate "IP tunnel metadata manipulation"
depends on NET_CLS_ACT
---help---
Say Y here to set/release ip tunnel metadata.
If unsure, say N.
To compile this code as a module, choose M here: the
module will be called act_tunnel_key.
config NET_IFE_SKBMARK
tristate "Support to encoding decoding skb mark on IFE action"
depends on NET_ACT_IFE
---help---
config NET_IFE_SKBPRIO
tristate "Support to encoding decoding skb prio on IFE action"
depends on NET_ACT_IFE
---help---
config NET_IFE_SKBTCINDEX
tristate "Support to encoding decoding skb tcindex on IFE action"
depends on NET_ACT_IFE
---help---
config NET_CLS_IND
bool "Incoming device classification"
depends on NET_CLS_U32 || NET_CLS_FW
---help---
Say Y here to extend the u32 and fw classifier to support
classification based on the incoming device. This option is
likely to disappear in favour of the metadata ematch.
endif # NET_SCHED
config NET_SCH_FIFO
bool